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We consider the 3D Schrodinger equation with a potential having no spherical symmetry and show
that such a potential can be constructed from the scattering operator by using the solution of a Fredholm
integral equation. The Fredholm integral operator presented is compact and self-adjoint; its eigenvalues

are symmetric about 0 and lie in [—1,1].
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Consider the Schrodinger equation in three dimensions
V2y(k,x,0)+k*y(k,x,0) =V(x)y(k,x,0), ¢))

where k2 is energy, X € R3 is the space coordinate, and
0 € S?is a unit vector in R>. We assume that the po-
tential ¥ (x) is real and decreases to zero sufficiently fast
as |x| — oo. However, we do not assume any spherical
symmetry on the potential. As |x|— oo, the wave func-
tion w(k,x,0) satisfies

) ik | x|
wik.x.0) =e®0r+ € 41k X gl4o|-—L1-|,
x| x| [x|

)
where A is the scattering amplitude, which is related to
the scattering operator .S by

Sk.,0,0)=506—0)— X 4k.0,0), 3)
27

where & is the 2D Dirac delta distribution. In operator
notation we can write (3) as S(k)=I—(k/2mi)A(k),
where the operators act on vectors in L2(S?), the Hil-
bert space of square integrable functions on the unit
sphere S?in R3.

The inverse scattering problem is to recover ¥ (x) for
all x when the scattering operator S(k) is known for all
k. Since the main source of information about molecu-

lar, atomic, and subatomic particles consists of collision
experiments, solving the inverse scattering problem is
equivalent to determining the forces between particles
using the scattering data.

If one assumes that the potential has spherical symme-
try, the inverse scattering problem is simplified tremen-
dously, and the potential can be recovered from the so-
called phase shifts of the scattering operator. The
recovery methods developed in the radial case include
the Gel’fand-Levitan’? and Marchenko®™* methods.
However, in the absence of spherical symmetry, the
methods>~® that exist to solve the inverse scattering prob-
lem are not yet fully developed and there still remain
many unanswered questions. For a comprehensive re-
view of the methods and related open problems in 3D in-
verse scattering theory prior to 1989, the reader is re-
ferred to Newton’s forthcoming book.’

The main idea behind two of the 3D inverse scattering
methods, namely the Newton-Marchenko® and general-
ized Gel’fand-Levitan® methods, is to formulate the in-
verse scattering problem as a Riemann-Hilbert bound-
ary-value problem, to transform this Riemann-Hilbert
problem into a nonhomogeneous linear integral equation
whose kernel is related to the Fourier transform of the
scattering data, and to obtain the potential from the re-
sulting integral equation. In this paper we present a
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solution of the 3D inverse scattering problem by utilizing
a method developed by Muskhelishvili and Vekua'® to
solve a system of Riemann-Hilbert problems with several
unknown functions. In the radial case, Newton and
Jost!! used this method to construct potentials from an
nXn scattering matrix. The method we present here
generalizes the Muskhelishvili-Vekua method (and hence
the Newton-Jost method) to solve an operator Riemann-
Hilbert problem for the 3D Schrédinger equation. In the
Muskhelishvili-Vekua method the key integral equation
has a kernel which is an (nXn)-matrix-valued function
whereas in our case we deal with an integral equation
whose kernel is an operator-valued function. The
Newton-Jost method is restricted to the radial inverse
scattering problem for a system of ordinary differential
equations with an nXn scattering matrix; however, in
our method we deal with the inverse scattering problem
for a partial differential equation with the scattering
operator.

The integral operator of our key Fredholm integral
equation shares the nice properties of the Newton-
Marchenko integral operator® such as self-adjointness,
compactness, and having an eigenvalue spectrum in
[—1,1]. Furthermore, our integral operator has a sym-
metric spectrum about O, which is not the case for the
Newton-Marchenko integral operator. Contrary to the
Newton-Marchenko method, we do not use any Fourier
transform; the scattering operator is directly used in the
kernel of our integral equation whereas one needs to
compute the Fourier transform of the scattering operator
in order to obtain the kernel of the Newton-Marchenko
integral equation.

The results presented in this paper are obtained for po-
tentials that satisfy the following four sufficient condi-
tions. The first two conditions are standard, the third
condition is much weaker than usually assumed, and the
fourth condition is rather mild.

Definition.— A real potential V'(x) is said to belong to
the Newton class if the following conditions are met: (1)

2
fd3x|V(x)l [%LI] <=C<oo,
X~y

where the bound C is independent of y € R*. (2) k=0
is not an exceptional point. (This condition is satisfied if
the potential does not have a bound state or half-bound
state at zero energy.) (3) There exist constants ¢ >0
and s> ¥ such that |V (x)| <=c(1+|x]?) ~* for all
x € R3. (4) There exists a constant >0 such that
Jd3x | x| P|V(x)]| < oo.

In the Schrédinger equation k appears as k2 and
hence w(—k,x,0) is a solution whenever w(k,x,0) is.
These two solutions are related to each other as®

vk x,0) = [ d6'sk,—0.6)y(—kx8). (4
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Letting

X+ (k,x,0)=e TkOxy(+ k. x,+0)—1 (5)
and

G(k,x,0,0) =e " *OXS(k, —0,—0')e** (6)

we can write (4) in the operator form as
X+ (k,x) =Gk, x)X - (k,x)+[Gk,x)—1]1, kER,
@

where 1 is the function defined as 1(8)=1forall € S2

If there are no bound states and if the potential
satisfies the first condition in the definition of the
Newton class, then for each x, X4+(k) has an analytic
extension in k to C, the complex upper half plane, and
X+(k)— 0 as k— oo there. Similarly, X (k) has an
analytic extension in k to C , the lower half plane, and
vanishes as k— oo there. Then, from the Cauchy in-
tegral formula we have

] o X4(t,x)
X+ k,x) —;Pcf_wdt —t—_‘k— (8)
and
-1 o X_(t,x)
X_ =" ik ikl
(k) =P 7 ar =1 ©)

where P stands for the Cauchy principal value. Operat-
ing on (9) by G(k,x) given in (6), adding the result to
(8), and rearranging the terms, we obtain the integral
equation

X () =P f_dtKUe, )X 4 (6,x) =H(k,x) , (10)

where

_ -1
K(k,t;x)=—l—,l G(k,x)G(t,x) an
27 t—k

and

H = |6k —1+ [ Khsodn]i.

For potentials in the Newton class, G(k,x) is Holder
continuous in k with a positive exponent'? and thus the
integral in (10) is not singular; i.e., K(k,?;x) does not
blow up as t— k. Thus, (10) is a regular Fredholm in-
tegral equation and P¢ can be dropped in front of the in-
tegral there.

The Mobius transformation k— &=(k —i)/(k +i)
maps the extended real axis onto the unit circle T on the
complex & plane. Under this transformation C* is
mapped onto the interior of the unit circle and C ™ is
mapped onto the exterior of the unit circle. Using
E=(k—1i)/(k+i) and n=(—i)/(t +i), the Fredholm
integral equation (10) is transformed onto the unit circle
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and becomes

Y(é,x)—ﬁTanZ(é,n;x)Y(n,x)=L(§,x) , (12)
where  L(&,x)=[(k+i)/2i1H(k,x) and K(&n;x)
=H(k,t;x) and

Y(Ex) = k;l__iX+(k,x). (13)

For potentials in the Newton class, we establish the
following results:

Theorem I.—The Fredholm integral operator K in
(12) is compact and self-adjoint; its eigenvalues belong
to [—1,1] and are symmetrically located around 0.

Theorem 2.—1f X + (k,x) is a solution of the Rie-
mann-Hilbert problem (7), then X+(k,x) is a solution
of the Fredholm equation (10) and Y (&,x) obtained
from (13) is a solution of the Fredholm equation (12).
Conversely, if X4+(k,x) is a solution of (10) and if
X +(k,x) has an analytic extension in k to C ¥, then it is
also a solution of (7). :

If =1 are not eigenvalues of K, the Fredholm equa-
tion (12) or equivalently (10) can be solved uniquely by
using iteration. A simple sufficient condition that +1
are not eigenvalues is given by max; e gllS(k) — Il < 1.
Note that, as seen from Theorem 1 above, —1 is an ei-
genvalue if and only if +1 is an eigenvalue.

The solution of the inverse scattering problem can be
obtained from the solution Y(&,x) of the Fredholm
equation (12) as follows. Using (13) one obtains

k—i

2i
X =_=t
+(k,x) Y et

k+i

X

>

and in the case that X +(k,x) is analytic for k € C*,
one recovers the potential from (1) as
[V2+2ik0- VX (k,x,0)

Vix)= 1+ X+ (k,x,0) (14

provided the right-hand side is independent of k& and 6.
It can be shown'? that whenever the so-called miracle
condition of Newton® is satisfied, the right-hand side of
(14) is independent of k and 6. The integral equation
(12) or equivalently (10) is uniquely solvable if and only
if the Riemann-Hilbert problem (7) is uniquely solvable;
when this happens, for the class of scattering operators
that are associated with a potential in the Newton class,
it is guaranteed that the right-hand side of (14) is in-
dependent of k and 6. Note also that, in the case that
(10) does not have a solution X 4+ (k,x) which is analytic

for k € C ™, one can conclude immediately, even without
evaluating the right-hand side of (14), that a potential
does not exist. In other words, the analyticity mentioned
in Theorem 2 is a prerequisite for the satisfaction of the
miracle condition of Newton.

If the potential ¥ (x) has any bound states, each
bound state corresponds to a simple pole of X+ (k,x,0)
on the positive imaginary axis in the complex k plane.
These poles can be removed from the scattering operator
by the reduction method of Newton® before our method
is applied. All the proofs and the mathematical details
of the method outlined in this paper with and without
bound states will be published elsewhere. '3
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