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ABSTRACT

A study is made of the integro-differentiael equatiaon

. roo
Wdpix,ul + ¢lx,pi = Plx,vi¥{vwldy + Flx,p)-
dx -
(JexcTe+™]),
-1 |ﬂN
For ¥(u) = 7 ‘e

ized BGK model: for ¥(ul) = fc(ul<1l, ¥ul = 0 Ciuf>1)

this equation arises in the linear-

it describes neutron transport in a slab with isotro-
pic scattering. With the help of the existing theory
of convolution eguations sclutions of various bounda-

ry value problems are obtainhed. The auxiliary func-
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76 VAN DER MEE

tions appearing in these sclutions are shown to satis-
fy certain X- and Y-agquaticns. A rational approxima-
tion method for the computation of these X- and Y-

functions 1s explored.
INTRODUCTION

The analogy of the linsarized BGK equation in the
kinetic theory of gases and the neutron transport e-
guation in a slab with isotropic scattering is well-

known, nmwnwm:mzwé.w 3.4

and Kaper have expleited this
analogy to solve a half-space problem.

A mathematical replica of the one-speed neutron
transport equation can be found in astrophysics. Far
finite optical layers with isotropic sgcatterding this
replica, the eguation of transfer of unpolarized ra-~
diation, has bean solved in terms of so-callad X- and
Y-functions by wanmﬁnmnawm:m and njmgnﬁmmmXJmﬁm. By
applying the existing theory of convolution equations
Van der zmmm has given a rigorous derivation of this
solution.

The linearized BGK eguation in a fipite comain,
with beoundary conditions as for the finite-slab pro-
blem in neutron transport theory, constitutss a well-
posed Uwonwmam. Special caeses of this problem, de-
scribing plane Couette and Poiseuille flows between
parallel plates, have been solved by series expan-
mwo:mhém. In this article we solve in a mathematical-
ly rigorous way a few boundary wvalue problems in &
“finite domsin in terms of X- and <:+c:mwwczm. includ-
wHJm:w:w neutron transport squation with isotropilc

"seattering and the linearized BGK eguation for plane-
Calette and Poiseuille flows.
._.H.H: radiative transfer the X- and Y-functions have

mm.mnmz thoroughly dnvestigated by mcmcﬁmnmmgé and Mulli-
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12,13 . o
kin , Here in a general context stability proper-

ties of such functiocpns are established and a rational
approximation method for their computation is offsred.
This method has been inspired by work of 3mmmo:AL on
Chandrasekhar's H-equation.

In the first two sections the linearized BGK and
neutron transport eguations are stated and shown to
be esquivalent to a convoluticn eguation. To make this
paper sslf-contained, in Section 3 we review the,
existing thecry of convolution equations. In Section
4 we apply this thesory and reduce varlous opoundary
valug problems to the calculation of X- and Y-func-
tions. Gensralizations of these functions are studied
in S$ection 5. In the last two sections for these gene-
ralizations and for H-functions stabillty properties
are established and their computation by .rational ap-

proximation is sxplored.

1. Statement of the problem

The linearized BGK and neutron transport sgua-
ticns in a finite domain can be written in the form

of the operator differential equatieon

(1.11] (Tl (x) = -{I-BlYix) + fix]

(0<x<T<+m]

on a suitable Hilbert space H. For the neutron trans-
port squation one takes H = hmmaA\+Au and defines the

vectors ${x) and fl(x} and the operators T and B by

(1.2a) PixI(p) = Yix, 4, Flx)(u) = Flxapls

(-12us+1)

+1
(1.2b)  (Th)(u) = unhlul, (Bh)(u) = it % hividv;
-1
we restrict ourselves to nomn-multiplying media where
0sc=1. For the linearized BGK =squation one takes as H

the Hilbert space hm TEUD of all scalar functions on
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78 VAN DER MEE

the real line that are square integrable with respect

to ﬁijSmmmzwm 0 with Radon-Nikodym derivative dp/dy =
1

=5 U
e

m ; this Hilbert space 1s sndowed with the inner
product
t +oe 2
= (viftude ” dvs hoh el (R)
(1.3) Ajé.jmv m j; 7 : pho€es o'

-

One takes the vectors Y(x] and f(x) in hm:ﬂub as 1n

(1.2a) and the operators T and B on hmﬁ%u as follows:

oo cmo
(1.48) 0, = {nel,(R) vihiv)|%e © dv<tel;
-0 Im. o |CN
(t.4b) (Th)(p) = unCp), (BR)(p) = w ° nivle dav.
-0
Here Da denotes the domain of the upbounded operator
T. For both models by a solutien of Eg. (1.1) we mean

a vector-valued function Y:(0,T) + Uq c H such that

Ty is differentiable on (0,1} in the strong sense and
{(1.1] holds.

Tc impose boundary conditions on £g. {(1.1), both
in hMm-@.+4u and hm25u one defines the orthogonal

p
projections m+ and P_ by the formulas

#

(1.8 (P, n) (W) (P_nllu) =

0, p<0; h{ul, uw<d.
For given ¢ « DH <« H we impose the boundary conditiaons
(1.81] 1im ﬂ+eﬁxu = P,b. lim P_gi{x) = P_¢,

x¥0 x4+

where the limit is taken in the norm of H. For H =
hmmt+h+éu one gets the finite-slab problem of neutron
transport theory. For H = rmﬁmuo. f(x) 2 0 and ¢(u) =
-sgn U one chtains the linegarized BGK problem far a
plane Couetts flow between umwmpwmp uwmﬁmmm“ for H =
nmﬁwuu. Flx,p) 2 -ik and ¢fu) = 0 one has the linear-
ived BGK problem for & plane Poiseuille flow between
parallel nwmﬂmmgo. Here k 1s some dimensionless con-

stant.

i
i
|
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As an operator differential eguation of ths form

(1.1} ﬁmwmnm has dealt with the linearized BGK sgua-

tion. For a large class of inhomogeneous terms f and

r
modified version of) the boundary value problem {1.1)

svery function ¢ € D_.< hNZﬂuD he showed (a slightly

- (1.8} to be well-posed. The analogous result for the

neutron transport squation in & non-multiplying slab

. 7 .
is due to Van der Mee . For a non-conservative slab a

related result has been announced Dby Imammwnncwrgm.

2. Hermitian admissible pairs

The analogous form the linearized 8GK and neutron
transport equations have suggests an abstract treat-

ment of the gperator differentiasl squation
(2,11 (TY)'(x) = -(I-Blg(x) + FIx), Oex<T<+o,

whers the operators T and B a2re defined on an abstract
Hilbert space H and have specific abstract properties.

More precisely, we require (T,B) to be a hermitian

admissitle pair on H, i.e.. a pair of operators
T {H + H) and B: H + H with the following properties:
{C1) T is a (possibly unboundsd) self-adjoint

operator on H with a trivial null space;
{(ceg) 8 is m.ooanmoﬁ and self-adjoint operator on
H;
(C3) there exist 0<0<1 and & bounded aperator
G: H > H such that the range {Ox: x ¢ H} of
the aum%mwow D is contaimad in the domain of
_4_9 ang
5 = |1i%.

To formulate boundary conditions to Eg. (2.1]) we
define two projesctions n+ and P_ on H. According to
the Spectral Theoram there exists a wunigue resclution
of the identity £ of the self-adjoint operator T such
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that T = [AE(gA). Put P_ = E((0,*=)), £ _ = E((-%,0)]),
Then m+ and P_ are the spectral projections of T cor-
responding teo the parts of the spectrum of T an the
positive and negative real line, respectlively.

Since T is assumed to have a trivial null space, the
projections F and F_ are complementary. With the help
‘of these projections we now impose on Eg. (2.1) the

boundary conditions

(2.2} im P oy(x) = P ¢, lim P _y(x) = P_¢.

x+ 0 xtT
Here ¢ is a given vector in the domain D.ﬂ of T. By a
solution of Eq. (2.1} we mean a vector-valued function

P (0,7) ~+ Gq

(Q,T) in the strong sense and (2.1) holds.
7

c H such that TY i1s differantiable on
In an earlier work’ for bounded T hermitian ad-
missible pairs were introduced and for these pairs the
boundary value problem (2,1) - (2.2) was studied. In

7 and for bounded T thie problem was provad

this work
to be eguivalent to a vector-valusd canvolution egua-
tion. To formulate this equivalence theorem (and to

state 1t for unbcounded and bounded T as well) ws nesd

the nction of a prapagator function., By the propagator

function of a hermitian admissible pair (7,8) on H we

mean the function H from the non-zero part of the real
line into the algebra of bounded linear operatars on

H defined by

+
ﬂ-Am;x\w

+T '@ pos ot Eldt), x>0;

Hix) = -1 05

- t

-l

(2.3]

“1eT® % ag, x<0,

1
—
L]
el

1

Eijm € denotes the resoluticn of the identity of the

self-adjoint operater T.

THEQREMN 2.1. Let D<t<+w, and let (T,B) be a her-
mitian admissible pair on H. Let w: [C,t] » D, < H be
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a continuous function such that Tw g differventiable
on (0,T). Then an essentially bounded (strongly meq-
ms%awwmgm; vector-valued function ¥: (0,1} + Dﬂ < H

8 a solution of the convelution equation

(2.4) 900 - [THOx-yIBU(y)dy = wlx),  O<x<T,

if and only <f ¢ is strongly diffeventiable and sa-
tisfies the equation

(2.5a) {T)'({x) = -{I-BIblx)-+ {Tw)'{x] + wi{x)(0<x=<T)

with boundary conditions

(2.56) 1im P _yi(x) = P wi0), lim P _#(x) = P_wlT].

x+0 XAT
The procf of Theorem 2.1 is the same as the proof
in the case when T is Uac:amngu. In the special case

whan £ 2 0 and ¢ ¢ D, the boundary value problem (2.1)

T
- (2.2) 1s squivalent to the convolution equation
(Z.4) with right-hand side
- mauxuqeg

-xT P& - e P 9,

(2.8a) w(x) = & 0S%XsST.

If ¢ = 0 and #(x) = |T|¥g(x) (0<x<t) for some OD<y<1
and bounded continuous fuhction g, then the boundary
value problem (2.1) - (2.2) is equivalent to the con-

volution eguaticen (2.4) with right-hand side

(2.66) w(x) = fTH(x-y)fly)dy, Osxst.

If ¢ = 0 angd f(x) = ¥ € H is constant, then the pro-
blem (2.1) - (2.2)] is equivalent tc the convelutilon

ggquation (2.4) with right-hand side
-1 B -1
T xT _ mmd X)T U-wx.

(2.82) wix]) = —Hum P
The operators T and B8 in (1.28) (resp. (1.4)]

form & hermitian admissible pair an hMmlA.+4u (resp.

< W
. O=x=T.

hmZmunu with bounded {resp. unbounded) T. By Thsorem
2.1 the concrete version (1,1) -~ (1.8} of the abstract
boundary value problem (2.1) - (2.2]) 1is esquivalent to

a convolution equation.
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3. Convolution sguations on the finits interval (0,T)

In the previous section the linearized BGK equa-
tia0n and the neutron transport eguation with isotropic
scattering were stated to be squilvalent to an equation

of the form

(3.1 yix) - Dhaxﬁx,<umeﬁgua< s wix),  O<x<T<+®,

where H{.) is the propagator functicn of & hermitian

admissitle pair (T,B). In both instances the operator
B has the spscial faorm B = ¢<.,e»e, whare e is a vec-
tor of unit norm, <.,.> denotes the inner product and

cmamégm. In fact, for the linearlzed BGK (resp. neu-

_tron transport) egquation one has elpul = 1 {resp.
elp) = 3v/2) and =1 (resp. ¢ € [e,1]Y, In view of

{3.17) 1t is clear that
(3.2) Pilx) = wlx) + © O%aAeﬁ<u.mvxmx4<uma<. 0<x<T,

and hence Eg. (3.1) is easily reduced to the scalar

convolution sguation

<Plx),e> - ¢ oaaArﬁx-<um.mvaeﬁ<u.mva< =
(3.3)
= <wi{x).e>, 0<x<T.

It appears that the kernel c<H(.le,e> of Eq. (3.3) 1s

an even function. In particular, fer O # x ¢ IR one has

= alel, 13
H e e Ty, , for the

neutron trensport equation;

+00 2

- - -z % -1/ Z
2 z Am _ _m / d

\ 0 the BGK model.

(3.4) <H{x)e,e> =

z, for

Sg in this section we review the existing mathematical

of convolution eguations of the form
{3.5) (%) - oaaxﬁxlzuxﬁzwa< = rix]), 0<x<T,

whare k: (-1,+T) = £ is an even function such that
VAR INC LI R
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THEOREM 3.1. Let O<t<+o, and let k ¢ ﬁgmta.+au
be an even function. Suppose that the convolution

equation
(3.8)  £ix) - JTKix-y)Elyldy = kix)  (O<x<t)

has a sclution £ ¢ hAﬁm.aH. Then this solution 18
unique. Fuvrthear, for every isps+w and every § ¢ ﬁnﬁosay
the convolution eguation (3.5) has a unique solution

Y in puﬁm;awu namely
(3.78) Y(x) = rix) + oaﬂ@ﬁxh<unhzwa<. D<x<T.

Here the resolvent kernel &(x,y) 13 given in terms of
the funetion £ by

Ellx-y[) +
minix,y)
(E(x-2z)Ely-2z)-F(T+z-xi5(T+z-y)}tdz;
0
(3.7b)  &(x,y) = .ﬁmm_xlv.__w . {(0sx#AysT)
T
{E(z-x)Elz-y)-E{T-z+x1E(T-z+y) }dz,
max({x,yl

In the present form this theorem is due to

Gohberg and wwamgmchA.

Assume the conditions of Theorem 3.1 to be ful-

filled. Lat n be the unigue selution in rgﬁo.ﬂv

_ T, U
land thus in L_(0.,7)) of the convolution eguation

X/

(3.8a) za.tﬁxw B DﬁﬂrﬁXa<u3ﬂ (yldy = &

M
Jex<T, O#uel .

As k e h;mza.+au and n ¢ L (0,73, it fellows that

T.W

n, " can he extended to a cantinuous function an [O,Th

Put

(3.8b)  X(u) = ng cﬁgw. Y(u) = N thaum 0fusl.

Then a straightforward application of Theorsm 3.1
(especially (3.7b)) shows that
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T ooy
X(u) = 1 + e Y ME(y)dys

0
~T/u T -(T-y)}/u
Y(u) = e * 2 Elyldy.
0
So ¥ and Y are analytic on [/{0} and at infinity and

(3.8e) viu) = e TMx(-wy.  oruet.

A useful Hamzﬁuwzmm relating the resclvent kernel to

the functions X and Y is
T T _

— mixx¢ﬁm|xxt * % = z\tmﬁx.<uu< dx =

0

(3.3a) 0

1

uv :
ey LXIXDVY - YEUIYivil.

With the help of [(3.8c) one easily derives from it
the idantity

T T _

mtha-xu\cﬁmix\t + e <\tmﬁx.(un< dx =
(3.8b3 0 0

= HY - Y .
T {y(vixim X(w)y(pll}

Note that X({eo) = Y(w) = 1 + oHamﬁzun<. Taking v = ®
in {3.%a) ones gets

T T

[emx/1 e Y/ Mgk, y1dy |dx =

_..m
(3.8¢) O 0

px{ed{xipn) - v(ull.

4, Splutions of boundary valuye problems

Tn this section we apply Theorem 3.1 to the con-
voluticon equation (3.3). Certain boundary valuge pro-
blems that are equivalent te Eg. (3.1) will be solved
here in .terms of X~ and Y-Ffunctions using the connsec-
tion (3.2! betwesn solutions of Eqs. [3.1) and (3.3].

. First we consider the scalar sguation (3.3) and

show that Thearem 3,1 applies to if. Recall that the

LINEARIZED BGK

._n.
kernel k(x) def c<Hix}e,e> (e is a vector of unit norm

and 0<c<1) is an even nonnegative function (ses (3.4)).
Further, the norm on hAﬁoheu {and alseo on ruha.auu of
the integral operator x b m%arﬁ.:zuxﬁzua< is @stil-
mated above by

+x 2
c — z (1-e NaunN. faor
1

wa “ T neutron transport;
kiylidy = 2 k(yldy = , e g
- 0 27 2 e ¥ ﬁé-m=A\zuaz.
0% ¢or the BGK model.
- _t 2
Since o A%+8N 242 = ¢ < 1'% ang 2m MDH+8m Ydw o= 1,

for 0<T<+% bgoth expressiens at the right-hand side are
strictly less than 1. So for kix} = c<H(x)s,e>
Eq. {3.6) has a unigue solution & in héhohau. Clearly
is a nonnegative function.

Using {3.2) one concludes that for every 1<p<+w

and esvery strongly ammmcmepmém right-hand side w of

Eq. (3.1) with jlol.1]] « hnﬁo.au there is a c:mmcmmm<
soluticn % of Eg. (3.1} with the property that § is
strongly measurable and fJYl.)]| ¢ ﬁumo.au. By (3.,2)
this solution is given by

X

i\_ - -
wlx,u)+cu e {x <w\tA£H<u_mva(. W=0;
(4.1) wix,u) = 0 _
-7 -(x-yl/u
wlx,u)-cu 2 <wlyl,e>dy, u>»0.
%
In neutron physics V2<P(x),e> = aAH+Aehx.tunt repre-

sents the (angular-averaged) neutron density; in kine-
tie thaory <Pix),e> = ﬂawl85+8ehx.tum-t~at rapresents
the mass velocity., The function <y(x},e> can be calcu-
lated by solving Eg. (3.3) with the help of Theorem
3.1. DOne gets the solution § in the form

(4.2} T T
o <wlyl),e>tHix-yle #+
0 D

Slz,yIH{x-z)epdy.
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Formule (4.2) will be our starting point for camputing {sge (2.B8¢))}. Using (4.2} - (4.3) and the identities

solutions of various boundary value problemsy in all : (3.9a8) - (2,9c) ane gete
caces we calculate P(0,p) and Ylr,ul. To shorten no- i

At
: (Q,ul = 1 - T -
tations we define & function Y by v H ﬁ ® Dt

| o
L .y ® | -1
Yiu) = T ‘e E ., pelR: (BGK model) H VIO RS IR A AR SELTORE SR S RIVDR AEITR 3 A SV D oAV
-0
(4.13) . [4,5a) + fu<0)
ic, RS TE =X ) {X{-u)-¥Y(-u) { -
Yiu) = (neustron transport) ¢ H H M&A Flvixlvldy
0, we=-1 or ux+t. +8m -1 ﬁ
-0 ovilv-p) Y HIXI-IKIvi-YI(- ;
First we consider the boundary value problem 0 " " “ (-udy vl ixtviov:
(2.4) - (2.2) with ¢ ¢ Dy € A and f = 0. Then tne it = -2 My -
right-hand side w of Eq. {3.1) has the form oo
-1
- _ S vlven) Y I {X YY) =X Y
oix.ul = e x\te:i (uz0), M e um u (V)Y(pllylvidy +
oo fT-x1/u : . 5b +1 (u=z0)
wlx,u) = e ¢lpl (u<d) m “X ) {X () =Y (1)} Yivlylvidy -
! -1
(sze (2.65a)), Using (4.2) - (4.3) and the identities ! 2} ]
(3.9a) - (3.9b}, and applying Theorem 3.1 ocne gets j -0 viv-u) XX -y (Y E-v T b (vIdy,
i -0
Wia,ud = ¢lu) [uz0), $lr,u) = ¢(n) (w<0) and . ]
: Within the linearized B8GK model & plane Couette
wie, ) = e Hpan - A _ N .
! : filow~ is describea by Egs. (2.1) - {2.2) with T and B
0 : : -
(1.4a) ﬁ Vv TV I X (=) Y (-9 =X (-0 Y (- T (vdy se in (1.261, Fix] =0 and $lu) = -sgn by a plane
BRI (1<0) J Pplseullle flow is described by the same equations.
el vt T T o X - X Y =Y () Y (0 T v v , but with ¢{uw). 5 0 ang flx,p} % -ik, Here k 1ls some
0 Y , dimensiaonless constant., To cbtain P(0,u) and PIiT,u)
Plt,u) = = Gl + ; for a plans Couette flow one substitutes ¢(uW) = -sgn
+0 : . \ -1 -1
- int 4., " - = -

(4,48« viv-p) WV IX(RIY (VI =X (V)Y (uI e (v)dy + nte (.41, writes VIv-u) Torowlv-w) o, employs
0y y . (u20) {(5.12a2) - (5.12B), (5.16) - (5.17) (to be derived la-
+i viv-i) Y {X(uIX(=v)-¥iplyY(-v)telvidy, ter in Section 5) and obtains

-
=1
0. = - o - -
For neutron transport these formulas have bgen derived , w0 T {rex=) X v -u) ] (u<gl,
. 7 : 4 Pplo,ul = -1 (uz0);
in this way before by Van der Mee’; they agree with -1
N : (t, = -
..ﬂmumﬁmn formulas found by mmwﬁonjzmmnumﬂmm.m. ) : v ul 1 1] FOXtui Y ()] (=01,
. Secondly we consider the boundary value prcblem PiT.H) = e HtAOW.
{2.4) - (2.2) with ¢ 3 0 and f(x) = ¥. Then the right~ : To compute P(0,u) and Pl(T,u) for a plane Poissuille
Fand side w of Eg. (2.1) has the form flow ane substitutes x(u) = -1 into (4.5), writes
-1 -1
. : viv-p) = 7 + ulv- . . -
i) = {1-e7 Mg tu) (uz0), | ) Wlv-ul . employs (£.12a) - (5.42B),
- : .16) - (5.17) d tai
wix,u) = ﬁ;-mha xu\thhtu (11<0] and aobtains
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Wl0,u) = {1+(2c-1)% (o) F{X{~u)-YEi-1)] {u<0}),

Wlo.uw) = 0 (L20); ﬁ
wiT,u) = {1+0(2c-11%{ea) JIX(p)-Y (W31 (u=071,

Ylrt,p) = 0 {u<D).

,m. X- and Y-functionsa and the esguations they satisfy

Ta generalize the X- and Y-functions of the pre-
vious section we consider the Banach space 2m<mo.+8umm
of all functioms f: [0,+®] » { of bounded variation I
that are continuous on the right and satisfy f(0] = 0.

This space is endowed with the norm
0
V{f) = mcvﬁrmé_ﬁﬁuxuuﬁhmruﬁ"Dmm;AUAmmmAgNm...Acgm+8ugﬁzr

.w:m number V(f] is usuaslly called the total varilation

of f. To every f ¢ NBV[O,+x] ons associates a disper-

sion functicn >Jn and an expcnential integral function

mwﬁ. defined by
Past)
A (kY = 1 - 2A? % ;
£ 0 2. 42
(5.1) v
Ei (2) = % cte 2l ey, o= zem.
0

Let S, denote the part of [-«,+w] where f(t) or f(-t)

is non-constant. Then >m is analytic on the Riemann- W
£ Further, >ﬁ is continuous on the W
extended imaginary line with >*ﬁmu = 1 and bﬁhsu = M
1 - 2f(+=)., Also

sphere cut alang S

(5.2) A (h) = A (-2)s  AL(R) = Ag(2). &
3o for real-wvalued f the functian h.fu is real-valued on
the imaginary line and cjuﬁ/mm. Lf F(t) denotes the
total variation of f on [0,t] (so that V(F) = V{f)),
then

+OQ +cO +8I\_ ! \ﬁ
.ﬁm.wmu _mwﬁﬁmu_aNmm % % ﬂmNuNamﬁﬂuum<mmuum<ﬁﬁun+s_
o o
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T T -1 -2/
ﬁ |E1,02)]dz < 2 % % t™ e “ “dzaF(t) =
-T 004
(5.30) w
2 % (1-6 " Fyar (t) £ 2V(F) < v
a

The connection betwesn >Jq and mwﬁ is given by

(5.4) A A) = 1 - % mN\ymHﬁHNuaN. mmyua.
—ca

THEQREM 5.1. Lat f ¢ NBV(O,+w]. Then the follow~
ing four mwaﬁmsmxww are equivalent:

(1) the dispersion funciion A, does not vanish on the
extended imaginary line;

(2) there exisis a (unique) continucus function H, on
the clogsed right half-plane that <s analyiie on
the open right half-plane, does not vanish, has
the property H,.(0) = 1 and satisfies the identity

.ﬂ
_ -1 -1 _ .
{5.5]) >¢Hyu = Iﬁﬁyu Iﬁﬁuyu . Re A = D;

{3) there exists a (unique) solution mJO in ﬁgﬁoh+8w
of the Wiener-Hopf equation

+ 02

[(5.8) m+ﬁxua % mwmﬁxucumﬁﬁ<un<u mwﬁﬁxu (D<x<+®]);
0

(4) for every 1<ps+x and I « huho.+8u there 18 a unigue

solution ¥ n ﬁuﬁo.+3u of the Wiener—-Hopf equation
+ 00

(5.7 x(x)- % muﬁﬁx-zuxm<uuz = £ix) (0<x<+0],
0

+00

Proof. Because % Ammﬁﬁww_nm < +®, this theorem
-0

1s basically known and can be derived from the theary
of Wiener-Hopf equations developsd by xqmw:mm.mo.
Thersfore, we sketch the proof only. IFf (3} is ful-

filled, then Condition (4} is fulfilled tog. In fact,.

+o0

x{x) = zlx) + 5 mﬁnx.<unm<ua< [Dex<te},
[}
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where the resolvent kernsl mﬂhx_<_ is given by

min{x,y)
mﬁﬁ_x-<_u + . Eolx-2)E ly-z)dz;
aﬁnx.<u = o (0 xmy < +5a)
mﬁﬁ_x-<_u + mﬁﬁwlxumﬁhw-cuaw.
max{x,y)

The converse implication {4) = {3) is clear.
Tf (1) is fulfilled, there exist continucus
functians Iﬁ and xﬁ on the closed right half-plane

that are analytic on the open right half-plane, do not

vanish and satisfy Ihhau = xﬁﬁcu = 1, and there exists
s unigue integer K such that
-1 K -1 i
>ﬁﬁyu = Iwﬁyw (C1+A)/701-A0) xﬁﬁ X1 ., Re A 0.

The index Kk is uniguely determinsd by >ﬁ. So using

{5.2) one has

_ -1 -K -t -
A OA) = K (A) ﬁﬁé+»u\HA|wUu Ho(-A) o, Re A a,
ang thus « = -« = 0. But then K (AR (7" =
ﬁﬁﬁnyfﬁﬁuyu-A- Re A = 0. By Liguville’'s theorem and

"

Iﬁﬁou n xﬁﬁou ugcjmjmm xﬁﬁyuxzﬁﬁyu |A.moﬁmumm
clear. The converse implication (2) = (1} is trivially
established.

If (3) is fulfilled., then Condition (2} 1s ful-
filleg for

+ o0

-t/A
E

W

(5.8) He{A) = 1+ mﬁﬁﬂuaﬁ. Re A 0.

0
The implication [2) = (3) {or (2] = (4])) is a standard
argument that involves the reduction of £Eg. [(5.8) (or
Eq. (5.7)) to a uniquely solvable Riemann-Hilbert

UﬁngHmEND. N

The function ﬁ.fn appearing in (5.5) will bes call-

gd the E|ﬁc:ouwo:. As it will be clszar from £gs. (5.12)

[for T+ +=w), it satisfies the H-eguation
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1 - 1
{5.9]) Iﬁﬁyu = 1 - A (t+A} Imﬁﬁwnﬁhm_.
0

A¢ [-=,0] n mm.
In astrophysics a special form of this eguatlion is
studied and applied Hjﬁm:mw<mw<m,gA. With the H-func-

27

tion in the present form (with f ¢ NBV[Q,+x]) Kreiln
has derived Eg. (5.39) far functions f & NBV[D,+»]

satlsfying Condition (1) of Theorem 5.1.

THEOREM 5.2. Let O<t<+® gnd f ¢ NBV[D,+«]. Then
the follow<ng two statements are equivalent:
(1] there exists a (unique) sclution MH in hgﬁmﬁa_ of
the convolution equation

- T
T }
mﬁﬁxu - . mpﬁﬁx§<um

(yldy = Ei_(x) [(D<x<1);

(2) For gvery 1sps+® and [ ¢ huho.+8u there 18 «a
unique solution ¥ in ﬁﬁﬁc.au of the convoluticn

equatton

T
(5.103 ¥Ix) - % mwﬁﬁxlzuxﬁzwu< = rlx1} {(Dex<T).
0

By (5.3b) and the fact that m.wJﬁ is an even func-
tion, this theorem is immediate from Theorem 3.1. The
solution ¥ of Eg. (5.10) can be obtained using Theorem
3.1.

With f ¢ NBY{0,+»] we associate X- and Y-Ffunc-
tions. Suppose that for 0<T<+~ the first (and thus the

sgcond) statement of Theorem 5.2 holds trus. Put

t ST/ UT

xa‘ﬁmtw = ] + . =] mﬁﬁwuad.
{5.11a} _ T D=pef.

Yoo = e TR g LTTEI M T ey g,

T, T 0 £
It follews from the contents of Section 3 that

Lo f I 7
xa.ﬁﬁtu = je.tﬂou and <H.$ﬁtu = Jd.tﬁau~ where za.t is
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the wunigue solution in hAHohau of the convolution

equation

£ ' £
(5.14B) n tﬁxw - D% mwﬂﬁx;<u;a.tﬂ<_nz = g

T,
{(0<x<T; O=uef).

-%x/U

THEOREM 5.3. Let O<t<+o agnd f ¢ NBV[O,+»]., Sup-—
pose that the conditions of Theorem 5.2 arve fulfilled.

satisfy the non-

Then the functions xa and <a

...m -.ﬂ
linear equations

00

X ﬁtuxa (w)-y ﬁtu<a (v]

(5.12a) % _tw) = 1wy | —2E i t.f RARSETINY
) . v+
oo (g [-=,01n8,)
i X LG0Y_ Lv-y_ X, (V)
{(5.12h) <a ﬁﬁtvu ma\t+ﬁ Tt Tt . f TL.f dfiv),
0 vVoHu
and the linear equations
>ﬁﬁtuxa.ﬁﬁtu =
a0 +00
(5.13a) X (vl _ ¥ (v}
1w | ey - e M LT e,
pf Vo H gb VM
.>%ﬁtu<a.ﬁﬁtu = (TR 4 mmu
(5.13b] o0 s
_ - X o) Y v
L VI Vs VYRS S 5 SR PIA
ol Voru gl v

Pronf, To derive {5.,12a) cne premultiplies (3.9a)
(with k(x) = mHﬁHqu by cuA and integrates with re-
spect to the {(complex-valued) measure on [0,+=x] in-
duced by f ¢ NBV[O,+=], After this the second part of

75.1) is employed to yield

T } T
% Ei (x){e A % e zmtmﬁxh<ua<wax .
0] 0
+ 00
(5.14a) X (X (v)-¥Y (uly {v)
" T, F T, Ff T, T,f df(v),

0 vou

—
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where 6(x,y) is the resclvent kernel of Eg. (5.10).
Next one applies Thegrem 3.1 to Eq. (5.17b) and gets

f

T
(5.14B) Mo (x) = meX\t+ % e z\taﬁx.z_a<‘ 0<x<T.
’ a

H

From (5.11b) it is clear that a%ﬁmHhﬁXHJAﬁcﬁxqu -
:aﬁtﬁou = 1, Together with (5.14a) and (5.14b} this
yields (5.1Z2a). Te derive (5.12b) one proceeds simi-

larly, but starts from (3.8b).

To deduce (5.13) one rewrites Egs. (5.12] as
follows:
00
xa ﬁﬁcu
1T - . df(v] X %Hﬂu -
. vor oy T,
(5.16a) Tmﬂ 20V
LR AT —_—t df(V} <4 ﬁﬂtu = 1;
gd V *H .
% +da ﬁﬁéu (u ¢ m%u
-1 . dfiv]px (ul +
ﬁ v -1 T.F
jul
(5.150) Rt
. V
{1 o+ U St df(v) Y (u) = e a\ﬁ.
T, f
gl ¥ H

With the help of (5.12a) one computss the determinant
of this linear system of equations for the unknown
X (1) and <a ﬁﬁﬁw and gets >ﬁmtu. The soclution of

T, f
the system (5.15) has the form (5.13}. 8

Tt T Y ) s

1+ oaamwﬁﬁuaﬁ. Using [5.12a) (for p+=) and (5.13a)

From (5.11a) it is clear that X

(for W+e) one gets

>
B
il

+o0 +00
1 4+ xa.+m8u D% xahﬁﬁﬁuawmcu - DH «ﬂ.ﬁhcun%ﬁcu 3

] +09
>ﬁﬁ8ux (@) = 1 - oﬁ xa.ﬁHcQaﬁﬁcu *+ Y (vidfivlr.

e
=
[
[
=

A

8
4
—
8

+00
= 0, and for x_ = D% x._....mﬁcua.mﬁcu
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and for y__ = — Y. (vldfiv] aneg has
oo 0 T, T
- _
x = 1 =~ 3X (=) - AL (e)X (e},
= T,f £ T,F
18 s e X fe) o BAL (eI X ()
e e g et

In astrophysics the functions £ & NBVIO, re]
appearing in (5.12} - (5.13) are of a speclal type.
They have the farm

min(t,1)

(5.17]) flt) = ¥luldu, Dete+e,
0

where ¥: {0,711 + 1R is 2 continuous function called the
characteristic function. For this case ths functions

Iﬁ. x,ﬁlq and <H~ﬁ
systematic study of these functions has been made by

o and zcwpurwjgm

have been applied ﬁamncm:ﬁp<m. A
Busbridge for the case when ¥ is non-
nagative and satisfies & H#lder condition. For this
case mCmUﬁHnmmA4 derived (5.13] from [5.12]).
3CHHH7H:AN.AQ found constraints on the eguations (5,12)
and (5.13) such that the functions in [5.11a} are the
unique solutions of the (non-lingar) equations (5.12)
and the {linear) sgustions (5.13) that satisfy these
constraints.

For the linearized BGK model one has f(t) =

3.4 that in this casze

-4 ot -yl
ﬁ .QH e du, Osts+w, It is known
>ﬁ is analytic on £\IR, has a cut on the full real
line, does not vanish on £\IR and is continuous on the
extended imaginary line with & double zero at infinity.

For this case the amﬂw<mnpc:mm

of the constraints for
the X- and Y-eguatians In the conservative case of the
gequaticn of radistive transfer can be repeated. It
: B arfd <a.ﬁ in (5.11a}
are the unigue solutlons of Egs. (5.12) and of Eqgs.

appears that the functions X

{5.13) that satisfy the caonstraints
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6. Stability and rationsl approximation of H-functions

In this section we prove the following stability theo-
rem and apply it to get rational approximaticns of H-

functions.

+ o

Theorem 8.1, Let [f_ 1
n n=1

NBV[O,+=] such that <h%3-+u+ 0 (n++=). Suppose that the

be a sequence 1in

dispersion function does not vanish on the extended

imaginary tine. Then for nzn, the dispersion function

N has the same property and for the H-functione one
n

has

lim  Max [H,
nr+o  R[eAzl n

(A - " .00 =0,

Proogf. On the Banach space PJHD.+SH one considers

the integral cperators xAh xm. .., and K, defined by
+ 0o
(K _hlix] = Ei, (x-ylhlyldy,
n T
0 n
+o0
(Kh){x) = muﬁﬁX|zw:ﬁ<ua<.
g
Using the ildentity mwﬁsu mu% = mne.mj'.m and (5.3a) cne
gets the estimate
+ o0
ik, - Kl = |Ei, (21 - Ei (z)]dz =
o n
+ 03
= |Ei, _ lz)]oz = 2v(F - f).
— n

By Theorem 5.1 the operater I-K is invertible. So for
:w:u the opsrator H|x: is invertible and for the func-
-1
tion mﬁ = ﬁH-x:u mwﬁ
n r

one has
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+oo
HH3 _mﬁﬁxw- mﬁﬁxuuax"g.
n++w n

Using (5.8} (and its analogue for ﬁ:u the thsorem is

clear. (]

Now let g = mﬁﬂA.....ﬁ:“Q ....hQ:w be the follow-

1
ing step function:

(6.1] glt) = 0 HomﬁAﬁAu. glt) = e, ﬁﬁémwAﬁmu. v

g(t) O, e A HwamﬂM+8w.

Here the jump points DAWAAﬂNA...AﬂJM+8 and the jumps

Gpo wves G € f are given. For such g the functions
>m and mHm are of a simple type, namely
i o no o
(6.2) A (M) =1~2A% § D, Ei {z)= ) Ze lz] /¢,
g Eaat-g ® : L.t
m= 1 m m=41 "m

If >m.ucmm nat wvanish on the extended 1imaginary line.
then ’

hy (=)= 1-2 7 a_ = 0,
(6.3) n (A2-x, %) .0 (A2-x 2]

n
A A = (1-2 ) '
) smgga (AP-t, 20 F-e )

“where XgaeeaXy are certain points in the open right

half-plane. Using that Immou = 1, one gets

1 y+ﬁé A+t
(8.4} H_[A) e B, Re Az 0,

& \AINHQ;+...+Q:H y+xA w+x:

where the square root is taken in the open right half-

18

-plane.
Let g € NBV{O,+=] such that >$ doss not vanish on

+
the extended imaginary line. If ﬁm3u3u4 is & sequencs

of stsp functions converging to-f in the norm of
NBY[D,+e], then, according to Theorem EB.1, for 3w:m
the sequence of rational functions ﬁIm u: tends to IJn
uniformly on the closed right :mHﬁauHm:m. In this way
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a sequence of ratiognal approximants of Im is construct-
sd.
14 )
Masson has considered the H-function Iﬁ in ths

case when ¥ € NBV[Q,+=] is monotonically non-decreas-+
ing, constant on [1,+w} (the case nesded for many astro-

physical applications) and continuous at t=1. Assuming
4

Ffl1) = fl+w) < 5 Massocn has proved the convergence to

Im of a sequence of special rational approximants of

the form (6.4}, The method has been stated by him for

F{1) = Fl+o] = W.ﬁncn the convergence proof has been
given for f{1) = fl+w) < mu. Here we extend Massons
method for (1) = fl+=) < 4. but allow a more extensive

[N

class of functions f and rational approximants to f.

7. Stability and rational aspproximation cof X- and Y-

functions

In this section the following stabllity theorem
ig derived and applied to obtain rational approxima-~

tions of X- and Y-functions.

THEOREM 7.1. Let O<t<+w, and let ﬁﬁgumuw be a
sequence in NBV[O,+%] such that <ﬁﬁ:;ﬁu + 0 (

N+ ),

Suppose that the convolution equation

‘ﬁ- .
(7.1 Egix) - Ei,(x-ylE;lyldy = Ei (x)  (0<x<T)
0

has a (uniquel) solution mﬂ in néﬁn~aw. Then for nzng
this equation with T ingtead of ¥ has a unique solu-
tion m% in L, (0,1) and for the eorresponding X- and Y-

Tn
funations one has

lim Max |X (A) - X_ ()| = 0;
n++o Rphz0 d.ﬁj T, f
lim Max |Y (A) - Y_ (M| = a.
n++® RgAz0 a.ﬁ: T.f

As the proof of this theorem is analogous to the
one of Theorem 6.1, it is omitted.
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Now let g = mﬁﬁﬂ.....ﬁzngg.....gs_ be the step
function in (B.1), and suppose that Eq. (7.1) with f
replaced by g has a (unigue) sclution mm in hAHD.dut

are analytic an & \{0} and satisfy

Egs. (5.,13) with ¥ replaced by g. So !
X (t.)
C o ::ng+tmo;fmu-
Ay WX e 55 ﬁu-t
t,)
(7.2a) cosp BTttt ;
I=1 J
::,\Tﬁ:h..:-Jko.f...;:i ,
noo.X (.}
. LT -t/ jt.g 3,
ALY ) s e E t.M e m
1=1 J ”
. . 1. !
(7.2b) +tmpuxf ( %
. b+ ’ :
J=1 i'¥ i
L - ST/K :
Hence, for Na.m xahm * <d.m and numtu 1 + &
one gets
' +
R n Quma-mﬁduu
>m§:fm:: = o W)+ M T 5
j=1 N
(7.3) +
_ na.Z_- (t,)
g MY M‘-t i,
j=1 3
As bm is explicitly given by (8.2), it suffices to

compute the numbers X {(t,} and Y (e,)] (J=t,...,nl,

. Teg .8 ]
or the numbers Z_- (t.,)}) (j=1,....n).
T,8 ]
By (5.2} one has ,
o - FT/H., #
hahmm ul i B Nﬂ‘mﬁtu. |
With the help af (6.2) ons gets i
+ + :
n 2.7 (uy-2_ 7~ (%]
e . T, T,
Na.mntu c, (ul + tuméau T *
* . ¥
(¢.4) . -t/u " Na~mh uJ Na.mﬁnuu
e t.M T ‘
J=1 3
From (7.3) and the analyticity of >m and >m-; in a

neighbourhood of U=0 one sess that Nﬂu

>

(1/1) is an
g H a
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gntire function of order £ T, An easy Liouville argu-
ment based on [(7.4) yields that Nﬂwm is the only solu-
tion of Eq. (7.2) that is analytic on $_\{0} and has
the property that NAWWHA\r_ is entire of order £ T.
Assume that >mm8u = A1mﬁpA+...+Q:g = 0, Then >m

ftas tha form (6.3) far certain numbers %,,...,x_ with

1 n
-if<arg x _=iT [(m = 1,2,....,n). Then A _(x ) = 0 for
m g "m
m=1,...,n. Form = 1,...,n one substitutes u-= X into
(7.3) and gets
n -1/ X c (x )
m
(7.5 ] =t v ] N
351857 m* by, 4 TAED m
(m = 1,.c0.,n).
If the determinant of the matrix
n
(7.51 v o= ik -t Ty m-ixfxa;; ;
B N b M, §=1

would vanish, then the homogenecus version of the 1i-

near system of eguations [(7.5) for the unknown

0,7 % () {1 = 1....,n) would have a non-trivial
JT.g ]

solution, and thus there would exist a solution z» of
the homogeneous version of Eg. (7.3)] that is non-tri-

vial, analytic on ﬁsxﬁow and has the praoperty that
w* (1/u) is an entire fumection of order £ T. Contra-

diction. Hence, the matrices <a»m are invertible.

THEOREM 7.2. Let 0<t<+w, Gosee.,0 nOR-ZEro and

qrrrea ) the step function in (6.1).

g = mﬁﬁé.....ﬁjng

Suppose that >mH8u = 1-2la,+,,,*a ) = 0. Then the con-
volution equation

T E 3
(7.7) £ _(x) - Ei (x-yJE (yldy = Ei (x) [(0<x<1)

g 0 g2 g 2

has a (unique) solution mw in rAMD.Hu tf and only if

of the dispersion function A
+

Ffor the zeros Xgoewaa X

with -im<arg xamwﬁ (m = 4,.v..n) the matrices <a ¢

(7.8) are invertible., In that case the X- and Y-func—

g
in

ttons have the form
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n £, noon.
- -1 lﬂ\t J
(7.8a) X {u) = A () A;+t ) — . g ul ,
T ot At et
g 8 X j=1%; u 151 ,u.,._t
(7.80) Y. (w) = A Gu e THgT¥ m i, m Ty
. .8 g wwugﬁu+u R

wheve £ = 4127 +2 ), n = 15 -7 ) and
n

] -1 “T7 %
J
4 - ((1te u\xbwuné.

Proof. Une part of the theorem has been proved

alrsady and from this part the formulas (7.8) are im-
mediate. To prove the converse part we assume that the
matrices (7.8) are invertible. Then the functions (7.8])
satisfy Egs. {5.13) and are analytic on es/ﬁmw. There
exists £»0 such that for O<lgl<e the convolution equa-
tion (7.7) with g replaced by (1+f)g has a unique so-
lution mﬁguwwm in L,(0,7) and such that the matrices

V {1.2., the matricges (7.8} with g replaced

T,{1+Z3g
by (1+f)g) are invertible. This is a consequence of
the compactness of the integral operator

£ w oaamwmﬁ.\<umﬁ<ua< on héﬂa.au. Observe that

s
T : + 0 as ¢ =+ 0. Hence,

4
-\
tlg T,8

1im  Max _xa“mﬁtu - xa.ﬁé+mumﬁtu_ =

r=+0 Reuz0 _ :
lim Max |V (u} - v (uy] = 0.
r+0 Reuzo '8 Tol1rnie
However, mu:omamwhé+num e Lylo,) (os|g|<e), it is
clear that mﬁ4+ﬂum ¢ L(0,1) (0<|z]<g). Using the

representation (6.3) for >m it follows that X_ o has
the form

T

X tw) = 4w | e PET(x)dx, Re m oz 0,
T,8 g g
where mw € rmho.du. Byt at the same time one has
+oo 2
lim [ X, -1/kd - xa.hé+numhiw\xuw dk = 0,

g0 -

[R—
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T T
iet)g mm:m + 0 as § + 0, From the
latter identity it follows that mw € ﬁgho~au is a

sglutian of Eg. {7.7). O

and therefore __mH

Theorem 7.2 enables us to apply the stability
theorem 7.1 to find rational approximsations of the X-
and Y-functions., To be more preciss, let f e NBV[O,+w]

f4lfill the conditions of Theorem 7.1, and let >+Hsu =
1-2F[+w) = 0, Choose a ssguence Hﬁ:u%ww

tions such that <H%:nﬁu +» 0 as np + +w, Then for n2 Qi

of step Ffunc-

one has \._..j (0] = A|Mﬁ:h+8u 2 0, while the convolutien
gquation ﬁm.uu with g replaced by %3 has a soluticn 1in

héma.au. Thus the conclusion of Thearem 7.7 holds true
and the approximants xa.ﬁz and <a.%j of x.nlﬂ and <a‘*
can be computed on the basis of Theorem 7.2. If aone
would drop the hypothesis >mﬁ8u = gpmﬁQA+_..+Q:u = 0,

than +jmoﬁm3 7.2 has to be modifisd, but in principle

Theorem 7.1 is applicable.

If g = glt,, ... t sa,,...,0 ) is the step function
in (6.1}, then Eg. [(7.7) has the form
n o, T _ _ . n o ~
mwﬁxu - 7 MP e | <_\numwﬁ<ua< ) mm.m X/t
j=1"j 0 j=1"j
[O0<x<T] .

For such eguations, whose symbols (up to a trivial

change of variable, the dispersion functions) are ra-
tional functions, a mathematical theary mmeﬁmNm.mo
that deals with convolution equations of the above

type and their connection to linear systems.
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