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WIENER-HOPF FACTORIZATION
IN MULTIDIMENSIONAL INVERSE SCHRODINGER SCATTERING!

Tuncay Aktosun? and Cornelis van der Mee3

ABSTRACT. We consider a Riemann-Hilbert problem arising in the study of the in-
verse scattering for the multidimensional Schrodinger equation with a potential having
no spherical symmetry. It is shown that under certain conditions on the potential, the
corresponding scattering operator admits a Wiener-Hopf factorization. The solution of
the Riemann-Hilbert problem can be obtained using a similar factorization for the unitar-
ily dilated scattering operator. We also study the connection between the Wiener-Hopf

factorization and the Newton-Marchenko integral operator.

1. RIEMANN-HILBERT PROBLEM IN QUANTUM SCATTERING. Consider the

n-dimensional Schrodinger equation (n > 2)
(1.1) AY + k% = V(z)y

where z € R", A is the Laplacian, k? is energy, and V(z) is the potential. In nonrelativistic

quantum mechanics the behavior of a particle in the force field of V(z) is governed by (1.1).
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We assume that V(z) — 0 as |z| — oo in some sense which will be made precise in the
next paragraph, but we do not assume any spherical symmetry for V(z). As |z| — oo, the

wavefunction i behaves as

Y(k,z,0) = e0% 4 je= Filn—Deiklal g 52 A (k, = 9)+o(|z|‘—3—“)

where § € S"~! is a unit vector in R™ and A(k,#,8') is the scattering amplitude. The

scattering operator S(k) is defined as
S(k,0,0')=6(6-6) +z(——) A(k 0,6"),
where § is the Dirac delta distribution. In operator notation the above equation becomes
S(k) = T+ i( )" A()
- 2m '

All our results presented in this paper hold for real and locally square-integrable
potentials V(z) € L2 (R™) belonging to the class B, with 0 < o < 2. Here B, a € [0,2),
denotes the class of potentials such that for some s > 3 — 1, (1 + |z|?)*V (z) is a bounded
linear operator from H*(R") into L?(R"), where H °’(R") denotes the Sobolev space
of order a. For the reader whose interest is restricted to the case n = 3, the following

conditions on the potential will be sufficient:

1. There exist positive constants a and b such that for all y € R? we have

/ do |V ()| (l$|,+lylra) <b.

2. There exist constants ¢ > 0 and s > 1/2 such that |V(z)| < ¢(1 + |z|?)~* for all

z € R3.
3. There exist constants v > 0 and 3 € (0,1] such that [g, dz|z|® |V (z)| < 7.

4. k = 0 is not an exceptional point. This condition is satisfied if there are neither bound

states nor half-bound states at zero energy.

The inverse quantum scattering problem consists of recovering the potential V() for
all £ when S(k) is known for all k. Information about molecular, atomic, and subatomic

particles is usually obtained from scattering experiments. An important problem in physics
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is to understand the forces between these particles. Solving the inverse scattering problem
is equivalent to the determination of the force from the scattering data. For a review of the
methods and open problems for 3-D inverse scattering prior to 1989 we refer the reader to
[Ne89] and [CS89]. None of the methods developed to solve the multidimensional inverse
problem have led to a complete and satisfactory solution yet, but there has been a lot
of progress made in this research area especially during the last ten years. The methods
to solve the multidimensional inverse scattering problem include the Newton-Marchenko
method [Ne80, Ne81, Ne82], the generalized Gel'fand-Levitan method [Ne74, Ne80,
Ne81, Ne82], the § method [NA84, BC85, BC86, NH87], the generalized Jost-Kohn
method [Pr69, Pr76, Pr80, Pr82], a method that uses the Green’s function of Faddeev
[Fa65, Fa74, Ne85], and the generalized Muskhelishvili-Vekua method [AV91b]. The
principal idea behind the methods of Newton-Marchenko, generalized Gel’fand-Levitan,
and generalized Muskhelishvili-Vekua is to formulate the inverse scattering problem as a
Riemann-Hilbert problem and to transform this latter problem into an integral equation
that uses the scattering data in its kernel and its inhomogeneous term. Then, the poten-
tial is recovered from the solution of the integral equation. Here we will solve the same
Riemann-Hilbert problem by using a Wiener-Hopf factorization for operator functions uti-
lizing some results of Gohberg and Leiterer [GL73].

In the Schrédinger equation k appears as k2, and as a result ¥(—k,z,8) is also a
solution whenever ¢(k, z,0) is a solution. These two solutions are related to each other by
the functional equation [Ne80]

Wka0)= [ a8 S(k~0,0)%(~k2.)

or equivalently

(1.2) fi(k,z,0) = / d8' G(k,z,0,0') f—(k,z,0'), keR
Sn—l

where

fe(k,z,0) = eF*OTy(+k, z, +6)

and

(1.3) Gl 2,6,0') = e~ 62§ (k. _g. _g1).
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For potentials specified in the beginning of this section, in the absence of bound states,
f+ has an analytic extension in k € C*. If there are bound states, these can be removed
by the reduction technique [Ne89)] before the analysis is carried out. Let us suppress the

z-dependence and write (1.2) in vector form as
f+(k) =G(k)f-(k), keR,
or equivalently as
(1.4) X (k) = G(k) X_(k) + [G(k) — I]1, k€R,

where

Xi(k) = fa(k) - 1.

For potentials considered in this paper X+ € L%(S™~!), the Hilbert space of square in-
tegrable functions on S™~1, and the strong limit of fi is 1 as k — oo in C*. Note that
in our notation I denotes the identity operator on L2(S™~!) and 1 denotes the vector in
L2(S™ 1) such that 1(8) = 1 for # € S™!. Hence, (1.4) constitutes a Riemann-Hilbert
problem: Given G(k), determine X4 (k). Note also that from (1.3) it is seen that G(k) is

the unitarily dilated scattering operator.

2. SOLUTION OF THE RIEMANN-HILBERT PROBLEM. We have the following
result concerning the Wiener-Hopf factorization of the operator G(k) that appears in the
Riemann-Hilbert problem (1.4). In order to keep the discussion short, we assume that
there are no bound states. If there are bound states, these can be removed by a reduction
technique [Ne80, Ne89] before the factorization is accomplished. For details we refer the

reader to [AV90].

THEOREM 1. For potentials as specified in Section 1, G(k) defined in (1.3) has a (left)
Wiener-Hopf factorization; i.e., there exist operators G, (k), G_(k), and D(k) such that
G(k) = G4(k) D(k) G-(k) where

1. G4 (k) is continuous in C* in the operator norm of L(L?(S™"!)) and is boundedly

invertible there. Here L(L%(S™~')) denotes the Banach space of linear operators acting on
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L%(S™~1). Similarly, G_(k) is continuous in C~ in the operator norm of L(L?(S™1)) and

is boundedly invertible there.
2. G4 (k) 1s analytic in C* and G_(k) is analytic in C~.
3. G4(xoc) = G_(£o0) =1

N\ Pj
4. D(k) = Py + ZT:l (ﬁ—ﬁ::) ’ P;, where Py,..., Py are mutually disjoint, rank-one pro-
jections, and Py =1 — Z;"zl Pj. The (left) partial indices p1,. .., pm are nonzero integers.
In case there are no partial indices; i.e., when D(k) = 1, the resulting Wiener-Hopf fac-

torization becomes canonical.

Note that, as seen from (1.3), G(k) is a unitary transform of the scattering operator
S{k). In particular. when £ = 0, G(k) reduces to S(k). The proof of Theorem 1 uses some
results of Gohberg and Leiterer regarding factorization of operator functions on contours in
the complex piane [GL73]. When S(k) is boundedly invertible, is a compact perturbation
of the identity, and S(€) = § (zi—f—%) is uniformly Holder continuous on the unit circle T
in the complex plane, its unitary transform G(k) also satisfies these three conditions and
admits a Wiener-Hopf factorization. The Holder-continuity of S(¢) and G(€) = G(: —E—g)
can be established using either an additive representation of the scattering amplitude or a
multiplicative representation. We refer the reader to [AV90] for the proof that uses an ad-
ditive representation of the scattering amplitude and to [AV91a] for the proof that uses a
multiplicative representation of the scattering amplitude. The conditions on the potential
in 3-D specified in Section 1 were used in the additive representation, and the conditions
specified in that section in n-D were used in the multiplicative representation. We also
refer the reader to [Ne90] for various results related to the Wiener-Hopf factorization of
the scattering operator; in this reference Professor Newton introduced a related factor-
ization called the Jost function factorization and studied the relationship between these
two factorizations; in this reference Theorem 5.1 gives a characterization of the scattering

operator for the existence of a potential.

The solution of the Riemann-Hilbert problem (1.4) is obtained in terms of the Wiener-
Hopf factors of G(k) [AV90] and is given as

2.1) Xo(b) = G20 - T+ G2t Y- A8,
p; >0
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(k)5 + [(k + i)Pr — (k — i)P7]P;1
(k —1)pi ’

22 X_(k)=[G-(R)-N+G-(k)" ) e

p; >0

provided PJi = 0 whenever p; < 0. Here 7; is a fixed nonzero vector in the range of P;,
and ¢;(k) is an arbitrary polynomial of degree less than p; associated with each p; > 0.

We can state our result as follows.

THEOREM 2. For potentials as specified in Section 1, the Riemann-Hilbert problem (1.4)
has a solution if and only if Pji = 0 it whenever p; < 0. When this happens, the solution
is given by (2.1) and (2.2). The solution, if it exists, is unique when the operator G(k) has

no positive partial indices.

A simple condition that assures the unique solvability of the Riemann-Hilbert prob-
lem (1.4) is given by supyeg ||S(k) — I|| < 1, where the norm is the operator norm in
L(L%(S™1)). If this holds, neither the scattering operator S(k) nor its unitary transform

G(k) has any partial indices. As a result, in this case, (1.4) is uniquely solvable.

3. PARTIAL INDICES. In this section we relate the partial indices of the unitar-
ily dilated scattering operator given in (1.3) to the Newton-Marchenko integral operator
[Ne89]. We also discuss the relationship between solutions of the Riemann-Hilbert prob-
lem and the Newton-Marchenko integral equation. The proofs of the results stated in this

section will be published elsewhere.

We let Q be the operator on L%(S™~1) such that (Qf)(8) = f(—6). As in [Ne89)] we
define

(o]
(3.1) G(a) = % / dk e~ *[G(k) - T|Q
and we also define the operators G, G*, and H* on L2(R*)

(3.2) (Gn)(e) = /0 T dBG+ BB, >0

(3.3) (G*n)(a) = /0 T 4BG(—a-An(@), a>0

(H*n)(a) = / T d8G(-at HnP),  a>o.
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The Fourier transform maps L?(R*) onto the Hardy space of analytic operator func-

tions X (k) on C* such that

o ]
sup / dk || X+ (k + 'I:C)"%z(sn-l) < +00.
0 J—0o

We will denote this Hardy space by HJ .

Defining

1 o ik
na) = 5- / dk e~ X, (k)

fl@) = o [ dkemrera -,

from (1.4) we obtain

(3.4) o) = [ " dBG(a+B)n(B) +Qn(~a) + fa), acR.

Since X+ € HJ, we have n(a) = 0 for a < 0. Hence, we see that (3.4) is equivalent to

n(a) = /oo dB G(a+ B8)n(B) + f(a), a>0
(3.5) o
0= /0 dBG(~a+B)n(B) + Qn(@) + f(~a), @ >0,

We can write (3.5) in the form

{ n=gn+f
(3.6)

(Q@+MH")n=—f",
where f*(a) = f(—a). Since (1.4) and (3.6) are equivalent, it follows that every solution
X, € Hf of the Riemann-Hilbert problem (1.4) leads to a solution n € L2(R*) of (3.6),

and conversely. The first equation in (3.6) is the Newton-Marchenko integral equation and

G is the Newton-Marchenko integral operator.

Since G(¢) is Holder continuous on T, G(€) — I is a compact operator, and G(£) is
boundedly invertible for all £ € T, it follows that G(k) has a (left) Wiener-Hopf factor-
ization [GL73, AV90, AV91a]. In that case, we can solve the Riemann-Hilbert problem
(1.4) in terms of the Wiener-Hopf factors of G(k) and obtain the following [AV90, AV91a].

PROPOSITION 3. There are finitely many, namely 5 p;>0Pi> linearly independent solu-

tions of the homogeneous problem (1.4) where F(k) = 0. The inhomogeneous terms F(k)
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for which at least one solution of the Riemann-Hilbert problem (1.4) exists, form a closed

subspace of L*(R) of co-dimension equal to — Zp;<0 pj-

Due to the fact that (1.4) and (3.6) are equivalent probiems, the above results imply

that for all f, f* € L2(R™*), we have the following.

COROLLARY 4. There are S p, >0 P linearly independent solutions n of the homogeneous
problem (Q + H*)n = 0. The right-hand sides — f* for which at least one solution n of the
equation (Q +H*)n = — f* exists, form a closed subspace of L*(R*) of finite co-dimension
equal to — 32, o P;s-

The partial indices of the operator G(k) given in (1.3) is related to the Newtou-
Marchenko operator G as in the following theorem. Note that G and G* are defined in

{3.2) and (3.3).

THEOREM 5. The partial indices of G(k) satisfy

Z p; = dim Ker (I - G) 4+ dim Ker (I +G),
p; >0

- Z p; = dim Ker (I - G*) + dim Ker (I +G*).

p; <0

Hence, G(k) has a canonical factorization if and only if 1 and —1 are not eigenvalues of G

and G*.

Combining the result of Theorem 5 given above and the results in Lemma 4.3 and
Theorem 4.7 in [Ne90], we have the following result. In the absence of bound states, for
potentials whose scattering operators belong to the admissible class defined in [Ne90],
there are no partial indices. Also using Theorem 5 above and Corollary 4.5 in [Ne90], we
see that not only the sum index of G(k) is independent of z [AV90, AV91a], but also the
sum of the negative partial indices of G(k) is independent of z and the sum of the positive
partial indices of G (k) is independent of z. Since supycg |G (k) —1I|| = supgeg [|1S(k) = 1],
noting that G(k) = S(k) for z = 0, it also follows that G and G* do not have eigenvalues
+1 if supgeg |S(k) — I|| < 1. Thus, the Newton-Marchenko integral equation is uniquely

solvable if sup,cg [|S(k) —I|| < 1. Here the norms are the operator norm on L2(S™h).

4. CONCLUSION. If the potential in (1.1) causes bound states, the analysis given

in Sections 1, 2, and 3 remains valid, provided we replace G(k) by the reduced operator
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G™d(k) obtained after removing the bound states by the reduction technique of Newton
[Ne89, AV90]. Theorem 5 given in Section 3 remains valid for G(k) even in the presence

of bound states.

Combining the result of Theorem 5 given above and the result in Lemma 4.3 in [Ne90],
we have the following result. When there are bound states, for potentials whose scattering
operators belong to the admissible class defined in [Ne90], the number of bound states A’
for the Schrodinger equation (1.1) is related to the sum of the negative partial indices of

G(k) as
1
N=—§ E Pj-

p;<0

For the same class of potentials, there are still no positive partial indices of G(k).

Using Theorem 5 above and Corollary 4.5 in [Ne90], it follows, even if there are

bound states, that both the sum of the negative partial indices of G(k) and that of the

positive partial indices of G(k) are independent of x.
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