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Abstract: The recovery of the coe�cient H(x) in the one-dimensional generalized Schr�odinger equation
d2 

dx2
+ k2H(x)2 = Q(x) ; where H(x) is a positive, piecewise continuous function with positive limits H�

as x!�1; is studied. This equation describes the wave propagation in a one-dimensional nonhomogeneous

medium in which the wavespeed 1=H(x) changes abruptly at a �nite number of points and a restoring force

Q(x) is present. When there are no bound states, the uniqueness of H(x) in the inversion is established for

a proper choice of scattering data. When the transmission coe�cient vanishes at k = 0; it is shown that the

scattering data consisting of Q(x) and a reduced reection coe�cient uniquely determine H(x); and neither

H+ nor H� need to be given as part of the scattering data. If the transmission coe�cient does not vanish

when k = 0; then one needs to include either H+ or H� in the scattering data to obtain H(x) uniquely.

A simple algorithm is described giving the travel times from x = 0 to any discontinuity of H(x) and the

relative changes in the wavespeed in terms of the large k-asymptotics of a (reduced) reection coe�cient. It

is also shown that H+ and the transmission coe�cient alone do not determine the number of discontinuities

of H(x); let alone the travel times between them. Some examples are given to illustrate the algorithm.
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1. INTRODUCTION

Consider the one-dimensional generalized Schr�odinger equation

(1.1)  00(k; x) + k2H(x)2 (k; x) = Q(x) (k; x); x 2 R;

where the prime denotes the derivative with respect to the spatial coordinate and the coe�cients are assumed

to satisfy the following conditions:

(H1) H(x) is strictly positive and piecewise continuous with jump discontinuities at xn for n = 1; � � � ; N
such that x1 < � � � < xN :

(H2) H(x)! H� as x!�1; where H� are positive constants.

(H3) H �H� 2 L1(R�); where R� = (�1; 0) and R+ = (0;+1):

(H4) H0 is absolutely continuous on (xn; xn+1) and 2H00H � 3 (H0)2 2 L1
1(xn; xn+1) for n = 0; � � � ; N;

where x0 = �1 and xN+1 = +1; and L1
�(I) denotes the space of measurable functions f(x) on I such

that
R
I
dx (1 + jxj)� jf(x)j <1:

(H5) Q 2 L1
1+�(R) for some � 2 [0; 1]:

Eq. (1.1) describes the propagation of waves in a one-dimensional nonhomogeneous medium where k2

is energy, 1=H(x) is the wavespeed, and Q(x) is the restoring force per unit length. The discontinuities of

H(x) correspond to abrupt changes in the scattering properties of the medium in which the wave propagates,

the relative changes H(xn � 0)=H(xn + 0) correspond to the jumps in the wavespeed at the interfaces xn,

and yn =
R xn
0

dxH(x) correspond to the times required for the wave to propagate from the �xed location

x = 0 to the interfaces yn for n = 1; � � � ; N:

In [AKV95] we described a solution to the inverse problem of recovering H(x) in terms of the scattering

data consisting of Q(x); a (reduced) reection coe�cient, H+ or H�; the bound state energies, and the bound

state norming constants. In the present paper, for simplicity, we assume that there are no bound states and

that � = 1 in (H5). This will cover in particular the case Q(x) = 0. Under these assumptions the main steps

in the procedure used in [AKV95] are the following: (1) Use a (reduced) reection coe�cient to formulate

a singular integral equation, (2) solve this equation uniquely, (3) obtain y(x) as the solution of an algebraic

equation also containing as input the solution fl(0; x) of (1.1) for k = 0 satisfying fl(0; x)! 1 as x! +1,

(4) put H(x) = y0(x): A similar procedure was given by Grinberg [Gr90,Gr91] when Q(x) = 0, in which

case the unique solvability of the singular integral equation is immediate and the third step is trivial to

implement.

After introducing the scattering and reduced scattering matrices and reviewing their small and large
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k-asymptotics in Section 2, we will study two problems associated with the recovery of H(x) in (1.1): The

�rst problem deals with the inclusion or exclusion of H� in the scattering data. The second problem deals

with the recovery of the discontinuities of H(x) in terms of the large k-asymptotics of the scattering data.

As for the �rst problem, an example was given in [AKV95] where a unique H(x) was recovered although

neither H+ nor H� was included in the scattering data. We now understand the general theory concerning

that surprising result, and in Section 3 we investigate the proper choice of the scattering data that lead to

a unique H(x): In the exceptional case, i.e. when the transmission coe�cient associated with (1.1) does not

vanish at k = 0; we show that one needs to include either H+ or H� in the scattering data; otherwise, as the

example in (3.1) indicates, a one-parameter family of H(x) with di�erent H+ leads to the same scattering

data. In the generic case, i.e. when the transmission coe�cient vanishes at k = 0; if one uses a reduced

reection coe�cient in the scattering data, then neither H+ nor H� need to be included in the scattering

data, and in fact H� are determined by using the condition (3.40) without including either H+ or H� in

the scattering data. On the other hand, in the generic case, if one uses a reection coe�cient instead of

a reduced reection coe�cient, in order to determine H(x) uniquely, one can omit H� from the scattering

data if and only if (3.41) is satis�ed. All the details are given in Section 3, and some examples are provided

to illustrate the proper choice of the scattering data.

The inversion method described in [AKV95] is based on a singular integral equation whose solution

eventually leads to H(x): From this method it is not clear how simple properties of the medium, such as the

number of and the travel times between discontinuities of H(x), can be found in an elementary way without

solving an integral equation. In Section 4 of the present paper, we describe an algorithm that allows one to

�nd the number N of discontinuities of H(x), the travel times y1; � � � ; yN to these discontinuities from the

�xed location x = 0, and the jumpsH(xn�0)=H(xn+0) in the wavespeed at the interfaces by using the large

k-asymptotics of a (reduced) reection coe�cient. This algorithm does not involve any integral equations

and, as some illustrative examples show, can be implemented by hand. An algorithm to recover the travel

times yn+1 � yn and the jumps H(xn � 0)=H(xn + 0) in terms of the large k-asymptotics of the modulus

of the transmission coe�cient was described by Grinberg [Gr90,Gr91] under certain technical restrictions.

Our algorithm given in Section 4 does not have these restrictions. As Example 4.2 indicates, H+ and the

transmission coe�cient alone do not in general determine even the number of discontinuities of H(x), let

alone the travel times between the successive discontinuities of H(x): When the function H(x)fl(0; x)
2 is

known to be piecewise constant, the algorithm described in Section 4 allows us to recover H(x) exactly.

When the conditions (H1)-(H5) are satis�ed, the large k-asymptotics of a (reduced) reection coe�cient are

given by an almost-periodic function of k: In Section 5, we characterize those functions H(x) that satisfy

(H1)-(H4) and for which the corresponding (reduced) scattering coe�cients are almost periodic functions of

k:
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Concerning scattering and inverse scattering problems with discontinuous coe�cients, we remark that

Sabatier and his co-workers [SD88,Sa89,DS92,MS94] studied the scattering for the impedance-potential

equation and that Krueger [Kr76,Kr78] studied the inverse scattering problem for uxx � utt + c1(x)ux +

c2(x)ut + c3(x)u = 0; where x; t 2 R and the coe�cients c1; c2; c3 are piecewise continuous functions with

support in a �nite interval. Krueger [Kr82] also considered uxx � "(x)utt = 0 when "(x) is constant for

x < 0 and piecewise continuous for x > 0; and he developed an iterative method to recover "(x) when the

incoming and reected waves are given.

2. PRELIMINARIES

In this section we review the small and large k-asymptotics of the scattering matrix associated with

(1.1). The reader is referred to [AKV95] for the details and proofs. The scattering coe�cients associated

with (1.1) are de�ned in terms of the Jost solution from the left fl(k; x) and the Jost solution from the right

fr(k; x); which satisfy the boundary conditions

(2.1) fl(k; x) =

8<
:
eikH+x + o(1); x! +1;

1

Tl(k)
eikH�x +

L(k)

Tl(k)
e�ikH�x + o(1); x!�1;

fr(k; x) =

8<
:

1

Tr(k)
e�ikH+x +

R(k)

Tr(k)
eikH+x + o(1); x! +1;

e�ikH�x + o(1); x!�1;

where Tl(k) and Tr(k) are the transmission coe�cients from the left and from the right, respectively, and

R(k) and L(k) are the reection coe�cients from the right and from the left, respectively. The scattering

matrix associated with (1.1) is de�ned by

S(k) =

�
Tl(k) R(k)
L(k) Tr(k)

�
:

For brevity, the entries of S(k) are also referred to collectively as scattering coe�cients. The bound states

associated with (1.1) are given by the square-integrable solutions of (1.1), and such solutions can occur only

at certain discrete negative values of k2 known as bound state energies; k = 0 is never a bound state.

As in [AKV95] we introduce the reduced scattering matrix

(2.2) �(k) =

�
� (k) �(k)
`(k) � (k)

�
;

where

(2.3) � (k) =

s
H+

H�
Tl(k)e

ikA =

s
H�

H+
Tr(k)e

ikA; �(k) = R(k)e2ikA+; `(k) = L(k)e2ikA� ;

(2.4) A� = �
Z �1

0

ds [H� �H(s)]; A = A� +A+:
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We will refer to � (k) as the reduced transmission coe�cient and to �(k) and `(k) as the reduced reection

coe�cients from the right and from the left, respectively. The entries of �(k) collectively are also referred

to as reduced scattering coe�cients. The matrix �(k) is unitary for k 2 R and we have

(2.5) det �(k) = � (k)2 � `(k) �(k) =
� (k)

� (�k) ;

where det denotes the matrix determinant.

As in [AKV95] we distinguish between the generic and the exceptional cases for (1.1). The generic

(exceptional) case is said to occur if � (0) = 0 (� (0) 6= 0). Equivalently, the exceptional case occurs if the

zero-energy Jost solutions fl(0; x) and fr(0; x) are linearly dependent, i.e. if we have

(2.6) fl(0; x) =  fr(0; x)

for some nonzero constant : In the generic case fl(0; x) and fr(0; x) are linearly independent and hence

[fl(0; x); fr(0; x)] 6= 0; where [f ; g] = fg0 � f 0g denotes the Wronskian.

Let C� denote the upper and lower half complex planes, respectively, and C� = C�[R: The following
theorem proved in [AKV95] summarizes some properties of the reduced scattering coe�cients that are

relevant to us.

Theorem 2.1 (i) � (k) is meromorphic in C+ and continuous on R: In the generic case � (k) vanishes

linearly as k! 0 in C+: The bound state energies correspond to the (simple, �nitely many) poles of � (k) in

C+; and such poles may occur only on the imaginary axis in C+:

(ii) �(k) and `(k) are continuous for k 2 R: In the generic case we have j�(k)j = j`(k)j < 1 for k 6= 0 and

�(0) = `(0) = �1; whereas in the exceptional case we have j�(k)j = j`(k)j < 1 for all k 2 R:

The detailed asymptotic behaviors of � (k); �(k); and `(k) as k ! 0 with error terms depending on �

[cf. (H5)] were given in [AKV95]. Using the small k-behavior of the reduced scattering coe�cients, it is

possible to show that when Q(x) and �(k) are known, H+ can be obtained from H� and vice versa. This

can be seen as follows. In the exceptional case we have [AKV95]

(2.7) H+ =
2[1 + �(0)]

1� �(0)
H�;

where  is the constant in (2.6), and this constant is determined by Q(x) alone. In the generic case we have

(2.8) H+ =
c2 [fl(0; x); fr(0; x)]

2

4H�
;

where c := limk!0
�(k)
ik
: Note that fl(0; x) and fr(0; x) are determined by Q(x) alone, and hence their

Wronskian in (2.8) is also determined by Q(x) alone; furthermore we have c2 = limk!0
1� j�(k)j2

k2
; while

(�1)N�1c > 0; N being the number of bound states. Hence, c is solely determined by �(k) and N :
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The local Liouville transformation on each interval (xj ; xj+1) given by

(2.9) y = y(x) =

Z x

0

dsH(s);  (k; x) =
1p
H(x)

�(k; y);

transforms (1.1) into the Schr�odinger equation

(2.10)
d2�(k; y)

dy2
+ k2�(k; y) = V (y)�(k; y);

where

(2.11) V (y) = V (y(x)) =
H00(x)

2H(x)3
� 3

4

H0(x)2

H(x)4
+

Q(x)

H(x)2
:

Hence V (y) is de�ned for y 2 Rnfy1; � � � ; yNg; where yj = y(xj): Since H(x) > 0 and has positive limitsH�

as x!�1; we have y0 = y0(x0) = �1 and yN+1 = y(xN+1) = +1: Note that, since the functions  (k; x)

and  0(k; x) are continuous at xj; the functions �(k; y) and d�(k; y)=dy will not be continuous at yj : From

the continuity of  (k; x) and  0(k; x) at xj for j = 1; � � � ; N; we obtain the following (internal) boundary

conditions for �(k; y) :

(2.12) �(k; yj � 0) =
p
qj �(yj + 0);

(2.13)
d�(k; yj � 0)

dy
= �j �(k; yj + 0) +

1p
qj

d�(k; yj + 0)

dy
;

where

(2.14) qj =
H(xj � 0)

H(xj + 0)
;

(2.15) �j =
1

2
p
H(xj + 0)H(xj � 0)

�
H0(xj � 0)

H(xj � 0)
� H0(xj + 0)

H(xj + 0)

�
:

It is straightforward to check that the boundary conditions (2.12)-(2.13) are self-adjoint. So we can think

of (2.10) as a Schr�odinger equation with potential V (y) given by (2.11) on the intervals (yj ; yj+1) for j =

0; � � � ; N and supplemented by the boundary conditions (2.12)-(2.13) at the points yj : As shown in the

following proposition, although V (y) is unde�ned at yj for j = 1; � � � ; N; we can still associate a scattering

matrix with (2.10).

Proposition 2.2 The scattering matrix for (2.10) with the boundary conditions (2.12)-(2.13) is precisely

the reduced scattering matrix �(k) de�ned in (2.2).

PROOF: From (2.4) and (2.9) we have

(2.16) y(x) = H+ x�A+ + o(1); x! +1;
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(2.17) y(x) = H� x+A� + o(1); x!�1:

Hence, by using (2.16), the Jost solution from the left for (2.10) [i.e. the solution of (2.10) such that

e�iky�l(k; y) = 1 + o(1) as y ! +1] is given by

�l(k; y) =

p
H(x)p
H+

e�ikA+ fl(k; x):

Therefore, as y !�1; from (2.1) and (2.17) it follows that

�l(k; y) =

s
H�

H+

e�ikA

Tl(k)
eiky +

s
H�

H+

L(k)

Tl(k)
eik(A��A+) e�iky + o(1):

By using (2.3) we see that

(2.18) �l(k; y) =
1

� (k)
eiky +

`(k)

� (k)
e�iky + o(1); y !�1;

and thus � (k) is the transmission coe�cient and `(k) is the reection coe�cient from the left for (2.10).

Similarly, by considering the Jost solution of (2.10) from the right, one shows that the reection coe�cient

from the right is �(k):

Later in the paper we need to know how the (reduced) scattering matrix changes when we perform a

shift y ! y + � for a �xed � 2 R:

Proposition 2.3 For any � 2 R; let V (y; �) = V (y + �): Consider (2.10) with V (y) replaced by V (y; �)

and boundary conditions of the form (2.12)-(2.13) at the points yj � �; where the numerical values of qj and

�j are independent of �: Then the scattering coe�cients for V (y) and V (y; �) are related by

(2.19) � (k; �) = � (k); �(k; �) = e2ik� �(k); `(k; �) = e�2ik� `(k):

PROOF: The Jost solution from the left associated with V (y; �) is given by �l(k; y; �) = e�ik� �l(k; y + �):

Then (2.19) is obtained by using (2.3), (2.4), and (2.18).

Let Vj;j+1(y) be the potential de�ned by

(2.20) Vj;j+1(y) =

(
V (y); y 2 (yj ; yj+1);

0; elsewhere:

As a consequence of hypothesis (H4) we have

(2.21) Vj;j+1(�) 2 L1
1(R); j = 0; � � � ; N:

Let gl;j;j+1(k; y) and gr;j;j+1(k; y) denote the Jost solutions from the left and right, respectively, associated

with the potential Vj;j+1(y): Then the functions de�ned by

(2.22) �j;j+1(k; x) =
1p
H(x)

gl;j;j+1(k; y); �j;j+1(k; x) =
1p
H(x)

gr;j;j+1(k; y);
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become solutions of (1.1). Let us introduce the matrices

�j;j+1(k; x) =

�
�j;j+1(k; x) �j;j+1(k; x)
�0j;j+1(k; x) �0j;j+1(k; x)

�
; j = 0; � � � ; N;

(2.23) G(k) =
NY
n=1

�n�1;n(k; xn � 0)�1�n;n+1(k; xn + 0):

Let tj;j+1(k); rj;j+1(k); and lj;j+1(k) denote the scattering coe�cients for the potential Vj;j+1(y): It was

shown in [AKV95] that

(2.24)
1

� (k)
=

1

t0;1(k)
[ 1 0 ]G(k)

�
1
0

�
=

1

tN;N+1(k)
[ 0 1 ]G(k)�1

�
0
1

�
;

`(k)

� (k)
=

�
l0;1(k)

t0;1(k)
1

�
G(k)

�
1
0

�
;

(2.25)
�(k)

� (k)
=

�
1

rN;N+1(k)

tN;N+1(k)

�
G(k)�1

�
0
1

�
:

Moreover,

det �n;n+1(k; x) = � 2ik

tn;n+1(k)
; det G(k) = t0;1(k)

tN;N+1(k)
:

Let

(2.26) �n =
1

2

�p
qn +

1p
qn

�
; �n =

1

2

�p
qn � 1p

qn

�
;

(2.27) E(k; xn) =

�
�n �ne

�2ikyn

�ne
2ikyn �n

�
;

with qn as in (2.14); let us also de�ne a(k) and b(k) by

(2.28)

�
a(k) b(k)
b(�k) a(�k)

�
=

NY
n=1

E(k; xn):

From (2.26)-(2.27) we see that

(2.29) ja(k)j2 � jb(k)j2 = 1; k 2 R:

Let APW (almost periodic functions with Wiener norm) stand for the algebra of all complex-valued

functions f(k) on R which are of the form f(k) =
P1

j=�1 fje
ik�j ; where fj 2 C and �j 2 R for all j

and
P

j jfj j < 1: By letting k !1 in (2.23) and using (2.24) and (2.25) we obtain the following theorem

proved in [AKV95].
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Theorem 2.4 We have

(2.30)
1

� (k)
= a(k) [1 + o(1)]; k !1 in C+;

(2.31) �(k) =
�b(k)
a(k)

+ o(1); k !�1 in R:

Moreover, ja(k)j � 1 on C+ and the functions a(k); b(k);
1

a(k)
; and

b(k)

a(k)
belong to APW :

3. SCATTERING DATA AND UNIQUENESS

The motivation for this section comes from some observations made in [AKV95] concerning the unique-

ness of solutions to the inverse problem. The question of uniqueness is closely related to the choice of an

appropriate set of scattering data. Recall our assumption that there are no bound states. We will show

that in the generic case the scattering data consisting of Q(x) and a reduced reection coe�cient uniquely

determine H(x); in the exceptional case either H+ or H� must be speci�ed in addition to Q(x) and a reduced

reection coe�cient to determine H(x) uniquely. There is no loss of generality in using �(k) as the reduced

scattering coe�cient in the scattering data, and without further mentioning it we will simply use �(k); one

can easily modify the proofs if `(k) is used instead of �(k) in the scattering data. We will also give the

appropriate modi�cation if one uses a reection coe�cient instead of a reduced reection coe�cient in the

scattering data; it then turns out that in the generic case when (3.41) fails one also must include either H+

or H� in the scattering data. Since the proofs essentially remain the same whether one uses R(k) or L(k) as

the reection coe�cient, without loss of generality we will state and prove our results by using only R(k):

We recall that in the absence of bound states the inversion procedure described in [AKV95] requires

two key ingredients: the potential Q(x) and the reduced reection coe�cient �(k) (or, alternatively,R(k)). In

the exceptional case one also needs to know H+ in order to determine H(x) uniquely. For example, consider

the scattering data given by Q(x) = 0 and �(k) = �0; where �0 2 (�1; 1) is a constant. Corresponding to

this set of data we have

(3.1) H(x) =

8<
:

H+; x > 0;

1� �0

1 + �0
H+; x < 0;

and hence a one-parameter family of functions H(x) corresponds to the same scattering data. In general, in

the exceptional case no conditions on H+ arise during the inversion procedure, and hence one always ends

up with a one-parameter family of functions H(x), parametrized by H+: However, the parameter H+ will

generally not be a multiplicative factor in H(x) as in (3.1). The proof that, in the exceptional case, there

exists a one-parameter family of functions H(x) depending on H+; having the same �(k); and satisfying

(H1)-(H4), was not given in [AKV95]; it will be given here in Theorem 3.2.
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On the other hand, in the generic case, we learned from Example 6.2 in [AKV95] that H+ is not a

free parameter as in the exceptional case but is determined by �(k) and Q(x): We have since realized that

this is generally true in the generic case, and we will prove this fact in Theorem 3.1. It is possible to modify

the inversion procedure of [AKV95] and use the reection coe�cient R(k) instead of the reduced reection

coe�cient �(k) in the scattering data. Somewhat surprisingly, it then turns out that in the generic case

there is one special situation, where H+ also becomes a free parameter; this special case occurs when (3.41)

fails and it will be described in Theorem 3.3.

We will �rst show that in the absence of bound states the scattering data appropriate for the unique

solution of the inverse problem associated with (1.1) are:

1. In the generic case: fQ(x); �(k)g.

2. In the exceptional case: fQ(x); �(k); H+g.

In preparation of the proof of our �rst theorem we recall some results from [AKV95]. The function

Q(x) enters into our formalism through the zero-energy Jost solution fl(0; x) and its k-derivative _fl(0; x):

These two functions satisfy the following integral equations:

(3.2) fl(0; x) = 1 +

Z 1

x

dz (z � x)Q(z) fl(0; z);

(3.3) _fl(0; x) = iH+x+

Z 1

x

dz (z � x)Q(z) _fl(0; z):

Incidentally, (3.3) shows that _fl(0; x) is also a zero-energy solution of (1.1) and is linearly independent of

fl(0; x); since it grows as x! +1: From (3.2) and (3.3), the estimates

(3.4) jfl(0; x)j � (1 +maxf0;�xg) e
R
1

�1

dz (1+jzj) jQ(z)j
;

(3.5) j _fl(0; x)j � H+(1 + jxj) e
�R

1

�1

dz (1+jzj)2jQ(z)j
�

follow by iteration. Since Q 2 L1
2(R); from (3.3) and (3.5) we conclude that

(3.6) _fl(0; x) = iH+x+ o(1); x! +1:

Since we assume that there are no bound states, we have fl(0; x) > 0 for all x 2 R: On letting x! �1 in

(3.2) and using (3.4) we �nd

(3.7) fl(0; x) = �clx+ dl + �l(x); x!�1;

10



where

(3.8) cl =

Z 1

�1
dzQ(z) fl(0; z);

(3.9) dl = 1+

Z 1

�1
dz z Q(z) fl(0; z);

(3.10) �l(x) = �
Z x

�1
dz (z � x)Q(z) fl(0; z):

From (2.15) of [AKV93] it follows that cl = [fl(0; x); fr(0; x)] > 0: The detailed asymptotics stated in (3.7)

will be needed at the end of this section. We denote by _fl;1(0; x) the unique solution of (3.3) for H+ = 1:

The ratios de�ned by

(3.11) G(x) = �i
_fl(0; x)

fl(0; x)
; G1(x) = �i

_fl;1(0; x)

fl(0; x)

will play an important role in the sequel. By (3.3) we have

(3.12) _fl(0; x) = H+
_fl;1(0; x); G(x) = H+G1(x);

and (cf. (2.27) in [AKV95])

(3.13) G01(x) =
1

fl(0; x)2
> 0:

Moreover, using (3.6) and (3.10) we obtain

(3.14) G1(x) = x+ o(1); x! +1:

We now return to the inversion method of [AKV95]. The solution of the inverse problem leads to the

following implicit equation (cf. (5.24) in [AKV95]):

(3.15) y + A+ + ~X(0; y) = H+G1(x);

where y = y(x) is the function de�ned in (2.9) and ~X(k; y) is the solution of the singular integral equation

(3.16) ~X(k; y) = ~X0(k; y) + (Oy
~X)(k; y);

with

(3.17) ~X0(k; y) =
1

2�i

Z 1

�1

ds

s� k + i0

�(s) e2isy � �(0)

s
;

(3.18) (Oy
~X)(k; y) =

1

2�i

Z 1

�1

ds

s+ k � i0
�(�s) e�2isy ~X(s; y):

11



Note that the function ~X(k; y) is related to the solution X(k; x; y) of (5.21) in [AKV95] by

X(k; x; y) = �i ~X(k; y)
fl(0; x)p
H+

:

The existence and uniqueness of solutions of (3.16) in the Hardy spaces Hp
�(R) with 1 < p <1 was proved

in [AKV95]. Recall that the Hardy spaces Hp
�(R) are the spaces of analytic functions F (k) on C� for

which sup�>0

R1
�1 dkjF (k�i�)jp is �nite. The constant A+ in (3.15) is determined uniquely by the condition

y(0) = 0; i.e.

(3.19) A+ = H+G1(0)� ~X(0; 0);

and thus (3.15) can be written as

(3.20) y + ~X(0; y) = H+[G1(x)�G1(0)] + ~X(0; 0):

Theorem 3.1 For a given set of scattering data, if a solution H(x) of the inverse problem exists, then it

is unique.

PROOF: In the exceptional case, fl(0; x) !  as x ! �1; where  is the constant de�ned in (2.6); since

fl(0; x) is bounded and strictly positive, using (3.13) we conclude that the range of G(x) is the whole real

line. In the generic case, by using (3.7), (3.11), and (3.13), we see that

(3.21) lim
x!�1

G1(x) = G1(�1) = G1(0)�
Z 0

�1
dz

1

fl(0; z)2

is �nite. Therefore, in the generic case, by using (3.12) and (3.13), we see that the range ofG(x) is the interval

(H+G1(�1);+1): A solution y(x) of (3.15) is assumed to exist and y(x) is monotonically increasing; hence

the left-hand side of (3.15) must also be monotonically increasing as a function of y: In fact, by di�erentiating

(3.20) and using (3.13) and dy=dx = H(x); we see that the function ~X(0; y) is continuously di�erentiable

except possibly at the points yj = y(xj), and

d[y + ~X(0; y)]

dy
=

H+

H(x) fl(0; x)2
> 0; y 2 R n fy1; � � � ; yNg:

Since the ranges of both sides of (3.15) must be equal and limx!�1 y(x) = �1; we conclude that in the

exceptional case

lim
y!�1

[y + ~X(0; y)] = �1:

In the generic case we have

lim
y!+1

[y + ~X(0; y)] = +1;

and from (3.20) and (3.21) we conclude that the limit

(3.22) w := lim
y!�1

[y + ~X(0; y)]

12



exists and is �nite, and that

(3.23) w = H+[G1(�1)� G1(0)] + ~X(0; 0):

Hence, solving (3.23) for H+ we obtain

(3.24) H+ =
w � ~X(0; 0)

G1(�1)� G1(0)
;

which shows that in the generic case H+ is determined uniquely by �(k) and Q(x). This is the reason why

we do not include H+ in the scattering data for the generic case. In the exceptional case both sides of (3.15)

have in�nite range and hence there is no restriction on H+ arising from the implicit equation (3.15). From

the monotonicity of the two sides of (3.15) it is clear that (3.15) is uniquely solvable for y(x): The constant

A+; the function ~X(0; y); and, in the generic case, the value of H+ are determined uniquely by the scattering

data. Hence the proof is complete.

In the rest of this section we will obtain some further results on the function ~X(0; y): The �rst piece

of information comes from the fact that the two expressions for A+; (2.4) and (3.19), must agree. Let us

temporarily denote the constant in (2.4) by A
(1)
+ and the constant in (3.19) by A

(2)
+ : Then

(3.25) A
(1)
+ =

Z x

0

ds [H+ �H(s)] +

Z 1

x

ds [H+ �H(s)] = H+x� y(x) + o(1);

where o(1) stands for terms that go to zero as x! +1: Replacing A+ by A
(2)
+ in (3.15), from (3.14), (3.15),

and (3.25) we obtain

A
(1)
+ = A

(2)
+ + ~X(0; y) + o(1):

Hence, A
(1)
+ = A

(2)
+ if and only if

(3.26) lim
y!+1

~X(0; y) = 0:

This amounts to a condition on �(k): For example, (3.26) holds if �(k) has an analytic continuation into

C+ and obeys the estimate j�(k)j � c1 exp(c2Imk) on C+ for some constants c1 and c2: This follows from

(3.16)-(3.18) by contour integration and iteration. The examples discussed in [AKV95] have this property.

The fact that in the exceptional case the constant H+ is not restricted by (3.15) suggests that it is a

free parameter in the sense described in the introduction to this section. The next theorem will make this

notion precise. We will distinguish a particular function H0(x) satisfying (H1)-(H4) and denote its reduced

scattering matrix by �0(k) and the corresponding solution ~X(0; y) of (3.16) by ~X0(0; y): A subscript zero will

be used also on other quantities to indicate that they are associated with H0(x); e.g. we will write �0(k);

�0(k); and A0;+ for the quantities �(k); �(k); and A+ de�ned in (2.2)-(2.4), etc. Then we consider (3.15)

with ~X0(0; y) in place of ~X(0; y); but on the right-hand side we leave H+ > 0 and view it as a parameter (so

H+ need not be equal to H0;+); in other words, we consider

(3.27) y +A+ + ~X0(0; y) = H+G1(x);

13



In the following, the quantities that do not carry a subscript zero are associated with the solution y(x) of

(3.27) for a given H+: The following theorem shows that, in the exceptional case, there is a one-parameter

family of functions H(x) with parameter H+; which corresponds to the same scattering data fQ(x); �(k)g:

Theorem 3.2 Suppose we are in the exceptional case with Q 2 L1
2(R) and that H0(x) obeys (H1)-(H4).

Then for any H+ > 0; the function H(x) = y0(x); where y(x) is the solution of (3.27), also obeys (H1)-(H4).

Moreover, �(k) = �0(k):

PROOF: We will �rst verify (H1)-(H4) in the order (H2), (H3), (H1), and (H4). Di�erentiating (3.27) with

respect to x and using G01(x) = 1=fl(0; x)
2 [cf. (3.13)] we get

(3.28) ~X0
0(0; y) =

H+

H(x) fl(0; x)2
� 1;

where the prime on ~X0(0; y) denotes the y-derivative. Replacing in (3.28) H(x) and H+ by H0(x) and H0;+;

respectively, and letting x!�1; we obtain

(3.29) lim
y!+1

~X0
0(0; y) = 0; lim

y!�1
~X0
0(0; y) =

H0;+

H0;�2
� 1;

where we have also used (2.6). Since H0(x) is bounded and bounded away from zero by (H1) and (H2), we

see from (3.28) that ~X0
0(0; y) must obey an estimate of the form

(3.30) 0 < C1 � 1 + ~X0
0(0; y) � C2 <1;

for some constants C1 and C2: Now return to (3.28) with an arbitrary H(x): By using (3.29) and (3.30) we

conclude that H(x) must approach �nite limits as x! �1; in particular limx!+1H(x) = H+: Moreover,

from x!�1; we obtain

(3.31)
H+

H�
=
H0;+

H0;�
;

i.e. the ratio H+=H� is the same for all solutions of (3.27). This shows that H(x) obeys (H2). In order to

deal with (H3) we recall that from (3.2) and the assumption Q 2 L1
2(R) it follows that (cf. [DT79], Lemma

1, p.130)

(3.32) 1� fl(0; �) 2 L1(R+);  � fl(0; �) 2 L1(R�):

Now write (3.28) as

(3.33) ~X0
0(0; y) =

H+ �H(x)

H(x) fl(0; x)2
+

1� fl(0; x)
2

fl(0; x)2
:

Since H0(x) obeys (H3), using (3.32) we have ~X0
0(0; �) 2 L1(R+): Using (3.33) we see thatH�H+ 2 L1(R+):

Similarly, when x < 0 we write

~X0
0(0; y) �

H+

H�2
+ 1 =

H+

H�

�
H� �H(x)

H(x) fl(0; x)2
+
2 � fl(0; x)

2

fl(0; x)2 2

�
;
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and, since for H(x) = H0(x) the right-hand side is in L1(R�); the left-hand side must be in L1(R�): Hence

H �H� 2 L1(R�); i.e. H(x) obeys (H3). Next we consider (H1). Solving (3.28) for H(x) we obtain

(3.34) H(x) =
H+

fl(0; x)2[1 + ~X0
0(0; y)]

:

The points x0;1; � � � ; x0;N where H0(x) has discontinuities determine, via (2.12), the points y1; � � � ; yN ; where
~X0
0(0; y) has discontinuities. Then, for an arbitraryH(x) the discontinuities xj are given by yj =

R xj
0 dsH(s):

Thus the number of discontinuities is the same for all functions H(x) given by (3.34). The estimate (3.30)

guarantees that H(x) is bounded from above and bounded away from zero. Thus H(x) obeys (H1). The

veri�cation of (H4) and �(k) = �0(k) will be done together, by using the Liouville transformation given in

(2.9)-(2.11). By di�erentiating (3.34), after lengthy calculations, we obtain for the potential V (y) in (2.11)

(3.35) V (y) =
3

4

~X00
0 (0; y)

2

[1 + ~X0
0(0; y)]

2
�

~X000
0 (0; y)

2[1 + ~X0
0(0; y)]

; y 2 R n fy1; � � � ; yNg:

The boundary conditions at yj are given by (2.12)-(2.13) with

(3.36) qj =
1 + ~X0

0(0; yj + 0)

1 + ~X0
0(0; yj � 0)

;

(3.37) �j =
1

2

"
~X00
0 (0; yj + 0)

[1 + ~X0
0(0; yj + 0)]2

�
~X00
0 (0; yj � 0)

[1 + ~X0
0(0; yj � 0)]2

# q
1 + ~X0

0(0; yj + 0)

q
1 + ~X0

0(0; yj � 0):

Since H0(x) satis�es (H4), V (y) satis�es (2.21) and, in turn, this implies that H(x) satis�es (H4). The

essential point of (3.35)-(3.37) is that V (y) and the boundary conditions depend only on �0(k) and not on

H+: Therefore, the scattering matrix for (3.35) does not depend on H+; i.e. by Proposition 2.2 we have

�(k) = �0(k):

We remark that in the case when Q(x) = 0 we can obtain H(x) fromH0(x) by a scaling transformation,

namely

H(x) =
H+

H0;+

H0(H+x=H0;+):

Furthermore, from (2.7) and (3.29) it follows that

lim
y!�1

~X0
0(0; y) =

2�0(0)

1� �0(0)
;

which complements (3.26).

Next we discuss the extensions of Theorems 3.1 and 3.2 to the case when R(k) is known instead of �(k)

as part of the scattering data. In view of (2.3), (3.15) assumes the form

(3.38) y + A+ + ~X1(0; y + A+) = H+G1(x):
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Here ~X1(0; y) is the function obtained by solving (3.16) with �(k) replaced by R(k): We have used the fact

that, if in (3.16)-(3.18) we replace �(k) by �(k) e2ik� with � 2 R; then this amounts to a shift y ! y + �; in

our case � = A+: The constant A+ is determined by

(3.39) A+ + ~X1(0; A+) = H+G1(0):

Since both sides of (3.38) are monotonically increasing functions of their respective variables, A+ is deter-

mined uniquely. In the generic case, we let [cf. (3.22)]

w0 = lim
z!�1

[z + ~X1(0; z)]:

Then, by (3.38), H+ is given as

(3.40) H+ =
w0

G1(�1)
;

provided that

(3.41) G1(�1) 6= 0:

If G1(�1) = 0; then H+ remains undetermined. Note that if G1(�1) = 0; we must also have w0 = 0 in

order for (3.38) to be solvable for y as a function of x: We will show below that if G1(�1) = 0; then H+

is a free parameter as in the exceptional case. It is interesting to see that in the construction of H(x) from

R(k) one may encounter this special situation which does not arise if one starts from �(k) [the denominator

in (3.24) is never zero]. Hence, if �(k) is replaced by R(k); then the scattering data should be rede�ned as

follows:

1. In the generic case:

(a) If G1(�1) 6= 0 : fQ(x); R(k)g.

(b) If G1(�1) = 0 : fQ(x); R(k); H+g.

2. In the exceptional case: fQ(x); R(k); H+g.

Theorem 3.3 Suppose that Q 2 L1
2(R) and that there are no bound states. Then the solution of the

inverse problem with the above scattering data is unique. Moreover, in the generic case with G1(�1) = 0

and in the exceptional case, the constant H+ is a free parameter in the sense that for any choice of H+ > 0;

the function H(x) resulting from the solution of (3.38) corresponds to the same reection coe�cient R(k):

PROOF: The uniqueness follows as in the proof of Theorem 3.1 from the monotonicity of both sides of (3.38).

The proof that in the exceptional case H+ is a free parameter and that the reection coe�cient does not
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depend on H+ is similar as in the proof of Theorem 3.2, the only di�erence being that the potential V (y)

in (3.35) is now replaced by V (y + A+): If �0(k) denotes the reduced reection coe�cient for a particular

function H0(x); then, by Proposition 2.3 with � = A+ � A0;+,

�(k) = e2ik(A+�A0;+) �0(k);

and thus, by (2.3),

(3.42) R(k) = R0(k):

It remains to deal with the generic case when G1(�1) = 0:We �rst show that for any H+ the function

H(x) arising from the solution of (3.38) obeys (H2) and (H3). It su�ces to consider x < 0; since for x > 0

the reasoning is the same as in the case of Theorem 3.2; there is no di�erence between the generic and

exceptional cases when x > 0: Since in the generic case, fl(0; x) does not approach a �nite limit as x!�1;

the arguments based on (3.28) have to be re�ned. We �rst describe the idea behind the proof and then

�ll in the technical details. Again we assume that there is a solution y0(x) with a corresponding function

H0(x) obeying (H1)-(H4). We can think of H0(x) as the function H(x) that, via its reection coe�cient,

determines ~X1(0; y) in (3.38). Now de�ne � = �(x) such that

(3.43) H+G1(�) = H0;+G1(x):

Due to the monotonicity of G1(x); �(x) is uniquely determined, and it satis�es �(x)!�1 as x!�1: In

order to avoid possible confusion we mention that the relevant function is y(�) and not y(�(x)); in fact, we

have y(�(x)) = y0(x): From (3.38) and (3.43) we have

y(�) + A+ + ~X1(0; y(�) + A+) = y0(x) +A0;+ + ~X1(0; y0(x) +A0;+):

Consequently, by the monotonicity of the function z + ~X1(0; z); we conclude that

(3.44) y(�) +A+ = y0(x) +A0;+:

Di�erentiating (3.44) with respect to x we obtain

(3.45) y00(x) = y0(�) �0(x):

Let us assume for the moment that �0(x) has a limit as x! �1: Then y0(�) also has a limit as � ! �1;

which we call H�; and (3.45) implies that

(3.46) lim
x!�1

�0(x) =
H0;�

H�
:
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Moreover, we can write

y0(�)�H� =
1

�0(x)
[y00(x)�H0;�] +

H�

�0(x)

�
H0;�

H�
� �0(x)

�
:

This suggests that in order to verify (H3) for H(x) we must show that

(3.47)
H0;�

H�
� �0(�) 2 L1(R

�);

since the di�erence y00(x)�H0;� satis�es (H3) by assumption.

Next we turn to the justi�cation of the steps leading to (3.47) and of (3.47) itself. Integrating (3.13)

and using G1(�1) = 0 and (3.7)-(3.10), we obtain

(3.48) G1(x) =

Z x

�1

dz

fl(0; z)2
= � 1

c2l x
� dl

c3l x
2
+

2

c3l

Z x

�1
dz
�l(z)

z3
+ O

�
1

x3

�
; x!�1:

Let

(3.49) '(x) =

Z x

�1
dz
�l(z)

z3
:

Using (3.48) in (3.43) we have

(3.50) �(x) =
H+

H0;+
x+ O(1); x!�1;

and then using (3.50) we obtain

(3.51) �(x) =
H+

H0;+
x+

dl(H0;+ �H+)

clH0;+
+

2H+x

clH0;+
[x'(x)� �'(�)] +O

�
1

x

�
; x!�1:

We have left an �-dependent term on the right-hand side in order to combine it with another term later.

From (3.51) we obtain

(3.52)
cl� � dl

clx� dl
=

H+

H0;+
+

2H+

H0;+

x [x'(x)� � '(�)]

clx� dl
+ O

�
1

x2

�
; x!�1:

Di�erentiating (3.43) and using (3.13) we get

(3.53) �0(x) =
H0;+

H+

fl(0; �)
2

fl(0; x)2
=
H0;+

H+

(cl� � dl)
2

(clx� dl)2

�
1� �l(�)

cl� � dl

�2
�
1� �l(x)

clx� dl

�2 :

Expanding the right-hand side of (3.53) with the help of (3.51) and (3.52), we �nd

(3.54) �0(x) =
H+

H0;+
+

2H+

clH0;+

�
2x'(x) +

�l(x)

x
�
�
2�'(�) +

�l(�)

�

��
+ O

�
1

x2

�
; x!�1:

From (3.54) we see that

(3.55) lim
x!�1

�0(x) =
H+

H0;+

;
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and hence the steps leading to (3.46) have been justi�ed. Moreover, comparing (3.46) and (3.55) we obtain

(3.56) H0;�H0;+ = H�H+:

By (3.54) and (3.56), in order to verify (3.47) it su�ces to show that

I(x) := 2x'(x) +
�l(x)

x
2 L1(R�):

Using (3.10), (3.49), and integration by parts we obtain

I(x) = x

Z x

�1
ds

1

s2

Z s

�1
dz Q(z) fl(0; z):

Hence

jI(x)j �
Z x

�1
dz jQ(z)j jfl(0; z)j;

and thus after another integration by parts, we obtainZ 0

�1
dx jI(x)j �

Z 0

�1
dz jzj jQ(z)j jfl(0; z)j <1:

This proves (H3). Property (H1) is clear from (3.45). The veri�cation of (H4) and of R(k) = R0(k) is done

as in the exceptional case.

We remark that, in addition to (3.42), we have from (2.3) and (2.19)

L(k) = e�2ik(A�A0) L0(k):

Moreover, in the exceptional case, using (3.31) we get

Tl(k) = eik(A0�A)T0;l(k); Tr(k) = eik(A0�A)T0;r(k);

and in the generic case, using (3.56), we have

Tl(k) =
H0;+

H+
eik(A0�A) T0;l(k); Tr(k) =

H+

H0;+
eik(A0�A) T0;r(k):

Hence unlike Theorem 3.2, the scattering matrices S(k) are not the same for all potentials H(x) resulting

from the solution of (3.38).

The following example illustrates the case G1(�1) = 0; in which case H+ needs to be speci�ed as part

of the scattering data in order to obtain H(x) uniquely.

Example 3.4 In order to avoid lengthy formulas we assume that Q(x) = �(x � 1); where � denotes the

Dirac delta function. This Q(x) does not satisfy (H5), but it can be approximated by Q(x) that do, without

a�ecting the conclusions of the example. For the reection coe�cient we take

(3.57) R(k) =
1 + ik

�1 + 3ik
e�4ik
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Such reection coe�cients were considered in [AKV95] (Example 6.2, with � = 1=3; � = 1=3 and � = �4),
where we solved (3.16). We have

~X1(0; y) =

8<
:

0; y > 2;

(y � 2)(y � 1)

3� y
; y < 2;

fl(0; x) =

�
1; x > 1;

2� x; x < 1;

�i _fl;1(0; x) =
�

x; x > 1;

1; x < 1:

Therefore

G1(x) =

8<
:

x; x > 1;

1

2� x
; x < 1:

Thus we are in the generic case with G1(�1) = 0 and we also have w0 = 0: From (3.39) we obtain

A+ = H+=2 if H+ � 4 and A+ = 3� (4=H+) if H+ < 4: Solving (3.38) we obtain

(i) if H+ > 2 :

H(x) =

8>>>><
>>>>:

H+; x > 1;

H+

(2� x)2
;

4�H+

2
< x < 1;

2

H+
; x <

4�H+

2
;

(ii) if 0 < H+ < 2 :

H(x) =

8>>>>>><
>>>>>>:

H+; x >
2

H+
;

2

H+ x2
; 1 < x <

2

H+
;

2

H+
; x < 1;

(iii) if H+ = 2 :

H(x) =

�
2; x > 1;

1; x < 1:

The functions H(x) all have the same reection coe�cient given by (3.57), independently of the value of

H+: Note that the product of limx!�1H(x) and H+ does not depend on H+ [cf. (3.56)].

4. AN ALGORITHM TO RECOVER DISCONTINUITIES

In this section we �rst show how certain characteristic quantities associated with the discontinuities

of H(x) can be recovered knowing only the leading asymptotic behavior of �(k) for large k: Among these

quantities are the number N of discontinuities, the values yj ; and the ratios qj given by (2.14). Later in the

section we will study the recovery of these quantities when the large k-asymptotics of R(k) is used instead

of the asymptotics of �(k):
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According to (2.31) the leading term of �(k) as k !1 is given by

�as(k) = � b(k)
a(k)

;

and from (2.26)-(2.28) we see that �as(k) is completely determined by N; yj ; and qj for j = 1; � � � ; N: In
particular, Q(x) has no inuence on �as(k): In order to recover the locations x1; � � � ; xN of the discontinuities,

further information about H(x) is required. For example, if H(x) is known to be piecewise constant, given

�as(k) and either H+ or H�; the points x1; � � � ; xN can be determined uniquely; hence in this special case,

H(x) itself is recovered uniquely by our algorithm. As we will see in Section 5, when �(k) = �as(k); the

product H(x) fl(0; x)
2 is a piecewise constant function; in that case our algorithm also yields H(x) in terms

of �(k) and either H+ or H�:

We �rst observe that ja(k)j2 = 1=(1�j�as(k)j2) and that one can construct a(k) from ja(k)j as described
in [AKV94]. Hence b(k) = ��as(k) a(k) is also known. Therefore, we may assume that a(k) and b(k) are

known separately. Note that in an application �as(k) might not initially be available as the ratio �b(k)=a(k)
with given functions a(k) and b(k): However, as indicated in Theorem 2.4, �as(k) is almost periodic, and

hence from a given �(k) we can always �nd �as(k) in the form

�as(k) =

1X
n=�1

�n e
ik�n

with
P1

n=�1 j�nj <1; �n 2 R; and

�n = lim
L!+1

1

2L

Z L

�L
dk �(k) e�ik�n :

Note that �n are real because of the symmetry �as(�k) = �as(k) for k 2 R: For later reference we list the

expressions for a(k) and b(k) when N = 1; � � � ; 4 :

If N = 1 :

(4.1) a(k) = �1; e2iky1b(k) = �1:

If N = 2 :

(4.2) a(k) = �1�2 + �1�2e
2ik(y2�y1);

(4.3) e2iky2b(k) = �1�2 + �1�2e
2ik(y2�y1):

If N = 3 :

(4.4) a(k) = �1�2�3 + �1�2�3e
2ik(y2�y1) + �1�2�3e

2ik(y3�y2) + �1�2�3e
2ik(y3�y1);
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(4.5) e2iky3b(k) = �1�2�3 + �1�2�3e
2ik(y2�y1) + �1�2�3e

2ik(y3�y2) + �1�2�3e
2ik(y3�y1):

If N = 4 :

(4.6)

a(k) =�1�2�3�4 + �1�2�3�4e
2ik(y2�y1) + �1�2�3�4e

2ik(y3�y2) + �1�2�3�4e
2ik(y3�y1)

+ �1�2�3�4e
2ik(y4�y3) + �1�2�3�4e

2ik(y4�y2) + �1�2�3�4e
2ik(y4�y1)

+ �1�2�3�4e
2ik(y4�y3+y2�y1);

(4.7)

e2iky4b(k) =�1�2�3�4 + �1�2�3�4e
2ik(y2�y1) + �1�2�3�4e

2ik(y3�y2) + �1�2�3�4e
2ik(y3�y1)

+ �1�2�3�4e
2ik(y4�y3) + �1�2�3�4e

2ik(y4�y2) + �1�2�3�4e
2ik(y4�y1)

+ �1�2�3�4e
2ik(y4�y3+y2�y1):

The expressions for a(k) and b(k) when N is arbitrary can be obtained from (2.28); the expression for

a(k) was also given in [Gr91]. In the following we will make certain statements about the general form of

a(k) and b(k). These can all be easily proved by induction on N noting the fact that in view of (2.28) adding

a discontinuity on the right corresponds to a multiplication from the right by a known matrix. For example,

we note that a(k) and b(k) are exponential polynomials having at most 2N�1 nonzero terms. Note also that

for a given N; e2ikyN b(k) is obtained from a(k) and vice versa by interchanging �N and �N : We write

(4.8) a(k) = a0 +
X
n

ane
2ik�n;

b(k) =
X
n

bne
2ik�n ;

where a0 > 0 and an; bn are nonzero real constants. It is evident from (4.1)-(4.7) and can also be proved by

induction on N that �n > 0; and that the �n are of the form �n � yN :

Next we list the steps of the algorithm allowing us to recover N; yj ; and qj from �as(k): Recall that a(k)

and b(k) are known when �as(k) is given.

1. From b(k); we obtain yN as yN = �minn �n: Note that the coe�cient of that exponential term is

�1�2 � � ��N�1�N :

2. The constant term in a(k) is equal to �1�2 � � ��N�1�N :

3. From the ratio of the coe�cients in steps 1 and 2 above, we obtain �N
�N

and hence

qN =
1 + �N=�N

1� �N=�N
:

4. We construct the matrix E(k; xN) de�ned in (2.27) by using yN and qN :
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5. From (2.27), we obtain the matrix E(k; xN )
�1 and then de�ne�

a[N�1](k) b[N�1](k)
b[N�1](�k) a[N�1](�k)

�
:=

�
a(k) b(k)
b(�k) a(�k)

�
E(k; xN)

�1:

Note that a[N�1](k); when not constant, has again the form (4.8) with a0 > 0 and an; bn nonzero real

constants, but with fewer terms.

6. We replace a(k) and b(k) by a[N�1](k) and b[N�1](k); respectively, and repeat steps 1-5. This results in

functions a[N�2](k) and b[N�2](k):We repeat the procedure until the matrix in step 5 no longer contains

any exponential terms on the diagonal, i.e. until we arrive at the matrix E(k; x1): From it we �nd y1

and q1:

Note that it is possible to determine y1 right after step 1 of the algorithm as follows: From (4.8) we

obtain yN � y1 as yN � y1 = maxn �n; note that there is a unique term for which this maximum occurs and

that the coe�cient in front of this exponential term is �1�2 � � ��N�1�N ; hence, having obtained yN from

step 1, we also have y1: This determination of y1 can help us to check the correctness of the computations

since y1 is also determined as explained in step 6. There are also ways to speed up the algorithm if further

information on H(x) is available. For example, if Q(x) = 0; H+ is given, and H(x) is known to be piecewise

constant, then Theorem 5.1 implies that �(k) = �as(k):We can therefore use �(0) = �b(0)=a(0) in (2.7) with
 = 1 to determine H� = H(x1 � 0): Then we can use the fact that under a reection x!�x the function

a(k) remains invariant, whereas the function b(k) changes to �b(�k): Using this property, we can determine

q1 at the same time we determine qN : Then, we can carry out the algorithm by working from both ends. As

we will see in Section 5, whenever �(k) = �as(k); our algorithm gives us H(x) in terms of �(k) and H+:

In the following example we illustrate the above algorithm (without the improvements mentioned in the

previous paragraph). Assuming H(x) is piecewise constant and H+ is given, we also determine the values

x1; � � � ; xN :

Example 4.1 Assume a(k) =
f1(k)

1008
p
2
and b(k) =

e�76ikf2(k)

1008
p
2

; where

f1(k) = 1625 + 130e6ik � 50e42ik + 25e44ik � 25e48ik + 2e50ik � 130e86ik � 65e92ik;

f2(k) = 325 + 26e6ik � 10e42ik + 125e44ik � 5e48ik + 10e50ik � 650e86ik � 325e92ik:

From the term
325e�76ik

1008
p
2

in b(k); we see that

�2yN = �76; �1 � � ��N�1�N =
325

1008
p
2
;

and from the constant term in a(k) we obtain

�1 � � ��N�1�N =
1625

1008
p
2
:
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Hence yN = 38 and �N=�N = 325=1625 = 1=5; and so qN = 3=2: Next we construct E(k; xN ) =�
�N �N e

�2ikyN

�N e
2ikyN �N

�
by using (2.26) with n = N and obtain �N = 5

2
p
6
; �N = 1

2
p
6
; and thus

E(k; xN) =
1

2
p
6

�
5 e�76ik

e76ik 5

�
:

Then we form the matrix

�
a(k) b(k)
b(�k) a(�k)

�
E(k; xN)

�1 and execute step 6. We obtain yN�1 = 16 and

qN�1 = 7=6: A further repetition gives yN�2 = �5 and qN�2 = 3=7: We also obtain

N�3Y
n=1

E(k; xn) =
1p
24

�
5 �e16ik

�e�16ik 5

�
:

Since there are no exponential terms on the diagonal, this must be the matrix E(k; x1): Hence N = 4;

y1 = �8; and q1 = 2=3:

If we further assume that H+ = 4 and that H(x) is piecewise constant, using H(x4 + 0) = H+ = 4 and

q4 = 2=3; we obtain H(x4� 0) = H(x3+ 0) = 6; then using q3 = 7=6 we obtain H(x3� 0) = H(x2+ 0) = 7;

from q2 = 3=7 we have H(x2 � 0) = H(x1 + 0) = 3; �nally, using q1 = 2=3 we obtain H(x1 � 0) = H� = 2:

Hence we have

H(x) =

8>>>>>>>>><
>>>>>>>>>:

2; y < �8;

3; �8 < y < �5;

7; �5 < y < 16;

6; 16 < y < 38;

4; y > 38:

Finally, by using yj =
R xj
0
dsH(s); we obtain x1 = �12=7; x2 = �5=7; x3 = 16=7; and x4 = 125=21:

An algorithm for �nding N; qj; and the di�erences Tj := yj+1�yj for j = 1; � � � ; N�1 from ja(k)j alone
was given in [Gr90,Gr91]. Below we will only refer to [Gr91], where a more detailed account was given.

In [Gr91] there is the additional restriction that Ti=Tj has to be irrational whenever i 6= j; this restriction

implies that the exponents of the 2N�1 terms in a(k) are all di�erent. Without this restriction some of the

terms in a(k) or b(k) may have the same exponential factors and hence the number of distinct terms in

a(k) or b(k) may be less than 2N�1; in which case the algorithm of [Gr91] cannot lead to a unique H(x):

Since the coe�cients of the exponential terms in b(k) may be positive as well as negative, it is possible that

sometimes the number of terms in a(k) may be di�erent from that in b(k): In general, one cannot even obtain

N from ja(k)j and H+ alone [or even from a(k) and H+ alone]. Our algorithm described in this section does

not have such restrictions; furthermore, it only involves simple algebraic matrix operations and hence it is

easy to implement.

In the following example we show that one cannot even determine N from a(k) and H+ alone.
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Example 4.2 Let

a1(k) =
45

16
p
6
� 5

16
p
6
e24ik; b1(k) =

15

16
p
6
e�24ik � 1

2
p
6
e�12ik � 15

16
p
6
:

Assuming that H(x) = H1(x) is piecewise constant and H+ = 3=2; our algorithm gives us

H1(x) =

8>>>>>>><
>>>>>>>:

1; x < 0;

2; 0 < x < 3;

3; 3 < x < 5;

3

2
; x > 5:

We have �1 =
3

2
p
2
; �2 =

5

2
p
6
; �3 =

3

2
p
2
; �1 = � 1

2
p
2
; �2 = � 1

2
p
6
; and �3 =

1

2
p
2
: Note that in this example

N = 3; y1 = 0; y2 = 6; and y3 = 12: Also, �1�2�3 = ��1�2�3; and thus the second and third terms on the

right-hand side of (4.4) cancel. Now let

a2(k) = a1(k); b2(k) =
�4�

p
241

16
p
6

e�24ik +
�4 +

p
241

16
p
6

:

Assuming again that H(x) = H2(x) is piecewise constant and H+ = 3=2; our algorithm gives us

H2(x) =

8>>>><
>>>>:

1; x < 0;

25�p241
16

= :5922:::; 0 < x <
1

2
(25 +

p
241) = 20:2620:::;

3

2
; x >

1

2
(25 +

p
241):

Note that now N = 2; but that a(k) is the same for H1(x) and H2(x):

Finally, we discuss the modi�cations needed in our algorithm when Ras(k) is known instead of �as(k):

By Ras(k) we mean the almost periodic part of R(k) given by [cf. (2.3)]

(4.9) Ras(k) = �as(k) e
�2ikA+:

In order to deal with the factor e�2ikA+ ; we consider for a moment the shifted functions Q(x;�) = Q(x+ �)

and H(x;�) = H(x + �): It follows that the corresponding potential V (y;�) in (2.11) satis�es V (�;�) =
V (�+ y(�)): Therefore, Proposition 2.3 implies that

�(k;�) = e
2ik
R
�

0
dsH(s)

�(k);

and thus

(4.10) �as(k;�) = e
2ik
R
�

0
dsH(s)

�as(k):

Now choose �0 such that

(4.11)

Z �0

0

dsH(s) = �A+:
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Then we see from (4.9)-(4.11) that �as(k;�0) = Ras(k): Hence we can use the algorithm with Ras(k) because

it can be viewed as the reduced reection coe�cient associated with Q(x;�0) and H(x;�0): Note that the

parameters qj and N are invariant under the shift, and so are the di�erences yj � yi: The values x�0;j and

y�0;j; where H(x;�0) and V (y;�0) have discontinuities, are given by

x�0;j = xj � �0; y�0;j = yj �
Z �0

0

dsH(s):

Thus it is the values of N; qj; and y�0;j that we obtain as a result of applying the algorithm to Ras(k): Of

course, if �(k); Q(x); and H+ are known, then A+ is also known [cf. (3.19) and (3.39)], and hence �0 can

be determined from (4.11).

If H(x) is known to be piecewise constant, then given Ras(k) and H+; our algorithm allows us to

determine H(x;�0); including the points x�0;1; � � � ; x�0;N : Furthermore, we can �nd �0 by using (2.4), (4.11),

and the fact that H(x) = H(x� �0;�0): This leads to the equation �0 = �A�0;+=H+; where A�0;+ is given

by (2.4) in terms of H(x;�0): Consequently, we can completely determine a piecewise constant H(x) from

Ras(k) and H+:

5. INVERSION FOR ALMOST PERIODIC REFLECTION COEFFICIENTS

In this section, when there are no bound states, we characterize those functions H(x) that satisfy (H1)-

(H4) and whose scattering coe�cients are almost periodic functions of k: We �rst determine the functions

H(x) for which

(5.1) �(k) = �as(k) = � b(k)
a(k)

:

By Theorem 2.4, if (5.1) holds, then �as(�) 2 APW due to Theorem 2.4. Conversely, if �(�) 2 APW ; then

�(�) + b(�)
a(�) 2 APW : Then the o(1)-term in (2.31) must be identically zero and (5.1) follows. In other words,

�(k) = �as(k) if and only if �(�) 2 APW : Next note that when �(k) = �as(k); by using (2.29) and the unitarity

of the matrix �(k); we have 1=j� (k)j = ja(k)j: Hence � (0) 6= 0; and we are automatically in the exceptional

case. Using � (�k) = � (k) and a(�k) = a(k) for k 2 R; we obtain

(5.2) � (k) a(k) =
1

� (�k) a(�k) ; k 2 R:

Note that a(k) and 1=� (k) are analytic in C+; and in the absence of bound states � (k) is analytic in C+:

Thus, in the absence of bound states, using (2.30), (5.2), and Liouville's theorem, we conclude that

(5.3) � (k) =
1

a(k)
:

Furthermore, by using (2.5), (2.29), (5.1), and (5.3) we see that

`(k) = `as(k) =
b(k)

a(k)
= ��(k) a(k)

a(k)
2 APW :
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A close inspection of the origins of the o(1)-terms in (2.30) and (2.31) suggests that the condition V (y) = 0 for

y 2 Rnfy1; � � � ; yNg will be part of any necessary and su�cient conditions for (5.1) to be valid. So it is natural

to investigate this in more detail. If Vj;j+1(y) given in (2.20) vanishes, then we have gl;j;j+1(k; y) = eiky and

gr;j;j+1(k; y) = e�iky in (2.22), and therefore

�n�1;n(k; xn � 0) =2
664

1p
H(xn � 0)

eikyn
1p

H(xn � 0)
e�ikyn

ik
p
H(xn � 0)eikyn � H0(xn � 0)

2H(xn � 0)3=2
eikyn �ik

p
H(xn � 0)e�ikyn � H0(xn � 0)

2H(xn � 0)3=2
e�ikyn

3
775 ;

�n;n+1(k; xn + 0) =2
664

1p
H(xn + 0)

eikyn
1p

H(xn + 0)
e�ikyn

ik
p
H(xn + 0)eikyn � H0(xn + 0)

2H(xn + 0)3=2
eikyn �ik

p
H(xn + 0)e�ikyn � H0(xn + 0)

2H(xn + 0)3=2
e�ikyn

3
775 :

Hence

(5.4) �n�1;n(k; xn � 0)�1�n;n+1(k; xn + 0) = E(k; xn) +
�n

2ik
B(k; xn);

where E(k; xn) is the matrix de�ned in (2.27), �n is given by (2.15), and

B(k; xn) =

�
1 e�2ikyn

�e2ikyn �1
�
:

Note that �n = 0 if and only if H0(x)=H(x) is continuous at xn: Hence if H
0(x)=H(x) is continuous at each

xn; then by (2.25) and (5.4), we have � (k) = 1
a(k) and �(k) = � b(k)

a(k) : So Vn;n+1(y) = 0 for n = 0; � � � ; N
and the continuity of H0(x)=H(x) are su�cient for (5.1) to hold. Now we ask what functions H(x) lead to

Vn;n+1(y) = 0; or equivalently

(5.5)
H00(x)

2H(x)3
� 3

4

H0(x)2

H(x)4
+

Q(x)

H(x)2
= 0; x 2 (xn; xn+1); n = 0; � � � ; N:

Substituting H(x) = c=h(x)2 in (5.5) we obtain

(5.6) h00(x) = Q(x)h(x);

that is, h(x) can be any zero-energy solution of (1.1). Since we allow H(x) to be discontinuous, we are

looking for di�erent solutions on each interval (xj; xj+1): For x > xN we must choose h(x) proportional to

fl(0; x); this is because fr(0; x) is a constant multiple of fl(0; x) and there are no other linearly independent

solutions of (5.6) that remain bounded as x ! +1: Hence, in order to have H(x) approaching a positive

limit as x! +1; we need to choose

H(x) =
H+

fl(0; x)2
; x > xN :
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Let us now impose the condition that H0(x)=H(x) be continuous at each xn: Beginning with xN ; since

H0(x)=H(x) = �2f 0l (0; x)=fl(0; x); we see that the logarithmic derivative of fl(0; x) has to be continuous at

xN : Therefore, on (xN�1; xN ); the solution H(x) of (5.5) must be a constant multiple of 1=fl(0; x)
2: Arguing

similarly on every interval (xn; xn+1) we obtain recursively

(5.7) H(x) =
hn;n+1

fl(0; x)2
; x 2 (xn; xn+1); n = 0; 1; � � � ; N;

where hN;N+1 = H+ and

(5.8) hn�1;n =
H(xn � 0)

H(xn + 0)
hn;n+1 = qn hn;n+1; n = 1; � � � ; N:

So we have constructed a class of functions H(x) for which (5.1) holds. Note that the algorithm described in

Section 4 can be used to obtain hn;n+1 in terms of H+ and �as(k): The next theorem shows that any H(x)

satisfying (H1)-(H4) and for which �(k) = �as(k) must be given by (5.7).

Theorem 5.1 In the absence of bound states, for a given Q(x); consider all H(x) satisfying (H1)-(H4).

Then, �(k) = �as(k) if and only H(x) is of the form (5.7).

PROOF: If H(x) is of the form (5.7), then from (2.11)-(2.15) we see that �n = 0 for n = 1; � � � ; N; and
V (y) = 0 everywhere except at yn: Hence (5.1) follows from (2.25) and (5.4). Conversely, suppose (5.1)

holds. From �as(k) by means of the algorithm in Section 4 we can determine the parameters N; yj ; and qj

of H(x) for j = 1; � � � ; N: Then we use H+ and the parameters qj in (5.8) to construct a function H(x) that

is of the form (5.7). We then know the form of the function H(x) on each interval (yn; yn+1) and all we need

to do is �nd the points x1; � � � ; xN that correspond to y1; � � � ; yN ; respectively. If N = 1 and y1 = 0; then

x1 = 0: If N = 1 and y1 6= 0; then we can proceed as in the case N � 2: If N � 2; then at least N � 1 of the

points y1; � � � ; yN must be nonzero. If at least one of these is positive, we can pick the smallest of them, say

yp: Then xp is uniquely determined by

(5.9)
yp

hp�1;p

=

Z xp

0

dz

fl(0; z)2
;

and we recursively determine xp+1; � � � ; xN using

yp+1 � yp

hp;p+1

=

Z xp+1

xp

dz

fl(0; z)2
:

Similarly, we can determine xp�1; xp�2; � � � ; x1: If all yj are nonpositive, then we pick the one with smallest

absolute value that is nonzero (either yN or yN�1) and �nd the corresponding xj by using the appropriate

integral of the form (5.9). We know that for the resulting function H(x); (5.1) is satis�ed, because V (y) = 0

for y 2 R n fy1; � � � ; yNg and H0(x)=H(x) is continuous. By construction, this H(x) is uniquely determined

by Q(x); �(k); and H+: Hence, by Theorem 3.1, it is the only possible H(x) for which (5.1) holds.
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We remark that we can prove an analog of Theorem 5.1 when �(k) = �as(k) is replaced by R(k) = Ras(k);

by arguing as in the proof of Theorem 5.1 using (2.3) and (4.10).
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