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ABSTRACT: We consider the inverse problem of reconstructing the wavespeed in
a one-dimensional nonhomogeneous medium from appropriate scattering data. The
wavespeed is allowed to have jump discontinuities and the medium may be subject
to a nonhomogeneous external restoring force. In the frequency-domain this inverse
problem leads to a Riemann-Hilbert problem and an associated singular integral
equation. Under suitable conditions we prove that the singular integral equation
is uniquely solvable and we discuss how its solution leads to the recovery of the
wavespeed. We also show that certain characteristic properties of the wavespeed
can be reconstructed more quickly, that is, without completely solving the inverse
problem first. Some examples illustrating the reconstruction of the wavespeed are
presented.

1 INTRODUCTION

In this lecture we consider an inverse scattering problem for the one-dimensional
Schrodinger-type equation

(1.1) V' (k,z) + k*H(z)*Y(k, z) = Q(z) ¥(k,z), —o0 <z < 00,

which arises in electromagnetic and elastic wave scattering. For example, the wave
equation
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(1.2) Err —poe(z) By =0, —o0o <z < 00,

where E(x,t) is the electric field as a function of position and time, €(z) is the per-
mittivity, and o is the (constant) permeability, can be converted into an equation
of the form (1.1) with H(z) = /po €(z) and Q(z) = 0 by means of the substitution
E(z,t) = e** ¢(k,z). Then 1/H(z) represents the position-dependent propagation
speed. Similarly, the wave equation

(1.3) [p(2)e(2)?uz): = p(2) e, —o00 < z < o0,

describing wave propagation in a one-dimensional nonhomogeneous elastic medium,
can be transformed into (1.1) by means of the substitutions

(1.4) u(z,t) = e*t Y(k, z), a::/o‘z p—(s)dcsw'

Then H(z) = p(z) ¢(z), where z = z(z) is given by the second relation in (1.4), and
again Q(z) = 0. In (1.3), u(z,t) is the displacement at position z and time ¢, p(z) is
the density, and ¢(z) is the wavespeed. For more information about (1.2) and (1.3)
in the present context we refer the reader to Grinberg (1991a) and Krueger (1982).
We have included the term with @(z) in (1.1) to account for possible external
restoring forces acting on the medium and to achieve greater flexibility. The impact
of Q(z) on the inversion method is substantial, and it interesting to see how the
special case Q(z) = 0 is embedded in the general case. The precise assumptions on
H(z) and Q(=z) will be stated below; we only mention at this point that H(z) is a
strictly positive function with at most a finite number of jump discontinuities and

that the limits hrﬁ? H(z) = Hy are assumed to exist and are strictly positive.
T— X 00

The discontinuities of H () represent abrupt changes in the material properties of
the medium in which the wave propagates. The inverse scattering problem we are
interested in here is that of recovering the function H(z) from a suitable set of
scattering data. The question of what constitutes appropriate scattering data is
part of the problem and can only be answered after the procedure for solving the
inverse problem has been set up. Certainly, as in the more familiar case of the
inverse problem in quantum mechanics (Marchenko (1986)), in which H(z) = 1
and the potential @(z) is to be reconstructed from a reflection coefficient, and, if
bound states are present, from the bound state energies and the norming constants,
one also expects a reflection coefficient to be part of the scattering data here. This
is true, but it turns out that knowing a reflection coefficient (assuming no bound
states) is not always sufficient to reconstruct H(z) uniquely. Sometimes it is also
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necessary to know the value of Hy (or H_.); for example, this is the case when
Q(z) = 0. Various authors have studied inverse scattering problems for differential
equations with discontinuous coefficients; for example, Ware and Aki (1969), Razavy
(1975), Krueger (1976, 1978, 1982), Sabatier (1988), and Grinberg (1991a,b). The
work most directly related to ours is that of Grinberg, who, in the special case
Q(z) = 0, developed a method to recover H(z) using the solution of a singular
integral equation. This will also be our strategy here, but when Q(z) # 0 the
analysis of the problem becomes more involved and there are essential differences
in the results as compared to the case Q(z) = 0.

In addition to solving the inverse problem we are also interested in questions
regarding the practical applicability of the method. For example, it is natural to
ask whether certain characteristic properties of H(z) can be recovered more quickly,
that is, without having to solve the inverse problem first. As it turns out, quantities
that fall into this category include the number of discontinuities, certain ratios like
H(z, — 0)/H(z, + 0), where z, is a point of discontinuity of H(z), or integrals
like f:"‘ H(s)ds, which, in the context of (1.2), represent the times (travel times)
it takes the wave to travel from the origin to the discontinuity z,,. It turns out that
information about such quantities can be extracted from the large-k asymptotics of
the reflection and transmission coeflicients.

This article is organized as follows. In Section 2 we summarize the properties
of certain solutions of (1.1) that are relevant to the subsequent discussion, and
of quantities related to them. In particular, we study the asymptotic behavior of
these quantities for both small and large k. In Section 3 we formulate the inverse
problem as a matrix Riemann-Hilbert problem and establish the unique solvability
of the associated singular integral equation. The method presented here exploits
the large-k asymptotics of the solutions to (1.1) and of the scattering data. There
is an alternate approach using the small-k asymptotics which will only be reviewed
briefly for comparison purposes. In Section 3 we also identify the scattering data and
obtain a corresponding uniqueness result (Theorem 3.3). In Section 4 we present an
algorithm to compute characteristic quantities associated with H(z) directly from
a reflection coefficient without solving the inverse problem first. Finally, in Section
5, we illustrate the inversion method by two examples. Throughout this lecture
we shall assume that there are no bound states. The inverse problem with bound
states has been studied in Aktosun et al. (1995a, Section 8); the inclusion of bound
states here would take up too much space.

The lecture is based on recent work of ours (Aktosun et al., 1995a,b and 1996a,b),
to which we will often refer for details, in particular for proofs and computations
that are too long to be included here.

2. SCATTERING COEFFICIENTS AND THEIR ASYMPTOTICS

In this section we introduce the scattering coefficients and discuss their asymptotic
properties in the limits k — 0 and k¥ — oo. We first list our assumptions on H(z)
and Q(z) :
(H1) H(z) is strictly positive and piecewise continuous with jump discontinuities
at z, forn=1,...,Nsuch that z;, < --- < zpn.
(H2) H(z) = Hi as ¢ — +o0o, where Hy are positive constants.
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(H3) H(z)— Hi € L'(R*), where R™ = (—oc,0) and Rt = (0, +00).

(H4) H'(z) is absolutely continuous on (z,, zn+1) and 2H"(z) H(z)—
3[H'(z))? € Li(zn,Tnt1) for n = 0,..., N, where zp = ~00 and zy4, =
+00.

(H5) Q(z) is real-valued and belongs to L} (R).

Here L;,(I) denotes the space of measurable functions f(z) on I such that f,(1 +
[21)? |f(z)| o < oo.

We remark that (H4) will play a crucial role in our analysis of the large-k asymp-
totics of the scattering coefficients. Assumptions (H1)-(H5) are the same as those
in Aktosun et al. (1996a). While (H5) is sufficient for the solution of the inverse
problem, for technical reasons, some related results in Section 3 (e.g. Theorem 3.3)
have so far only been established under the stronger condition @Q(z) € Li(R).

Associated with (1.1) are the Jost solutions fi(k, ) and f.(k, z) which satisfy the
boundary conditions

et +o(1), T — +00,
(2.1) fik,z) = { 1 wm_e, L(k) _im_o
TE°  taome tel) e -
1 amge, B ame
(2.2) fr(k,z) = { Tr(k)e + +—T,-(k)e 2 4+ 0(1), T — +oo,
e~RH-2 4 o(1), T — —00.

In (2.1) and (2.2), T;(k) and T, (k) are the transmission coefficients from the left
and from the right, respectively, and L(k) and R(k) are the reflection coefficients
from the left and from the right, respectively. These coefficients will collectively
be referred to as scattering coefficients. The physical picture behind (2.1) is this:

Multiply (2.1) by Ti(k) so that

Ty (k) e*H+= + o(1), T — 400,
ethH-= 4 L(k)e‘“‘H"’ +0o(1), = — —oo.

23 T Ak ={

Then (2.3) represents a wave e'*#-2 sent in from —oo which, because it interacts

with the nonhomogeneous medium, produces a reflected wave L(k) e **H-2 and a
transmitted wave T;(k) e**H+2 The scattering coefficients are given in terms of the
Jost solutions by

. H ., H-
[fi(k,z); fr(k,2)) = ~2‘LkTr(+l;) = —2zki—(7€—),
[fi(k,z); fr(—k, z)] = 2ikH_%%)5 = _zikH+_£_((__’;c)),
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where {f;g9] = fg' — f'g denotes the Wronskian of f and g. Therefore Tj(k) and
T, (k) are related by

(2.4) H, Ty(k) = H_ T, (k).

Moreover, for k € R, using (2.1) and (2.2) we have

fl("‘k,z):fl(k;z), fr(_k;m):fr(k»z);

(2.5) T, (k)L(~k) + R(k)T,(—k) = 0,

(2.6)  T.(k)Ti(=k)+ L(k) L(~k) = T,(~k) Ty(k) + R(k) R(—k) = 1.

In the following it will often be necessary to distinguish between two cases:
(1) The generic case: f;(0,z) and f,(0,z) are linearly independent.
(i1) The exceptional case: f;(0,z) and f,(0, z) are linearly dependent and hence

(2.7) fi(0,z) =4 £ (0, z)

for some nonzero real constant 7.

This division into a generic and exceptional case is governed solely by the prop-
erties of Q(z) because H(xz) does not affect the solutions of (1.1) at £ = 0. For
example, if Q(z) = 0, then fi(0,z) = f,(0,z) = 1, and we are in the exceptional
case. If @Q(z) > 0 but Q(z) # 0, we have the generic case, since then f;(0,z) grows
linearly as £ — —oo. This follows from the integral equation for f;(0, z) (see (3.27)

below).
For reasons that will become clear later we introduce the “reduced scattering

coefficients”

(2.8)
r(k) = \/%Tz(k)e"”‘ =y %Trw)e‘“, p(k) = R(k)e™™ A+, t(k) = L(k)e* 4~

where

to0
(2.9) Ay = i/ [Hs — H(s)|ds, A=A_+A,.
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Then, by (2.4)-(2.6), the matrix

T(k k
(2.10) o(k) = [Z((k)) ’:Ekg] ,

is unitary, and it will be called the “reduced scattering matrix”.

In our first theorem we collect some results about the reduced scattering coeffi-
cients, in particular their small-k behavior. We let C* denote the upper-half com-
plex plane and C¥ its closure, C*+ = C* UR. Similarly, C~ denotes the lower-half
complex plane and C- = C~ UR.

THEOREM 2.1 Suppose that (H1)-H(5) hold and that there are no bound states.
Then:

(i) (k) is analytic in C* and continuous on C+.

(1) In the generic case

(2.11) 7(k) = ick + o(k), k — 0in C¥,
where ¢ is a nonzero real constant, and

p(k) = =1 +0(1), £(k)=-1+0(1), k—0inR.

Furthermore, p(k) and £(k) are continuous for k € R, and |p(k)| = |€{(k)| < 1 for
k#0.

(iii) In the exceptional case

o /H_H __
(k) = Y=+ L 5(1), k—0inCT,

T H 4+ Hy
H, —H_4* :
H_4% - :
ok) = ==L By | o(1), k—0inR,

- H 4+ H,

where v is the constant defined in (2.7). Furthermore, |p(k)| = |4(k)| < 1 for all
ke R.
PROOF: See Theorems 4.1 and 4.2 in Aktosun et al. (1995a), putting @ = 0 in
Theorem 4.2. |

Note that (i) holds because we have excluded bound states. If bound states are
present, then each bound state gives rise to a simple pole of (k) lying on the
positive imaginary axis.
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The constant ¢ in (2.11) is given by

Wi

c= — ,
[fl(Olz)lfr(Olz)]
so that
H, = C2 [fl(oy :D), f?‘(Oi m)]Z
+ 4H_ ‘
. _ o T(k) 2 2 _
Since ¢ = lim ——= and |r(k)|* + |p(k)|* = 1, we also have
k=0 1k
— 2 _ 2

k—0 k2 k=0 k2

from which we see that in the generic case H_ is determined by H,, Q(z), and
R(k). In the exceptional case we infer from (2.8) and (2.12) that

_ 7*[1+ R(0)]

Hy= 1 - R(0) H-,

so that also in this case H_ is determined by Hy, Q(z), and R(k).

Next we consider the asymptotic behavior of the reduced scattering coefficients
as k — o0o. To analyze this limit we perform the Liouville transformation

(2.13) Y(k,2) = ;(z)qs(k,y). v=v(e) = [ H(s)ds

on (1.1). As a result, we obtain

d*(k, y)

(2.14) o

+k2¢(k,y)=V(y)¢(k,y), yER\{yl,...,yN},

where y; = y(z;) and

(2.15)
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Since H(z) has jump discontinuities at z;,...,zy, the function V(y) is undefined

at y;. From the continuity of ¥(k, ) and 9¥'(k, z) at each z; it follows that ¢(k,y)
and d¢(k,y)/dy satisfy the following (internal) boundary conditions at y; :

¢(k,y5 — 0) =/q; ¢(k,y; + 0),

(2.16) dg(k,y; — 0) 1 dg(k,y; +0)
=v; ¢(k,y; +0) + ,
dy VJ ¢( yJ ) \/q—J- dy
where we have defined
(2.17)
.__ffﬁj_—_(_)_) b = 1 [H’(zj—O)_H’(mj+0)
9 = H(z; +0)' ~°~ 2\/H(z; - 0)H(z; +0)  H(z; ~0) H(z; +0) ]

It is straightforward to check that the boundary conditions (2.16) are self-adjoint.
So we can think of (2.14) as a Schrodinger equation with potential V(y) given
by (2.15) for y € R\ {v1,...,yn} and supplemented by the boundary conditions
(2.16) at the points y;. In Aktosun et al. (1996b, Prop. 2.2) it was shown that the
scattering matrix associated with the potential V' (y) is just the reduced scattering
matrix o(k) defined in (2.10). For j =0,..., N, let

V. ( )_ V(y), yE(yj,yj+1),
23417 = 10, elsewhere,

where we have defined yo = —o0 and yy4+1 = +00. Because of hypotheses (H4) and
(H5) it follows that Vj j+1(y) € L{(R), where the finiteness of the first moment is
effective only on the semi-infinite intervals (yo, 1) and (yn, yn+1)-

Our next goal is to express the reduced scattering coeflicients in terms of the
scattering coefficients for the potentials V; ,;+1(y) and quantities associated with
the boundary conditions (2.16). Let ¢;;4+1(k), rj;4+1(k), and I ;4,(k) denote the
scattering coefficients for the potential V; ;4+1(y) and define

(2.18)
1 _pk) 1 _rig+(k)
r(k r(k t;iv1(k tii+1(k
Ay = | T = |G e ®
(k) _1 Lii+1(k) 1
(k) T(—k) tisv1(k)  tii41(—k)
ﬁ. , ) —2iky;
%+ 5k (ﬁﬂ + 2ik> e
(219) FJ(k) = V. Vi ! J = lv vN)
(ﬁ _ __J_) eZtky, o — __J_
T 21k 7 9k
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where

(2.20) aj = %(\/@Fﬂ“?) ﬁj:%(‘@—%)'

Note that §; = 0 if and only if H(z) is continuous at z;, and that v; = 0 if and
only if H'(z)/H(z) is continuous at z;. In Aktosun et al. (1996a, Theorem 4.1) it

was shown that A(k) can be factored as

(221) A=A0‘1F1A1‘2F2A2|3"-FN AN‘N+1.
For large k we have (Deift and Trubowitz, 1979)

(2.22) t;iv1(k) =1+ O(1/k), k — ocoin C*,
(223) rj’jH(k) = 0(1/k), lj,j.*_](k) = O(I/k), k — ﬂ:OO,

and thus, by (2.18) and (2.21)-(2.23),

(2.24) A(k)=Fy-- - Fy+O(1/k), k- #*oo.

Let

(2.25) E(k,z;) = [ﬁ iy, & ;%ikyj] :
a(k)  b(k) | T

(2.26) [b(_k) a(_k)] = I:IIE(k,:I:j).

Note that det E(k,z;) = 1 and hence

(2.27) la(k)|? = [b(k)|2 =1, k€R.
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From (2.19) and (2.25) we conclude that F;(k) = E(k,z;) + O(1/k) as k — oo,
and hence, by (2.24)-(2.26), we obtain

(2.28) A(k) = [b‘(‘@lz) al(’(fg)] +O(1/k).

Let AP" denote the algebra of all complex-valued functions f(k) on R which are of
the form f(k) = 3772, fie*%s, where f; € C, ); € Rfor all j, and 37 |f;| < oo.

J==00

Note that the closure of AP" in L*°(R) is the algebra of almost periodic functions.

THEOREM 2.2 Suppose that (H1)-(H5) hold and that there are no bound states.

Then:
(M) 71137 = a(k) + O(1/k), k — oo in CF.
~b(k)

(i) p(k) = 7"+ O/k), & — oo

(i11) a(k), b(k), a—(lﬁ’ and 222; belong to APW.

(iv) |r(k)| <1 and limsup |p(k)| < 1.

k—+o00

This theorem is a combination of results from Aktosun et al. (1995a, Theorems
4.4 and 4.5) and Aktosun et al. (1996a, Prop. 2.1). Here we only comment briefly
on the various statements. First, (i) and (ii) follow directly from (2.18), (2.24),
and (2.28). From (2.25) and (2.26) we also see that a(k) and b(k) are exponential
polynomials. They have certain characteristics that will be exploited in Section 4.
The proof of (iii) relies on the fact that a(k) is bounded away from zero, in particular,
la(k)| > 1 in C* by Prop. 4.3 in Aktosun et al. (1995a). The latter property is a
consequence of the fact that 1/a(k) can be interpreted as the transmission coefficient
for an equation of the form (1.1) with Q(z) = 0 and H(z) piecewise constant. Note
that a(k) and b(k) only contain information about H(z) through the constants
g; defined in (2.17) and the values y;, and are completely independent of Q(z).
Since the invertible elements of APW are exactly those elements of APW that are
invertible in L (R), a(k) is invertible in AP . The first inequality in (iv) follows
from |a(k)] > 1, (1), and the maximum modulus principle. The second inequality
is a consequence of (2.27), the boundedness of a(k), i.e. |a(k)| < C, which together

imply |b(k){/|a(k)| < V1~ C-2 <1, and (ii).

3. RIEMANN-HILBERT PROBLEM AND A SINGULAR INTEGRAL
EQUATION

In this section we formulate the inverse problem as a Riemann-Hilbert problem
which we then convert into a singular integral equation. The solution of the integral
equation will lead to an implicit equation for y(z) so that H(z) can be obtained
by differentiation. The method employed here follows Aktosun et al. (1996a) and
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uses in a crucial way the large-k asymptotics of the scattering coefficients. We also
establish the connection with an alternate method based on the small-k asymptotics
(Aktosun et al., 1995a and 1996b) and, as a result, are able to identify the scattering
data needed to recover H(z) uniquely.

We introduce two functions Z;(k,y) and Z,(k,y) by

(3.1)
Alk,2) = [ A k), folkn) = | e A2 (k)

where y = y(z) was defined in (2.13), and A4 are the constants defined in (2.9).
Note that A4 also appear in the expansions

y=H,z— Ay +0o(l), z > +oo,

2
(3:2) y=H_z+A_ +0(1), z - —oo0.

The functions e**¥ Zj(k,y) and e~**¥ Z,(k,y) are the Jost solutions from the left
and from the right, respectively, associated with (2.14). It was shown in Aktosun
et al. (1996a) that for each fixed y€ R\ {x1,...,yn}

(3.3) Zi(k,y) = Ji(k,v)+O(1/k), Z.(k,y) = Jo(k,y)+O(1/k), k — oo in C+,

where
(3.4)
-2 1 _
[1 e=%hv] H E(k,zn) [0], vy €(¥,¥41), 5=0,...,N -1,
Ji(k,y) = nzit1
1, y € (yn,+00),
0 .
21»ky — HEkmn [_1]) yE(yJ,yJ+l),J:1,,N,
Jr(k,y)z

1) Yy € ("Oo)yl)-

1
Here by [] E(k,z,) we mean the matrix product E(k,z;)--- E(k, z,).

n=j
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Recall that the Hardy spaces H% (R) (1 < p < oo) are defined as the spaces of all
functions f(k) that are analytic in C* and satisfy sup, ffooo |f(k £ 1€)]P dk < o0.

THEOREM 3.1 For each fixed y € R\ {y1,...,y~}, the functions Z;(k,y) —
Ji(k,y) and Z,(k,y) — J,(k,y) belong to the Hardy space H3 (R).

PROOF: The Jost solutions f;(k,z) and f.(k,z) are analytic in C*, and hence,
by (3.1), this also holds for the functions Z;(k,y) and Z, (k,y). Then the assertion
follows from (3.3). i1

From (2.1), (2.2), and (3.1) it follows that for each fixed y € R\ {v1,...,yn~n},

Z(k,y)

3.
( 5) Zl(k’y)

Z(-ky) | | rk)  —p(k)e*H
A - —L(k)e=2ky (k)

}, ke R.

This equation constitutes a problem of Riemann-Hilbert type for the vector Z(k, y) =
[Zi(k,y) Z.(k,y)]", where the superscript T denotes the transpose. Note that
(3.5) relates the boundary values on the real axis of two vector functions, Z(~k, y)
being analytic in C~ and Z(k,y) being analytic in C*. However, in view of (3.3)
and in contrast to more familiar problems of this type, the functions Z;(k,y) and
Z,(k,y) do not approach constant limits as & — oo in C+. Our next step is to
recast (3.5) as a singular integral equation. First, by using Theorem 2.2 and (3.3),
we obtain

1 we%ky
6 [J,(—k )} | owm W Lk, } Cen
Jr(—k, ) _b(‘k)e-ziky 1 Ji(k,y)
a(k) a(k)

Subtracting (3.6) from (3.5) gives
(3.7) 1 1
Zi(~ky ) — =k, y) = [r(m . —(5] 2.(k ) + 35 (2 (k1) = 1 (5,

2iky b(k) | sy

— (k)29 [Zi(k, ) — ik, )] - [p(k)+a—(,5]e J(k, ).

There is a similar equation for Z.(—k,y) — J.(—k,y) which could be used in place
of (3.7). From now on we will only work with the solutions from the left. We see
that the left side of (3.7) belongs to H2 (R), the first two terms on the right belong
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to H2 (R), and the last two terms belong to L*(R). Let IT+ denote the orthogonal
projections from L?(R) onto H% (R), i.e.

(e F)(k) = £ /_oo Sy,

2mi J_oo s — kF 0

and define

(3.8) Xi(k,y) = Zi(=k,y) — Ji(—k,v).

Applying the projection II_ to both sides of (3.7) we obtain

(39) Xi(,y) + T (p() VT Xi( ) = ~TI ([p(') + %] e”"”Jz(-,y)) ,

where (J f)(k) = f(—k). Defining the singular integral operator O; by

1 0 p(—~3) e—2£sy

(3.10) (O X)(k) = %/_ p— X (s) ds,

we can write (3.9) as

(3.11) Xi(k,y) + (O X)) (k,y) = P(k,y), k€ER,
where

(3.12) Pk, y) = % —0; #“-T—iﬁ [p(s) + z((—z))] Ji(s,y) ds.

THEOREM 3.2 The singular integral equation (3.11) has a unique solution
Xi(-,y) € H2(R) which can be obtained by iteration.
PROOF: In Aktosun et al. (1995a, Theorem 7.1) it is shown that [|O;|] < 1 on

H2(R). I
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We remark that in the exceptional case we have ||p||c = sup |p(k)| < 1 which
keR

immediately implies ||O;]] < 1 in H2(R). In the generic case the same conclusion
holds true, but the argument is more involved, since p(0) = —1 and hence ||p||c = 1.

In practice it is convenient to transform (3.11) into a Marchenko-type integral
equation by means of a Fourier transform. We indicate the main steps of this
procedure. First, since b(k)/a(k) € APY, we can write

(3.13) ZY;; == et

where the b, are distinct real numbers and the «, are real constants satisfying
>, |7s) < oo. Then, since p(k) + b(k)/a(k) € L*(R) by Theorem 2.2 (ii), we have
that

[e 0]
- 00

(3.14) p(k) = E v etk +/ e*?o(2) dz,

where ¢(z) € L2(R). The symmetry relation F(—k) = F(k) (k € R) which is valid
for p(k), a(k), and b(k), implies that o(z) is real-valued. We now define the Fourier
transform F and its inverse by

1 o0

(Fo)t) = 5 / T ek (k) dk,  (FoR)(k) = / e~k h(t) dt.

— 00 - 00

Since X;(-,y) and P;(-,y) belong to H2 (R), their Fourier transforms are supported
on the positive half line and so we put

(3.15) X,(k,y):f ekt hy(t,y) dt, P,(k,y)z/ e~ %t by o(t, y) dt,
0 0

where hi(-,y), hio(-,y) € L2(RT). By (3.4), Ji(k, y) is of the form

(3.16) Ji(k,y) =) wi(y)eke W),

s

where, in each interval (y;, yj+1), ws(y) is a constant and ¢,(y) is a linear function
of y. Thus, from (3.12) and (3.15) we obtain
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(3.17) hio(t,y) = —E ws(y) o(—t — 2y — <s(y)), t>0.

s

Taking the Fourier transform of (3.11) and using (3.14) and (3.17) yields

Mt y)+ D, vkt —2y—b,,y)

{s:b,<—t-2y}

(3.18) +/ o(—s —t —2y) hi(s,y)ds = hio(t,y), t>0.
0

This is the analog of the Marchenko integral equation for the ordinary Schrodinger
equation (see Marchenko (1986)). It allows us to obtain X;(k,y) uniquely from
p(k). Of course, eventually we want to use R(k) as input rather than p(k). The
necessary modifications will be discussed later. For the moment we assume that
p(k) is known and proceed with the construction of H(z) from p(k). Assuming
Xi(k,y) and Ji(k,y) are known, from (3.8) we obtain

Zi(0,y) = Xi(0,y) + Ji(0, ),

and then, using (3.1) and (2.13), we deduce that

dy dz
3.19 _— _=H,——
( ) Zl(O)y)2 +fl(0)m)2

so that the equation for y(z) becomes

vV dz T dz
(3.20) /0 —Zl(o’z)z_—.H_*./D oan

From y(z) we obtain H(z) by differentiation. We remark that J;(0, y) is piecewise
constant; explicitly

Jl(O,y):\/Qj+l"'qu, ye(yJ)yJ+l)) j:0)"')N"’1)

and Ji(0,y) = 1 for y > yn. This follows from (3.4), (2.20), (2.25), and the fact
that when k = 0 the matrices E(0,z;) have eigenvectors [1 1]7 and [1 -1)7
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with corresponding eigenvalues ,/g; and 1/,/7;, respectively. In the generic case,
fi(0,z)? grows proportional to z? as ¢ — —o0, and so, taking z — —oc in (3.20)
gives

fi)oo dz/Zi(0, z)?

3.21 H, = )
( ) * fi)oo dz/fi(0,z)?

Therefore, in the generic case, H, is determined by p(k). In the exceptional case,
H_ is a free parameter. The precise meaning of this will be explained below when
we discuss the recovery of H(z) from R(k).

We now describe the reconstruction of H(z) from R(k). First, put p(k) = R(k)
e?k4+ regarding A, as a parameter. Let X ;(k,y) and J;;(k, y) denote the solu-
tion of (3.11) and the function given by (3.4), respectively, if in (3.10) and (3.12)
we replace p(k) by R(k) and change a(k) and b(k) accordingly. Then X;(k,y) and
Ji(k, y) corresponding to p(k) = R(k)e** 4+ are given by Xi(k,y) = Xi,1(k, y+A4)
and Ji(k,y) = Ji,1(k,y + A4+). In analogy to (3.8) let

(3.22) Zia(=k,y) = Xia(k, ) + Jua(=k,v) = Zi(—k,y — A4).

Inserting (3.22) in (3.20) yields

y+A4
3.23 /
(3.23) /A+ ZH 0 z) fi(0 2)2

In the generic case we can let £ & —oo and y = —oo, so that

(3.24) /A+ gjioz—;)— =Hy / A 0 z)

This equation gives a relation between A; and H; which, in view of (3.22), is
equivalent to (3.21). In the generic case, by adding (3.23) and (3.24), we obtain

y+A4
(3.25) /_oo ZH 0 z) o fi{ 0 2)2
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In the exceptional case the relation between A, and H is less direct. In fact, there
are difficulties in finding this relation if Q(z) is only assumed to be in L}(R). To
see this, let us try to take the limit as £ — +o00 in (3.23). First we write (3.23) as

vta+ 1 - 2,,(0,2)? ®1- £1(0,2)?
+ A7) dz=H,z+ H / AL Nl R S )
v /A+ Z,1(0,2)? * *Jo  A(0,2)

Substituting the first relation of (3.2) for y in the above equation yields

(3.26)

*1- £i(0,2)? vta+ 1~ 2,,(0,2)°
A, =—H / ———————dz+/ ' dz 4+ o(l), z — 4o0.
¥ T lo  A(0,2)? Ay Z1,1(0,2)? ()

From this we see that the right-hand side must converge as ¢ — +0o. However,
we cannot conclude that each integral on the right must converge separately. In
fact, this conclusion is generally false. For example, if Q(z) = (1 + |z|)~2~¢ with
0 < e < 1, then Q(z) € L}(R) but Q(z) ¢ L1(R), and using the integral equation

(3.27) fi(0,z) =1+ /w(z —z)Q(2) fi(0, z) dz,

we deduce that f;(0,z) > 1+ cz~¢ with some ¢ > 0. Therefore the first integral on
the right-hand side of (3.26) diverges as z — +00. Hence the second integral must
also diverge but in such a way that it compensates for the growth of the first term.
In order to ensure that both integrals in (3.26) have separate limits as z = +oo,
we now make the assumption that

(3.28) Q(z) € Ly(R).

Then (3.27) implies that 1 — f£(0,-)> € L'(R) and, by using (3.1) and (H3), we
conclude that 1 — Z;,(0,-)2 € L!(R). Then, taking z — +o00 and y — +o0 in
(3.26), we obtain

Ay dz *1- £i(0,2)? ®1-21(0,z)?
3.29 —_—=-H —_—d +/ ) dz,
(3.29) /o ¥ /o 0,22 T )y TZa22

and this relation holds in both the generic and exceptional case. Defining
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B *°1- fz 0 z)
(3.30) Gi(z) = —/O TR(0,2)7 / £1(0,2)? 0 z)
- _ *1-24(0,z)* Y dz
(3.31) Grly) = / Zin(0,2)? d““/o 21,1(0,2)’

we can write (3.29) as

(3.32) /A+ _ = H, G1(0) - G,(0).

In the generic case, subtracting (3.29) from (3.24) and using (3.30) and (3.31), we
obtain

(3.33) Gi(~o0) = Hy Gy(—o0).

So, if G1(—o0) # 0, then

SN

Gi(—o0

(3.34) H, = m,

meaning that in the generic case with Gj(—o0) # 0, H is determined by R(k).
Then A4 can be found from (3.32), and thus both H; and A are determined
by R(k) alone. If G1(—o0) = 0, then G;(—o0) = 0, and so (3.34) does not allow
us to determine H,. To see what happens when G (—o0) = 0, 1t is convenient to
write (3.23) in a different form. At the same time this will establish the connection
between (3.23) and a corresponding equation in Aktosun et al. (1996b) obtained
there by using the small-k asymptotics. First, adding (3.23) and (3.29), and letting
T — —o00, we get

(3.35) Gi(y+ Ay) = Hy Gy(z).

Note that (3.35) can also be verified by differentiating both sides with respect to =
and using (3.22), which shows that (3.19) is satisfied. Moreover, at z = 0, the two
sides of (3.35) agree on account of (3.29)-(3.31). By means of the substitution
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(3.36) X1(0,y) = —y + Gi(y),

we can write (3.35) in the form

(3.37) y+Ap + X,(0,y+ Ay) = Hy Gy ().

Then (3.37) agrees with (3.38) in Aktosun et al. (1996b). There the function
X1(0,y+ A,) arose as the value at k = 0 of a function X(k,y) given by X(k,y) =
Xl(k, Y + A+), where

(3.38) X(hy) =i 2D B0

Moreover, X (k,y) satisfies the singular integral equation

(3.39) X(k,y) — (O X)(k,y) = Xo(k, v),
where

- 00 8 e2is _
(3.40) Xo(k,y) = —2%/_00 "’(8 ()8 -Z+fo()0) ds.

Thus X (k,y) obeys an integral equation similar to (3.11), but with a minus sign in
front of the operator ; and a different nonhomogeneous term. Similarly, as in the
case of X, 1 (k, y), it is the function X, (k,y) that is determined first by solving (3.39)
with p(k) replaced by R(k) in (3.40) and (3.10) and with a(k) and b(k) replaced
accordingly. From (3.22) and (3.38) we also see that

Xi(ky) =i Zii(=h.y) — Zt.l(O,y),

k Zl,l(O) y)

and thus
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(@41 £10) =~ 2167,

where the dot denotes differentiation with respect to k. Furthermore, by (3.31) and
(3.36),

dXi(0,y) 1

3.42 =
(3.42) dy Z,1(0,y)?

- 1.

This establishes the connection between the two inversion methods. In the method
presented here based on the large-k asymptotics we determine Z; ; (0,y) from R(k),
while in the method based on the small-k asymptotics we determine —iZ';‘l(O, v)/
Z,,1(0,y) from R(k). From the latter we can find Z; ;(0,y) by differentiation using
(3.41) and (3.42). Conversely, Z; 1(0,y) determines —iZ; 1(0,y)/Z:1(0,y) via (3.36)
and (3.41). We remark that because of the factor 1/k in (3.38), the integral equation
(3.39) must be studied in the Hardy spaces H” (R) with suitable p. Precisely, if
Q(z) € L}, 4(R) with a € (0, 1), then p must satisfy 1 < p < 1/(1 - a); ifa =1,
then any p € (1,00) is allowed. If p = 2, then the unique solvability of (3.39) in
H2 (R) follows as in the case of (3.11) (cf. Theorem 3.2). If p # 2, then we refer
the reader to Aktosun et al. (1995a, Theorem 7.1) for the details. There it is shown
that the spectral radius of O; in the appropriate H” -space is strictly less than 1.
Therefore (3.39) is uniquely solvable in H? (R) and the solution can be obtained
by iteration.

Eq. (3.35) in the form (3.37) was analyzed in Aktosun et al. (1996b). The basic
observation is that if (3.35) is to have a solution y(z) corresponding to a function
H(z), then the ranges of Gi(y + A;) and H, G)(z) must be the same. Since
both sides of (3.35) are strictly monotone increasing functions of their respective
variables, any solution y(z) of (3.35) is necessarily unique and monotone increasing.
In the exceptional case, the range of G(z) is all of R and hence does not change
if we vary H,. Hence it is plausible that H, is a free parameter in the sense that
once H, has been fixed, then (3.35) has a unique solution y(z) resulting in a unique
function H(z). The main task is to verify that the H(z) thus constructed satisfies
(H1)-(H4). This is not easy and we refer the reader to the aforementioned reference.
In the generic case, the range of Gi(z) is the semi-infinite interval (G;(—o0), +00).
Hence, if Gj(—o0) # 0, then H, is given by (3.34) and is not a free parameter.
However, if Gi(—oo) = 0, then the situation is similar as in the exceptional case.
We can vary H, without changing the range of the right-hand side of (3.35) and,
as in the exceptional case, one can then show that H, is a free parameter giving
rise to a one-parameter family of functions H(z) all of which satisfy (H1)-(H4).

These observations suggest that the proper scattering data for a unique inversion
are:

(1) In the exceptional case: Q(z), R(k), and H,.
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(i1) In the generic case if Gy(—o0) = 0: Q(z), R(k), and H,.
(ii1) In the generic case if Gi(—o0) # 0: Q(z) and R(k).

The following uniqueness theorem justifies this choice. For the proof, see Aktosun
et al. (1996b).

THEOREM 3.3 Suppose that @Q(z) € LI(R). Then in all cases the solution of
the inverse problem given the above scattering data is unique. Moreover, in the
generic case with Gi(—oc0) = 0 and in the exceptional case, the constant Hy is
a free parameter in the sense that for any choice of Hy > 0, the function H(z)
resulting from the solution of (3.35) (if a solution exists) corresponds to the same
reflection coefficient R(k).

We remark that Theorem 3.3 does not make any claims about the existence
of H(z) for a given set of scattering data. It may well be that a given reflection
coefficient R(k) and a given Q(z) are incompatible, so that no function H(z) exists.
On the other hand, the same reflection coefficient and a different Q(z) may allow
the construction of an H(z). We will give examples for the various possibilities in
Section 5.

From (3.4) and (3.12) we see that, in order to carry out the inversion procedure, we
must know the constants ¢; defined in (2.17) and the function p,s(k) = —b(k)/a(k)
(cf. Theorem 2.2 (ii)). Furthermore, if we want to use the integral equation (3.18),
we must know the constants v, and b, in (3.13) and the functions g, w,, and ¢, in
(3.16) and (3.17). Of course, all of these quantities are known “in principle” if p(k)
is known. We indicate here how p,s(k) and then a(k) and b(k) can be determined
from p(k). How one gets the g; from p,s(k) will be the subject of the next section.
Since pa,s(k) is almost periodic, the coefficients 4, and b, in (3.13) are uniquely
determined by pas(k), and since the difference p(k) — pas(k) is O(1/k) as k — oo,
we conclude that the set {b,} coincides with the set S of Fourier exponents of p,s(k),
and that

: 1 L ~tkz
S={s€R: lim o [ e p(k)dk #0).

Then, if b, € S, we have

: 1 L —ikb
(- Al CL

Whether or not S is easy to find depends on the form in which p(k) is available.
In Section 5 we will start from a p(k) given as a simple analytic expression and the
problem of finding S will be trivial. Once we have found p, (k), using (2.27) and

the fact that a(k) = a(—k) for k£ € R, we can write

1

a(k) a(—k) = = palOE

keR,
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which is a scalar Riemann-Hilbert problem for a(k). Its solution was given in Akto-
sun et al. (1995b). Hence we know a(k) and thus b(k) = —pas(k) a(k). Then from
a(k) and b(k) we can determine «; and §; using the algorithm of the next section,
and hence we also know p, w,, and ;.

4. AN ALGORITHM TO RECOVER CHARACTERISTIC PROPER-
TIES OF H(z)

In this section we present an algorithm to recover certain quantities related to
the discontinuities of H(z) that does not require the prior solution of the inverse

problem.
For N = 1,2 the explicit expressions for a(k) and b(k) are (cf. (2.25) and (2.26))

(4.1) a(k) = a1, e**¥p(k)=p, fN=1,

a(k) = ajag + 1 Bae?*kWamv1) | eZkVap(k) = o B, 4 Brage®FWamv) i N =2,

and if N = 3 we have

a(k) = ayazaz + BiBaaze® V1Y) 4 o 0,332k VamY2) 4 B, o, B2 R (¥3=Y1)

e?FY3b(k) = ayaafs + L1BaBse™ V1Y) + aiBrage?*¥37Y2) 4 By apagehvaTvr),

As these formulas suggest, and as one can prove by induction, in general, a(k) and
b(k) are exponential polynomials of the form

N
(4.2) a(k) = ap + Zanez"“", ap = Hai’ b(k) = anezikg,,’
n j=l

n

where a,, bn, An, and &, are nonzero real constants, A, > 0, and the &, are of the
form A, — yn. Moreover, the number of terms in each case is at most 2V~!. Next
we list the steps of the algorithm which allows us to recover NV, y;, and g¢; from a(k)
and b(k).
1. From b(k), obtain yy as yy = —min, {,. Note that the coeflicient by in
b(k) 1s (e 3 L -aN_],BN.
2. From a(k), obtain the coeflicient ap = a; - - ay.

3. From the ratio of the coefficients in steps 1 and 2, obtain 'B—N and hence

an
_ 1+ PBn/an
gN = T -
1-fGn/an
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4. Construct the matrix E(k, zy) defined in (2.25) by using yy and gy from
above.

5. From (2.25), obtain the matrix E(k,zx)"! and then define

al¥=10(k) o=k ]
g denCh |

Note that al¥N ~1(k) has again the form (4.2) with ay > 0 and a,, b, nonzero
real constants, but with fewer terms.

6. Replace a(k) and b(k) by alN~1}(k) and b[N-1](k), respectively, and repeat
steps 1-5. This results in functions al¥~2l(k) and b[N-2(k). Repeat the
procedure until the matrix in step 5 no longer contains any exponential
terms on the diagonal, i.e. until the matrix is E(k, z;). From it, find y; and
q1-

There are a few ways to speed up the algorithm and these are described in Aktosun
et al. (1996b). Also, the algorithm can be modified and applied to R(k) instead of
p(k). In that case one can determine N, g;, and the differences y; — yx. The values
y; themselves can only be obtained to within a shift; namely, one can determine
y; + A4. Again we refer to the aforementioned reference for details.

In general we cannot determine the points z; (7 = 1,...,N) from a(k) and
b(k). However, if it is known, for example, that H(z) is piecewise constant, and
if H; is given, then we can determine the z;. To see this, note that we can first
determine H(z) on each interval (y;, y;4+1) starting with (yn,o0), i.e. Hy ny1 =
Hy, Hy_1, v = Hiqn, etc.,, where we put H(z) = H; ;41 on (y;,yj+1). It now
suffices to find one of the points z; because the others can then be obtained by
using the formula z,41 — » = (Yn41 — Yn)/Hn n41. Now, if y; = 0 for some j,
then z; = 0, and we are done. Supposing y; # 0 for every j, we can find a y;,
that is closest to zero. If y;, < 0, then z;, = y;,/Hj,.jo+1, and, if ;, > 0, then
T, = Yjo/Hj,—1,j,, and we have found one of the points of discontinuity.

In Aktosun et al. (1996b) we have also characterized those functions H(z) for
which p(k) = pas(k), respectively R(k) = Ras(k). We are then necessarily in the
exceptional case, because, by (2.27), |7(k)| = /1 - [p(k)|? = /1 — |pas(k)|? =
1/|a(k)|, and thus a(0) = 1/7(0) is finite. It turns out that the functions H(z) are
such that H(z) fi(0,z)? is piecewise constant. Then one can argue as above and
successively determine the points z,,...,zxN.

In Aktosun et al. (1996b) the above algorithm has been extended to recover the
constants v; defined in (2.17) from a(k) and b(k), and some additional information
that is also available without solving the inverse problem first.

5. EXAMPLES

In this section we consider two examples illustrating the inversion procedure, one
for the exceptional case and one for the generic case. Example 5.1 deals with
the exceptional case and has already been discussed in Aktosun et al. (1995a),
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but the solution given here is considerably simpler. Example 5.2 illustrates the two
possibilities that can occur in the generic case (see cases (ii) and (iii) above Theorem
3.3) and it is a generalization of Examples 8.3 and 3.4 in Aktosun et al. (1996a and
1996b, respectively).

EXAMPLE 5.1 The simplest example illustrating the exceptional case is when
R(k) is constant, 1.e.

R(k)= Ry, —1<Ry< 1.

Putting p(k) = Ro e?**4+ and applying the algorithm of Section 4, in particular
(4.1), we get

N=1 a« ! g __—BRo y A q 1- Ry
) 1 r——————l_Rz) 1 F——————l_Rg) 1 + 1 1+R0’
1 R 21k A4
a(k) = = 0¢

“vom W

Note that p(k) = pas(k) and that a(k) and b(k) can easily be guessed. Therefore,
(3.4) yields

1) Yy >y,
Ji(0,y) =
09 =4 5y
Since p(k) = pas(k), we have Pi(k,y) = 0 and thus X;(k,y) = 0. Hence Z;(0,y) =
Ji(0,y) and, since Z;1(0,y) = Z1(0,y — A}+) = Z;(0,y + y1), we have that
21(0,9) { 1, y>0,
l,l )y - \/21—1, y < 0

Thus, by (3.29)-(3.31), G1(0) = 0, and

[ HyGi(0), Gi(0)
A=) L Gi(0), Gi(0)

Note that the sign of A, is determined by that of G,(0). Evaluating the left-hand
side of (3.23), we obtain
If G,(0)>0:
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(5.1) y(z :{ Hy[Gi(z) = Gi(0)], v>w,

Hi[q1Gi(z) - Gi(0)], y<wu.

If G,(0) < 0 :

H Glz: — g1 G , 1,
(5.2) y(m):{ +[Gi(z) =91 G1(0)], y>y

Hi q1[Gi(z) — G1(0)], y<w.

The point z; (such that y(z;) = y;) is obtained by equating the expressions on the
right-hand sides of (5.1) and (5.2), respectively. This gives in both cases

(5.3) Gi(z1) = 0

for the equation determining z,. Since in the exceptional case the range of Gi(z) is
all of R, (5.3) has a unique solution. By differentiating (5.1) and (5.2), we obtain

H, .
fl(o,m)Q’ T Ty,

Hiz) = q Hy
fz(O,:c)Q’ r<zy.

We see that in order for (H3) to be satisfied it is necessary and sufficient that
1— £1(0,-)? € L'(R), and we know that condition (3.28) is sufficient to guarantee
this. In other words, if Q(z) € L}(R) but 1 — f;(0,-)? € L!(R), then there is no
function H(z) that satisfies (H3). This illustrates the remark made below Theorem
3.3 about the possible incompatibility of R(k) and Q(z).

EXAMPLE 5.2 Let

}

k— i .
R(k) = ————Ek " z:Y e~ 2tkS

where —1 < ¢ < 1,7 > 0,4 € R. Thus R(0) = —1, and so we are in the generic
case. Again, we put p(k) = R(k)e** 4+ and note that pas(k) = € e?*(4+~%) Then
the method of Section 4 gives
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1 ¢ e2ik(A4—8)

a(k) = ﬁ, b(k) = -«—-\/1_:__——-——«—:3—-—

Also, v1 = ¢, by = 2(A4 — §), and thus, from (3.4) and (3.14) we obtain

1 — e~ 2k(y-w)
v Y <Y,
Ji(k,y) = { V1-—¢? yeu

1, Yy >y,

Z] =
¢ —y(1 4 €)e™7EH) 2 4 2y > 0.

The Marchenko equation (3.18) takes the form

hi(t,y) =0, t>0, t+2(y—v1) >0,

-[t+2(y—wv1)]
Bt )+ ehi(~t =2y = ), ) =y (1 + ) x| 1 hu(s, y) ds
0

1
_ 7(1 + 62) 2=l 50 ¢4 2y —y) <0,
vVIi—¢€

and its solution 1s

Y t>0, t+2(y—w)<0.

V1-e2'

0, t>0, t+2(y—w)>0,
hl(tsy):

By (3.15), we have X;(0,y) = f;° hi(t,y) dt, and hence

1) y>($

1—e—2y(y—9) <§
(5.4) Zl,l(o,y):{ V1—¢? o YsS

Thus (3.31) gives
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é
~ _ dz 290 -1-—c¢
(5.5) Gi(—o0) =46 - /_oo 702 o :

Therefore, G;(—o0) = 0 if and only if 2y§ —1 — € = 0, and, by (3.33), this happens
if and only G(—oc) = 0. Furthermore, by (3.34) and (5.5),

296 —1—¢

(5.6) Hy =

From (3.25), setting z = z;, y = y1, and using y; = § — A4, we obtain

é T
dz 1 dz
5. ————=H
(5.7) [wzmmdz *[wﬁmz2

If Gi(—o0) # 0, then using (5.5)-(5.7) yields

o odz (14€)Gi(—0)
(58) | i i

This is the equation for z, provided G1(—o0) # 0. Since the left-hand side of (5.8)
is strictly positive, it is necessary that G;(—oo) and 296 — 1 — € have the same
sign. Otherwise, a solution of (5.8) does not exist, and there is no function H(z)
for the given reflection coefficient. Also, if Gi(—o0) = 0 and 29 — 1 — ¢ # 0,
or, if Gi(—o0) # 0 and 296 — 1 — € = 0, then a solution does not exist. This
again illustrates the remark made below Theorem 3.3: Q(z) and R(k) may be
incompatible. However, if both G;(—o0) = 0 and 296 — 1 — ¢ = 0, then H, is a free
parameter and z; is determined in terms of Hy by (5.7). This illustrates the case
with Gi(—o0) = 0 in Theorem 3.3. Moreover, in any case, if H(z) exists, then, by
using (3.25) and (5.4), we obtain

L T>z
fl(O)m)z’ 1,
(5.9) H(z) = 1—¢ [°L dz/fi(0,2)?

70,2 [T e/ R0, 22 ©
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Using

N dz
F0.2) = 1109 £010) [ 2,
we can write the second line of (5.9) as

(1 - &)[£:(0,2); £,(0,2))? JZ1. dz/fi(0, 2)?
2y f(0,2)2

H(z) =

r <.

We see that, as in Example 5.1, a condition like (3.28) is needed to ensure that
H(z) obeys hypothesis (H3).
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