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POLARIZED LIGHT TRANSFER: EXISTENCE AND UNIQUENESS OF
SOLUTIONS AND SPECTRAL PROPERTIES OF TRANSFER OPERATORS
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ABSTRACT

We shall discuss the existence and unigueness cof
solutions to the equation of transfer of polarized light
for a finite or semiinfinite plane-parallel vlaretary atmosphe:
following two different approaches. In cne approach the
problem is converted into a vector integral equation, of
convolution type if reflection by the planetary surface
is ignored, and this equation is analyzed using positive
cone preservation technidques. In the second approach
the boundary value prcoblem is treated directly using po-
sitive selfadjointness of the real part of the stationa-
ry transfer operator, where an important role is played
by inequalities satisfied by certain expansion coeffi-
cients.

We shall also discuss the positivity and analyti-
city properties of the reflection and transmission ope-
rators. A justification will be given for the adding
method used to obtain numerical results.

Finally, we shall extend the results to vertically
inhomogeneous atmospheres.

1. Intrecduction
In this article we shall discuss the equation of

1,2

transfer of polarized light for a homogeneous plane-
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parallel atmosphere of cptical thickness b,

1 rog
u é% Tt + I, ¢) = f% J_l[o Zlu,uty9=¢") L(t,u',¢)de du’. (1)

Here 1e¢{(0,b) is the optical depth, ac<(0,1] the albedo of
single scattering, uel-1,1] the direction cosine of pro-
pagation and ¢¢[0,2n] the azimuthal angle of propagation.
Moreover, £=(I,Q,U,V) is the four-vector of Stokes para-
meter I,0,U and V, that specify the intensity and state
of polarization of the light as a function of optical
depth and direction. By Z{u,u',¢-¢) we denote the phase

matrix, which allows the product representation
,%(u:u':lb—fb') = %(“_UZ}E{B)%(_Ul) (2a)

with %(a) being the rotation matrix

1 o} 6] o}
%(u) - 0 cos 2a sin 2 o] (2b)
0O -sin 2a cos 2a 0]
G o} 0 C
and F(9) being the scattering matrix
a,(8) by(e) © o
b, (8) a,(s) 0 0
F(9) = . (2c})
o} o a,(9) Db,(s)
0 9] -b,(8) aylse)

Here u=-cosV and u'=-cos{}', while for O<¢'-¢<n (resp.
O<¢=¢'<m} ¥ ,#' and ¢ are the sides and 5,0, and
¢L¢(resp.—dl,—02,¢—¢‘) are the respective opposite
anglescef a spherical triangle. Throughout we follow
the conventions for polarization parameters of
Chandrasekhar 3 and V.an de BHulst 4, and the notational

gsystem of Ref, 2.
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The physical reqguirement that the degree of pola-
1
rization p{Q%+U02+v?)?/I belongs to [0,1] is reflected

by the mathematical requirement 30

:
I>(02+U%24V2) 220 (3)

on the*physical" solutions to Eg.(1). At the same time
the scattering matrix F(8) and the phase matrix
%(u,u',¢—¢') must transform vectors I = (I,Q,U,V) sa-
tisfying condition (3) into vectors of the same type.

We alsc have the normalization
1
J a,(8)d cose = 2. (4)
-1

In this article we shall discuss the existence
and uriqueness of the solution to several boundary va-
lue problems to Eg. (1), as well as some other problems .
For finite optical layers, be(0,»), we impose the bounda-

ry conditicns

%(O,u,¢) Q+(u,¢) ,  ux0 (5a)

1

m

Leaw
Ilb,-u,s) L j u'Rfu,ubm¢ L ut ot)deldut, ued, {(5b})
0

vwhere the first cordition specifies sunlight incident to the top
and the second condition (partial) reflection by the bottom of

the atmosgphere. Here ﬁg(u,u',¢—¢'), the reflection matrix

of the ground, leaves invariant the set of vectors
I= (1,Q,U,V) satisfying condition (3) and obeys the

symmetry laws
ny
Eq{u,u',¢—¢') =P Rg(u',u,¢'—¢)g (reciprocity symmetry) (6)
with tilde above a matrix denoting transposition, and

gg(u,U'.rb—qt') =D lq@g(u,u',tb'—cb)g (mirror symmetry), (7}
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where P = diag{1,1,-1,1) andrp = giag(1,1,-1,-1}. More-

over, due to energy conservation,

1r2m
01 LL WR Gaut emp ) T Al At 21 (8)

for dark planetary surfaces gg(u,u',¢—¢‘)50. Next, for semi-

infinite optical layers, b=-, we impose the boundary condi-
tions

Lo, ) = (u,e) , u0 (9a)

{(Trur‘i’) 0(1}(T+°°), (9b)

where the first conditicon again specifies sunlight in-

cident at the top.

In the next section we discuss the functicnal for-
mulation and the existence and unigueness results, as
well as the way in which to derive them. Next, we
explain the well-known adding method 6,7 and sketch the
convergence proof for the series appearing during its
implementation. Finally, we extend our results to

vertically inhomogeneousg atmosnheres.

Except for the inhomogeneous atmospheres, the re-—

sults are based on Refs. 8-12.

2. FUNCTIONAIL FORMULATION AND WELL~POSEDNESS

c

Let us introduce the functional spaces Hp,H and
H1.2 as follows. First let @ be the unit sphere in Eﬁ

endowed with the Lebesgue surface measure, and let

13. Then

Hp and Hc are the direct sums of four copies of the
(real or complex) spaces Lp{ﬂ) and C{R), endowed with
the norms

(u,$) ef-1,11x00,27] parametrize the points wel
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27 14
J T, ¢) P+ 0w, ¢) [PHu, ¢) P+ via, ) ip}dqbduj

o}

I aT’HP - U_l'l

Max{max | I (o) |, max | Qw) |, max | Uw) |, max | V{w)|},
wefd wel wefd wel

Il

where 1gxe. By HT-Z we denote the direct sum of four copies of
Lz(Q) completed with respect to the norm

1 2T

2 2 2
Il zll =f f {1 10a,9) |+ 100,e) | +Uw,e) | +|Viger] 1
1.2 '3 Yo

(SR

dgdu.

As a consequence of the fact that (i) physical solutions {=(I,Q,U,V)
satisfy condition (3), and (ii) I is the intensity and

therefore has a finite L1-norm, the space H seenms to

1.2

be naturally appropriate to the polarized light problem.
Next, let us introduce the following operatcrs on

L () {(1<p<e=}:

p( ) (1=p< =)

ot

(T I) (0,$)=uT (1, 4), (B {)(u,¢)=;;-;f1j Z{u,at, p=¢" VI u', ¢") de A

e}

(Q,1) (u,8) =<

(,{(u,¢),{¢u)>o
[ 0 ,{+u)<0
4
m

1 2T
(R ,\:F) (ur¢) = JO jo u',.\R,g(ururlfi’_d)l)Q %(u',ﬂ"(ﬁ')dﬂ?!dﬂ!
) ;\[,) (ur¢) = Q ,.Iu(_u, 1T‘¢») r

where R = diag(1,1,-1,1) .Then Eqg. (1) with boundary condi-
tions {5) can be written as

(T D' () =-4aTI() , Te (0,b) (10a)
Q,1(0) =g, (10b)
Q_I(b) =R J QI), (10¢)
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while Eg. (1) with boundary conditions (9) can be written

as
(T 1) (x) = =& L(7) , te(O,=) (11a)
Q. I(0) =g, (11%0)
il,%(ﬂl!p=0(1) (t » =). (i1c)

In (10a) and (11a) the derivative 1s a strong derivati-
ve with respect to 1. Both problems can be formulated
in the same way on H, 5. The formulation of Egs. (11)
is a far fetched generalization of the statement of the
half-space problem for isotropic neutron transport by

Hangelbroek 14_

By defining the hropagation function™ H.(r} by

irlul_le_m/u I(u,4) Tu>0
(H(o) 1) (u,9) = <

lL 0 r Tu<0,

9
the boundary value problem (10} can be written as ~

P -1 ]
Lio=a | rie TV 03 R i) B (A
° (12)

1 -1 1
~rT _l_e(b--:)T 0 LT

= [e ) JRe 13-+ te{0b):
LV

The boundary value problem (1% can be written as

=1
T 3, 10, . (13)

;E(T) - a J H(r—1")B }E(T')d’f"—“-‘e‘-[ N
0

More precisely, every essentially bounded i vector function

I: (0,b) -+ Hp satisfying By. (12) (res».13)) is bounded and con-
tinuous on [0,b] (regp:l0,»}) and satisfies Egs. (10) (resp. {(110.
Conversely, every bounded solution of Egs. (10) (resp.
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{11)) satisfies Eg. {(12) (resp.(13)). By introducing the

Banach space L (Hp)g of strongly measurable Lq-functions

g
from (0,k) into Hp, also for g = =, and by defining the

bounded operators

(LD (1)

(M.T) (€3]

I

o
f H(t=1")}B %(Tl}dT', Te (O,b)
o

g =1
fbé (b—o)r

QT R H{b=¢")B I(t")dr' 1e(0)D),

s}

N, =T,

we can convert Ej. {12) to the vector eguation

and

(1—aNb) I=w (14)
on Lq(Hp)g and Eg.{13) to the vector eguation
(1-aL )T = w {15)

on Lq(HpYB, where in both cases p depends on b, J, and R.
It should he assumed that R is bounded on Hp. One should

also assume the regularity condition

1

f
3r>1:J

All statements in this paragraph apply equally well to Hﬁ 5°

a1{a)rd(cose}<w. (16}

=1

Now that the original boundary value problem has
been reduced to a simple vector eguation on Lq(HP)B,
where be{0,»], it is appropriate to emphasize the lattice
positivity structure of the problem. First of all, as
observed by Germogenova and Konovalov 16, the set of

four-vector functions
1
K== (I,0,U,V)/I=(QHUAHV2): almost everywhere}

is a positive cone on Hp that is normal and reproducing17.

With respect to this cone, the operators B,H(r),Q+,J and
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R (the latter when bounded on Hp) are positive, i.e.
they leave invariant KP. As a result, Lb'Mb and Nb are
positive operators on L (H ) i.e. they leave invariant
the cone Lq(K ) of strongly measurable Lq—functions of
. b
(0,b) into Kp. Moreover, if J e Kp, we have %ELq(Kp)O
for the right-hand sides w of Egs. (14} and (15). We may
therefore apply the theory of positive operators on

. 18
Banach spaces having a cone .

In corder to deal with the existence and uniqueness
of solutions, it is important to determine the spectral

radii r(Nb) and r(L ) of N and L , respectively,.

b
Ignoring reflection by the planetary surface first (R=0,

thus szLb}, the compactness of I, for finite b is exploi-

b
ted to prove that r(Lb), and also its limit r(Lw} for

E - »,do not depend on the functicnal setting offered
by Hp or H . Next, it is shown, using that B has unit

16 1.2

norm , that r(L _)=1 on H By the independence of

r(L_} on the functional se%ting, we have r{L_}=1 on Hp
as well as Hy 5o Using the analyticity of r(Lb) as a
function of b and the strict monotonicity of the norm
H1-2 in combinaticn with the independence of r(Lb) on
the functional setting, we may prove that r(Lb)<1 for
finite b. Hence, for ac¢(0,1] the boundary value pbro-
blem (1)-(5) without reflection (gg(u,u‘,¢—¢')zo) is

uniguely solvable in H_ and in H For ae{0,1) we

have obtained the unigue solvabiliiyof the semiinfinite
layer problem (1)-(92). It requires a detailed structu-
ral analysis of the eigenspace of B at the eigenvalue
2=1 to extend the latter result to a=1. The details

can be found in Ref. 8,

Next, let us consider the finite laver problem ({1)-
(5) with reflection. 1In this case it is proved that
r(Nb) increases by strict monotonicity from zero to a finite

value r_, as b increasing from zero to infinity. This



POLARIZED LIGHT TRANSFER S05

is in fact done by alsc viewing r(Nb) as the spectral
radius of a vector integral operator originating from
Eg. (1), where the refiecticon and the incidence of sun-
light both take place at 1=0, which is a physically
irrelevant situation. However, this theoretical situa-
tion clearly has a limit case for b + =« , whence r
exists and is finite. Using results of van der Mee and
Protopopescu 19 on half-space problems with reflecting
boundary conditions, it then follows easily that r_=1,
whence r(Nb)<1. We may therefore conclude that Egs.(1)-
provided R is

1.27
bounded on this space as well as on H2 20. The details

(5) are well-posed on both Hp and H

can be found in Ref. 9.

Recently a different method has been developed to
prove the unigue solvability of Egs. (1}-(5). Tt hinges
upon the observation that because of the compactness of
Lb for finite b one only has to show that Egs. (10)
(with R=0) have at most one solution. Since the result
does not depend on the functional setting, one may work

on H, where A=1-aB has a positive real part,

Red i %(A+A*)20,and satisfies Ker A = Ker (ReA}21. A
straightforward argument modeled on the uniqueness proof
for the solution of the neutron transport equation for

a submultiplying medium, given by Case and ZWEifel—23, then
vields unigueness of the solution of the finite layer
problem (10) without reflection by a planetary surface.
The Fredholm alternative then implies existence also

The details can be found in Ref. 10 as well as in

P.F. Zweifel's contribution to this conference.

Some of the work has been included in Section VI.Z
of Ref. 22.

2, REFLECTION AND TRANSMISSION, AND ADDING EQUATIONS

The use of reflection and transmission matrices (or

functions, if polarization effects are neglected) is
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virtually as o0id as radiative transfer itself and can

3, Scholev 24

be found in the monographs of Chandrasekhar
and Van de Hulst—/. When they are viewed as kernels of linear
operators yielding the reflected and transmitted inten-
gities from the incident fluxes, one naturally arrives

at the conception of reflection and transmission opera-—
tors, such as appears in Refs. 25 and 26 and in the con-
tribution of R.J. Hangelbroek to this conference.

These operators govern the input-output characteristics
of the planetary atmosphere system and may be combined
intc one "transfer" omerator, as has been done by Ribari("ﬁz7

for the nuclear reactor system.

Let us consider the finite layer problem (10) with-
cut reflection by the ground, and Iet us include in the
model a fictituous incident £lux at the bottom. We then

obtain the boundary wvalue problem

(T I)' (v) = - A I(t) , 1e{(0,b) (17a)

Q, %(O) =dJ., (17b}

Q_ L) =g_, (17¢)
where J = Q J. Under the hypothesis (16) this problem
is uniquely solvable in Hp and in H1 57 and the solution

is continuous eon [0,b] in the strong topology of the
underlying Banach function space. Moreover, if ger,
then %(T)EKP for 7e¢[0,b], with a similar statement
applying to H1_2. We may therefore define unigue reflec-

tion operators R+b and transmission operators Tib by

R,y er_ =T, 0 =0 {(18a)
() = (R_+b + T_b)g (18b)
I(b) = (R_+T )J - (18¢)
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As a result R, and R_,, describe incident plus reflected
b and T__b
radiated transmitted from top and hottom, respectively,

radiation at top and bottom, while T+ describe
to the other side of the atmosphere. A1l four operators
are positive with respect to the cone K . This outlook
of reflection and transmission has been chosen in Ref. 25
and 26.

A different landscape evolves when not incorpora-
ting the incident fluxes in the description, as found
in Ref. 11.

Pisplaying the input-ocutput mapping
between the incident and the reflected plus transmitted

radiation, one obtains the transfer fratrix) operator S

bf
which satisfies

++ - -
gt 7

Q. o) Sb b Tt
= . (19)
T(0) - J
.._Q_r\., — b b — e Ay
T+ T . .
As a consequence, Sb and Sb are the restrictions to
Qi{Hpj or Qi[H1;2] of the operators Tib and (Rtb_Qi)’

respectively. All four entries of the transfer (matrix)
operator are positive, The major gain from introducing
this seemingly redundant transfer operator, however,
becomes apparent when accounting for the transfer effects
of two separate and adjacent optical layers. For the
first such layvers, Te(o,b1), we have the analog of Eg.
(1%), namely

++ +-
QL Bg)= Sp T 45, QT by

— -“+ -
Q_I(0) = Sb1g¥+sb1Q—£{b1}'
Similarly, we have the analog of Eg. (19) for the second
layer, Té(b1,b) with b=b1+b2, written in the form
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f—

ot =
QL) = 5,70, T (by) 48y,

R

—_— -+ -=
0_F(by) =8, Q. (p) 45, .

By eliminating Q+¥(b1) and QFI(b1) from these eguations
and comparing the resulting equations with BEg. (19) we

obtain the following adding egquations:

s, = s, (1-5)" :}‘15;’ (20a)
2 1 P2 1

577 = sg;+ 5;2(1—3;15;;)'152;5;; (200)

" = sy sy s 300

s, = 8;1(1-s;;sg;)'1s;; (208}

Tt can be proved that the inverses appearing in Egs.
(20) exist and can be obtained as the absolutely con-

vergent series

+-g =ty =1 FogoHy B

(1—Sb1 b Yy = § (5. S

2 n=0 b1 b2

, a-ss = e e
2 M n=0 271

Using these each one of the adding equations can be

written as an equation, where the right-hand gide is

an infinite series with each term modeling a reflec-

tion and/cor transmission, followed by a finite number

of double interface reflecticns, and then a final

transmission. These so-called multiple interface re-

flection expansions appear in the adding method 6.7

for computing numerically the reflection and transmission

properties of a combined layer from those of its con-

stituent sublavers. The convergence of these expan-
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sions may thus be established. For details and ancillary

regults we refer to Ref. 11.
ITI. TNHOMOGENEQOUS MEDIA

On considering radiative transfer in vertically
inhomogeneous plane-parallel atmospheres, &he considers
B2g.{1) with the albedo of gsingle scattering a2 and the
scattering matrix E(a) depending on the optical depth t.
We shall develop in a concise way an existence and
uniqueness theory and justify the adding method for

such equations. The equation is given by

1
u _3;:); %(T;u:¢)+%('r,u,¢) = _41_ L—

kid

2m

1[ %(ulu'l¢-‘b';T)%{Tlu‘l'¢')d¢'dutf(22)
Q

where

Z{a,ul=¢'s1) = %(ﬁ—01)§(6;1)%(-02)

with the data u,u',¢,¢',a1ﬁ and 4 related as before. We
assume that E(G;T) is given by (20}, where the nontrivial
matrix elements also depend on 1. Since in Eg.(22) the
albedo of single scattering,ac{9,11, is absent, we must

replace condition (4) by
1
0< J 31(6;T}d(cose)s2.
-1

It is again assumed that F(e;r1) transforms vectors
% = (I1,0,U,V) satsfying (3) into vectors of the same type.

In addition we make the following regularity assumption:

The functionscg{a1,az,a3,a4,b1,b2} satisfy the condition
that, for some  r:>1, ;]c(e)]r d coese is finite.
Also, for each of such ¢ we have t » cl(e; 1) continuous
in [0,b] if b is finite, and bounded and continuous

on [O,») if b==, in the Lr—norm of [-1,117.
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If no ¢-dependence is present, this condition generalizes

condition {16), since |ciza, for every element ¢ of the

1

scattering matrix 28, .

We may now define the operators T,Q ,R,J and Hig)
on Hp, but the definitions of B and A must be modified

to obtain
1 1 2T
(B(T);@(u,@;):é—ﬂ[’l JD r%(u.-u',rp-d)';r)rlu(u‘,¢')d¢‘du‘, A(g)=1-aB{7),

where we note the absence of ae(0,1] in the definition of A(r). As
a result, B{r) generalizes aB rather than B. We may then write
Eg. (22) in the abstract form

(TT) ' {x) = -A(DL(1) , 71€(0,D), (24)

endowed with the boundary conditions (10b) and (10c¢) if
be({0,=) (11b) and (11¢) if b=w.As a consequence of the

above regunlarity assumption cne may write . both boundary value

problems in the form of the vector integral egquations

-1
Lo - me(T-T-)m“"T)T QI RHB-T)IB() L x)dr' =
o

~1 -1 1 (25)
e PTG are™T g, relom),
if be(0,=), and
1)-wH-' ' ‘d‘~_TT_1 0,%) (26)
ir ) (t=t")B(t")I(t')dr! = e S0 1€ (0pe2) ,

if b=«. Equations (23) and (26) may be written in the
form of Egs. {(14) and (15), respectively, for suitable
choices of Nb,yn and @ . The functional space is

L (Hp)g(1sq5w), provided R is boundsd on HP. We can re-

q
peat the arguments of the previous paragraph 1if Hp is

replaced by H172.

S
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LEMA - Under the above regularity assumption, there is a«
matriz G(&) of the form

é,l(e) 51(9) 0 o
b.o(8) a (6) O 0
Gley = | 2 . R
o] 0 a3(6) bz(s)
0 0 —1;2{9) ;14(8)

having the following properiies:
(1) For every t1¢{0,b] if b 18 finite, or jor every tel0,=)

if b==, the vector
{gee) - Fle0)31

satisfies the econdition (3) if 1 satisfies condition (3).
- T
(iZ) The elements c(8) of G{9)are megeurable functions

. . 1,” .
of © satisfying J]|c(8)]rd cosf<e, wphere r<1

is the constant appearing inm the regularity assump-
tton. -
(i21) We have O<J a1{e)d cos8=2.
-
Proof. Let E be a countable dense subset of [0,b] if
b is finite or of [0,»}) if b=w, Then it is sufficient to
coenstruct g(e) satisfying (i"),{(ii) and (iii), where we
have:
(1') For every tcE the vectonr {%(6)-5(6;1)}% satisfies
condition (3} if I satisfies condition (3).
One may replace (i) by (i') because of the continuity

c¢lause in the regularity assumpticn.
Next, choose a constant N such that the integral

1
( ?c(e;T)]rd cosf<N<= for every element c(e;t) of F(ost).
§ince the cone Kp is closed with respect to the crea-
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. . s 2 .
tion of finite suprema 9, we can construct, with re-

spect to the order induced by the cone Kp’

(8) = sup F{8;1,)
R 1si<k” it

where E ={Ti}I=1 is an enumeration of E. &ince KP is
a normal cone 17, we have II!C(B;T)ird COS8<M New,
where c(6;1) is an element of gk(e) and the constant

M (in fact, M = V3) does not depend on ¢ nor k. It is
now straightforward to see that %(e)=sup{gk(e)wkeﬁi},
where the countable supremum taken with respect to the
order induced by Kp exists, is the matrix function sought
for. [

We now put

1.
a = % Jgﬁ1(e)d cosé , E(B) = (1/a)%(6),

using that ae(C,11.Then all: elements ¢ of F(8}, which has the foxnm

@c), satisfy II,IC(G)|rd cosg<w, while ﬁflaq(e) d cose =
Thus the matri;-g(e) satisfies all the reguirements for
a scattering matrix, and therefore for this matrix the
boundary value problems (10) and (11) are uniquely sol-
vahle in H_ and in H1.2 (where we assume, of course, thal
Also, if R is

R is bounded on Hp or O and on H

1.27 2)’
bounded on HD and H2' we have r{Nb)<1 and r(Lm)=1 for

the present Eomogeneous atmosphere problem, where these
spectral radii do not depend on the functional formula-

tion.

Let us assume that R ig bounded on HP,H2 and H1 2

Let us denote the operators N, and L_ for the original

(inh? and L(lnh), and

o0

inhomogenecus medlia problem by M

those for the dominating homogeneous media problem by
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Néhom) and L

b
{eLq{K1.2)o’ we have

{hom) b
-  Then for %ELq(Kp)o’ or for

-2

OsNélnh}£saNéhom)% , OsLilnh)%sasLihom){,
Using the strict:mmonmﬁcity of the H,I 5 horm 17 we cbtain
inh {(hom
ozl|n }%ihfz sa | )%!Hfz <a.1 = as1  (27)
and
(inh) (hom)
og|L Iy 5 sailn, 5 =a.t1=a, {28)

where we have exploited the resuits for homogeneous
atmospheres. Again using the insensitivity of the spec-—

tral radii for the functional formulation, we obtain

THEOREM. For ac[0,1] the finite atmosphere problem
{24)~-(10b)-(10c) <8 uniguely solvable in Hp (resp.Hjlz),
if R i8 bounded on HP'H1‘2 and H2 (resp. on

Hy 5 and H,) and satiefies conditions {6), (7) and (8).
For acl0,1]1 the semiinfinite atmosphere problem (24)-

(11b)-(11¢) <s uniquely solvable inm Hp and H1 50

It is straightforward to justify the adding method
for inhomogeneous atmespheres. Using unique solvability one
can define the reflection and transmission operators
by Eq. (18) and the transfer (matrix) operator by Eg. (19),
pProvided one replaces the subindex b (appropriate to
a homogeneous layer) by a subindex linked to the layer
under consideration. The adding equations (20) will
not change at all. Again using the insensitivity of the
spectral radii of 87 5”7 ang s;+ st

b b1
space, and exploitin% thé domina%ing homogeneous atmog-

for the functional

phere problem and the fact that in the latter case these
spectral radii are less than unity, we immediately
see that these spectral radii are less than unity also
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for the inhomogenecus atmosphere problem. Hence, one
may justify the series expansions appearing in the

adding methed for inhomogeneous atmospheres too.

It remains to prove the existence and unigueness

of the solutions of the inhomogenecus semifinite atmos-—

phere problem for 3 =1.
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