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" ABSTRACT

Relations for the elements of the scattering and phase matrices re-
levant to the single and multiple scattering of polarized light are given
in some detail. After a Fourier decomposition of the phase matrix with
respect to azimuth has been made, some details of the expansion coef-
ficients are presented..

1. INTRODUCTION

Studying the scatiering of electromagnetic radiation by independent-
ty scattering particlés is important in astrqphysics.' A great deal of
knowledge may be obtained by analyziﬁg_ the radiation scattered by par-
ticles in the atmospheres of planets, satellites and other objects, espe-
ciglly by taking polarization info account. Single scattering of a polari-
zed beam of light by a particle is gehéraliy described by a 44 matrix,
the scattering matrix, whose elemen{s are 16 functions of wavelength and

the directions of incidence and scattering. Whenr writing down the
209
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210 HOVENTER AND VAN DER MEE

equation of ftransfer of polarized light., however, one must pre- and
postmultiply this matrix by suitable rotation mafrices to get the integral
kernel of the "collision term.”, which slso is a 4»4 matrix, the so-called
phase matrix. Finally, when doing an actual analysis of the equation of
transfer omne usually appli.es Fourier decomposition with respect to
azimuth as a result of which the phase matrix is written as a sum of se-
parated terms involving generzlized spherical functions and the so-called
Greek expansion coef‘fic_ients. We are in fact engaged in a long-term
project concerning various matrices relevant to the scattering of po-
larized light. The main purpose of this project is to unravel the inter-
nal structure of such matrices and to sfudy relationships -between them.
The present contributi_o'n.is_an interim report primarily aimed at

(i) giving a summary of the main results obtained so far;

(ii} presenting some new results;

{iii)  outlining some ideas for future research.

Let us outline some of the history of the present topic of re-
search. After polarization parameters were introduced in different but e-
quivalent ways by Chandrasekhar' and Van de Hulst?, the latter posed
the problem of investigating conditions satisfied by the elements of the
scattering matrix. The problem was sclved in a satisfactory way by Ho-
venier et al.® for the scatteriné matrix and by Hovenier and Van der
Mee® for the phase matrix. After the observation by Kuséer and Riba-
ri¢® that the equation of transfer of polarized. light displays certain sym-
metries of the rotation group, azimuth decompositions yielding complex
component equations were frequently employed (see Ref. 6, for instance).
A more economical decomposition in térms . of real component equations
was given'by Siéwerf% and derived concisely, using symmetries and rhatrix
algebra, by Hovenier and Van der Mee®. Th_e Greek expansgion coef-
ficients were never studied systeﬁatically. The only available infor-
mation was given by Gérmégenova- and _Kcmovalovs buf requires a trans-;
formation from results in terms of complex polerization parameters. In

this paper we will disclose some of our recent material on this topic'®,

In Sec. 2 we will introduce our major theoretit_:a'l' ‘constructs, These

will be used in Sec. 3 at the deriva_tion of conditions for the elements of
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the scattering and the phase matrix. In Sec. 4 we will discuss the
Fourier decompositic’ﬁ with respect to azimuth and finally, in Sec. 5, pro-

perties of the Greek expansion coelficients will be considered.

2O SOME IMPORTANT THEORETICAL CONSTRUCTS

The scattering of a simple. monochromatic wave by an arbitrary par-

-ticle may be described by means of .27 amplitude Vrg;g;ﬂ:g satisfying

i[Ee _ Ay Ag Eoa . : . _ "

[E,- Ay A Ep
Here the pasitive r-direction, the positive f-direction and the direction
of propagztion of the wave span a (‘artesian codrdinate system, E? and E-
represent the electric field components of the scattered wave parailel
and perpendicular to the scattering plane, re.é_pe.cti\iely, \yhile t!o and E
are ithe analogous quantitie_s relating to t_he'.incidem wave. In general,
the elements of the amplitude matrix _are-comp!éx functions of the

directions of incidence and scattering;. For spherical particles we have

The Stokes parameters can now be defined as
I =EEl+ E.E!
Q = EE: - E:'E:

U - EE! + E.EF

V = i(E,E2 ~ E.EH
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for the scattered wave and analogously for. the incident wave where an
asterisk denotes the conjugate 'complex value. Thus we may construct a
row vecter E={L,Q,U,V} satisfying I>0 and I=(Q*+U?+V?)''’. The relation-
ship between I and I, the Stokes vector of the incident beam, turns cut

to be linear. Writing the relationship as

1= FOL,

where F{8) is the scattering matrix, we find?

c a b b,

Foy -1 : o @)
=" Cy ag b,
€ . Cg ¢, - 8,

whose elements can be expressed directly in the real quantities M,=A, A7,
Si~HALATEAAL) and D, ;=Li(AAf—A;AL). For a spherical particle the

diagonality of the amplitude matrix gives immediately

8, b, 0 0
b, a,; 0 0 -

F(g) = 3
0 0 a, by

<o
[w]
|
o
X9
o
S

where

a; = (M, + M), 51 = 5(—M; + M), a5 =Sz, by = —Dy

and therefore

a, = (b2 + 5,2 + 2,9 >0. _ )
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From the scattering matrix we now define the phase matrix. Let us
consider a plane-parallél atmosphere illuminated at the top and let us spe-
cify directions by means of —1<u<l (cosine of the angle with the down-
ward normal) and O0<p<27 (azimuth measured clockwise when viewing up-
ward), Using the meridian plane as the plane of reference for the Stokes
parameters of a beam, the light scattered from & direction {u’,p") into a

direction (up) is decribed by the phase matrix Z(u,u’yp—p’) defined by®

Zluu'e—p) = Lit—oJF@L(—0o,) (5)

where the rotation matrix L{a) has the form

0. 0
cosla sinda
Lia) = .
—sin2o cos2a

0 0

o o O
-0 o o

and o, o- and # are the angles and ¥, ¥, and {(’—@) are the opposite
sides of a spherical triengle if O0<p’—p<T. Here u=—cost®, and

u'=—cost,.!!

In reality light consists of many simple waves in rapid succession,
In this case'™ the Stokes parameters [, Q, U and V of the beam may be
obtained from those of the constituent simple waves by addition. As a

resuit.

I (@ 4 U+ v =0 {8

We call px(Q2+U2+V2)]/2/I the degree of polarization, with p=0 for com-
pletely unpolarized light and p=1 for completely polarized light.
Further, p,~(Q’+U%"?/1 is the degree of linear §olarization and pe=V/1
iz the degree of circular polarization. ip an atmosphers with many
independent scatterers every infinitesimal ‘yolume-element has a
scattering matrix obtained by summing up the scattering matrices of iis

constituent particles. Using symmetries®, such as having randomly

e
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oriented optically inactive particles each with a plane of éymmetry or
having particles and their mirror particles in egqual numbers and with
random orientation, we may simplify the scattering matrix and obtain one

of the form

a; b, o g
b, a, 0 0
F(9) = . N
0 ] ay b, :
0 0 —b, ay

Thus in putting the individual particles together to gef an infinites_imal
volume of the assembly the quantities by, by, bs be, €3, c4y ¢ and ¢y can-
cel out while the combinations (b,—c,) and {by+c;) vanish. For such a
special scattering matrix valid in many cases of astrophysical interest we
find

Zluu'p—p') =
q _ l
a, b.C; —b,5, 0 E
5,C; Ca.0—S;058, —Cp8,8,—5,8:C, —b.S,
l b8y 5;8.0,4Cra,8; —85:8,8,+C.0.C; b.C, 8)
0 —b,8, | —b.C, o

where C,=cos2e, end S,=-sin2o, (k=1,2) and the dependence of &, 8oy 85
44y b, and b; on @ has not been written. For a plane-parallel atmosphere

we thus get the equation of transfer®
Q%E(Tsu:p) “+ I(T,Ll,(ﬂ) =

1 2% . .
- %I J Ziu,u'o—p KT, 00" e dy’ (%

—i40

where a€[0,1] is the albedc of single scattering, 7 is the optical depth
(measured down with T=0 at the top) and a,{8), the phase function, is nor-

malized by

1 ) . .
J- 8,(8}d(cosd) = 2, (10)

-1
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3. CONDITIONS FOR ELEMENTS OF SCATTERING AND PHASE
MATRICES

Using  the  quantities Mi=ArAL,  Su~HAAT+AAD)  and
Dy ;=1i(A AT—A,A}) we easily derive the identities -

Siff + Dift = MM, - : (11)
Skzs,ﬁ + DDy = SeM; . (12}
DisSy — SiDy = DM, ' 13

These identities may be obtained to derive a large number of identities
for the elements of the scattering matrix for a single. particle. From the

identities of type (11) we obtain

(a5 & )" + (b, F c)® + (b, &+ ¢, = (s, :}; a,)° {14)

{bs £ ba)° + (bs + b + (a; + b)) = (a; £+ ¢,)° _ (15)
(es & o’ + (cs + 6l + (a; & ¢, = {a; + b2 ST

From the various identities of type (12) and (13) we find many other iden-
tities for the elements of the scattering matrix of a single particle.

A different way of deriving such equalities is based on the ob_serva-
tion that the scattering matrix of a single particle transforms the Stokes
vector of a Tully polarized beam of light mto the Stokes vector of &

fully polarized beam. Collectmg the coet‘flcxents in the adentxty

I2—Q2-,-UZ—V2=0
when I={[,Q,U,V} is given B_y I=F(0)i, and taking for I, one of the nine
vectors {1,£1,0,0}, {L,0,21,0), (1,0,0, 41}, {1,1/42,1/42,0), {1,1/33,0,1/{3} and
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{1,0,1/«5,1/-5}, we obtain 9 identities for the elements of the scattering
matrix which completely characterize the property of F(8) of transfor-
ming the set of Stokes vectors of a fully polarized beam into itself, It
can be shown, however, that this property by itself allows for 4>4 matri-
ces of the type (2} which cannot be constructed from an amplitude ma-
trix. Thus the scattering matrix of a single particle has more structure
than the structure imposed by the invariance of the set of Stokes vec-

tors of a fully polarized beém.

A comprehensive analysis® showed that it is possibie to write down
S equations for the elements of thé scattering matrix of e single particle
from which all others based on the existence of the amplitude matfix of
Eg. (1) may be derived. By algebraic maripuietions one may then obtain
7 equations involving only squares of elements and 30 equations in-
volving only products of two. different elements. As a metter of I act, all
120 possible products between two distinet elements appear and each such
product appears only once. The arrengement of the elements appearing
in a particular equation is not arbitrary but turns out to conform fo a
graphic code. A new example is prévided by the figure below which
illustrates the 7 equations only inveolving squares of elements, The sum
of the (positive and negative) squares, indicated in each pictogram, is the

same.

o 9 o e
& & o o
e ® » O
®* & o O

c e e @
o e »
Interrelations for elements of the scattering matrix

® — (clement)? 0 = —(element)?
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When we construct the scattering matrix of an infinitesimal vo-
lume-element by summing up the scattering matrices of the individual par-
ticles, almost all identities are loét. However, we often obtain a matrix
of the type (7} whose elements satisfy certain inequalities. These in-
equalities are obtained by summing up each one of Egs. (14)-(16) for the

constituent particles of the assembly. The result is as follows:

la. + byl < [a; + by 17

laz — bi < la; — by (18).

Bz -— 84l < la, — 84 (1%

{8z + a,)° 4 4b,% < (2, + a,)° — 4b/% (o11)
Usiﬁg that

max {iphlaft = ilp+ai + Ip—all, (21)

we find from Egs. (19)-(20)

(8" + b + b2 < o, k=34, o
where we used [cf. Eq. (4)]

a, > 0, (23)
Simple reasoning vieids that |ag], b, b, las and |od are all dominated by

a, so that the absolute value bars at the right-hand sides of Egs. (i‘?)-
(19) may I_:_e omitted.

The scattering matrix of an essembly of particles must also leave
invariant th'g set of vectors I=~{[,Q,U,V} satisfying the Stokes vector cri-
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terior (6}, Using this property one easily derives Egs. {17), (18), (22) and
(..?3}.' As shown by an example (8,8, a,=6, a,=4, a,=0, b,=2{6, b,=0), this
property does not imply (19). The inequality (19} is purély a conse-
queﬁce of the construction of F(8) from. the amplitude matrix of the indi-
vidual particles. Further interesting inequalities for the diagonal ele-
ments of F(6) of a volume-element may be derz§ed as follows. Equation
(20} gives las+a.d<a,+a,, which in combmatmn with Eq. (19) yields the

four inegualities
fa: 2 agl < &, + a,

e + 8. < 8, o+ a,,

.. which have not been published before.

Wl;en writing dowﬁ the phase matrix with the help of a scattering
matrix of block diagonal type‘[cf. Eg. (7)], on¢ may again derive a multi-
tude of identities between its clements, as is apparent from Eq. (8). Deno-
ting the (1,3)-eiement of Z by Z,; we obtain the identities '

2122:12 + 21374 =0

2122 + 2132 - 2212 - 2312 =0

I
=}

212234 + Z21Zay =

2oy — Zylyz = 0
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(Z1:2Z350Z2z. + (L1223 20y — (202203 — (Z,:Z032: =0

—AZ 32V s + (Z02ZoV gz — (Z15Z5)0Z 52 + (Z.:Z5:)Z55 = 0.

v
L

If Z,,=0, every equation for the elements of Z based on Eq. (8) can be
derived from the above eight equations only®, IF Z,,=0 but one of the o-
ther quantities Z,; Zoy Zaip Zap L4z Zzs O Zyy does not vanish, one

must replace these eight equations by another set of eight’,

A variety of methods may be used to obtain inequalities for the ele-
ments of the phase matrix. In the first place we may employ the inva-
riance of the set of vectors I={1,Q,U,V} satisfying (6} under the applica-
tion of Z and find, among other things, that Z; d_ominates the absoclute
values of all other elements of Z. One niay also use the inequalities® va-
lid for the scattering matrix of Eg. {2) and replace each element of F by
the corresponding element of Z. This yields inequalities for the ele-
ments of Z which can be justified by performing rotations of the plane
of reference on the amplitude matrix of each individual particle and then
constructing the phase matrix per -particle foliowed by summation over

various particles. For more details we refer to Ref. 4.

4. AZIMUTH DECOMPOSETiON OF THE PHASE MATRIX
If we write the phase matrix as
Z(u,u’,w.—w.’-) =
= Z°%uu’) + 2;1 [Z“_J(u.u’)cas{j(qo—ga‘)} + 25j(u,u’)sin{j(w—¢’)}]
and the solution of the equation of transfexf ;s

e = %) + 2i [I""(T,u)c:osjtp + l”(?',u)sinjqo],
j=1 :
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we decompose the eguation of transfer (9) into component equations in
which I°%7,u) and *¥(r,u) are coupied. A further reduction ' may be ac-

complished by exploiting the symmetry relations
DZ%uu") = Z%%u,u)D
DZ(u,w) = Zuu)D

PZ(uw) = —Z(u,0D

where D=diag{1,1,—1,'—l}. If we write alternatively

E (70) = £114D1%ru0) + XIFDI(r,0)

we abtain for each J>1 two copies of the seme equation, viz,

1
uéa;l’i(‘r,u) + l‘fi:('r,u) = ;—.aj_l W"(u,u‘)l":t('r,u’)du' Q4
where
Wilwu) = Z%uu) — DZ% 7).

For j=0 (where I°f=0 and Z%=0 by convention) we obtain only one equa-
tion of the type (24), which further decomposes .in & trivial way as two
decoupled equations for the vectors {15,Qe} and (U, V). The relations be-
tween the elements of Z considered in the previous section may be used

to obtain relations for the elements of W‘f, as shown in another paper®,

The integral kernel W'(u,u’} of Eq. (24) can be expressed in the ele-
ments of the scattering matrix with the help of the generalized spherical
functions Phn(x)", as shown by Siewert’. (Ses Ref. § for a concise de-

rivation.) In fact, we have

w & =i ,
W) = b)) Eﬁ,ia{@)n,nim)
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where
Pilw) 0 0 0
0 Riw —Tiw ¢
T = . (25
0 —Tiw)Rifw o
)} 0 0 Pjw)
i ey (I iMsz, o i
Ritw) = — {7 5] et + P u)
) WPy e
Tiw = 4 (R AP0 — P )
with i=w|—1 and
B 7 O 4]
Y, @, 0 0
B-| . 26)
6 0 ¢ -
0 0 ¢ 4

Here the elements of the matrix defined by (25) are special functions
which may be expressed in Jacobi polynomials (see Ref. 8, Appendix) and

satisfy the orthogonality relation

1 R
J 4 .2 - s
J_l H;(u)Hr(u)du mél;rmEg, ) 2n
where E; is the identity matrix for />max(j,2) and Egﬂdiag{l,ﬂ,ﬂ,ll if j=0
and /=41 or if j=/=1. In particular, P‘;(u) are associated Legendre polyno-
mials. The elements of the matrix appearing in (26} are the expansion

coefficients appearing in the equations

2,(0) = 3 8,Picosh) (28)
=0

2@ = & [I= %0 R2cost) + £, THoosOW 29)

2 o ({_{_2)& 1205 d tit £ .
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2:0) = 3 (=2 .Ritcost) + o, Titcoso) (30)
2,(0) = fg 8,P(cost) | 3n
b.(0) - E [‘;—':{,] *y,P; (coge) @)
bu(8) = -3 (=) e pitcosn) (33)

where P, is the /-th Legendre polynomial and =", =€, = S'K =0 for k=0,1.
Because of the normalization condition (10) we have S8,=1. Using the or-
thogonality property (27) we may write each of the expansion
coefficients exphcxtly 8s integrals involving certain elements of iju)
and F(O)",

5. PROPERTIES OF THE GREEK EXPANSION COEFFICIENTS

Evidently the Greek expansion coefficients play a fundamental role
in the theory of polarized light transfer. However, almost nothing has
been pubhshed about general bounds and relatmns for these coefficients,
Some resuits were derived by Germogenova and Konovalov® on the basis
of complex e:\pansxon results of Domke® and cone preservation technigues
of functional anpalysis. Further, Benassi et al.! conjectured some

inequalities which play a crucial role in a particular numerical method.

These are
A+ 1—ap >0 (34a)
(H+1—aB)i+1-—a0,) — a*Y,% > 0, (34b)

both formulated for all />0 if a=1 and for Iz1if a=1, and

A+ 1—as >0 : (350
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2+ 1 —ag, >0 (35b)

where the last two inequalities were formulated for /=0,1,2,... and O<act,

We are currently involved in a study of inegualities for the Greek
expansion ceefficients. Some preliminary results are as follows. Obvious-
ly, we can use inequalities for the elements of the scattering matrix such
as (17)-(20) and (22)-(23) to obtain inequalities for {he Greek expansion
coefficients, Therefore, without relying on the equation of transfer and
functione! analysis (as done by Germogenova and Konovalov?) we have
derived a plethora of inequalities directly from Egs. (17)-(20) and (2D)-
23). In addition we employed Egs. (6) and. €27} which led to relations of
the type '

15 € 2+1

and bounds involving squares of expansion coefficients, Although ocur re-
seerch in this area has not been completed yet, it has become. clear that
the inegualities (34} and {35) can be proven in an elementary way.
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