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ABSTRACT. The paper deals with traveling waves for gas-solid reactions
when the diffusivity is nonlinear and the porosity increases with the con-
sumption of the solid. We obtain existence and uniqueness results as well as
criteria for the presence of conversion and penetration fronts.

1. INTRODUCTION

We shall study traveling waves for gas—solid reactions taking into account both the
nonlinear diffusivity of a generalized porous medium and the increase in porosity due to
solid consumption. The case of constant diffusivity was treated in [5] and {7]. Problems
leading to similar equations also occur in geophysical settings (see [2] and (3]), and in
populations dynamics (see [4], for instance).

As a gas diffuses through a porous solid and reacts with some species in the solid
matrix, this solid species is being consumed with a corresponding increase in porosity.
The diffusivity of the gas depends on its concentration and will be taken as a generalized
form of the one occurring for the porous medinm equation (see [8] and {1}, for instance).
The reaction itself is assumed to be isothermal, irreversible and distributed throughout
the medium with a power-law reaction rate. Let the nondimensional concentration of
the gas and the reactive solid species be denoted by C and S, respectively. Mass balances

then yield the equations

S, =-8"C?, (eC);— AG(C)=-S"CP(=S,) (0.1}
where A is the Laplacian, m and p are positive constants, and the nondimensional
porosity ¢ is given by

E=Ee+€1(l—8), g>0,620. (02)
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Rewriting the diffusion term as
AG(C) = div{G'(C) grad Cl,

we recognize G'(C) as the diffusivity. When G(C) = C*, k = 1 corresponds to constant
diffusivity, k > 1 to slow diffusion (as occurs in the usual porous medium equation), and
k < 1 to fast diffusion. We choose G(C) to generalize the case C*(k > 0) by requiring
G to satisfy the properties

G maps [0, co) onto itself
G € C0,00) N C?*(0,c0)
G’ > 0 on (0,00)
G({0)=0,G(1)=1.

(0.3)

The inverse of G will be denoted by g which also satisfies (1.3).

Since our interest here is in traveling waves, we shall seek solutions of (1.1} in the
form
Clz,t) = u(z ~ at), S(z,t) = w(z — at), (0.4)
where z is the direction of propagation of the wave and the positive constant a is its
velocity. Substitution in {1.1) leads to a pair of ordinary differential equations for  and
w:

(G))” + alen) = ™, O (05)
aw' = vPuw™, (0.6)

where
e=ew)=e+ea(l—w). (0.7)

For simplicity, the original independent variable z — at in these ordinary differential

equations will be relabeled z in the sequel.

We look for nonnegative solutions of (1.5)—(1.6) on the real line, obeying the bound-

ary conditions
w(—o0) =0, w(+o0) =1, u(+0cc) =0, (0.8)

which characterize a wave moving from left to right while consuming the solid reactive
species. We see from (1.6) that w is nondecreasing. A solution (u{z), w(z)) of (1.5)-
(1.8) remains a solution upon trapslation in either direction. The equivalence class of
all translations of a solution represents the same physical wave and will be called a
wave profile. Uniqueness statements will be made for profiles rather than for individual
solutions. When studying the dependence on parameters, however, we need to compare
snitably “normalized” solutions; since w{z) is strictly increasing, except possibly where
w =0 or w = 1, we often find it convenient to normalize solutions through the condition

w(0) = 3
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By combining (1.5) and (1.6), we obtain [G(u)]" + a(eu)’ — aw’ = 0, so that (G(u)] +
aeu— aw = A, where A is a constant. The boundary conditions show that [G(u)]' tends
to the constant A +a as £ — +oo; since G{0+) = 0, G(u) — 0 as z — +co. These two
limits are compatible only if A+ a = 0, so that

[G(u)] + aeu+a{l —w) =0, (0.9)

where ¢ depends on w through (1.7). It follows from (1.8) that G(u(z)), and hence u(z),
is nonincreasing. As £ — —o0o0, w —+ 0 so that [G(u)]'(—0c0) < —a, which implies that
G(u(—00)) = +00 and therefore u{—o0) = +oo. To avoid this physically unrealistic
property, the solution will only be used, in applications, on a semi-infinite interval of

the form z > a.

We base our further study on the first-order system consisting of (1.6} and (1.9):

[G(u)] = ~aeu — a(l ~ w), [e(w) =€ + €1 (1 — w)] (0.10)

1
w = z uP w™ (0.11)

with the boundary conditions (1.8) to which we add the condition u(~o0} = +oo which
we just derived. In other words, we are seeking a solution (u(z), w(z)) of (1.10)-(1.11)
connecting (+oc, 0) to the only equilibrium pont (0, 1).

By sett’ging -
v=Glu), u=G'{v) = g(v), (0.12)

we can rewrite (1.10)-(1.11) in the standard form
v’ = —ae(w) g{v) —a(l — w) (0.13)

1
w = - g?(v) w™ (0.14)
with the boundary conditions
w(—o0) =0, v(—00) = +00, w(+co) =1, v(+00) =0. (0.15)

As already pointed out, g satisfies conditions {1.3). Moreover, v, like u, is a nonincreasing
function of = which vanishes if and only if u vanishes. We look for solutions of (1.13)-
(1.15) in the half-strip R (see (3.1)) of the v — w plane; information obtained for v(z) is
easily converted to information about u(z). The right side of (1.13)-(1.14) is smooth in
the interior of R, but may fail to be Lipschitz on the edge v = 0 (if m < 1) or on the edge
of w = 0 (if g or ¢ has an unbounded derivative there). This non-Lipschitz behavior
leads to interesting phenomena as was shown in [5] and {7} in the case G(u} = u: for
m < 1, there exists a conversion front with the solid fully converted (w = 0) behind the
front and w > 0 ahead of it; for p < 1, there exists a penetration front with ¢ = 0 (and

hence w = 1) ahead of the front and u > 0 {and hence w < 1) behind it.
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The remainder of the paper is organized as follows. In Section 2, we prove necessary
and sufficient conditions for the existence of fronts. In Section 3, we prove existence and
uniqueness for the system (1.13)-(1.15) by phase-plane methods, and we also obtain
estimates relating the velocity of propagation to the profile.

2. EXISTENCE OF FRONTS

A conversion front separates the region (say, z < zr) where w = 0 from the region
1 > zr where w > 0. The conversion front is really a feature of the profile rather than
of an individual solution: a translation of the solution in either direction merely changes .

zF while retaining the front.
Theorem 0.1 There is o conversion front if and only if m < L.

Proof. Without a conversion front, w(x) > 0 for all z so that (1.11) yields (m # 1)
1-m 1—m b
1—w ™ ™z)= — u?(y) dy, Vz. (0.16)

If m < 1, the left side tends to 1 as £ — —co while the right side tends to +oco (since
u(z) — +oc as T — —o0). To avoid this contradiction, a conversion front must exist.
For m > 1, we want to show no such front is possible. The right side of (1.13)-(1.14)
is now smooth up to the boundary v > 0, w = 0. Therefore the unique solution of
(1.13)-(1.14) with initial value w(zo) = 0, v{zo) = vo > 0 is {v(2),0) where v(z) is the
solution of the scalar problem v" = —a(eo + €;) g(v) — a with v(zo) = vp. Since (v(z),0)
does not satisfy (1.15), we must have w(z) > 0 for all z. ' O

The analysis for penetration fronts is a bit more delicate as there are now two trou-
blesome terms in (1.13)~(1.14), namely those with g{v) and ¢?(v). A heuristic argument
based on the equation for C in (1.1) may steer us in the right direction. In that equation
the reaction term —CPS™ may be regarded as an absorption whereas —AG(C) repre-
sents diffusion. Whether or not there will be a penetration front depends on the balance
between diffusion and absorption for small gas concentrations. The slower the diffusion
and the stronger the absorption, the more likely such a front will exist. In the model case
G{C) = C*, the diffusion becomes slower as k increases; even without any absorption,
we know that the porous medium equation (k > 1) exhibits fronts; when k < 1 fronts
will occur only if the absorption is sufficiently strong (that is, p sufficiently small). The
following Theorem and Corollary state these ideas precisely.

Theorem 0.2 Let G satisfy (1.3) and let g be its inverse. Then

1
d
{a) If/ »—(i) < 00, there erists a penetration front.
g(s
0
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1 4
(b) If f ds__ o0, where H(s) = f ¢*(y) dy, then there ezists a penetration front.
0 B

JHG)

p—1
(c) If both a%ﬁ and —;,T;)- are bounded in {0,8) for some & > 0, then there 13 no
penetration front.
Proof.

(a) Let (v,w) be a solution of (1.13)(1.15) normalized so that v(0) = 1. Assuming
v(z) > 0 for z > 0, (1.13) yields

Under the hypothesis in (a), this inequality is inconsistent for large z so that we
conclude that v(z) must vanish for some finite positive value zp for which we have

the bound .
p < o f gs
agg Jo 9(3)

(b) Consider a solution (v,w) normalized so that w(0) = L. Using (1.5) and (1.7), we
obtain
v > w™gP(v), = > 0.

Let A be the positive value of v at z = 0; then
1 m
v > (E) g?(v), z>0; v(0)=A4, v(+oc) =0,
so that v is a subsolution to the problem

2= (%)mg(z)’ ,2>0; z(0)=A, z{+00) =0. 0.17)

Multiplication by 2z' followed by integration gives

()2 = (%)m—l H(z)+C.

At T = +00, 2, H(z) and 2’ all vanish so that C' =0, and, since z is nonincreasing,

m-—1

D=- (%)T H{z),
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which, when integrated from 0 to z, yields

fz; ﬂgfi(ﬁ - G)%—‘ z (0.18)
A

The hypothesis in {b) implies that f ig finite, leading to a contradiction
0

ds
v H(s)

in (2.3) for large z.

(¢) The two conditions in the assumption are equivalent to ¢’(v) and (¢”)(v) being
bounded in some interval 0 < v < D. The right side of (1.13) and (1.14) is then
Lipschitz in a neighborhood of (v = 0,w = 1) so that the unique solution to
(1.13)~(1.14) with the initial values v = 0, w = 1 is v = 0, w = 1. Since this
solution does not satisfy (1.15), there cannot exist a penetration front. C

Corollary 0.3 If G(u) = u*, k > 0, then the necessary and sufficient condition for the
eristence of a penetration front is k > min(p, 1}. In particuler if k = 1, the condition 1s
p<1lasin[7.

. 1+(p/k}
Proof. We have g(s) = s!/* so that hypothesis (a) holds if k > 1; now H{(s) = i

1+ (p/k)
and hypothesis (b) holds if £ > p. Thus, a front exists if £ > min(p,1). On the other
band, .

(1/G'(w)) = (1/k)u'™* and (v"7'/G'(u)) = (1/k)w"~*
will both be bounded as u — 0 if and only if k¥ < min{p,1). Hence a penetration front
exists if and only if k£ > min(p, 1). O

Remark 2.4 If G{u) satisfies {1.3} and can be written as u*b(u) with 5(0} > 0 and ¥
bounded near zero, calculations similar to those in Corollary 2.3 show again that the
necessary and sufficient condition for a penetration front is k£ > min(p, 1).

Remark 2.5 The function G{u) = u*e~V/* satisfies (1.3) for any k > 0. Hypothesis (a)
holds for all £ > 0 so that a penetration front always exists.

3. EXISTENCE AND UNIQUENESS OF PROFILES

With fixed structural constants €5 > 0, €, > 0, m > 0, k > 0, we want to show that to
each velocity @ > 0 corresponds one and only one profile for (1.13)-(1.15). The phase
plane is the (v, w) plane where we seek a trajectory (profile} starting at {+o0,0) and
ending at (0,1) as z goes from —oo to +oo. We have already determined that v is

nonincreasing and w is nondecreasing in z, so that our trajectory lies in the half-strip

R={{v,w):0<v, 0<w<1}, {0.19)




N
)
)
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and w(v) is nonincreasing.

It is convenient to make the change of variables s = —z 80 that (1.13) and (1.14}

become

d—z = ae(w) g(v) + a(l—w), (0.20)

w 1 m
—d-;:-—;g”(v)w .

Under the transformation the trajectories remain the same, but are traversed In the
opposite direction. We are therefore seeking a trajectory in R leading from (0,1) to
(+00,0) as s goes from —oo to +00. The region R is invariant for (3.2), since the
associated vector field points inwards on the half-line {v > 0,w = 1} and on the
segment {v = 0, 0 < w < 1}, while the half-line {v > 0, w = 0} is a trajectory. Thus,

any trajectory entering R remains in R.

Theorem 0.4 Let G satisfy (1.9) with the additional condition that G' be bounded away
from zero in a neighborhood of +o00. Then for each velocity @ > 0 there erists a unigue
profile (or equivalently, a unique solution normalized by w(0) = 1/2, say).

Remark 3.2 For the model problem G(u) = *, the additional condition on G’ requires
k> 1.

Proof. The orbits in (3.2) satisfy
dw gPlv)w™

' T a2l — w+ e{w)g(v)] = f(v,w), (0.21)
where f < 0in R. We note the inequality
flo,w) = gt < g = _w™h(v). (0.22)

T(l-—wteg) ~ T @21+ (e + €1)9]

Substituting this inequality in (3.3) and dividing by w™(w > 0), we can integrate be-
tween two points (vg, wp) and (v, w) interior to R. We then find for m # 1,

1 _1m ()™ —w " <~ /;o h(s) ds, (0.23)
which yields form < 1
0 < [wE)'™< wi™™ — (1 —m) /-u h(s) ds, (0.24)

while for m > 1 and w > 0,

[w(vi]m“l > w;_l +(m—1) [ " h(s) ds. (0.25)
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We now assume that G’ is bounded away from zero in a neighborhood of +00. In that

case
o i ] P
f h(s)ds:/ A
g{vo) a [1 + (60 -+ El)’r]

7o

implies that j:: h{s) ds = +oo for any p > 0. Under the additional condition on
G', (3.6) yields a contradiction for large v, so that w(v) must vanish identically for
sufficiently large v; this in turn implies that w(G(u)) vanishes identically for sufficiently
large u when m < 1. If m > 1 then (3.7) shows that w(v) — 0 as v — oo and hence
w(G(u)) also vanishes identically for u sufficiently large. A similar argument applies
when m = 1.

To prove uniqueness, we first note from the definition of f in (3.3) that % < 0 for

(v,w) in the interior of R. We conclude that if w(v1) > w(v)} for some v; > 0, then
w(v) — @{v) is strictly increasing as v | 0. Thus, trajectories cannot intersect on the
edge {v =0, w > 0}; nor can they intersect in the interior of R since the vector field in
(3.2) is smooth there. Although two trajectories might have a half-line {v > v, w = 0}
in common, we have shown the uniqueness of the trajectory of {3.2) connecting (0, 1) to
(+oc, 0).

The proof of existence uses a simple topological argument as in {6] and [5]. Let
us first shoot from any point (0, A) with 0 < A < 1. To any such A corresponds a
unique trajectory wy(v). The set {w4(v)}oca<: is a family of monotone, nonintersecting,
ordered curves. The same is true for the family {wp(v)}5>¢ of trajectories starting from
(B,1) with B > 0. The solution w*(v} of our problem can then be characterized by

w* = sup wa = inf wp,
0<cAct B>9

which acts as a separatrix between the trajectories w4 and wpg. Cl
For many applications, particularly to semi-infinite regions, it is important to know
the relation between u(0) and the velocity a. Obviously such a relation can only be

derived for a normalized solution. We choose to normalize the solution by setting w(0) =
1/2. By multiplying equations (1.10) and (1.11), we find, for w > 0,

—u? [G(u)] = a*w'w ™™ [ue(w) + 1 — w],

and, after setting K (u) = [’ G'(s)sP ds, we have

2 K = [ Rt + ] (0.26)

where the constant of integration in F,, has been chosen so that £,,(1/2) = 0:

wl_m . (I/?)l_m B w2—m - (1/2)2—17:
1—-m 2—m

, m#1,2,

Fn(w) =
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Integration of (3.8) from 0 to +oc yields
K(u(0)) = d? {Fm(l) + f ue{w) w™ ™' dz} ) (0.27)
0

Since the integrand in (3.9) is positive, we immediately deduce the upper bound for a?
in (3.11). For a lower bound, we replace u(z) in the integrand by its maximal value
(0). The remaining integral can be performed explicitly using the expression (1.7) for
e(w) so that

K(u(0)) < Fn(l) + u(0am], (0.28)
where "
om = 2L 1 - (1)) - 5P (- (/2P

Combining the lower bound for a? from (3.10) with the previous upper bound gives

K@)  _ o _ K(u(0)
Fnll) + ama®) = ° = FulD)

m#1,2. (0.29)

Similar bounds are easily derived in the cases m =1 and m = 2.
When G(u) = u* with k > 1, we have K (u) = (k/(p+ k)] u**, and (3.11) becomes

ROP _ptk o WOP

Fa(l)+anu(0) = & ¢ = Fo(l) m#12.

Again we can easily modify this result for the cases m = 1,2.
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