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of transfer by means of Fourier expansion and symmetry relations.

1 Introduction

On neglecting vertical inhomogeneities and thermal emission, the
equation of transfer of polarized light in a plane-parallel atmosphere of finite or
semi-infinite optical thickness b is the vector-valued integro-differential equation

A1) L) + 16w 0)
dr

= 9
4m —1

Here 0 < a < 1 is the albedo of single scatiering, Z(u,u',¢0 — ¢') the phase
matrix and 1(z, i, ¢) a four-vector depending on optical depth 7, direction cosine
of propagation u and azimuthal angle ¢. The components 7, Q, I/ and ¥ of the
vector I are the Stokes parameters, which describe the intensity and state of
polarization of the beam. A consistent treatment of polarized light transfer based
on the {equivalent) conventions for polarization paraméters of Chandrasekhar
[2] and Van de Hulst {13] is given in [14], on which we shall rely for notations.
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On neglecting reflection by the surface the existence and uniqueness are proved for the solu-
tion of the equation of transfer of polarized light in & homogeneous semi-infinite or finite plane-
parallel medinm. A general L,-space formulation, where 1 € p < oo, is adopted. The analysis
concerns a vector-valued convolution equation, which is an eguivalent form of the equation of
radiative transfer and is solved with the help of Wiener-Hopf factorization, Fredholm index and cone
preservation methods. The results are also proved for the equations obtained from the full equation

1 2n :
VL ZGu'o — oIt u',p — ¢)dp'du’, O<1<bh.
¢

Zé
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The phase matrix can be expressed as the product
(1.2) Z{uwu'sg — ¢") = L1 — 0) F(O)L(—ay)

of two rofation matrices of the form

1 0 o 0

0 cos2e  sin2a 0
(1.3) L) = .

0 —sinZ2a cos2a O

0 0 0 1
and the scaffering matrix

a (&) b(D) 0 G

.| by (B g 0 4]

1.4) F(@) = (8 ay(0)

0 0 a®) b
0 0 —b(6) a0
The relationship between # = —cost?, ' = —cost?’ and #(0 < ¥,97°,0 < wyon
the one hand and ¢,¢ ', and ¢, on the other hand is given by the formulas
(1.5) cos@ ="costfcos¥’ + sint¥sind’ cos{p’ — @)
cost — costy' cosf cost?’ — costfcosd

(1.6) cosag; = - - y COSO, = : .
sint’ sinf sinésin#

where sing; and sing, have the same sign as sin{p’ - @).
When the denominator of any of the equations (1.6) vanishes, the appropriate
limits must be taken.

The present article offers a complete existence and unigueness theory for
the solution of the equation of polarized light transfer endowed with the
boundary conditions

{1.7) 10,¢) = 3w, ¢) foru > OE whenever b is finite,

Eb,u,0) = J(u, ) foru < 0
or
(1.8) Y0,u,0) = ¥u,p)foru>0
T Hrue) = 0(1) (x> )
The resuits are transferred to various component equations associated with (1.1).
The existence and uniqueness problem requires a functional formulation
of the above boundary value problems. Let H,, 1 € p < oo, denote the direct
sum of four copies of 7,(€2), where £ is the unit sphere in R3. The norm of a
function I: @ — C*is given by

z whenever b = o,

1 2xm
1E}, = {_51 g{ll(u,cﬁ)i" + |0, 9}i7 + | Ulu, 0)|¥

1/p
+| V(u,qu)i”}dcodu} ,
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where u = — cos# and (¥4, ¢) are the polar coordinates of a point w & £2. On H,
we define the bounded linear operators 7, B, A, Q. and O_ by
(1.9 (TDH(u, @) = ul(uw, ¢}, ADw 9) = Hu, @) — a(BDu, 9)

(1.10) (BD(w9) = (4m)"! E E Z(w,u',p — ¢V (u' 0" do’ du’

Hu, ) foruz 0
0 foru=0.

(1.11) (Q.Dlw, @) = [

We define the H-vector I(t)(x,¢) = Kz, u,¢). By a solution in H, of the
boundary value problem (1.1) and {1.7) for finite b we mean a vector valued
function 1:(0,5) — H, such that T'1is differentiable on (0, #) in the strong sense
and the following equations hotd true: '

(112 (TD'(v) = -AK7) << b)
(113) Him Q1) = Q. 3], = 0. lm[lQ-1@) ~ Q- J[, =0
A solutlon in H, of the problem (1.1) and (1.8), where b = oo, 15 defined as 2

vector-valued funcnon I:(0,00) —» H,such that T Iis dlfferenhabie on {0,) In
the strong sense and the following equatlons are satisfied:

{(1.14)y (T (z) = —AK7) (0 < 1< oe)
(1.15 lianQJrI(t) - Q. 8,=0, |, =01)(t— ).
70
Before explaining the mathematics in more detail, we notice that the
Stokes vector 1 = (£, Q, U, V) must satisly the inequalities
(1.16) 12 /0*+ U? + V2> 0.

Rotation matrices leave invariant the set of vectors I = (7, Q, U, V} satisfying
(1.16). The physics of the problem prescribes that the element a, (), the so-cailed
phase function, is nonnegative measurable with normalization

1
117§ a(@®dicost)y = 2.

1
Further, the entries of the scattering matrix are measurable functions and for
almost every # € (0,n) the matrix F(#) maps four-vectors satisfying {(1.16) into
vectors of the same type. This implies ({14}, (82} —(85))

(1.18) |58} < ?l% (0) + a:(0)} < a1 (0); by(0) + By(8)* + a (6

< a0k = 3,9.

Hence, all entries of F(#) are real L;-functions of cosf.
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_ Let us explain the mathematics to be used. The boundary value problem
(1.12) —(1.13) for finite b, or (1.14)— (1.15) for infinite b can be shown to have
the same bounded solutions as the vector-valued convolution equation

(1.19) X(z) — afﬂ(r — YBI(T)dr = w(r) (0<T< b,
0

where
—1 . —a/u
1(u, f >0

(1.20) (Ho) D@y = 14 ¢ THwe) Horou

0 forcu <0,
defines the propagator function and (r) is a suitable righi-hand side. For un-
polarized light transfer the analogous result is known to be true (see [25]). For
b = o we have a Wiener-Hopf operator integral equation with symbol

wil)=1-a | €’ H(g)Bdo =1 - ai{A - T)"'B, Red =0,

where T'is noted to have real spectrum only. We consider (1.19) on the Banach
space L (Hp,), of strongly measurable functions 1:(0,b) — H, which are
bounded with respect to the L -norm. Using a technigue modeled on Feldman [4]
one shows that
| || F©@)Bly,d0 < o0,

whenever, as functions of cos8, the entries of ¥ (@) belong to L,[~1,1] for some
r > 1. For such scattering matrices the theory of convolution equations of
[9,5.8] (plus infinite-dimensional analogues) will apply. Invoking a norm
equality of Germogenova, Konovalov and Kuzmina ([7,23]; also [22]), namely
|| B|l = 1 on H,, we obtain the useful estimate

W) — Ty < al@ - T)_1||HPE|BHHP$ a1.1. =a, Rei=0.

A straightforward application of a factorization result of Gohberg and Leiterer
[10] for Hilbert space operator functions close to the identity yields the unique
solvability for b = o and 0 < a < 1 of the Wiener-Hopf equation (1.19) on the
spaces L (H>)q- With the help of Fredholm techniques (as in [27]} one extends
the result to all spaces L, (H)o-

As observed by Germogenova and Konovalov [7], the physical require-
ment (1.16) on the solutions I{z, u, ¢) strongly suggests the use of the cone

K,={I=(LQUWIz)0"+ U+ V>0

on the real Banach space H,,. In [7,22,23] the cone preservation techniques of
Krein and Rutman [20] and Krasnoselskii [19] have been applied to K, to derive
information on the position and multiplicity of the zeros of the characteristic
gquation (which are the cigenvalues of T-1A4) and the structure of the cor-
responding eigenfunctions, thereby generalizing the results of Maslennikov [24]
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for unpolarized light transfer. We shall exploit cone preservation methods to deal
with (1.19) (rather than with (1.12) - (1.13) or (1.14)~(1.15)). On the real space
L (Hp)y we define the cone

LK) = {Ee L(H,)y/ K1) e K, almost everywhere}
and write (1.19) as the vector equation
(1.21) (I -alp)l=w,

where
(1.22) (L,D(n) = ?H(r — tYBHt}dt', d<t<bh.
0

Observe that 1, is a bounded (and for finite b a compact) operator on L (H,};,
which leaves invariant the cone L (Kp),- A monotonicity argument with respect
to the cone K, modeled on methods in [28], implies the existence and uniqueness
of the soluﬂon of (1.19) on H, for finite & and 0 < a < 1. It requires the
temporary use of an auxiliary space H, , instead of H,,. As an ancillary result we
find that the solution I{7) € K, almost everywhere. At the same time, writing for
0 < @ < 1 the solution to (1. 21) as a Neumann series, a mathematical justifica-
tion is obtained for the method of solution of the equation of radiative transfer
by expansion with respect to successive orders of multiple scattering {see [13]).

For practical purposes the full equation of transfer is reduced by Fourier
decomposition and symmetry relations. As indicated by Kuscer and Ribaric [21},
the equation is first written in terms of complex polarization parameters.
Expanding the elements of the transformed scattering matrix into the generalized
spherical functions of Gelfand and Shapiro [6] and using the addition formula
for these functions one arrives ai complex Fourier component eguations.
Exploiting symmetry relations for the phase matrix ([12], also [3]) one may
accomplish a further reduction to real component equations. This was first done
by Kuscer and Ribarié [21] for the azimuth-independent part and by Siewert [301
for the azimuth-dependent parts. An alternative route to these results can be
found in [14]. We shall also prove the existence and uniqueness of the solution
for the various component equations.

Sofar we have exempted the case b = o and ¢ = 1, because this case is
not amenable to Wiener-Hopf factorization and Fredholm techniques. However,
one of the Fourier components equations has the form (1.14)—(1.15) for
H,=LI1-111 ® L, [—1,1], where for p = 2 the operator A is bounded
positive self adjoint w1th one-dimengional kernel. This component problem can
be solved uniquely along the route of [25]. The information thus obtained allows
us to solve (1.14) —(1.15) for the full equation of transfer, where for the remain-
ing component equations we use the factorization result from {10]. Using the
method of [26] we also prove that the solution of the full equation of transfer in
the conservative ¢ = 1 case can be approximated from the non-conservative case
by taking the limit as a T 1.




398 C. V. M. van der Mee

In Section 2 we store preliminaries and state the equivalence theorem for
boundary value problem and convolution equation. In Section 3 we treat the
semi-infinite medium for 0 < g < 1. Section 4 deals with media of finite optical
thickness. In Section 5 we discuss the various component eguations, after which
we return to the case ¢ = 1 and & = o in Section 6. We conclude with a short

discussion.

2 Preliminaries and Eguivalence FTheorems

Let us first list some properties of the integral operator B.

Proposition 2.1 For1 < p < oo the operator
1 1 2n
(BD)(u,9) = ey VT 2010 — ) 1w, 0') o' du’
T =10

is compact and has unit norm on H, Ifaye LI-1,1] forsomer > 1,then Bisa
bounded operator from H, into H,, and

@1 f JFH(J)BHHPdG < o,
Moreover, in this case B acts as a compact operator from H, . _1y into the space
C¥(Q) of continuous functions h: @ — C* with supremum norm,

Proof. The compactness of B on Hy, and from H,, i into CHQ) (f
ay € L, [—1,1]) are parts of the statement of Theorem 1 of [7]. The third part of
Theorem 3 of [7] implies that B has unit norm on H,. Using the specific form
(1.2)ofthephase matrix, the equations (1.18) (whichimply that{a,, a;, a5, a., b, , b}
€ L,[—~1,1] as functions of cosd, if a; € L,[—1,1]) and Theorem 1 (2.X) of {17}
one finds that Bmaps A, minto H,,, as a bounded operator. For0 < o < (r — 1)/pr
the operator

(S D, 0) = |u|"*1(u, p)
is bounded from L, {-1,1] into L,[—1,1], while
2.2) [IT"H©@)|I= sup jul*"'e 1V = O(jg|* ")(g ~ 0).

O<ugi
Equation (2.1) now follows from the boundedness of S, and the estimate (2.2). &

As in the introduction, let L,(H,), be the (real or complex) Banach space
of strongly measurable functions I: (0, 5) — H,, which are finite with respect to
the norm

-b 1/g
[g““ﬂ”ﬁ;ﬁdf} , L R
“I”Lq(Hp}b =

esssup{[I(0)fiy; .,  g=o0.
0<T<h 7
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Strong measurability is defined in the sense of Section 31 of [32]. If gy e L,[~1,1]
for some r > 1, then (2.1) guarantees that

(LyE)(r) = ?H(’r - tYBI(z)dt', O<t<bh,
o

1s a bounded operator on L,(H,)y, where! < g < o. As Bis uniformly approxi-
mable on H,(1 < p < oo} by operators of finite rank, the usual theory of
Wiener-Hopf operator integral equations, as stated in [5] as an infinite-dimen-
sional generalization of [9], applies as also does the mfinite-dimensional
generalization of {8]. As a result we find that L,, with b finite, is a compact
operator (cf. [8], Lemma 1.1), where we assume that ¢, € L. [—1,1] for some

r>1.
We now state the equivalence theorems mentioned in the introduction.

Their proof can be given along the Iines of [25] (also [27]) and will be omitted.

Theorem 2.2 Lef b be finite, | < p £ wanda,e L[~ 1,1] forsomer > 1. Let
@ :[0,b8] - Hj be a continuous function such that T is strongly differentiable
on (0,b). Then a function 1 € L,(H,), is a solution of the boundary value
problem _

23) (TH@ = —AL@ + (To) @ + o) (0 <t<b)
24 Jml0. 1) - Q. 0O, =0, lm[Q_1() - Q-w®)]4, =0,

if and only if' 1 is a solution of the convolution equation
b

(2.5 Ho) - alH(t - t)BI(zYdt = (1), 0<t<h.
¢

Any such solution is continuous on [0, b].

The equivalence between the boundary value problem (1.12) —{1.13) and
the convolution equation (2.5) is effectuated by choosing

(2.6) w@(we) =e “Hu,p) foru>0,
o (T, ¢) = 9" V4 u,¢) foru<0.
If £:[0,5] — H, is a uniformly Hélder continuous function, then the reasoning
of {28} can be applied to prove the equivalence of (2.5) with right-hand side -
( T
1 —e "8z, ) + [u " te VR, u) — £, w)]d7’,
0

>0

(D) (1, @) = o s

M — e D4 (g, ) — fu " te T~ TVUE(" 1) - £z, )] AT’
T

<0

to the boundary value problem
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Q2.7 (TD{() = —Al{n) + i(7} (0< 1< b)
@8) ImlQ, 1@y =0, ImlQ 1@y = 0.
rto s Tl 7

In this way a thermal emission term f(z, #) may be added to (1.1).

Theorem 2.3 Letl < p < oo, andletay e L1 —1,1] forsomer > 1. Let w : [(,o0)
— H), be a bounded continuous function such that Tw is strongly differentiable
on (0,0). Then a function 1 € Lo(Hy). is a solution of the boundary value
problem

2.9 (TD'(r) = —Al(7) + (Tw) (1) + wir) <1< o§) .
@10) 1m0 1) - Q0@ g, =0, KDy, = 0W) (=),

if and only if 1 is a solution of the Wiener-Hopf operator infegral equation
QA1) I(t) — & § H(r — T)BI(T)dT' = (1) (0 <1< ).
0

Any such solution is bounded and continuous on [0,0c),

The equivalence between the boundary value problem (1.14) - (1.15) and
the convolution equation (2.11) is obtained, for instance, by choosing

(2.12) w(e) = e "I p) foru>0, @@we)=0 foru<o.

If f: [0,%0) - H,is a bounded uniformly Haolder continuous function, then (2.11)
with right-hand side

—

T
1 —e 74, u) + fule OV (e, u) — £(z', )] dr’
0

u>0
w (T, ) = 5

fw) — [ule” OV 1) - £z w)]dT

T

<0

is equivalent to the boundary value problem

(243) (TN ()= —AL) + £(x) (@ < 1< o0)

@14 1m0, 1@ [y, =0, @], = 0N~ ),

which again pertains to the addition of the thermal emission term f(z, u} to (1.1).

3 Semi-infinite Non-conservative Media

In this section we prove the following

Theorem 3.1 Let 1 € p < oo, gnd let ¢y € L{—1,1] for some v > 1. Then for
every 1 £ g < o the Wiener-Hopf operator integral equation (2.11), with albedo
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of single scattering 0 < a < 1, has a unique solution in L o) for every right-
hand side w € L (H,)... In particular, if @ :[0,0) -» H, zs a boundea’ CORLINUOUS
Sunction such that To is strongly differentiable on (0 oe), then the boundary
value problem (2.13) - (2.14), with 0 < a < 1, has q unigue bounded solution
and this solution is continuous on [0, o).

- Proof. Up to a trivial change of variable (il — A ~!) the symbol of (2.11) is
given by
W@ =0-a § e*H(G)Bdo =1 — ah(t - T)"'B,  Reld =0.

The Fredholm characteristics of the operator I ~ al, on L o). are com-
pletely characterized by the Wiener-Hopf factorization propertles of the symbol
(see [9,5]). Using Proposition 1 we find

< alBliy, sup |20~ 1)~
eA =

sup || — W
Red=0

:a-HBHHp-l =ag<1.

Theorem 4.1 of [10] implies that for p = 2 there exist continuous functions W,
and W_ from the extended imaginary line into the group of invertible operators
on H, such that W, and W .' have analytic continuations to the left/right half-
plane with continuous limiting values up to the extended imaginary axis, and
such that the canomnical factorization

(3.1) Wlh)=wW_(LHW_ (1), Rei=0,

holds true. For1 € p < 2and2 < p < o we may not draw this conclusion from
[10], as it applies exclusively to Hilbert space operator functions. Nevertheless we
shall draw this conclusion below for general p but use a different method.

From the existence of the canonical factorization (3.1) on H, we find that
on Hyand for 0 < g < 1 the equation (2.11) has a unique solution in L o) e Tor
every @ € L, (H,),,. We may prove this along the usual procedure for solving
W1ener—Hopf operator integral equations by means of factorization (see [9]; also
[5]). The operator I — «L. is invertible on L (H5).,. On the other hand,
Theorem 4.3 (or 4.4) of [11] implies that on H, (1 € p < o) the symbol W
has a (left and right) Wiener-Hopf factorization within the Wiener algebra of

functions ¢l + [ ¢”“*k(o)de on the extended imaginary line, where & is

assumed Bochner integrable with values in the algebra of bounded operators on
£, and the norm

el + 5 e"”k(d)ddllalgebra ICi + S k@) i, do
is used. This factorization property implies that § — aL,, is a Fredholm operator

onL (Hy)e, wherel < p< o . For2<p< oL ot} is densely embedded in
L (Hl)m: while I — alL. on L, (H,), is the restnctlon to L,(H),)., of this opera-
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tor on L (Hy)e. Thus | — aL, is invertible on L,(H)), for 2 < p < <. For
1<p< 2 one employs instead that L (H}) is densely embedded in L,(H, Voo . B

We define the cone L (K,)., by the expression
L (K)o = e L,(H,)./1(7) € K, almost everywhere on (0,00} .

Putting I(t) = (I(1),Q(1), U(7), V(1)), we may write every real e L (H,),, as
the difference

) =1.(0) — L (7)

of two vectors in L (K}, where

(K@it 1) > JO@F + U@ + V(@)?
I+(T) - 2 2 2 .
(]/Q('c) + Uty + V()*, Q(1),U(r), V(7)) otherwise ,

and

| (@ = | ©0.0.0if 1) > /0@ + URP + V)
B (/0@ + U@?* + V(1) — I(1),0,0,0) otherwise .
Using the terminology of [19] we find that L (K}), is a reproducing cone in
L (Hp)o (cf. [71, part (4) of Lemma 2), which has an empty interior.
Now observe that I = I, — I, is a vector satisfying the inequalities (1.16),
if and only if
L2 /(0 - @)+ (U — U + (7 = WP

Adding I; + ]/Q%_7+U§ + I;% to both sides and using Minkowski’s inequality
we find

(3.2) L+ )/03+ Ui+ Viz1 +|/Qi+ Ul+ Vi
Lifting both sides to the p-th power, applying (¢ + b)" = &" + b"fora, b = 0to

. . . . 1 .
the right-hand side thus obtained twice | for » = p and > s respectwely) and

applying Minkowski’s inequality to the left-hand side, we obtain
V301 + Qo) + | Ua? + | VoY
= (517 +1Q07 + | UIP + Vi)Y

Hence, if , — I € K, then

(3.3) lﬁ“lanp = i%lla,

which proves the normality of the cone K, (in the sense of [19]). If one now
chooses, for 1 € ¢ € o, I — I € Ly(K)), then (3.3) implies

i3 HIZ“Lq(Kp)m 2. -

which establishes the normality of the cone L (K,)e -
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‘Let us now consider the auxiliary Banach space #, » of measurable func-
tions I = (1, Q. U, ¥): 2 - C* which are bounded with respect to the norm

def.

1 2n U
3 HHw o+ V0w o)l + UG o)l +1V (n,0) dodu.

[1E:.2

The space H, ; contains H, as a dense subspace and is densely embedded in H, .
We now introduce the cone K| 5, the spaces L, (Hj ;}.., and the cones L (K 2o
it @ way analogous to the introduction of K, oo LglH ) and L, (K)o . As a result
we find all these cones to be reproducing and normal and we recover Theorems
2.2to 3.1 with Hy ; instead of /1,. On inspecting (3.2) one finds that H, , has the

property

(34) HIZ”HLQ > Hll “Hl.?. whenever Iz - 11 S5 K12\{0} ,

which carries over to the spaces L {H] ;). So one also finds
lelqu(Hl_z)m > |5 HLQ(HI_?_)W wheneverly — 1y & L (K 3) MO .

Corollary 3.2 Let 1 < p < o, and let ag = L[—1,1} for some r > 1. Then for
everyl S g€ v, 0<a<lagndwe L (H,) . the unique solution fo (2.11} is
given by the series

3.5 I= Y d"Llow,

n=0
which is absolutely convergent in the norm of LH)w- In particular, if
w € LK), so does the solution (3.5). Hence, to every boundary value
SJunction J € K, the unique solution to (1.14) —(1.15) takes its values in the cone
K,.
Proof. Because for # = 1 the symbol W of the Wiener-Hopf operator integral
equation (2.11) fails to be invertible at infinity (note that W) = A; cf. [7],
Th. 5, part (1)), the operator I — L, cannot possibly be invertible on any one of
the spaces L (Hp) (cf. [9,5]). Thus @ = 1 belongs to the spectrum of L,,, while
(1,%) is contained in the resolvent set of L, . Consequently, the spectral radius
(L) of L, is not less than unity.

We notice that Z,, is a bounded operator on L{H,).., which leaves
invariant L (K)o - This cone is reproducing and normal. Using [1] (part (2) of
Th. 1} we find that the"adjoint cone of bounded linear functionals on L (H,)e
leaving invariant L (K)., is reproducing. According to Theorem 4 of [18] the
spectral radius of L., must belong to the spectrum of L. Hence, r(L.) = 1. The
series (3.5) now turns out to be a Neumann series for ., and the remaining part
of the proof is straightforward. B

The representation of solutions to (2.11) by means of the series (3.5) is
known in radiative transfer theory as the method of expansion with respect to
orders of multiple scattering [13] (for unpolarized light iransfer, also [16]).
Corollary 3.2 is the mathematical justification of this method for » = o and
0 <a<1.
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4 Media With Finite Optical Thickness

Let us first prove the main result of this section.

Theorem4.1l Letl S p< oo, 0< b< wagnd0 < a< 1, andletaye L [—1,1]
for some r > 1. Then for everv1 € g < o the convolution equation (2.5) has «
unigue solution in L (H,), for every right-hand side @ € L (I,),. In particular,
if w:[0,b] — H,is a continuous function such that Tw is strongly differentiable
on (0, 0), then the boundary value problem (2.3)~ (2.4) has a unigue bounded
solution and this solution is continuous on [0, bl.

Proof. Let us take 0 < ¢ < 1. Given m € N and infinite b, let us choose
Ie L (K ,)psuch that for some & > 0 we have

”IHLq(Hu)b =1, ]EL?I“LQ(HLZ}IJ z(1 - S)Hng“Lq{Hi_z)b-
Extending I to L (H, -Z)m by defining I(z) = 0 for 7 > b, we must certainly have
LIDGE) - LD ek, 0<t<b.
Using the monotonicity property {3.4) we find
ILellis o =0~ £)HL?HLQ(H1_2)b=
where the extended vector I has unit norm in L (H; ;) . Thus
IL&le o p_ 2 1L5 ey, > M€ N.
Taking m-th roots at both sides and computing the limits as m — oo we obtain

1 =r(La) 2 r(Ly).

Hence, for 0 < ¢ < 1 Theorem 4.1 holds true with f1, instead of H, ;. Using the
compactness of L, for all finite optical thicknesses b and all spaces Lq(Hp)b and
L(Hy3) A (see Section 2), we obtain Theorem 4.1 for 0 < a < 1 in general.

The case ¢ = 1 requires more effort. First we consider the case p = r/
(r — 1) and let C'denote the (real or complex) Banach space of functionsI: 2 — ct
with supremum norm

lle = max{[[7lle, [Qllws [Ulle, [[Vllw}-

According to Proposition 2.1, B is a bounded operator from H, into C. We shall
prove that L, is ug-bounded above (in the sense of [19]) when defined on L () .
where ug(u, 9) = (1,0,0,0). Let ustake I & Lm(Kp)h. Then L,1is a continuous
function from [0, b] into H, and therefore (BL,1) () depends continuously on 7
as 2 function from [0, b] into C. So we can find a positive constant ¢ such that
(BL,I)(1) < ¢(1,0,0,0) for 0 < 7 < b, which implies that

(L21)(7) = EfH(r — T)(BL, Iz dT' € ¢(1,0,0,0).
¢

Henceon L, (Hp)b the operator L; as ug-bounded above.
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We also intend to prove that on 7., (Hp)b the operator L, is uybounded
below in the sense of [19]. For this reason we first show that
(4.1) {XeK,/Bl =0 = b,
Let us consider a vector I € K, such that 81 = 0. Then

Zu,u',p — 9 )u',9") =0
for almost all w,u' € [—1,1] and ¢,¢’ € |0,2n]. Define the well-defined meas-
urable function a,: 2 — [0, ) by requiring that
(4.2) (cos2ay(u',eNQ' ") — (sin2a, (1", NUW',¢") = 0.

The normalization condition (1.17) on the phase function g, implies the existence
of € > 0 and a subset E of [—1,1] of positive Borel measure such that &(f)
> £> 0 for almost every cosf e £. Foralmostallu, u' e[ 1,1} {(withu = —cos ¥,
u' = —cost and 0 < ¥, ¥ < x)and ¢,p’ € [0,27) one may choose unique
angles 0 € a,, 0y, 8 < w such that (1.5) — (1.6} hold true. Now remark that the
set of points

@ = {(¥,¢) e 2/Bgs. (1.5), (1.6) and (4.2) are fuifilled and cosf EcQ
has positive Borel measure. But for (,9) € @ we have for the first component of
Z(H,Hr,(p - ¢,)I(urs(p’): )

0=1[Z(w,u',0 — oW lu', 0y = ey OV I, 0 2 el(u',¢),
where #' and @' run over their ranges freely. Thus f(u#’,¢’) vanishes almost
identically. On using (1.16) one finds I{z’,¢ '} = 0, which establishes (4.1}.

In order to prove that L, is ug-bounded below, take 0 # 1€ [, (Kp)a’
where p = r/(r — 1). Take a subset F of (0, &) of positive measure and a constant

& > Osuch that I{r) # 0 almost everywhere on F. Then in the partial order of the
real space /1, induced by the cone K}, one must have

(Lyh(t) = [ H(r — ) BKz)dt' # 0, 01t b,
F

atherwise BI(z') = 0 for almost all v’ ¢ F, which implies I(7") = 0 almost every-
where on F. One gets

(BL,D(7) > [BH(T — t)BIz")dr' #0, 0<t<b,
F

where both sides represent continuous functions from [0, 5] into €. We now
easily show that, for some positive constant d,
)
(LiD(7) = VH(z — T)(BLD(z)dr" 2 d(1,0,0,0),
0
which proves that L, is uybounded below in the sense of [19].
We now prove that the equation

(I—-—alpl=w
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is uniquely solvable on the Banach space Lm(Hp)h, where 0 < @ £ 1, b is finite
and p = r/{(r — 1). Because L, is ug-positive in the sense of [19], there exist a
unjgue positive number ¢(b) and {up to multiplication by a positive constant) a
unique 0 # I, e L (Kp)b such that
4.3y (I —-chL)L, =0.
Now choose 0 < & < b’ < . Then (4.3) with b replaced by &' can be written as
the equation

(I - c(dVLy)Y, = @

on L.m(H"D)b, where I, has been restricted from (0, 5°) to (0, ) and the right-hand
sidew e Lm(_Kp)b. In fact,

. N
w(t) = c(b) | Hx — 1)BL.(z)dt' #0, 0<t<b.
- b

Using Theorem 2.16 of [19] we must conclude that
0< (b} < c(b) < o,

If we would assume that c(b) < 1, then ¢{b’} < 1 and a contradiction arises.
Hence, the theorem holds true for 0 < a < 1, p = r/(r — D and g = oo,

On exploiting the compactness of L, on the spaces L,(H,); we extend
Theorem 4.1 to more general p and g. B

Fet us ci_efihe the cone
LK), = e _Lq(Hp)b/I(r} € K, almost everywhere on (0, b),

on Lq(Hp)b. One easily establishes that Lq(Kp)b is a reproducing and normal
cone. Repeating the proof of Corollary 3.2 for finite &, one finds

Corollary 4.2 Lefl < p< o, 0< b < wandleta;e L [—1,1} forsomer > 1.
Then foreveryl € g < o andw e Lq(F{,,)b the unique solution fo (2.5} is given
by the series

@4 1= % Lo,
n=0

which Is absolutely convergent in the norm of Lq(Hp)b. In particular, if
w e L (K,) S0 does the solution (4.4). Hence, to every boundary value function
J € K, the unique sofution to (1.12) - (1 .13) takes its values in the cone K.

Corollary 4.2 is the mathematical justification, for finite band 0 < a < 1,
of the method of expansion with respect to orders of multiple scattering. This
method is explained in [13], where one also finds explicit expressions for the
lower order terms.
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5 Transition to Component Eguations

in this section we state how, in two steps, Fourier decomposition and
symimetry relations may be applied to write (1.1) as a set of component equations
without azimuthal dependence. The kernels of these equations can be determined
explicitly. Following [24] we indicate how this decomposition can be made
rigorous and how the solvability of the full equation is related io the solvability
of the component equations. The same relationship we derive for the multiple

scaftering expansion. - :
Consider the full equation (1.1} and write

(5.1) ZGuu',0 — ¢

= Z%uu') + 2 T 129w u'Ycosjlg — @) + 29w, u")singlp — )]
J=1

(5.2 Lnuo) =10 + 2 ¥ [19(r, u) cosjp + 19(z, u) sinjg] .
ji=1

For the functions appearing in the boundary conditions and for thermal emission
terms added to Eq. (1.1) one applies an analogous Fourier decomposition. From
{1.1) one arrives at the set of equations

0
" dF(z, u) _
dr
aI¥(z, u)
u—
dr

1
(5.3) T, u) + ;—a 1 20, u) Iz, u) du!
—1

(5.4)

, 1 , . . R
= ~I¥(r,u) + ;—a U IZ9 G, w) I (7, 00") — 29, u' )1 (7, u ) due’

dI¥(z, u)
u —_—

5.5
(5.5) =

. 1 . . L ;
= —I¥(1,u) + %a VEZ5 (a1 (1, u") + 29 (u, u Y (7, 1)) due’
1
where / = 1,2,3,.... For the kernels of these equations one finds the symmetry
refations (see [14], Eqgs. (114)
 Z%uu") = DZw, u) D, Z (u u’) = DZY (u, u')D, 25 (i, u')
= —DZ(u, u")D,

where D = diag (1.1, —1, — 1). We now write ([14], Egs. (115}, (124} and (125))
Wiu,u') = Z9u,u') — DZ%wu’) = 290, u') + Z9(w, u") D

w&m:%m+mW@m+%m—mW@m
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X/ (r,u) = —17(11 — DM (g, u) + 1?(11 + D)z, u),

and arrive at the transformed equations

J . 1 . ) .
5.6 «YE0H _ yicw+ Lo | Witu) Y udu
dr 2
J i i . .
(5.7) uid(ﬂ: —X(r,u) + %a § W, ') X (2, u)du’
T 21

These equations have the same form, but in general the boundary conditions and
the thermal emission terms to be added are different. Conversely, one finds

I9(t,u) = %(11 + DYz, u) - %(II — D)X, 1)
I¥(z,u) = u;_(u - D)Yi(r, ) + 1?(1[ + D)X, 1)
Z9u,u'y = %-{Wj(u,u’) + DW/(u, 1)}

75w, u')y = %{Wj(u, u)D — DW/(u, u")]

and similar identities for boundary conditions and thermal emission terms.

For j = 1,2,3,... we have obtained component equations of the form
(5.6)—-(5.7), which are four-group equations, For j = 0 one has Wi, u")
= Z%u, u") (using the convention 70w, u") = 0) and a further decoupling into
two two-group equations follows. Boundary conditions and thermal emission
terms decouple similarly. For j = 0 these results were first obtained by Kuscer
and Ribaric {21]. They were extended to the j = 1 case by Siewert [30]. Complex
Fourier decomposition was applied to (1.1) by Domke [3], but if one counts real
and imaginary parts as separate components Domke’s equations are four-group
equations for j = 0 and eight-group equations for j # 0. Here we have followed
the treatment of [14].

In [24] the equation of transfer without polarization taken into account
was Fourier decomposed in a mathematically rigorous way. This procedure was
repeated in [7] (also {22, 231) for the complex Fourier componenis of the
equation of transfer of polarized light. Essentially the same thing can be done for
the real Fourier decomposition through (5.1) and (5.2). One defines the
subspaces

H;O = {1 L,(2)/1(u, ¢) does not depend on @)
HY = {1e L,(2)Y/1(u,¢) = ¥u)cosjp, Je HY}
HY = {1e L,(Q)/I(u,¢) = Jw)sinjo, e HY, .
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All these spaces can be identified with the direct sum of four copies of L,[—1,1],
while

(5.8) H,- H®® @ji [HY @ HY) .
p

The projection of H), onto any finite direct sum of the spaces Hf,o, Hf,j and H;f
along the infinite direct sum of the remaining spaces has unit norm. The direct
sum decomposition {5.8) reduces the operators 7, @, and Q_, but the operators
A and B are reduced by the decomposition

(5.9 H,=H® @1 HEY,
=

where HY del HY o HY .

The restrictions of (1.1) to the subspaces H ;0 and H;Sf coincide with (5.3) and the
coupled set (5.4) - (5.5), respectively. The restrictions of the operators 7, Q..,
O_, A and B to H,V, however, are reduced by the following two operators of

umt norm:

P¥ H =+l @+ D)+ L@ D).
3 2 2

These operators have complementary ranges in H;“f and the restrictions of the
coupled set of equations (5.4) and (5.5) to these ranges coincide with (5.6) and
(5.7}, respectively.

As a consequence one finds that for the case 0 < ¢ < 1 and = oo, and
the case 0 < @ € 1 and 0 < b < oo the boundary value problems and
convolution equations assoclated with (5.3) to (5.5), or with {(5.6)—-(5.7) are
uniquely solvable. The case g = 1 and b = oo ¢can now be treated in the converse
direction by first showing the unique solvability of the component problems,
after which the unique solvability of the full problem follows. This will be done
in the pext section. Similar remarks hold true with regard to the multiple scatter-
ing expansion method for the various component equations, which now evidently
are justified for thecasesO < g < land b = oo, and0 < g 1and0 < b < oo,

6 Semi-infinite Conservative Media

in this section we prove as a main result.

Theorem 6.1 Letl < p< o, = 1agndleta, e L [—1,1] forsomer > 1. Then
Jorevery Q, Ve Q. |H,] there exists a unigue bounded solution of the boundary
value problem

(6.1 (TD'(v) = —AI(7) (0< 1< =)
(62 1miQ,1() - .|, =0, (1D}, = 0N~ o).
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Furthermore, if a(6) £ a(8), there exists a unique solution of the boundary
value problem
(6.3) (TH ()= —-Al() (0 <7< )
(6.4) 1i}11§§Q+I(r)||p =0, Fnz0:|lD]l= 0" - =}.
710

1
(6.3 lim | wl(r,u)du = ——:IZ—F(I,O,O,O).

700 —1

This solution has the form

| Io(t, 1)
3 0 QO(T,u)
6 I{r,u) = — — ,
(6.6) I(z,u) 4F(oz 1) 0 0
0 0

where lim || Iy(2) ], = lim || Qg(7)|i, = O exponentially.
T T— 0

Proof. Let us decompose the boundary value problems (6.1) —(6.2), and (6.3)
to (6.3) according to the direct sum (5.9). This direct sum reduces the operators
B, B*and (BB*)"?. These operators have + 1 as a simple leading eigehvalue with
corresponding constant eigenfunction (1,0,0,0) except for ¢;(8) = a4(0) (cf. [7];
-this exceptional case was not observed there). By (1.18), we then have b((6)
= h,{#) = 0, so that some restriction of A is positive self-adjoint and B, B* and
(BB*'? have (0,0,0,1) as another eigenfunction at the eigenvalue +1. Because
these eigenfunctions belong to HS, the restrictions of (BB*)'? to H5Y all have
their spectrum inside [0, 1), which implies that

||Bi'H§SJH< 1. _
Using the arguments of the proof of Theorem 3.1 (i.e., the application of [10]
followed by a Fredholm argument) we obtain the unique solvability of the
restrictions of the problem (6.1)~(6.2) to the spaces /{,"”. The corresponding
restrictions of problem (6.3) to {6.5) have zero solutions. ’

Let us turn to the problems (6.1) — (6.2} and (6.3) to (6.5} restricted to
H;O. The equation can be written as

1
uf—ld)(r,u) + 1%, ) = ;—a § 2%, w1, uydu'
7 Z

where Z%(u, 1) is the direct sum of two 2 X 2-matrix functions. This is clear from
the symmetry relation

2% u") = DZu, u") D,
where D = diag (1,1, —1, — 1), We accordingly decompose H;O as the direct sum
0 _ gyl 0
HY = B @ H

(s = symmetric, ¢ = antisymmetric) of the subspaces
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0s [CO 0 0 <0 UC'O fall 0
(4 — 4 cl a (4
HES = o /1 SH'(, M=y /1 eHY,

where the projection of Hf,ﬁ onto H“OS along Hy, 04 has unit norm. For a,(8)

£ g,(¢) the reduction of the value problems (6. 1) {6.2), and (6.3).to (6.3) to
H‘G“ gives the same answer as for the reductions to the spaces H”J’ because
(1, O 0,0} € HCOS and therefore =

“Bng,OaH <1. .
It remains to consider the coordinate problem on Hf,os and for a,(f) = a«(f) on
HcOa.
»
We have the following symmetry relations (cf. 1z, (11 )~ (113
PZ%u P = 2% u"),  Z0(—u, —u) = L%uu),
where P = diag (1,1, —1,1) and tilde above a matrix denotes transposition. On

restricting o HCOS we see that the restriction B® of Bto H, °0s i5 self-adjoint and
commutes with the signature operator

(Fmw) = h(-w), heHS",

while the restriction 7° of T (o H;":*‘ anticommutes with J°.
Furthermore, | B®|| = 1. Let us put A* = I — B°. Then

On H;OS the operator 7° is bounded, injective and self-adjoint, while A%js
positive self-adjoint with one-dimensional kernel. Furthermore, the condition
aye L] —1,1] with r > 1 implies B® = | T°|” D" for some 0 < & < (r — 1)/prand
some bounded operator D, In the terminology of {25] the pair (7%, B®) is a semi-
definite admissible pair on H$, which allows the inversion symmétry J°.
Because the zero root linear manifold ' .

def.

Zy

Zy(T5) 'A% = n Ker((T¥) 49"
n=1
must have an even chmension (125]. Sec. I1. 7) and has dimensior €2 dim KerA°
([25], Prop. III 3.2), it must have dimension 2, so that (7%~ !' 4° has one zero
Jordan block only, which has order 2. According to Theorem IV 3.4 or {25] the
boundary value problem (6.1) — (6.2} restricted to H3 % has a unique solution,
while Theorem IV 3.5 of [25] and dimZ; = 2 imply the uniqueness of the
solution of Egs. (6.3) to (6.3) and its form (6.6). '

Let us extend the result on H5" to the spaces H, 05 Take invertible £ on

Z, without imaginary eigenvalues and put

(6.7) AS=T87'(J — Py + A°P°,
=

where P*is the (T%) ! A%reducing projection with kernel Z;. This construction is
along the Hnes of Prop. I 6.3 of [25] and vields an invertible Af; such that
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AP = B @ [T Alpanps] ™

does not have imaginary eigenvalues. To the operator (6.7) we associate a
Wiener-Hopf equation whose symbol admists a (left and right) Wiener-Hopf fac-
torization. Using the operator (6.7) the boundary value problems (6.1)—-(6.2)
and {6.3) to (6.5) are decomposed to analogous problems on Hf,”s with A} instead
of A% and finite-dimensional evolution equations on Z,. The evolution equations
are identical for each 1 < p < oo and the problems with A} have the same
solvability properties on all spaces HCDS because of the Fredholm argument in
the proof of Theorem 3.1. Hence, the results on H5% may be transferred to all
spaces H, s If a,(8) = a,(8), we proceed analogously in H;G“. [ |

Using the explicit form for Z<(u, u') (see [14], (189)) one easily computes that the
zero oot linear manifold Zy(T ~'A) is two-dimensional and has Jordan basis

(1,0,0,0 u1 -0,0,0
* 2 2 ) 3 1 — mﬁl £l
3
3 1
where f; = —~ [ (cos#)a(6)d(cosf). The nonnegativity of a; impiies

B1 € (—3,3). In the exceptional case a;(6) = a,(0) the space Zy(T 1A) is four-
dimensional and a second linearly independent jordan chain is provided by

U

(0,0,0,1), (0,0,0, n
. 1- ?ﬁl

Equations (6.3) to (6.5) form a statement of the Milne problem, where F
is the radiative flux coming the stellar interior (cf. [2]). In neutron physics the
number o in (6.6) is usually called the extrapolation length. Equations
(6.1) —(6.2) form a statement of the usual half-space problem. To (6.1)—(6.2)
one may add a thermal emission term §{:[0,00) — H,. which is bounded and
uniformly Hélder continuous, without affecting the unique solvability result.

Proposition 6.2 lett < p< owandleta e L,[-1,1] for somer > 1. Given
Q. Je Q. [H], the unique solution of the boundary value problem (6.1} —(6.2)

with 0 < a < 1 converges to the unigue solution of (6.1) —(6.2) with a = 1
uniformiy in T on H,, whenever a T1.

Proof. Let L, bethe operator defined by (1.22) (where b = o). Forl € g < o
this operator is reduced by the decomposition

LoHy) = Ly(HY), @ LAHT), & @ LH),

Let us denote by L%, L% and L% the restrictionsof L to L (H CO5) ,L (HCO")
and L (H“J) » respectively. By the proof of Theorem 6. 1 the spectrai radn
commde w1th those of the restrictions of B to H, <Os , Hy, 02 and H“f respectively,
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implying
rLE =1, r@9 <1, rl&<1.
(For a;(f) = a,(6) we have r(LY") = 1). First take &;(f) = a4(6).
Then I — aL%% and B — LY are invertible for all 0 < ¢ < 1, whereas
T — a5 is invertible for 0 < a < 1. Rewriting (6.1} — (6.2) as the equation

(I —al)I=w
and decomposing this equation as the set of equations

(I[ _ ang}S)IgGS - wd]s’ (H _ anga) I;Oa = cha,

(H— alSHIY = 9,
where the albedo of single scattering a is added as a subscript to the solutions, we
obtain

liTnIﬂHIZO“ -4, =0, liTr?HIES“" -1, =0.

74 a

So we have the proposition for all components except H;OS.

For the component HEOS we first consider the case p = 2 and exploit the
positive self-adjointness of A* on H5". Because of the special Jordan structure of
(T%)7* A% at zero (one Jordan block only, which has order 2), we may apply
Theorem 2.4 of [26], and obtain

lim |15 — 1% || = 0

alt
for the special right-hand side @ %S (7) = ¢ 777" QS ¥, where Q. and J¥are the
Hf,os-components of @, and J. For the remaining 1 € p < o we employ a
similar procedure as in the final paragraph of the proof of Theorem 6.1 in order
to extend the H5 *result. The crux of the matter is that the zero root linear
manifold Zg of (7°) ' A%is the same in all spaces H;}OS so that the part of the con-
vergence within Z; does not depend on p.

Finally, we combine the convergence results on the component equations
and finish the proof of Proposition 6.2 in this case. If ¢, () = a,(8), we repeat
the ¢ = 1 argument in H;O“. [ |

As a warning we mention that the proof of Theorem 2.4 of [26] is not
completely correct. The flaw is contained in the paragraph at the top of page 588
of [26}, where an incorrect (i.e., nonpositive) I — B, was given. A generalization
of Theorem 2.4 of {26] was found by Ran and Rodman [29].

We remark that the justification of the method of muitiple scattering
expansion is an open problem for ¢ = 1 and & = oo, Using a result of Littlewood
([31], Sec. 7.66) one only has to prove the boundedness of the sequence of norms

(6.8) {nHLgo”Lq(Hp)m}:?=l

in order to establish the weak convergence in Lq(Hp)m of the series (3.5) fora = 1
and @ asin (2.12). Fora = 1 and b = oo the main consequence of Corollaries 3.2
and 4.2, namely that I{z) e K, whenever the boundary data are vectors in K,
follows immediately from Proposition 6.2 and the last statement of Corollary
4.2,
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7 Discussion

We have developed a complete existence and unigueness theory for the
equation of transfer of polarized light. Qur main strategy has been the applica-
tion of Wiener-Hopf factorization, Fredholm index and cone preservation
methods. The phase matrix, however, satisfies the following symmetry relations
(see [12], also-[141):

(7.1 Z(-w',~u,¢' —p)= Pi(u,u’,qa — )P
(7.2) Z(~u,—u',0" ~ 9) = Zu,u',¢ — ¢
(7'3) Z(u, u’:(ﬁl - (P) = DZ(L[, uf,(p - (PI)D s

where tilde above a matrix denotes transposition, P = diag (1,1, —1,1) and
D = diag (1,1, — 1, —1). From these we easily derive

T4 Z',ue' - 0) = QL u',9 - 9)0Q
(7.5) Z(—u, —u',p — ¢) = DZ(u,u',¢ — ¢)D,
where Q = diag (1,1,1, —1). Equations (7.2) and (7.5} imply that
G.ey JT=-TJ, JA =AJ, JB =BJ
for the signature operators (i.e., J = J% = Jh
(VD 9) = H(-u, ~¢) or (D) =DI(-ugp). -

Equation (7.4) implies the setf-adjointness of the operators 7, 4 and B with
respect 1o the indefinite scalar product

L 9) L, 0) + Q1(u, ) Oglit, )

Sl

i
<11:12> = (QI],IZ) = j
—1

on H,. The second signature operator and the indefinite scalar product can aiso
be defined on the various components of H,: Possibly this provides another
method to deal with the equation of transfer of polarized light, which exploits
(1.12) to (1.15) directly.
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