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Abstract

One simple unitary transformation is provided between the
linear tramsport model of R. Beals and 2 model presented else-
where. Special attention is paid to similar relatiomships in

electron transvort theory.

During the past few years the investigation of the abstract

differential equation
(TP " (%) = —Ap(xy , O<x<t(z=), n

where T and A are self-adjoint operators on a Hilbert space H and
"partial range" boundary conditions are imposed, has grown to be
a popular theme, Being the offspring of Hangelbroeks thesisl) the
subject has been subjected to study by e.g. Beals?:3:4), Hangel-
broek®), Raper and Lekkerkerkerf:7»8)  van der Mee?:10), and
recently Greenberg and Zweifell0), and has been applied in several
branches of physics!s2s8,9510), The main purpose of this short
note is to present one simple transformation, which yields a

short derivation of the main results of Ref.7 from the results of
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Beals?) and makes explicit the connection between ideas of Refs,
3,4 and 9 and ideas presented in Ref.&. This transformation is an

extension of T to a unitary operator.

Let us suppose that T is bounded with zero null space and A
is positive with closed range. Following Beals?) we define HT to

be the completion of H with respect to the immer product
(X’Y)in = {[TIX,}’) (XsYEH)- (2)

According te Kaper and Lekkerkerker?’sS) HT_3 is the completion of
ImT = {Tx/2eH} with respect to the immer product

Govdp-1 = (271%y)  GoyelnD), (3)

Clearly T extends to a unitary operator from Hy onto HT_III),
which establishes a natural relationship batween half-space and
finite siéh results of Ref.3 (formulated in Hy) and their
analogues of Ref.7 (formulated in HT_l): any operator K of Ref,3
{such as the Larsen—Habetler!2?) albedo operator) is conmected to

its analogue K of Ref.? by the fomula

The transformation T is readily suggested on comparing Egs.(3.8),
(3.9) and (3.11) of Ref. 3 to Egs.(4.4) and (4.5) and the bottom
form:la at page 358 of Ref.7. In this way the Beals3) solvability
results for the half-space and finite slab problems (formulated
through HT) can be transformed inte those of Kaper and Lekkerker-
ker?), as exemplified by Lemma 3.2 in combination with Lemma 3.1
of Ref.3 versus the invertibility of V and V
Ref,7.

T in Section 4 of

Tn Ref.8 the electrom transport half-space problem is stated

and some ideas for iLs sclutien are considered worth presenting.
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In this problem A has a one-dimensional null space and has a com—

pact reselvent.”) Denoting the {two—dimensional) zero generalized
- - - + .

elgenvector spaces of T 1a and ar-! by Hp and Hp, respectively,

one finds
+
T[Hyl = H < Im T. (5)

. . + :
In this way T acts as a unitary operator from Hp onto Hy, provided

one endows Hp with the indefinite inner product??)

(#,9)p = (T x,5) {6)
and H; with the. indefinite imner productl?)

(6, y)pe1 = (T71 x,¥). (7)

Maximal positive/negative subspaces of Hy (with respect to (6))
are mapped by T onto maximal positive/negative subspaces of Hg
(with respect to (7)). Half-space problems with non—-injective A
were studied rigorously in Refs. 6, 3 and 9. The idea to exploit
the indefinite inner product (6) te solve half-space problems
with non-injective A was first published by van der Mee. %) For
electron transport a parallel idea, through the "T—transform™
(7) of (6}, turned up in Ref,8 Logether with the suggestion to
study "'connecting" transformations on HT_I. Though in a not
completely correct waylo), "T7!—transforms” of such connecting
transformations were investigated hefore by Beals™), Again a
unitary extensios of T could be applied to make the connection
between different papers.

The forementioned relationships are based on a general
principle. For neutron transport the solution U(x) of Eq.(}) Tte—
presents a meutron angular density, whereas T y(x) represents a
current densitqu). In radiative transfer a similar pair of
physical concepts is involved, namely the intensity and radiarive
filux. One could say that T transforms angular densities (resp.
intensities) into current densities (resp. radiative fluxes).
In both applications T is the multiplication operator by the

cosine of the direction of propagation.
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