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Abstract

We investigate a two-species reaction-diffusion problem described by a system of
two semilinear parabolic equations with suitable initial-boundary conditions. We
find restrictions on data to realize regions of zero concentration (so-called dead
cores) for either species.
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1 Introduction

The existence of subregions in which the solution of an (initial-)boundary
value problem vanishes identically was investigated for a parabolic equation
by Bandle, Nanbu and Stakgold [2] and for an elliptic equation by Bandle,
Sperb and Stakgold [3] and by Bobisud and Stakgold [6]. In this article we
want to generalize the treatment of these so-called dead cores from a single
semilinear PDE to a system of semilinear parabolic equations and, as in [2],
establish comparison theorems that imply the existence or non-existence of
dead cores under suitable conditions on the initial and boundary data. We
remark that the class of such problems originated from the seminal paper by
Stakgold [7] where their physical and chemical background is explained in
detail.
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Let us explain the contents of the various sections. In Section 2 we formulate
the model problem and present suitable transformations to rewrite it in a more
convenient form. In Section 3 some comparison theorems are proved to get
monotonicity of solutions from either the monotonicity of the reaction terms
or from the monotonicity of the intial-boundary data functions. We then go
on to analyze the corresponding diffusion-free initial value problem, where the
terms involving spatial derivatives have been omitted. The solutions coming
out of this simplified problem are then utilized as super- and subsolutions of
the original problem, thus leading to existence and nonexistence results for
dead cores. We conclude with an illustrative example.

2 Formulation and Model Problem

We consider the following initial-boundary value problem for u(z, t) and v(z, t):

— Au = —-Af(u)g(v) in@=0xR*, (2.1)
— Av = —kXf(u)g(v) in Q =Q x RY, (2.2)
u(z,t) = x(z) inT =90 x RY, (2.3)
v(z,t) = n(z) in ' =00 x RY, (2.4)
u(z,0) = ug(z) in © with 0 < ug(z) < ay, (2.5)
v(z,0) = vo(x) in 2 with 0 < wo(z) < Go. (2.6)

Here x(z) and n(z) are continuous and nonnegative on I" and uo(x) and vo(z)
can be extended to nonnegative continuous functions on 2, satisfying the
compatibility conditions

ug(z) = x(z) and.vo(z) = n(z), z € 0. (2.7)
The physical domain (2 is either an open interval of R! or a bounded open
connected set in RY (N > 1) whose boundary is a surface of class C%, k, A >

0, and A denotes the N-dimensicnal Laplace operator. For the absorption
functions f, g, we impose the following conditions:

f,g € C[0,00) N C*(0, 0)

f(0) =g(0) =0, f'(s) >0and g'(s) >0 (s > 0).

Following [6], we introduce

w=—v+ ku. (2.8)
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From (2.1)-(2.6) we then obtain the initial-boundary value problem

wy — Aw =0 in@Q=90xR", (2.9)
w(z,t) = —n(z) + kx(z) inT =80 x R, (2.10)
w(z,0) = —vp(z) + kug(z) in Q with 0 < up(z) < ao, (2.11)

which is the heat equation on 2 with suitable initial and boundary values.

The initial-boundary value problem (2.1)-(2.6) has a unique weak solution
which turns out to be a classical solution [1]. Using w as in (2.9)-(2.11), we
obtain the two initial-boundary value problems

u — Au = —Af(u)g(ku — w) in Q=0 xR*, (2.12)
u(z,t) = x(z) in [ =0Q x RY, (2.3)
u(z,0) = ug(x) in ©Q with 0 < ug(z) < ay, (2.5)

and
v — Ay = —k)\f(v—]:w) g(v) in Q= xR*, (2.13)
v(z,t) = n(x) inI' = 80 x R¥, (2.4)
v(z,0) = vo(2) in © with 0 < v(z) < Fo- (2.6)

Clearly, a unique weak (and hence classical) solution w of the heat equation
exists. Now the existence of a unique weak solution (u, v) follows from Theorem
0.1 of [5] applied separately to (2.12), (2.3) and (2.5), and (2.13), (2.4) and
(2.6).

For comparison reasons, we let A, and h_ be the harmonic functions in {2 such
that hi|yq = x and h_|zq = 7. Then Ay > 0 and A_ > 0. Putting & = u— hy
and ¥ = v — h_ we obtain the initial-boundary value problems

Gy — Al = —Af(@+h)gki+h.)  in Q=0 xR (2.14)
i(z,t) =0 in I = 99 x R, (2.15)
U(z,0) = up(x) — hy(x) in £, (2.16)

and
U — AD = ~k>\f(—]]éf) +h)g(+h)  nQ=0QxRY (2.17)
(z,t) =0 in' =900 x RY, (2.18)
(z,0) = vo(z) — h_(z) in Q. (2.19)

When 0 < hy < up (resp. 0 < h_ < 1), the dead core problem for (2.14)-

(2.16) (resp. (2.17)-(2.19)) can be solved as in [2].
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Let us define a supersolution (4,v) (resp. subsolution (u,v)) of (2.1)-(2.6) to
be a pair of funcions (u,v) such that (2.1)-(2.6) hold with the inequality sign
> (resp. <) instead of the equality sign.

3 Monotonicity and other comparison theorems

In analogy with [2], consider the problem (2.1)-(2.6) when only one part of the
data is changed. We then have the following monotonicity properties, where
wy and wy are the solutions of the corresponding heat equations (2.9)-(2.11):

(a) Let (u1,v1) and (ua,ve) be the solutions corresponding to A; and Ay, respec-
tively, with A; < Ag; then us < u; and vy < vy in Q.

(b) If fi < fo, ;1 < g2 and wy < wy < 0, then ug < wy in @. Analogously, if
1< fa, 01 < g and 0 < wy < wy, then vy <oy in Q.

(c) If any of the initial and/or boundary data is decreased while w remains the
same, either of the solutions u and v is decreased.

As to (a), note that the initial-boundary value problem (2.9)-(2.11) does not
depend on A and hence w; = w,, which allows a straightforward application
of the super- and subsolution technique to either of (2.12) and (2.13). As to
(b), we need the comparison conditions on w, and ws to be able to apply this
technique to either (2.12), (2.3) and (2.5), or (2.13), (2.4) and (2.6). Statement
(c) follows by this technique, because the data are such that w remains the
same.

Prior to analyzing the existence of dead cores of either species, we make the
following observations. Consider the unique solution (z,y) of the initial value
problem

z=—-Af(z)g(y)  InRT, (3.1)
¥ = —kAf(2)g9(y)  inRT, (3.2)
z(0) = z, (3.3)
y(0) = yo. (3.4)

Then it is easily seen that (@, ) with
ﬂ(m,t) = z(t)a ﬁ(xat) = y(t)>

is the unique solution of (2.1)-(2.6), where i|,q = 20, Ul;_q = 20, V|50 = Yo,
and 9|,_, = yo. In other words, if the initial and boundary values of u (resp.
v) are equal to the same positive constant zo (resp. o), then v and v do not
depend on z.
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Let us now look at (3.1)-(3.4). As long as z(t) > 0 we integrate (3.1) to obtain

A owe)ar= [ N }% (3.5)

Analogously, as long as y(t) > 0 we integrate (3.2) to obtain

t v ds
kX /0 F(2(t)) dt = /y 2 (3.6)

In analogy with (2.8)-(2.11), introducing £ = —y + kz we obtain the initial
value problem

& =0, £(0) = & = —yo + k2o,
which has the unique constant solution £(t) = &. Thus we have the decoupled
initial value problems

2= =M f(2)g (k <z _ %"))  20) =2 >0, (3.7)
= —k\f (y Z&) 9(y), y(0) = yo > 0. (3.8)

We will adopt (3.7) if &, < 0, and (3.8) if & > 0.

We now distinguish three cases.

The case & > 0. We then integrate (3.8) to obtain

Yo ds
[T % 3.9
o f(52) g(s) o9

in which f((s+&)/k) > f(£/k) > 0 and hence the convergence of the integral
as y(t) 1 0 is determined by g. In fact, if I, = [§° (ds/g(s)) is infinite (weak
absorption of the second species), (3.9) provides a solution y(t) > 0 for all £,
with y vanishing as ¢ — oco. If, however, I, < co (strong absorption of the
second species), then y{t) > 0 for 0 < ¢ < t4 and y(t) = 0 for ¢ > £, where

/ “ Iy < 00
= g(s) = BT (6o/R)

Strong absorption of the second species therefore leads to its extinction in
finite time, the extinction time ¢4 being inverse proportional to A. Now (3.9)

implies that for ¢t >ty
AT otusds= [T 22 (3.10)
0 =) f(s)
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Consequently, z(t) is constant for ¢ > . Again we must distinguish various
cases. If Iy = [5° (ds/f(s)) is infinite (weak absorption of the first species),
there is a unique 2., > 0 such that

ty z0 (s
AT gly(s)) s = e (3.11)

In this case z decreases from 2y t0 2o if 0 <t <ty and 2(t) = 2z, for ¢ > ty.
However, if Iy < oo (strong absorption of the first species), then there is a
unique z, > 0 such that (3.11) holds if and only if I; > A fg* g(y(s))ds, in
which case z(t) = 2z, for t > ty. But if I; <A Jo# g(y(s))ds, the first species
gets extinct first (at the finite time ¢, (< ¢4)). But then

t
B >
A owsnds=1,, 2,

implying y(t) = 0 for ¢ > t,; hence ¢, = t,.

The case £ < 0. We then integrate (3.7) to obtain

20 ds
= Lo Rl

and repeat the preceding reasoning with the following modifications. Putting
uw=k\ £=1/k), no = —z0 + fyo and n = —z + Ly, we convert the initial
value problem (3.1)-(3.4) into the modified initial value problem

v = —pg(y) f(2) in R¥,
ze=—Lug(y)f(z) IR,
y(0) = yo,
2(0) = zo,

while 7o = —€(—yo + k20) > 0 and n(t) = no. We then have the following
results:

o If I; = oo (weak absorption of the first species), then z(t) > 0 for all ¢, with
z vanishing as £ — oo.

o If I; < oo (strong absorption of the first species), then z(t) > 0 for t < ¢,
and z(t) = 0 for t > t,, where

Iy

t = l/ZO ds <
Ao f(s)g (k (z - %)) Ag(—&o

)<OO.

o If [f < o0 and oo > Iy > kX [g* f(2(s)) ds, then y decreases if 0 < ¢ < ¢,
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and stabilizes at the positive value y(t) = yo, determined by

/\/Ot* f(z(s))ds:/f E%

e If I; and I, are both finite and I, < kX f;* f(2(s))ds, then y and z both
decrease if 0 <t <t, and y(t) = 2(¢t) = 0 if ¢t > ¢,.

The case & = 0. In this case yg = kzp and hence y = kz, where

2z = —Mf(2)g(kz) inR*, (3.12)
z(0) = 2o, (3.13)

which can be treated as in [2]. More precisely, if I = [§° (ds/(f(s)g(ks)) is
infinite, the solutions z(¢) and y(t) are positive for all ¢, tending to zero as
t — oco. If, however, I is finite, then z(f) and y(¢) are positive if 0 < ¢ < ¢,
and vanish identically for ¢ > t,, where

b /\/ f(s) ks)

In this case both species get extinct at the same finite time £, that is inverse
proportional to A.

Our first result is almost immediate from Theorems 3.1 and 4.1 of [2].

Theorem 3.1 Let vy = kug in Q0. Put H(s) = f5 f(t)g(kt) dt, and let ¢ stand
for the solution of the steady-state problem A¢ = Af(P)g(kd), dlsq = x- Then
the following statements are true:

1. Ifx=71=0in 09 and f; f(s)g(ks) < 00 (strong absorption), then there is
simultaneous extinction of both species in finite time, i.e. u(z,t) = v(z,t) =
O fort>t, and z € Q.
2. If ming vo = kming ug > 0 and fol ms(k—s) oo (weak absorption), then
v(z, t) = ku(z,t) > 0 for all (z,t) € Q.

3. If f} dss and [, 7@—)‘1;@3—) are finite and Ao = infy {¢(zo,\) = 0}, then
(zo, ) ku(zo,t) =0 whenever (A=)t > 1.

4 I f3 \/— < oo and f; f(s)g(ks) = o0, then v(z,t) = ku(z,t) > 0 for all
(z,t) € Q.

Proof. Under the conditions of Theorem 3.1, w = 0 in Q and Eq. (2.12)
with conditions (2.3) and (2.5) reduces to the initial-boundary value problem

ﬁ

u— Au= -Af(u)g(ku) inQ=0QxR", (3.14)
u(z,t) = x(z) >0 in ' =00 x RY, (3.15)
u(z,0) = ug(x) in Q, (3.16)
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while v = ku. To prove part 1, one observes that the solution z of (3.12)-(3.13)
for zy = maxg up is a supersolution of (3.14)-(3.16). Then part 1 follows from
the case &y = 0 discussed above with I finite. Part 2 follows in the same way,
noting that the solution z of (3.12)-(3.13) for zg = min vy is a subsolution of
(3.14)-(3.16).

Note that the steady-state problem A¢ = Af(¢)g(kd), ¢|,q = X, has a dead
core if the first integral in the statement of part 3 is finite [3]. Hence Ao exists
if zp € ©, and part 3 follows from Theorem 4.1(a) of [2]. Part 4 is immediate
from Theorem 4.1(b) of [2].

Theorem 3.2 Let ~o + kug # 0 in § and be nonnegative there. Put G(s) =
IS gt)dt, let Is = fy m < 00, and let we be the harmonic function in

that extends —n + kx. Then the following statements are true:

1. IfI, = f§ g‘fs) < 00, then for all o € Q) there exists Ay such that v(zg,t) =0
wheneuer (A=)t > I,
2. If I, = oo, then u(x,t) > 0 and v(z,t) > 0 for all (z,t) € Q, where

u — (Woo/k) and v — 0 as t — oo.

Analogously, let —vg + k:uo % 0 in Q and be nonpositive there. Put F(s) =
ft)dt, let Ip = J; \/—— < 00, and let ws be as above. Then the following

statements are true:

V. Ifl; = fy f‘fi) < 00, then for all xy € Q there exists Ay such that u(zg,t) =0
whenever (A — Xo)t > I;.
2. If Iy = o0, then u(z,t) > 0 and v(z,t) > 0 for all (z,t) € Q, whereu — 0

and v — —We a8 t — 00.

Proof. Now suppose that —vg+kug > 0 (but # 0) in Q. Then —n+kx > 0
in 9Q [cf. (2.7)] and the solution w of (2.9)-(2.11) is positive in . Further,
W 4 We > 0 as t — oo, where wy, is the harmonic function in 2 extending
—n + kx. So it suffices to study the solution v of (2.13), (2.4) and (2.6).

To prove part 1, for every compact subset K of €2, we define

My = min f(f—_}:—w—) >0

and study the initial-boundary value problem
— AV = —kdmgg(V) in Q=0 xR?,

V(z,t) = n(z) inI' =80 x RY,
V(z,0) = v(z) in © with 0 < v(z) < fo.

Then0 < v <VinK.If fo m < 00, the corresponding stationary problem
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has a dead core for sufficiently large A and hence Ag exists. For 2y € £ we then
choose K so that zp € K; letting ® stand for the solution of the steady-state
problem A® = kAmgg(®), ®|,q = 1, we put Ag = min {A : &(zo, A) = 0} and
derive part 1 as in the proof of Theorem 4.1(a) of [2]. In fact, V(zo,t) = 0
if (A= Xo)t > I,, which implies v(zo,t) = 0 if (A — Xo)t > I,. Part 2 is
proved using the same comparison argument, but this time myg stands for
the maximum of f((v+ w)/k) in K. This then leads to a subsolution V' of
(2.13), (2.4) and (2.6). Assuming [; gﬁ) o0, we now get V(z,t) > 0 for all
(z,t) € Q and hence v(z,t) > 0 for all (z,¢) € Q. Finally, since v = (v+w)/k
with w > 0 in © and w — wy as t — 00, we get the statement in part 2
involving the asymptotic behavior of w.

Analogously, if —vg + kup < 0 (but # 0) in £, the solution w of (2.9)-(2.11)
is negative in §2. Further, w T we < 0 as t — o0, where wy, is the harmonic
function in Q extending —n + kx. So it suffices to study the solution u of
(2.12), (2.3) and (2.5).

To prove part 1/, for every compact subset K of §2, we define
ng = min g(ku —w) > 0
and study the initial-boundary value problem

U — AU = -dngf(U) inQ=02xRH,
Ulz,t) = x(z) in ' = 90 x RY,
U(z,0) = up(z) in © with 0 < up(z) < ap.

Then 0 <u<Uin K. Iffo

has a dead core for sufficiently large A and hence g exists. For zg € €2 we then
choose K so that zg € K; letting ® stand for the solution of the steady-state
problem A® = Ang f(®), ®|;q = X, we put Ag = min {A : ®(zp,A) = 0} and
derive part 1’ as in the proof of Theorem 4.1(a) of [2]. In fact, U(ze,t) = 0
if (A — Xo)t > Iy, which implies u(zo,t) = 0 if (A — o)t > Ij. Part 2 is
proved using the same comparison argument, but this time ng stands for
the maximum of g(ku — w) in K. This then leads to a subsolution U of
(2.12), (2.3) and (2.5). Assuming f; 5 = 00, we now get U(g,t) > 0 for all
(z,t) € @ and hence u(z,t) > 0 for all (z,t) € Q. Finally, since v = ku — w
with w < 0 in  and w — wy as t — oo, we get the statement in part 2
involving the asymptotic behavior of v.

) < 00, the corresponding stationary problem

The treatment of the case where —vg -+ kup changes sign, is more complicated,
even in the steady-state situation [6]. As in [6], we divide §2 into the region Q.
where w., > 0, and the region 2_ where w,, < 0. Here, as we recall, wo, is the
harmonic function in €2 extending —n + kx. We now consider the solution w
of (2.9)-(2.11), which changes sign for every ¢t € RT. However, as t — oo the
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distance |w(z,t) — we(z)| — 0 monotonically, for every x € Q. As a result,
w > 0in O, and w < 0 in Q_, no matter the choice of t € R*. If we assume
) to be connected, the unique continuation property of harmonic functions
implies that we vanishes on a closed subset of O of measure zero.

We can now invoke Theorem 3.2 separately for £, and Q_, as done before
in [6]. The first half of this theorem then pertains to £2; and the second half
to 2_. Thus any dead core for v must necessarily be a subset of €2, and any
dead core of u must be a subset of Q_.

Example 3.3 In analogy with [6], let us discuss the following example in
Q=(-1,1):

u — v’ = =Af(u)g(v) in Q= (-1,1) x R*,
vy — " = —kAf(u)g(v) in Q= (~1,1) x R*,
w(—=1,t) =1, u(l,t) =0, ov(-1,t)=0, v(l,t) =1,
l—=z

u(z,0) = 5 ~-1l<z<l,
1
v(z,0) = -;a:’ ~-1l<z<l.
Then k-1 kol
w(z,t) = welz) = —;— ~ %x
is time independent and hence 2, = (—1,z;) and Q_ = (z;,1), where z; =

(k—1)/(k+1). Hence any dead core for u is contained in (z;, 1) and any dead
core for v is contained in (-1, ;).
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