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Equation in a Bounded Spatial Domain

C. V. M. van der Mee
Department of Mathematical Sciences, University of Delaware, Newark, Delaware 18716, U.S . A,
Communicated by H. Neunzert

A contraction mapping (or, alternatively, an implicit function theory) argument is applied in combination
with the Fredholm alternative to prove the existence of a unique stationary solution of the non-linear
Boltzmann equation on a bounded spatial domain under a rather general reflection law at the piecewise C*
boundary. The boundary data are to be small in a weighted L_-riorm.

1. Introduction

By far most existence and uniqueness theory for the solution of the non-linear
Boltzmann equation has been developed for the time-dependent equation. Not many
results are available on the well-posedness of the stationary problem. The best results
so far are the ones published by Ukai and Asano?®3° who have proved the unique
solvability of the stationary non-linear Boltzmann equation for a gas confined to the
exterior of a bounded convex body with piecewise C! boundary, under a variety of
boundary conditions, as well as the convergence of the solution of the time-dependent
problem to the corresponding steady state as time goes to infinity. Another important
source of results is provided by Maslova,?! who gives results for bounded domains
and exterior regions of bounded domains and for general boundary conditions, but
without detailed proofs. The oldest resuits on the subject have been obtained for
finite-slab domains and vacuum boundary conditions by Young-Ping Pao.?® His
method has recently been analyzed thoroughly by Cercignani and Palczewski'? who
have applied the Fredholm alternative to retrieve the well-posedness tesult for the
linearized problem used in Pao’s paper. A simple one-dimensional model problem
was studied by Cercignani® in an L, space. In all these papers the boundary data have
to be small.

Let us give a short outline of the prevailing method. We consider the stationary
non-linear Boltzmann eguation
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with boundary condition
£ 8) = [BfI0n B +g(x ) (%, £)€00 x I, n(x)-§ < 0. @

Here © is a bounded open set in R? with the same interior as its closure, =0\
its boundary and n(x) the unit outer normal at x €3Q. This set Q represents the spatial
region occupied by the gas and & denotes the velocity of a particle. Further, L is the
linearized collision operator obtained when linearizing the non-linear Boltzmann
equation about a global Maxwellian, v(&)[T(,)](x, &) is the residual non-linear
collision operator and v(&) is the collision frequency. Condition (2) describes (partial)
reflection at the spatial boundary. The boundary operator B maps functions on D,
={(x,E)e0QxR* n(x)-§>0} into functions on D_= {(x,E)edQx R*:
n(x)-& < 0}. The solution f(x, &) represents the deviation of the particle distribution
from (Maxwellian) equilibrium.

The method used by Pao?® and Cercignani and Palczewski” is to write equations (1)
and (2) in integral form and to exploit the unique solvability of the corresponding
problem with T’ = 0 in combination with the implicit function theorem. Introducing
two suitable linear operators U and U, and decomposing L as

L=—v+K, 3)
where K is an integral operator, they obtained the vector equation
f—UKf=Uyg+ UvI(£1). (4}

Writing this equation as G(f,g) = 0, computing the Fréchet derivative G (0, 0) and
applying the implicit function theorem they proved the existence of a unique solution
of equation (4) for sufficiently small g, using that 1— UK is boundedly invertible. The
fatier amounts to the unique solvability of the corresponding stationary linearized
problem. The technical implementation of the method requires an estimate of the type

T <Al 1 L] 5

on a suitable Banach space of real functions on Q x R? and the invertibility of 1 - UK
on the same space. The estimate (5) in the Banach space of measurable functions f(&)
such that (1 +|&|3)2f(€) with r = 1 is essentially bounded is due to Grad.1% Alter-
natively, one may use the contraction mapping principle, whose application also relies
on the invertibility of 1 — UK. Thus, apart from a rather simple non-linear argument
and an estimate which may be found in the literature, the boundary value problem (1),
(2) is a linear problem.

Let us give an outline of the history of the linear theory, skipping publications
primarily devoted to BGK models. Well-posedness results on the linearized
Boltzmann equation for bounded regions and conservative boundaries first appeared
in the early but often overlooked work of Guiraud.'*™*¢ His results were improved
considerably by Ukai and Asano?” for exterior domains of bounded convex bodies
and by Maslova?®2* for unbounded regions. For plane-parallel domains there are
more refined results. We mention the results presented by Maslova?? and Bardos et
al.? which may, in fact, be obtained as a direct consequence of the abstract kinetic
theory of Beals,® Greenberg et al.'' 1225 and van der Mee.?* All these results have
been obtained in an L, space, although some of them can also be formulated in a
different L, setting using a Fredholm argument (cf. Reference 11, Section VL6). It
should be observed that all these results have been given for Maxwellian or hard
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interactions with angular cut-off. Abstract kinetic theory may also be applied to
obtain results on plane-parallel domains for Maxwellian or hard interactions with
radial potential cut-off, though the existence and uniqueness theory for linearized
Boltzmann equations with soft interactions remains open.

In Sections 2 and 3 we will study the well-posedness of the linearized equation on a
number of function spaces, including those where the estimate (5) is known to be valid.
Contrary to the approach of Reference 7, where a direct proof of the power com-
pactness of UK is given, we will first exploit a well-known Grad estimate® to prove K
to be power compact and then pass to the power compactness of UK. Here we will
generalize compactness results of Grad® and Drange® for K on an L, space to
arbitrary (weighted and unweighted) L, spaces. At the same time we will generalize the
existence and uniqueness theory for the stationary linearized Boltzmann equation to
an arbitrary L, setting with rather general reflective boundary conditions. In Section 4
we will solve the non-linear problem (1), (2) for small data g, again under reflective
boundary conditions. However, since the estimate (5) is only known to be true in a
{weighted) L, space, our non-linear results will be restricted to this L. setting,
Throughout the paper we will assume that the collision frequency is bounded below
by a positive constant, which amounts to assuming a Maxwellian or hard inter-
molecular interaction.” *

We remark that, under suitable constraints, all our results remain valid if the
bounded stationary domain  is replaced by the finite slab {(.y,2)eR*0<z< 1)
with the boundary data g and the solution f independent of the transverse co-
ordinates y and z. At the end of this paper we will indicate how to derive this result
also,

2. Auxiliary linear theory: compactness properties of X

As shown by Grad,” the operator K is an integral operator with kernel k(& &)
satisfying
¢ 2__ g2y
Tk(E, &)1 Slzm_—gl—lexp(%alé—ﬁlfz—agé—_é%) for some « > 0. (6)
This estimate is obtained under the assumption that the intermolecular potential
satisfies 0 < B(6, V') < b, [sinfcosB1{ ¥+ V1) for some ¢ < 1. The collision kernel
can then be written as the difference of two integral kernels k, (£, £, ) and -
which satisly 0<k (&) <a{Im—§l+M—& "'} exp{-3E>+n?)} and
0<kE,8) <apn—El " exp{—sIn—&" ~§[M>—E%)?/|n~E&|%]} [cf. Referen-
ce 13, equations (55)159)], so that k(&, &,) itself satisfies (6). In this section we will
prove that all integral operators satisfying the estimate (6) are compact on L,(R*) for
1 < p < oo and have a compact square on L, (R*)for p = 1 and p = 0. To start with
the elementary offshoots of equation (6), we note that the estimates
def

[kE &) < HE—E&,) exp {—a|& —&, |} for some o > 0 (7)

¢
18 —&; !
and
1 2 = o2 2n
j l(t)d3t=j —e™ d3t=4:rcf reT " dr =" < 4+ 8
R o o
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imply that K is bounded on the function spaces L,(R*) (1 € p < oo) with 2m/a as an
upper bound for the norm of K.
We will now prove the following result.

Theorem 1. The operator K is compact on L,(R®) if 1 < p < oo, and has a compact
square if p=1o0r p= .

Proof. Consider the convolution operator

C

(Lnf)(é):-[ exp{—al§—&, |7}/ (E,)dE,;.

fad<m 684

Observing that the convolution kernel belongs to L, (R*),® we approximate it in the
L, norm by measurable step functions of compact support. As each such step function
is a linear combination of characteristic functions on a compact Borel set E of R?, it is
sufficient to prove the compactness of the operator

{Lef)E) = j X}z(g—&;ﬂf@ﬂdgr

{18t = u}

However, since L;f has compact support, we may again apply Theorem 3 (2.X) of
Reference 17 to derive the compactness of Lz on L,(R?) (1 € p < o). Its compactness
on L_(R%) is obtained by ‘dualizing’ the corresponding L, result, which proves the
compactness of L,. Using 0 < | K,| < L,, we find that K, is weakly compact on L,(R?)
[cf. Reference 13, Proposition 2.1{b)] and hence that its square is compact on L (R3).
By taking the dual we find the compactness of KZ on L_(R3).

If 1<p<oo and k(& &) =k(E &)r.(8:) where 1, (&) =1 for [§l<n and
7,(8) =0 for |&] >n, we use the square integrability of k,(§,§,) and compact
interpolation (i.e. Reference 18, Theorem 3.10 or 3.11) to prove the compactness of K,
on L,(R®) where 1 < p < co.

So far we have based our boundedness and compactness results for K on the
estimate (7). In combination with the principle of dominated convergence, this
estimate allows one to prove that K, converges to K in the strong topology of each
L(R*) (1 < p < o), which is clearly insufficient for proving the (power) compactness
of K. We will need the stronger estimate (6) to prove the convergence of K, to K in the
operator norm. In order to do so, we introduce

-] 1
B(w) = 211:[ j rexp{—ar® —a(r + 2w cos 6)*} d{cos 8)dr, )]
0 J-1

which is obtained by integrating the right-hand side of the inequality (6), with ¢ = 1,
with respect to EeR® and putting r = [E—§,], cosf = {(&—%,):&,}/rl€| and
w = |E, |. Then sup {B(w): w > n} is an upper bound for the norm of K — K, on both
L, (%) and L (R?) and hence, by interpolation, also for the norm of K—K, on the
intermediate spaces L,{R?). By making the change of variables (r, cos &) — (r, 7) in the
double integral (9) where T = r + 2wcos 6, and using erf(z) = 2r~ "2 |7 exp(—1?)dt,
we obtain

B(w) = g(E)m Jm re’“’z(erf_(r + ZW)ﬁ) —sgn{r — 2w)(erf{jr — 2w|\/o¢)) dr.

wix 0
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From this equation we trivially derive

lim B(w) =0,
implying
im (KK, @y=01<p<x,
which completes the proof. O

It is an easy exercise to prove that for every real r the function &7(§,&;) = (1
+|E|2Y2k(E, E,)(1 +[E,|*) "' satisfies the estimate (6) whenever k(E, &, ) does. Con-
sequently, K is a power compact operator (compact if | < p < oo and with a compact
square if p=1 or p= )} on the space L, ,(R?) of those Lebesgue measurable
functions f(&) on R for which (1 +|&12)"2f(x, &) belongs to L,(R?). Here the norm of
L, (R%) is defined as the norm of (1+|&[*Y"*f(x, §) on L,(R?).

3. Auxiliary Linear theory: compactness properties of U, X

Let us first consider the simple boundary value problem

&L v 8)fx ) = Fix B) (10
%,8) = %, &) 000 E < 0 (1)

Then it is well-known that for every FeL,( x R*) and ge L, (D_;dd), where
dé = |n(x)-&|dodf with do the surface Lebesgue measure on ¢€), there exists a unigue
solution f of equations (10) and (11) in L ,(Q x R?) which is non-negative whenever F
and g are non-negative and whose ‘restrictions’ f; to D, belong to the spaces L,(D . ;
d#). Here some remarks are appropriate.

1. We must assume 1 < p < o0, and v(x, &) must be a non-negative Borel function
on 2 x R* which is integrable on every bounded Borel subsct of O x R and
essentially bounded away from zero; we will write v, for the essential infimum of
v(x, £}, so that v, is positive.

2. The ‘restrictions’ f, are defined via a so-called trace theorem, ie. for every
bounded Borel function ¢ on Q x R that is continuously differentiable along the
integral curves of the vector field &+ (0/0x) with bounded ‘directional’ derivative
and such that the total length of the integral curves meeting i{s compact support
is bounded away from zero we have the Green’s identity

fjaa( a_f)dﬁd"— fepda— J £ ods.

3. We have the equality

I If+|”d&+pj J VIfI”dédX=j Ig!pd5+pjf sgn ()| fIP 1 Fdgdx. (12)
D. Q Jr D- QJre

4. We will write the solution as

f= Loﬂ‘i‘ UuF
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where L, and U are suitable linear operators. In fact, the norms of L, and U,
are bounded above by (pv,) ™ *7 and (vy) !, respectively. Moreover, the operator
Lig=1[Lsg], is a contraction and UJ F = [U,F7], is bounded with norm
< pYP(ve)” ¥ where g = p/(p — 1). These norm estimates are trivial conse-
quences of equation (12) and Holder’s inequality.

5. If we replace F by vF, put g=0 in equation {12) and use Holder’s inequality we
easily obtain

max {p— e ” UJVF "p‘} ” UOvF Hp} = H F ”LF{Q % R dédx)e
irrespective of the lower bound on v.

Since the velocity £ is constant on each integral curve of the above vector field, the
functions Lgyg and U4 F have their support on 2 x ¥7, where ¥~ < R3, if g and F have
their support on Q x ¥". Since R* can be obtained as a union of countably many
mutually disjoint bounded Borel sets ¥ and  is bounded, we may solve equations
(10) and (11) for ge L_,(D_;d&} and FeL_{Q x B*) by decomposing the problem
into countably many analogous problems on a bounded phase space €0 x ¥~ and using
the corresponding L, results. However, because v(x, £) is bounded away from zero, the
norm upper bounds obtained for L, spaces have a finite upper limit as p — co.
Consequently, equations {10) and (11) are also well-posed in an L setting, In
particular, Ly, voU,, Lg and vy Uy are now contraction operators and so are U,v
and Ugv. In the latter case L, (Q x RB*; vdE&dx) is one of the spaces involved.

If we replace L,(Qx R?) with L, (Qx R*) for some r> 0 and 1 < p < o0, we
merely add a weight (1 4+ |&|2)*? to the Lebesgue measure dx d& which is constant on
each integral curve of the vector field & - (0 /¢ x). The corresponding boundary measure
d&, (in the sense of the trace theorem) is given by dé, = (1 +|&|%)”* d&, whereas the
Green’s identity and the equality (12) remain the same, except for these changes in the
measures. Thus none of the previous results is affected when replacing L,(Q x R?)
with L, ,(Q x R*), not even the upper bounds given for the operators Ly, Uy, Ly, Uy,
Uyv and Uy v. Similarly, if we consider L, ,(Q x R®) and write R? as an increasing
sequence of bounded Borel sets ¥, the reasoning of the preceding paragraph may be
used to extend the previous L, results.

A thorough study of trace theorems for equations (10) and (11) with v{x, £) = 0 was
made by Voigt,?! mainly (but not exclusively) in an L, setting and in the context of
neutron transport theory. We have followed here the presentation of Beals and
Protopopescu® (see also Reference 11, Chapters XI-XII) who have constructed a
theory of abstract time-dependent kinetic equations. We will rely on these sources in
the subsequent discussion of equation (10) with boundary condition (2. First we will
derive an important compactness property. '

Proposition 2. The aperator UoK is compact on L,(Qx R3) if 1 < p < oo and has a
compact square on L(Q xR if p=1 or p = co. Similarly, the operator UgK is
compact {resp. has a compact square} from L,(Q x R?) into L,(D.;dd)if 1 <p<
(resp. if p=1 or p = c0).

Proof. It suffices to prove the compactness of Uy K where v(x, ) is replaced with a
positive and constant lower bound v,. Putting tildes on top of the correspond-
ing operators to indicate this change in the collision frequency and putting
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t(x, &) = inf{z > O: x— 1§ ¢Q} and I(x, &) = t{x, E} + t(x, ~ &), we obtain

X

(UoKF)(%, &) = j Ly YEHKF)(y.B)dy, (%, E)eQxR?,

x(in} I

x(out}

(ﬁJKF}(X=§)='[ {l—lc"""‘”'U'E*EZ(KF)(Y,&)dy, (x, 8 el
x{ins)

Here x(in) = x —&1(x, &) and x(out) = x + &t(x, — E).
Let us apply UK and UJK to functions F of the type F(x, &)= Y HAx)£(E)
i=1
where H;e L, () and fe L,(R*). We obtain

CoKP)38) = 3 (KNOLH)x &),

"

(U5 KF)(x, &) = Z (KRNE)Ls H))(x, E),

where L, and L§ and L] are convolution integral operators along integral curves. It
now follows from the density of the finite sums Z H,(x)f(E) and the (power)

compactness of Kin L,(2 x R3) that UQK and U0 K are (power) compact. Using that
0 |UKI < UOK and 0 < |ULK| € UgK, we easily obtain the (power) compactness
of UK and UK. 0

Next we consider the boundary value problem
5 %8 () = Fx ) (13
Jx 8 =B )x 8 +9(x.8), a(x)-£<0, (14)

where we assume the operator B to be a positive contraction from L,(D, ; d&) into
L,(Ih_; d&). Then every solution f of equations {13) and (14) satisfies

f=Lo(BfL +9)+ Uy F,
where
fo—LsBf. = Lig+UGF.

Thus if 1 —BLg is invertible (which is equivalent to the invertibility of 1 — L; B and
which is the case if |B|| < 1), we have

[=Lpgg+UgF =Ly(1 —BL{) g+ [Uy+ Lo(1 —BLJ) 'BU]F. (15)

Clearly, the operators Ly, Ug, Lgg = [Lgg], and UG F = [UgF ], arec bounded and
positive whereas Ugv and Ugv are bounded from LiQxR% vdEdx) into L,(Q
x R7) and L,(D . ;dd), respectively. Moreover, it is immediate from Proposition 2
and equation (15) that UgK is compact on L,(2xR% if 1 < p<« c and has a
compact square if p =1 or p = c0. Here we recall that the collisional invariants
correspond to those f for which (v—K)f= 0. We have

Theorem 3, Suppose 1 — BLg is boundedly invertible on L,(Q x R%) where 1 < p < w0,
and that no coilisional invariant ¢ satisfies ©_ = Be,. Then for every
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geL,(D_; d5) and Fe L, (Qx R3; v dE dx) the boundary value problem

el v 81 8) = (KN 8+ Flx, 8, (16)

X
fx,8) = (B)(x, &) +g(x, &), a(x}-& <0, (17
has a unique solution fin L,(Q x B>} which satisfies f, € L (D ,; d&).

Proof. If { is a solution, we may write
f=Lpg+ Ug(Kf+F).

As UgK is power compact, it suffices to prove the injectivity of 1 — UgK, ie. the
occurrence of only the zero solution if g =0 and F = 0. Because UgK is power
compact on each one of the spaces L,(Q x R?), it suffices to prove the uniqueness
property for p = 2. Using the identity (12) for p = 2, g — (Bf. ) and F — K, we obfain

WA E+200 21 = IBL1E+201 A (KO

As v — K is a positive self-adjoint operator on L, (Q x R?), we obtain f= 0if |B] < 1.
Otherwise we find (v— K)f=0 and Bf. =f,, turning f into a collisional invariant
satisfying Bf_ = B, a situation which we have excluded. [

Note that Theorem 3 remains valid in L, {2 x RHYifl<pgooandr>0.

If there exist collisional invariants ¢ with ¢_ = Bg,, then f{x,&) = g¢(E) is a
solution of equations {16) and (17) for g = 0 and F = 0 which belongs to all spaces
L,(Q x R*). In this case equations (16) and (17) are non-uniquely solvable. This
situation occurs for specular, reverse specular and diffuse reflection with accommoda-
tion coefficient 1.

Another important issue is the invertibility of 1 — BL§ for |[B] = 1, i.e. whether
equations (13) and (14} only have the trivial solutionifg =0and F=0.If 1 < p < oo,
we use the identity (12) for g —» Bf. and F = 0 and find -

A Np+pIvif P = 1B E

while B is a contraction, so that f=0. Thus 1 — BL; is one-tc-one. If p = o0,
however, a more subtle argument has fo be used. We have to assume that R® is the
union of an increasing sequence of bounded Borel sets 7, such that B maps functions
with support on I, n[Q x ¥,] into functions with support on D _ n [Qx ¥ ].
{Examples of such B are specular and reverse specular reflections which preserve the
speed of a particle upon collision with the boundary.) By restricting the velocity
variable to 77, we may repeat the above argument in an L, setting with finite p and
conclude that 1 — BLJ is one-to-one on L, space also. Nevertheless, if | B{ = 1, this
operator is one-to-one but need not have a bounded inverse.

4. Solution of the non-linear houndary value problem

In this section we will solve equations (1) and (2) using the implicit function theorem
and the contraction mapping principle. Introducing the Banach space L, {Q x R*) of
all Lebesgue measurable functions f(x, &) on  x R® such that (1 +|&|*)"3f(x, ) is
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essentially bounded, and endowing this space with the corresponding L, norm
[ - ls.r, We have the estimate

ITCA B o S € WA T Lo Ny fis o€ Lo QX R, (18}

where r > 1. This estimate is valid for hard or Maxwellian interactions as stipulated in
the beginning of Section 2 (cf. Reference 10, Appendix). Then any solution f of
equations (1) and (2) in L _(Q x RR3) satisfies the equality

G(f ) =F—Us{Kf+v[(f /}}—Leg =10, (19)
or the equivalent equality
f=#(f)=01~-UgK) "{Lag+ UpvT'(f, f)}- (20)

Obviously, there are two strategies to deal with equations (1} and (2). We may apply
the implicit function theorem to equation (19) or we may apply the contraction
mapping principle to equation (20}. In either case we will obtain a unique solution for

small data g.
To apply the implicit function theorem we compute the Fréchet derivative (cf.

Reference 19, Section 114) of € (, g). Using the symmetry of the bilinear form T we
obtain

!l - UBVr(h, f+ h) !lw,r

19(f+h g} =% 9)—(1 - UsK)h|,, <
<& Usv 1)l IS+ R,

so that % (f, g) has 1 — UgK as its partial Fréchet derivative with respect to the first
variable. Under the conditions of Theorem 3, this operator is boundedly invertible on
L, (€ x R?). Since equation (19) is satisfied for f= 0 and g = 0, we may apply the
mmplicit function theorem (cf. Reference 17, Theorem 1 (4.XVII)) and prove that
equation (19} has a solution fin L, ,(Q x R*) satisfying f, e EX, provided that | g, ,
is srglall enough. This solution depends continuously on g in the norm of L, (Q
x RY).

Let us obtain a similar, though slightly more explicit, result by applying the
contraction mapping principle (cf. Reference 19, Section IV.1) to equation (20). We
first estimate

I3 (1) = H# (LMo, < NO - UpK) 1 Usv IT(f =20 fi + ) lor

<
Lo | —UnK) M Usv I i —Lllo,r L + 5y

where we have used the symmetry of the bilincar form I". Consider the iteration
scheme

}6 =0, fk+1 = f(ﬁc)
Then
Nhertlloo,r < I1( —UgK) ' 1Ll 191,
+c (0= UgK) M| 1 U] | 412
Now put
C =2¢, (1~ UgK) 2| Upvii I Lal, 6 = 1 — /(1 -2Cllgll.r ) (21)
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and assume that igll., , < (1/2C). Then || fli ., < /{2¢,[[{T — UgK) | | Ugvi}, s0
that

6]: k+m

-4
Liem=hlar < 5= 1fi=fo b

whence || fllo,, <(1=8) " fillo,» < 1441 = 8)c, [(1 — UgK) ™| Ugv]}. Then f is
the only solution of equation {20} satisfying this bound.
We have

Theorem 4. Suppose 1 —BLg is boundedly invertible on L, (Q x R®), and that no
collisional invariant ¢ satisfies ¢_ = B, . Let C be the constant defined in equation
(21). Then for ||gll,,, < (1/2C) there exists a solution f of equations (1) and (2) in
L, QxR satisfying feelL, AD,; d&,) and this function is the only
solution of equations (1) and (2) satisfying the bound | [, < 1/{4(1-3d)c,
(1 — UaK) ™) | Ugv]}.

If |B] < 1, the conditions of the theorem are fulfilled. The theorem does not apply
to specular, reverse specular and diffuse reflection with accommodation coefficient 1.

5. Concluding remark

If Q = R? x [~ a, al, a plane-parallel layer of finite thickness 2a, and the function
g{x, &) and the operator B appearing in the boundary condition (2) are independent of
the transverse co-ordinates x and y, the operator Uy,K becomes a convolution
operator on [ —a, a] whose kernel is a (power) compact operator on L,(R?). It is well
known that such an operator is (power) compact on L,([—a, a] x R?) (cf, for
instance, Reference 11, Proposition VIIL.3.1; though this result restricts itself to the
compact case, its proof can be easily modified to the weakly compact case). The
(power) compactness of UJ K may be established in the same way. As a result we find
existence results for the solution of the stationary non-lincar Boltzmann equation in
plane-parailel geometry under conditions which are analogous to those of Section 4.
In this way we may reproduce the resuits in References 26 and 7, and generalize them
to reflective boundary conditions of norm less than 1.
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