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The recovery of the coefficiert(x) in the one-dimensional generalized Schro
dinger equatiord?y/dx?+kH(x)?¢=Q(x) ¢, whereH(x) is a positive, piece-
wise continuous function with positive limitd.. asx— *, is studied. The larg&-
asymptotics of the wave functions and the scattering coefficients are analyzed. A
factorization formula is given expressing the total scattering matrix as a product of
simpler scattering matrices. Using this factorization an algorithm is presented to
obtain the discontinuities ikl (x) andH’(x)/H(x) in terms of the largéc asymp-

totics of the reflection coefficient. When there are no bound states, it is shown that
H(x) is recovered from an appropriate set of scattering data by using the solution
of a singular integral equation, and the unique solvability of this integral equation
is established. An equivalent Marchenko integral equation is derived and is shown
to be uniquely solvable; the unique recovery lbx) from the solution of this
Marchenko equation is presented. Some explicit examples are given, illustrating the
recovery ofH(x) from the solution of the singular integral equation and from that
of the Marchenko equation. @996 American Institute of Physic§S0022-
248896)02606-7

I. INTRODUCTION

Consider the one-dimensional generalized Sdimger equation,
' (k,x) +KPH(X) 24k, x) = Q(x) h(k,x), XeR, 1.9

which describes the propagation of waves in a one-dimensional nonhomogeneous, nonabsorptive

medium, wherek? is energy, 1 (x) is the wave speed, ar@d(x) is the restoring force density.

The discontinuities oH(x) correspond to abrupt changes in the properties of the medium in

which the wave propagates. The prime denotes the derivative with respect to the spatial coordi-

nate, and the coefficientd(x) andQ(x) are assumed to satisfy the following conditions:

(H1) H(x) is strictly positive and piecewise continuous with jump discontinuitiex afor
n=1,... N, such that;<---<xy.

(H2) H(x)—H. asx—=*o, whereH .. are positive constants.

(H3) H—H.eLYR"), whereR™ =(—x,0) andR*=(0,+).

(H4) H’' is absolutely continuous onx{,x,.;) and H"H—3(H")2eL}(x,,X,.1), for
n=0,...N, wherex,=—« and Xy, =+, and L,}g(l) denotes the space of measurable
functionsf(x) on I, such thatf, dx (1+]|x|)?|f(x)|<+.

(H5) Q(x) is real valued and belongs td(R).

The scattering solutions dfl.1) are those behaving like'"=* or e 'kH=X a5 x— +%, and
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such solutions occur wheef>0. Among the scattering solutions are the Jost solution from the left
f(k,x) and the Jost solution from the right(k,x) satisfying the boundary conditions

e MX+0(1), x—+o,
fitkx)=9 1 iy, LK

—ikH_x e —®
.00 e +T,(k) e +0(1), X ,

1 —ikH x| R(k) e
fr(k,X): Tr(k) Tr(k)
e KH-X1 (1), x——o,

kHix40(1), x— +oo,

whereT,(k) andT,(k) are the transmission coefficients from the left and from the right, respec-
tively, andL (k) andR(k) are the reflection coefficients from the left and from the right, respec-
tively. For each fixedxeR, the Jost solutions have continuous extensions to the upper half
complex planeC™, and they are analytic thefeThe reduced transmission coefficierfk), the
reduced reflection coefficienggk) from the right and” (k) from the left, respectively, are defined

as
(k)= \/& Ti(k)ekA= /:—’ T (k)e*A, (1.2
- +
p(k)=R(k)e?kA+  /(k)=L(k)e? A, 1.3
where
Atzifiwds[Ht—H(s)], A=A, +A_. (1.4
0

If #0)#0, which is called the exceptional case, the Jost solutfpf@®x) and f,(0x) are
linearly dependent. If{0)=0, which is called the generic casig(0x) and f,(0x) are linearly
independent, and in this casék) vanishes linearly ak—0. Usually these two cases need to be
analyzed separately, and the smalénalysis of the scattering problem in the exceptional case
requires tedious estimates. However, theX#uat an exceptional case can always be decomposed
into two generic cases is expected to simplify the analysis of the scattering problem in the
exceptional case.

In general(1.1) may have bound states, i.e. nontrivial solutions belonging*(&,H (x)2dx).
Since the treatment of bound states requires many separate arguments, we do not consider them in
this paper. Bound states were already studied in Ref. 1 and further results may appear in the future.
Thus, we assume thgt.1) does not have any bound states. The number of bound statéks Tpr
is equaf to the number of bound states for the Safinger equation,

" (k,x)+ k2P (k,x) = Q(x)®(k,X), XeR, (1.5

and hence our assumption can be restated by sayingihgtdoes not have any bound states.

The inverse scattering problem in which we are interested consists of the recovefy)ah
(1.1 from an appropriate set of scattering data. The analysis of the scattering problem in a
discontinuous medium is the first step to analyze the inverse scattering problem, and we mention
the relevant work™’ of Sabatier and his collaborators on the scattering in a discontinuous medium
in one and three dimensions governed {byx) "2V -[a(x)?V]+k?—V(x)}#(k,x)=0. In Ref. 4
Sabatier estimated the larfgeasymptotics of the scattering data and also briefly discussed the
inverse scattering problem in such a medium. Various authors have studied inverse scattering
problems for differential equations with discontinuous coefficients, as exemplified by Krueger's
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work®~1%and the bibliography of Ref. 1. Of more direct concern to us is the work by Sabarier
Grinberg!''2 Grinberg, in the specigbut still importan} caseQ(x) =0, developed a method to
recoverH (x) using the solution of a singular integral equation; in this special case there are no
bound states, the exceptional case occurs, and the norm of the associated singular integral operator
is strictly less than unity so that the integral equation has a unique solution that can be obtained
through iteration. The general case with nontrivix) and with bound states was analyzed by a
similar method in Ref. 1, and (x) was recovered from the solution of a singular integral equation
under the assumptio@ e L, ,(R) for someae(0,1]. In Ref. 13 the scattering data leading to a
unique solution of the inverse problem were specified.

In this paper, when there are no bound states, we develop a method to ldbxaifrom the
scattering data consisting §f(x), p(k), andH , . As already knowrt? H . must be omitted from
the scattering data in the generic case, but in the exceptional case it needs to be specified in the
scattering data in order to obtakh(x) uniquely; this is also true in the method presented here.
Note also that, in the scattering data, one canAi@e instead ofp(k) and one can also udd_
instead ofH,. The method given here and the method of Ref. 1 have some similarities and
differences. The method used here holds whenéveri(R), whereas in Ref. 1, for technical
reasons, we needé@e L1, (R) for someae(0,1]. In both methods a singular integral equation
is formulated and from its solutiol (x) is recovered; however, in the present paper we exploit
the largek behavior of the reduced scattering coefficients, thus avoiding complications encoun-
tered in Ref. 1 ak—0. A crucial result here is Proposition 2.1, which strengthens the result of
Theorem 2.4 in Ref. 1. From the solutionkat0 of the singular integral equation one find$x)
as thex-derivative of the solutiony(x) of a separable differential equation under the initial
conditiony(0)=0. Furthermore, when the reduced reflection coefficiék) is an almost periodic
function, the singular integral equation of the present paper becomes trivial, and so does the
computation oH(x); in Ref. 1, even this relatively simple case required extensive calculations.

WhenH(x) andH'(x) have no discontinuities, the lardgeasymptotics of the reduced scat-
tering coefficients defined ifl.2—(1.3) are known to be of the formr(k) —1=0(1k), p(k)
=0(1k), and/ (k) =0O(1k). It is also known that each discontinuity Bf(x) contributes to the
almost periodic part of th©(1) terms in these asymptotics. We refer the reader to Refs. 1, 4,
11-13 for details. In this paper we show that the discontinuitiés$’ifx)/H(x) are responsible for
some of theO(1/k) terms in these asymptotics; in fact, we develop an algorithm to recover the
jumps inH'(x)/H(x) from the largek asymptotics of a reduced reflection coefficient.

This paper is organized as follows. In Sec. Il we study the l&rgsymptotics of the reduced
scattering coefficients. In Sec. Il we study the lakgasymptotics of certain wave functions
defined in(3.1)—(3.2). In Sec. IV we present a factorization formula expressing the reduced
scattering matrix as a matrix product of scattering matrices corresponding to potentials supported
on a finite interval or on a half-line and those corresponding to discontinuiti¢$(k) and
H'(x)/H(x). In Sec. V we present an algorithm to recover the discontinuitiesl (r) and
H'(x)/H(x) from the largek asymptotics of the scattering data, thus generalizing the work of
Ref. 13 regarding the discontinuitiesli(x). The results in Secs. Il and IIl are used in Sec. VI in
order to convert a key Riemann-Hilbert problem into a pair of uncoupled singular integral equa-
tions; in this section we also establish the unique solvability of these integral equations and show
how to recoveH(x) from the solution of either singular integral equation. In Sec. VIl we show
that each singular integral equation can be converted into a Marchenko integral equation that is
uniquely solvable, and we describe the recoveryHdik) from the solution of a Marchenko
equation. Hence, the inverse problem is solved by recoveétifyg either by the method of Sec.

VI or by that of Sec. VII. In Section VIl we present some examples illustrating the recovery of
H(x) using the solution of a singular integral equation and using the solution of a Marchenko
equation; we also illustrate the algorithm of recovery of the discontinuitig$’ix)/H(x).
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II. SCATTERING COEFFICIENTS

In this section we analyze the largeasymptotics of the reduced scattering coefficients de-
fined in (1.2—(1.3). Under the Liouville transformation

X 1
y=y= [ ds Hs), utkn- i 2.
the generalized Schdinger equatior(1.1) is transformed into
d2¢(k,
%Jrk%(k,y):wy)cé(k,y), (2.2

where

H"(x) 3 H'(x?* Q(X)
V)= 2003 2 Ho* TR

(2.3

SinceH(x) is assumed to have jump discontinuitiesxatfor j=1,... N, the quantityV(y) is
yndefined atyj=y(xj)._ However,V(y) is _WeII defined in each of the intervaly;(yj+1) for
j=0,...N; thus, the Liouville transformation can be used on each intemxak(, ;) although it
cannot be used oR. SinceH (x) is strictly positive with positive limits ag— *+o, it follows that
Yo=Y(Xo) = —% andyy;1=Y(Xy+1) = + 0. The constants;, defined by

_H(XJ_O)

qj_H(xj+0)' (2.4

correspond to the relative jumps in the wave speed at the intekacesdy; correspond to the
times required for the wave to propagate from the fixed locakie® to the interfaces; for
i=1,...N.

LetV; j.1(y) be the potential defined by

V), yely)yj+a),
Vij+a(y)= 0, elsewhere, 29

whereV(y) is the quantity in(2.3. From (H4) it follows thatV; ;. , € L1(R) for j=0,...N. Let
Yi.ji+1(Ky) andY,.;.1(k,y) denote the Faddeev functidnsom the left and from the right,
respectively, associated with the potentiql; , ,(y). We havé

(

m[1+|j,j+l(|<)e*2ikq, y<y;, j=1,...N, keC",
Yiira(Ky)=1 1,11 _ (2.6)
| t()’1W[1+|0,1(|<)e 2kY]+0(1), y—-w, j=0, keR,
m[lﬂj,jﬂ(k)eﬁky], y=Yjs1, j=0,...N—1, keC",
Yeii+1(Ky) =9 b _ 27
\ m[1““’““(k)e2|ky]+°(l)’ y—+0o, j=N, keR,

wheret; ;. 1(k), rj;+1(k), andl; ;. (k) denote the transmission coefficient and the reflection
coefficients from the right and from the left, respectively, for the potendigl, ,(y). Since
Vjji1€ L1(R), it follows that for each fixeg eR we have
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Yiji1(ky)=1+0(1K), Y[, 1(ky)=0(1), k—o in C%, (2.9

Yepira(ky)=1+0(1K), Y/ 1(ky)=0(1), k—o in C*. (2.9

Using (2.1) it can be shown that the functions defined by

1 iky 1 —iky
njyi+1(k’x)= X) € Yl;j,j+1(k1Y): gj,jJrl(kvX): X) € Yr;j,j+1(k1y)a
(2.10
are solutions of1.1). Let us introduce the matrices
T ik = 7ji+1(KX) & j+a(KX) 0N 2.1
IR ANV 77j,'j+]_(kyx) gj,'j+]_(kyx) ’ J=0, 0N, .
N
k)= Hl F”_l'n(k'xn_0)71Fn,n+1(kaxn+o)- (2.12
It was shown in Ref. 1 that
=1 o k)H_;[O 1]<f(k>-1[°} (213
I R [ v L L F1 | |
/(K) [loa(k) } H
) _[to,l(k) 7o} (219
p(k) ran+(K) | _1{0}
7(K) _{ tN,N+1(k)}y(k) 1) 213
Moreover,
_ 2 o toa(k)
dethona(o0 == g @7 0= w0
Let
1 1 1 1
n—o5 nt—|, n—o5 \/—n__ , (2.19
ez | V) F 2( | ﬁ)
] B e~ 2k
E(k,xn)=[ﬁneZikyn a } (2.17
with g, as in(2.4); let us also defin@(k) andb(k) by
ak) bk N
bk a(—k)|~ i E(K,X,). (2.18

Let APY (almost periodic functions with Wiener nojretand for the algebra of all complex-
valued functiond (k) on R that are of the fornf(k) = EJ?":,wfje'k”i, wheref; e C and\; eR for
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all j and21|f-|<+oo. It is already knowh that the functionsa(k), b(k), 1/a(k), andb(k)/a(k)
belong to AP'. In the next proposition we obtain the largesymptotics of the reduced scattering
coefficients(k), p(k), and/ (k).

Proposition 2.1:Under assumptionéH1)—(H5) we have

1 1 e
T(k)_m—Fo E), k—eo in CT, (219
(k):—@+o 5) K—s + o0 (2.20
P a(k) k)’ - '
. _b(—k) 1
/(K)= 209 +0| 1] ko=, (2.2

wherea(k) andb(k) are the quantities defined (2.18).
Proof: Using (2.8)—(2.10 we obtain
Fonr1(KXnr1—=0) " Ty 1n42(K,Xn 41+ 0)

an+1(1+0(1Kk)) Bnr1e” 211+ 0(1k)) _—
, k—o in CT,

T Bar 1€ (14O(1K)  anaq(1+O(1K))

(2.22
where ¢, and B, are the constants defined (8.16. Furthermore, using2.13—(2.15 and the
fact* that

tjj+1(K)=14+0(1k), k— in C,
rj+1(K)=0(1k), 1j;11(k)=0(1k), k—*co,
we obtain(2.19—-(2.21). |

Proposition 2.1 is an improvement over Theorem 2.4 in Ref. 13, where the error terms in
(2.19-(2.22) were only shown to be(1). We refer the reader to Refs. 1 and 13 for various other
properties of the reduced scattering coefficients.

lll. ESTIMATES ON WAVE FUNCTIONS

In this section we analyze the largebehavior of the scattering solutions (#.2). As in
(5.)—(5.2) of Ref. 1, let us define the Faddeev functidg¢k,y) andZ,(k,y), from the left and
from the right, respectively, associated with2):

Zi(k,y)= \/y e YTIKALE (K, X), (3.1

+

Zr(k:y): V % eiky*ikA,fr(k,x)’ (32)

wherey is the quantity defined in2.1) andA. are the constants ifl.4). Note thate'Vz, (k,y)
ande 'Z,(k,y) are the Jost solutions from the left and from the right, respectivel(2.8f. In
this section we analyze the largeasymptotics oiZ,(k,y) andZ,(k,y).

J. Math. Phys., Vol. 37, No. 7, July 1996

Downloaded-15-Aug-2002-t0-129.74.199.113.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/jmp/jmpcr.jsp



3224 Aktosun, Klaus, and van der Mee: Inverse problem with discontinuous wave speed

The next proposition shows that, for each fixedR\{y, ,...,yn}, the Faddeev functions can
be written as the sum of an almost periodic function and a continuous function, the latter vanishing
ask— in C*.

Proposition 3.1:For each fixed/ e R\{y;,...,yn}, we have

Z/(k,y)=J,(k,y)+0O(1k), Z,(ky)=3(ky)+0O(1/k), k—o in ct, (3.3

where

N
Jiky)=[1 ez“‘y]( H1 E(k,xn))
n=j+

1 .
O}’ ye(yj,¥j+1), j=0,...N—-1, (3.9

J|(k,y)=1, yE(yN,+OO), (35)

Ji(ky)=1, ye(==,y1), (3.6

_ ! 0
‘Jr(kiy):[eZIky _1]<r1_[J E(kvxn)) -1/ yE(Yj7yj+1): j:l,...,N, (Sn

with E(k,x,) defined in(2.17). The product notation i3.7) means thah decreases fromto 1.
Proof: Wheny e (yy, + =), from (3.13, (3.15), (3.21) of Ref. 1 and2.10 and(3.1), we have

Zi(ky)=Yinn+1(KYy),  ye(yn,T=), (3.8

and henceZ(k,y)=1+0O(1/k) ask—o in C*. Thus, we have3.3) with Ji(k,y) as in(3.5).
Similarly, from (3.13, (3.19, (3.22 of Ref. 1 and(2.10 and(3.2), we get

Zi(k,Y)=Yr04(ky), ye(=®.y1), 3.9
and hence,(k,y) =1+ 0O(1/k) ask—x in C*. Thus, we havé3.3) with J,(k,y) as in(3.6).
Wheny e (y;,Yj+1) with 0<j<N-1, from (3.29 of Ref. 1 and(3.1), we see that

Zy(k,y)=[1 OINVH(X)e T} 1(k,x)

N—1
% rgj Fhne1(KXns1—=0) i1 g a(K,Xn4 1+ 0)

1
ol (3.10

wherel’; ;, 1(k,X) is the matrix defined if2.11). From (2.8)-(2.10 we have
[1 OIWVH(x)e ™T; 11(kx)=[1+0O(1k) e 2¥(1+0(1k))]. (3.11
Hence, using2.22 and(3.1]) in (3.10, we obtain
Z/(ky)=3,(k,y)[1+0O(1k)], k—o in C, (3.12
with Jy(k,y) as in(3.4). Similarly, wheny € (y;,y;,1) with 1<j<N, from (3.26 of Ref. 1 and

(3.2), we see that

1
Z(ky)=[1 O]VH(X)e™T; ;1(kX) H Fn,n+1(k1xn+0)1Fn+1,n+2(ern_0))[ﬂ-
n=]
(3.13
From (2.8—(2.10 we have
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[1 OJVH(X)e™T; ;. 1(k,x)=[e?*(1+0(1k)) 1+O(1Kk)]. (3.19
Using (2.22 and(3.14) in (3.13, we obtain
Z.(k,y)=J,(k,y)[1+O(1k)], k—o in C¥, (3.19

with J,(k,y) as in(3.7). Note that for each fixe¢ eR\y,,...,yn} the functionsJ,(k,y) and
J,(k,y) are uniformly bounded it€ ", and hence we see thé@.12 and(3.15 imply (3.3. W

Recall that the Hardy spacét’. (R) are defined as the spaces of all functidiik) that are
analytic inkeC™ and satisfy sup.of”., dk |f(k=ie€)|P<+oe.

Theorem 3.2: For each fixedyeR\yy,...,yn}, the functions Z,(k,y)—J,(k,y) and
Z,(k,y)—J,(k,y) belong to the Hardy spade? (R).

Proof: It is proved in Theorem 2.1 of Ref. 1 that, for each fixedR\{x,,... Xy}, f(k,x) and
f.(k,x) are continuous functions ot in C* and analytic inC™; therefore, for each fixed
yeR\y;,...,yn}, the Faddeev functions(k,y) andZ,(k,y) are continuous itC™ and analytic
in C*. From(3.4—(3.7) we see thaf,(k,y) andJ,(k,y) are continuous i€ " and analytic inC*.
Hence, by Proposition 3.1 we can conclude #®ak,y) —J,(k,y) andZ,(k,y) — J,(k,y) belong to
the Hardy spacéi? (R). o [}

Note that we can also conclude the analyticityGii and continuity inC* of Z,(k,y) and
Z,(k,y) from (3.10 and(3.13, respectively, because the matrices there have these properties. At
first the inverse matrices if8.10 and (3.13 seem to have &1/k) singularity atk=0 in the
exceptional case; however, if any, ,.,1(y) are exceptional potentials, we can divide each of
those intervalsy, ,y,+ 1) into two subintervals such that the fragments on the two subintervals are
generic? hence, even in the exceptional case, fr¢81l0 and (3.13, we can conclude that
Z,(k,y) andZ,(k,y) are analytic inC™ and continuous irC™.

Note that the matrix produdt(k,x;)---E(K,Xy) in (3.4 can be explicitly evaluated in
analogy to(2.28 of Ref. 13. Let us write

A;(k) B;(k)

N
K,X,)=
Il EBkx=lg “iy -k

n=j+1

whereA;(k) andB;(k) will be explicitly evaluated. Thus, we can writ8.4—(3.5 as

J(k,y)=[Aj(k)+e 2 9Bi(—=K)], ye(y; Y1), (3.16

with Ay(k) =1 andBy(k)=0. Using induction, we can show thai(k) ande 2*YB;(—k) both

are exponential polynomials having at moSt 2 terms. All the coefficients in the exponential
polynomials are real constants and all the exponentials are bounded by 1 in absolute value in
C*. For future reference, we ligk;(k) andBj(k) for j=N—-1, N—2, N—-3.

If j=N-—1,
An-1(K)=ay, e By 1(k)=pBy.
If j=N-2,
An-2(K) = ay_jan+ By 1By KON TIN-D),
e?INBy_p(K)=ay_ 1Byt Bn-rane? N TIN-1),
If j=N-3,
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— ik = _
An-3(K)= an_pan—1an+ Bu-2Bn- rane? IN-17In-2)
+aN*ZﬁNflﬁNeZik(yNin_l)—i_BNfzaNfllgNeZik(yNin_z),
ik = iK(YN—1—YN-
e?MINBy_5(K)=an-pan- 18N+ Br-2Bn-1Bne” N1 N2
+ay_ B 1an€KINTIN-D 4 By ey ane@KONTIN-2),
We see that, fof<N—1, the termeZ‘kyNBj(k) is obtained fromA;(k) by interchanging3y with
ay .
In a similar manner, using

E(k,x) 1 E(K,Xy) " t=[E(K,xp) - E(k,x;)] 1,

we can explicitly evaluate the matrix produggk,x,) - - - E(k,x;) appearing in3.7) in analogy to
(2.28 of Ref. 13. Let us write

j
IT Ekxy)=
n=1

C;(k) Dj(k)}
Di(-k) Cj(—k)/

whereC;(k) andD;(k) will be explicitly evaluated. Thus, we can writ8.6—(3.7) as
Jr(ky)=[Ci(k) =€ D;(=K)], ye(y;.¥j+1), (3.17

with Cy(k) =1 andD (k) =0. Using induction, we can show th@t(k) andez”‘yDj(— k) both are
exponential polynomials having at mostt2rms. All the coefficients in the exponential polyno-
mials are real constants and all the exponentials are bounded by 1 in absolute v@alueRar
future reference, we list;(k) andDj(k) for j=1, 2, 3.

If j=1,
Ci(k)=ay, €D (k)=p;.
If j=2,
Co(K)=ayap+ B1Be” V27V, €V2Dy(K) =y By + Bra,e® V2 V0,
If j=3,

Ca(k) = arazas+ B1Braze® V2V + ay B, 8367 Va7Y2) + By apBae® Vs ™YY,
e?V3D5(k) = ayapBat B1B2Bse" V2V + oy Brag€® V3TV + B ap arg@® V3TV,

We see that, foj =1, the terme?*iD;(k) is obtained fromC;(k) by interchangings; with o .

IV. FACTORIZATION

In this section we generalize the factorization formula of Ref. 15 and show that the reduced
scattering matrix corresponding 1d.1) can be expressed in terms of the scattering matrices
corresponding to the potential§ ;. 1(y) defined in(2.5 and certain matrices associated with the
discontinuities ofH(x) and H'(x)/H(x). Using the scattering coefficients introduced(t6)—

(2.7), let us define
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1 Tk
tji+1(k) tji+1(k)
A i1(k)= ' ' , J=0,1,...N, 4.1
J,]+1( ) Ij,j+l(k) 1 J ( )
tiir1(K) by 40(—Kk)
1 ok
7(K) (k)
= 4.2
AO=| 1 | (4.2
(k) 7(—k)
V; v .
aj-i—ﬁ ﬁj'f'ﬂ e_2|kyj
Fi(k)= . J=1,...N, 4.3
Bi— | g2iky, o
I 2ik I 2ik
wherea; and g; are the constants defined (2.16 and
1 H’(XJ-—O) H’(X]-+O)
V= 0 — Aot 0 | (4.9
2\VH(x;—0)H(x;+0) L H(X;=0)  H(x;+0)

Note that »=0 if and only if H'(x)/H(x) is continuous atx;. Following Sabatier's

terminology~’ we can refer td;(k) as a “hard scatterer” and; ; . ;(k) as a “soft scatterer.”

The following theorem shows how the matrices define4ii)—(4.3) are related to one another.
Theorem 4.1: We have

A=AgiF1A 1 FoA 5 FNAN NG 1S (4.9

whereA, A; ;;,, andF; are the matrices defined {#.2), (4.1), and(4.3), respectively.
Proof: Note that we havé\; ;. ;=G;D;, where we have defined

1
_ 0
G- tji+1(K) D—[l _rj,j+1(k)}
Pl ek 1, Loty [
tji+1(k)

Using the displayed equation in Ref. 1 followiit4.4), we can relate\(k) and £(k) defined in
(2.12 asA=G,%Dy,. Inserting the identity matriceS;G; * andD;D; * in the appropriate places
in (2.12, we obtain

N
A=GoDol] [Dn2iln-15(kXn=0) " 0 s 2(kXn+ 0)Gy (G- (4.6

Using (2.11), it can be checked that
D1l n-1n(KXa=0) "' 0 1(K,Xa +0)Gy P =F o, (4.7)
whereF , are the matrices defined {@#.3). Thus, using4.7) in (4.6), we get(4.5). [ |
It is already knowr? that the functiorH(x) given by
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h
_ M+t .
H(X)_f|(_20X)' Xe(Xj,Xj+1), J=0,...N,

hun+1i=H+s hj=qjhjjr1, 1=0,...N,

corresponds to the scattering d&dx), p(k)=—Db(k)/a(k), and 7(k)=1/a(k); as seen from
Proposition 2.1, the scattering coefficients in this case coincide with their asymptotic expressions
as k—=*oo, In this case, the matrix factorization given (4.5 reduces to the factorization in
(2.18. This is because in this casggiven in(4.4) vanishes, and hence the matfix(k) defined
in (4.3 becomes equal t&(k,x;) defined in(2.17); in fact, F;(k) = E(k,x;) if and only if 7;=0.
Furthermore, in this casé; j, ,(y) =0 and hence\; ;, (k) =I; in fact, A; ; , 1(k) =1 if and only
if V;;+1(y)=0. In this case, we also hawg(k,y)=J(k,y) andZ(k,y)=J,(k,y).

Now let us ask the following question. If we choogg; . ,(y) =0 for j=0,1,... N, but still
allow »;#0, what is the corresponding(x)? From the factorization formuléd.5), by letting
Aj+1(k)=1, we can explicitly evaluate the corresponding scattering matrix. In this case, the
correspondingH (x) is given by

1 .
VH(X):a]f|(0,X)+b]fr(O,X)’ XE(Xj1Xj+1)1 JZO,...,N, (48)
1
aN=—ﬁH , bn=0, (4.9

anda;,b; for j=0,1,...N—1, will be determined recursively by using the jumpsHi¢x) and
H’(x)/H(x) according to(2.4) and(4.4), respectively. Using4.8) in (2.4), we obtain

ajf|(0,Xj)+bjfr(o,Xj)
a;-1f1(0x;) +bj_1f,(0x;)

=g, i=1,..N. (4.10

From (4.8) we have

H'(x) a;f/(0x)+b;f{(0x)

H(x) —2 a;f(0x)+b;f,(0x)’ (4.1

and hence front4.4) we get

aj,1f|’(0,xj)+bj,lfr’(o,xj)_ajfl’(O,xj)+bjf,’(0,xj)__ — -
a,_1f(0%) + b, _1F,(0x;)  afy(0x) T b, (0x,) viVH(X; = 0)H(x,+0), J‘l"('"'\"z
41

Solving the linear syster.10 and(4.12 with unknownsa;_, andb;_, in terms ofa; andb;
and known quantities, and usirig.9), we obtain

- _i ijr(O,Xj) H(XJ+O) _ ] _ 1
A1 T T (0] LN an = 4.13
b,_1= b nh(OX)VR(GH0) =)\ o, 4.14

Y [R0X)f(0x]
where[ f,(0x);f,(0x)] = f,(0x)f;(0x) — f/(0x)f,(0X) is the Wronskian, which is a constant
completely determined b@(x) alone. We can also obtain the Jost solutiong fot) explicitly. In
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this case, sinc&/; ;. 1(y)=0, we haveY,;;,i(k,y)=1 andY,,; ;;1(k,y)=1; thus, the matrix
I'j j+1(k,x) defined in(2.11) is determined by using2.10. Hence, using3.8) and (3.10 the
Faddeev functiorz,(k,y) is determined, and usin@®.9) and(3.13 the Faddeev functiod, (k,y)

is determined. Then we obtaf(k,x) andf,(k,x) as in(3.1)—(3.2).

Note that in the above procedure, in c&3x) is an exceptional potential, i.e., if(0x) and
f,(0x) are linearly dependent, if4.8—(4.14 we need to replacé,(0x) by a zero-energy
solution of (1.5) linearly independent of (0x), such asy(x)=f,(0x) % dy/f,(0y)?; with this
choice of #(x), we have [,(0x);#(x)]=1. In the exceptional case, it turns out that although
different choices for/(x) lead to different coefficienta; andb;, the resultingH(x) is indepen-
dent of the choice of/{x). Also note that, ifN=1, it is necessary that the generic case occurs;
however, forN=2 the exceptional case may occur.

V. AN ALGORITHM TO RECOVER JUMPS IN H'(x)/H(x)

In Ref. 13 we described an algorithm to recovéry;, andq; associated with the disconti-
nuities of H(x) in terms of the leading asymptotic behavior of the scattering dala—as~. In
this section we will analyze th®(1/k) terms in the scattering data and will describe an algorithm
to recover the constantg associated with the discontinuities B (x)/H(x) from the almost
periodic part of theD(1/k) terms in the scattering data. The algorithm of Ref. 13 must be applied
first to recoverN, y;, andg; before the algorithm to recovey, is used. In order to use the
algorithm, one also needs to know the valueagfy .., where we have defined

Yi+1
Wjj+1= dz V j+1(2),
Yj

with V; j,1(y) being the quantity defined i2.5. The constantvy y.; can be obtained from a
reduced reflection coefficient in various ways without solving the entire inverse problem. For
example, as we will see in Sec. VII, we hawg . ;=2h,(0+,yy), whereh(t,y) is the solution
of the Marchenko equatiof¥.7) that is uniquely solvable; hence the solution(éf7) at the fixed
pointyy gives Uswy 1.

SinceV; ;41 € L1(R), the scattering coefficients associated wWith . 1(y) satisfy*

1 Wi i1 (1

1+ +0 K

tjeak) 2k
rj’j+1(k)zo(3) Ij,j+1(k): (E
tj j+1(K) k)7t ia(k) k

and hence front4.1) we have

) k_)iwl

), k— *+ o0,

1 .
E ) — T,

W. .
Ajjea(K)=1+ é’i'kHJ-Fo

where we have defined=diag1,—1). Let us write(4.3) in the form

Vi
Fj:Ej_'—ﬂUj’

whereE; is the matrixg(k,x;) defined in(2.17) and

1 ez“‘yJ}

U= .
J —62'kyi -1
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3230 Aktosun, Klaus, and van der Mee: Inverse problem with discontinuous wave speed

Thus, ask— =, from (4.5 we obtainA=E,E,---Ey+0(1/k) and

2|k[A - ElEZ' .. EN] :WO,lJElEZ' i EN+W1‘2E1JE2' .. EN"F ce +WN,N+1E1E2' b ENJ

+ V1U1E2"'EN+ V2E1U2E3“‘EN+ cee VNElEZ.“EN*lUNdl_O(l)'

(5.2
Thus, from(2.18 and(4.2) we see that5.1) allows us to express
1
2ik m—a(k) =A(k)+0(1), k—*oo, (5.2
—2ik ik)er(k) =Q(k)+0(1), k—=*o (5.3
(k) ’ - '

where A(k) and (k) are linear combinations ofvg ;,..., Wy n+1 and vy,...,vy with almost
periodic polynomials as coefficients.
Let us now explain how to computg,. WhenN=1 we have
A(k)=(Wo1+Wiay+vi=Ay, (5.4
e?M10(K) = (Wo 1~ W1 9) B1+ 11=0;. (5.5

Multiplying (5.4) by B; and (5.5 by «;, and subtracting the resulting equations, we obtain

Vl:al_ﬁl [2Wq o181+ a1 Q21— B1Aq]. (5.9
WhenN=2, we have
A(K)=A;+e?k027YIp, (5.7)
e?k2) (k)= Q,+e?k27y1Q,, (5.9
where we have defined
A1=(Wo 1+ Wy ot Wogagartviastvaay, (5.9
0= (Wo 1+ Wy 5= Wag) a1 Bot v1Ba+ voay, (5.10

A= (Wo =Wy 2t Wp 3) B182+ v1Ba— v2Ps,
0= (Wo 1= Wy 2= W3 Brazt via,—vpBs.
Multiplying (5.9) by B, and(5.10 by «, and subtracting the resulting equations, we obtain
ay(Ba— az) va= = 2Wp ga1 B2+ BoA 1 — ey,

and hence

a1 —BrAq
2W, s 4+ — 1.
Y 2,3%232 a
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As can be seen fron.4), (5.5, (5.7), and (5.8), and in general be proved by induction, the
quantitye?YnQ) (k) is obtained from\(k) by interchanging3y with e and by changing the sign
of wy n+1- It can also be shown thak(k) and e?*YnQ) (k) both are exponential polynomials
havmg at most 2~ ! nonzero terms. To computg, for arbitraryN, we letA; andQ); denote the
constant terms in the almost periodic polynomia({&) ande?*YnQ)(k), respectively. Frong5.1)

we have
(EW]]+1+Z )H Qp,
N N1 N-1
i
le(_ZWN,N+1ﬁN+,3NE Wj,j+1+,3N2 —+y Il «,.
j=0 =1 @j n=1
Using
N N-1
BNAl_aNQlZZWN,N+lﬁNj1:[1 aj+VN(:8N_aN)]1:[l aj,
we get

1 ani— BnA,
2w, a + N1
an—Bn NN+ 1ENBN

Iy =
" HJ 1

After obtainingyy , we can recover,_, as follows. The solution of the Marchenko equation
in the interval (yy ,+) yields Vy n+1(y) by (7.9); thus also we have the matriXy y1(K)
defined in(4.1) because it is determined by the scattering matrix of the poteéwgjal. ;(y). Note
that from the unitarity of the scattering matrix corresponding to the potevifial,(y), we have
detA;, J+1(k) 1. Usmg (2.16 it can be shown that détj(k) =1. Thus, we can easily form the
matrix AAy. 1+ 1Fn Y and recoveny_ ; from this matrix, as we have recovereg from the matrix
A. Note that the reduced reflection coefficient from the right associated with the matrix
AANRN;1FNY s given by

_ 4]0
1 OJAAN,lNHFNlM
p[N—l](k):_

(5.11

o
[1 OJAANRN.F Nl{o

Oncewy_, is obtained, we recursively get the remaining_,,...,1;

VI. A SINGULAR INTEGRAL EQUATION

In this section, when there are no bound states, we formulate the singular integral equation
(6.7) whose kernel and nonhomogeneous term are determined by the reduced reflection coefficient
p(k). We also show that6.7) is uniquely solvable and its solution leads to the recoveri ©f).

In a similar manner, we formulate the singular integral equaifob0 in terms of/(k) and prove
its unique solvability and show that its solution also leads to the recoveld/(»f.

For each fixeds eR\{y;,...,yn}, from (5.1 of Ref. 1, we have

Z,(—k,y)}[ (k) —P(k)ezky{zr(k,y)

Z,(—ky) - —/(k)e 2y 7(K) Z(k,y) | keR. (6.1
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3232 Aktosun, Klaus, and van der Mee: Inverse problem with discontinuous wave speed

Using (2.19—(2.21) and (3.3, we obtain

1 b(k)

W &

I(—ky)|_ a a 3i(k,y)

[Jr(—k,y)}_ b(—K) 1 [J.(k,y)}’ KeR €2
~ak) a(k)

Subtracting(6.2) from (6.1), we get

1
Z(=ky)=Jd(—ky)=| 7(k)— ()}Z(ky)Jr [Z:(k,y) =i (k,y)]

a(k)

e?J,(k,y), (6.3

2ik k)
—p(e[Zy(ky) = 3(ky)]=| p(K)+ Z5

1
Zi(ky)+ ak) [Zi(k,y) = Ji(k,y)]

1
’<k>‘%}

Z(—ky)—d(-ky)=

b(—k)

—/(k)e2‘ky[zr<k,y>—Jr<k'V>]‘[/ (0~ & k)

(6.9

Let us analyz€6.3). Using Propositions 2.1 and 3.1 and Theorem 3.2, for each fixedthe
absence of bound states, of the four terms on the right-hand side, we see that the first two belong
to the Hardy spackl? (R) and the last two belong #0%(R); the term on the left-hand side belongs
to H2(R). Let IT. denote the orthogonal projection operators frof(R) onto H2(R), i.e.

*+1 (= ds
(IT~ f)(k)_ﬁj,m k=10 f(s).

Let us define
X(ky)=Z(=ky)=Jdi(=ky), X(ky)=Z(=ky)=J(=ky). (6.9

Applying the projectionlI_ on both sides 0f6.3), we obtain

5 eZi(')yJK',y)), (6.6

Xi(-y) + I (pe Y 7X(-,y))=—TI_

where( 7t )(k) =f(—K). Note that(6.6) is a singular integral equation and can be written as

Xi(ky)+ (2 X)(ky)=P(kyy), keR, (6.7)
where we have defined
1 o ds .
(1 X) (k)= If_mmp(—s)e_z'st(S), keR, (6.9
1 % ds b(s) o2
PRI =5t | 5mirio | PO 2g |5, 69
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Notice that the integral operater, defined in(6.8) is the same as the operator definedsr23 of

Ref. 1. Comparing5.21) of Ref. 1 and(6.7), we see that the kernels in these two integral
equations differ by a minus sign. We also recall that the solution of the singular integral equation
of Ref. 1 is given byX(k,y) = [Z,(—=Kk,y) — Z,(0y) [/[kyH(X)], whereZ,(k,y) is the quantity
defined in(3.1), whereas the solution of the integral equation of this paper is givei6.by. The

factor 1k in the expression fo,(k,y) used in Ref. 1 was introduced to ensure tKatk,y)
belongs to an appropriate Hardy space, namelid®dR) if p<1/(1—a). However, this factor,
while providing the desired behavior &s-, introduced some complications lat=0. With the
present definition(6.9) it is easy to show thak(k,y) is continuous ak—O0 in C* and
X(k,y)=0(1k) as k—c in C*, without imposing any stronger condition oQ(x) than

QelLi(R).
In a similar manner, in the absence of bound states, fi@# we obtain
Ja—2i(1)Y ¢ _ /b —2i(+)
X (- ) I (Fe 2OV 7%, (- y)=—T1_{ | /= = |e 2V, y) |,
which is equivalent to
Xr(k!y)—’_((jrxr)(kly):Pr(kay)! kE R1 (610

where we have defined

0= [T 2, i k
( /rX)( )— ﬁ f_oc m / (—S)e X(S), S R,

b(—s)

a9 e 2] (s,y). (6.12)

/(s)—

P (kv = 1 J'w ds
(kY)=570 ] . s=k+io

The solvability of(6.7) and(6.10 is analyzed in the next theorem.

Theorem 6.1: The singular integral equatid.7) has a unique solutio, e H2 (R) for every
nonhomogeneous term belongingHd (R), and the solution can be obtained through iteration.
Similarly, (6.10 has a unique solutioX, e H2 (R) for every nonhomogeneous term belonging to
H2(R) and the solution can be obtained through iteration.

Proof: The operator”; defined in(6.8) is a strict contraction o2 (R), which is proved in
Theorem 7.1 of Ref. 1. Hencé&.7) is uniquely solvable and its solution can be obtained through
iteration. The proof fof6.10 is given in the same manner. ]

Next we will recoverH(x) from an appropriate set of scattering data. We will consider the
generic and exceptional cases separately because the scattering data in these two cases are not the
same.

Let us first consider the generic case; in this case an appropriate set of scattering data consists
of {p(k),Q(x)}. We proceed as follows. Using the method of Ref. 16, fygk) we getb(k) and
a(k); then from these we gét, {y;,....yn}, @and{qy,...,qn} by using the method of Ref. 13.
Hence, we have; andg; for j=1,... N. SinceQ(x) is known, we also know the zero-energy Jost
solutions of(1.5); these Jost solutions are identical to the zero-energy Jost solutigfislpfFor
example, we can gef;(0x) by using(5.25 of Ref. 1. Next we obtaird,(k,y) using (3.4) and
(3.9). Note thatJ;(k,y) is uniquely constructed from(k) because we already hayg, «;, and
for j=1,...N. From(3.1) and the fact thaH(x) =dy/dx, we have

dy dx

Z,(0y)2 e+ 0007 (6.12

J. Math. Phys., Vol. 37, No. 7, July 1996

Downloaded-15-Aug-2002-t0-129.74.199.113.-Redistribution-subject-to-AlP-license-or-copyright,~see-http://ojps.aip.org/jmp/jmpcr.jsp



3234 Aktosun, Klaus, and van der Mee: Inverse problem with discontinuous wave speed

UsingJ,(k,y) andp(k) in (6.7), we obtainX,(k,y) uniquely. Then using6.5), we write (6.12) in

the form
dy B dx
(X, (0y)+ 30y~ 1+ (007" 613
We getH , from (6.13 as
O _dy/[X,(0y)+J,(0y)]?
_JZdy/[Xi(0y) +3,(0y)] 6.14

o 1O _dx/f(0x)?

Note that both integrals it6.14 converge becaubgin the generic casé,;(0x)? grows likex? as
x——o andZ,(0,y)? grows likey? asy——o. Next, using a generalization of the method given in
Theorem 5.1 of Ref. 13, we obtaiqy,... xy. This is done as follows. IN=1 andy;=0, then
x;=0. If N=1 andy,#0, then we can proceed as in the chke2. If N=2, then at leasiN—1 of

the pointsy,,...,yy must be nonzero. If at least one of these is positive, we can pick the smallest
of them, sayy,. Thenx, is uniquely determined by

Yp dy _ Xp dx
Jo [Xl(O,y)H.(O,y)]Z_H*Jo f,(0x)2’ (6.19

and we recursively determing, , 4, ...Xy Using

Yp+1 dy xp+1 OX
j o [P0
y, [X1(0y)+3(0y)] x, 11(0x)

Similarly, we can determing,_4,X,_»,...,X; . If all y; are nonpositive, then we pick the one with
the smallest absolute value that is nonzégitheryy or yy_,) and find the corresponding by
using the appropriate integral of the fori®.15. Having found eaclx; corresponding ty;, we
obtain y(x) by solving the first-order separable ordinary differential equat®d3 with the
initial conditiony(x;) =y; . Havingy(x) in each interval X;,X; 1), we getH(x) =dy/dx.

Now let us consider the exceptional case. In this case, we cann@b.dggto obtainH . In
fact, for the unique recovery ¢i(x) we need to includé , in the scattering data; otherwise, we
get a one-parameter family &f(x) corresponding to the s¢p(k),Q(x)}. Thus, in the excep-
tional case, we recovét(x) from the scattering datgp(k),H. ,Q(x)} by the method outlined in
the generic case.

Note that one can also recovd(x) from the solution of the singular integral equati@10
using the scattering dat@’(k),Q(x)} in the generic case and usidg’(k),Q(x),H.} in the
exceptional case. One then needs to solve the anal¢@ 1 given by

dy dx

Z,0y? - T 007 (618

with the condition y(0)=0. Note that from(6.5 we haveZ,(0y)=X,(0y)+J,(0y), and
f,(0x) is the zero-energy Jost solution from the rightdf) corresponding t@(x). The poten-
tial Q(x) uniquely determind418-2f (0x), for example, by

fr(O,x)=1+£( dz (x—2)Q(2)f,(0,2). (6.17

Once we obtairy as a function o from (6.16), we recoverH(x) as
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0y)?
H(x)= H—z'(( y)) (6.18
Note that, in the exceptional cad¢, can be expressed in termstdf, by using(5.29 of Ref. 1,
namely,
1-p(0) {1+RI9(0))\?2
H o=, p(0) R (0) , 6.19
1+p(0) | T(0)

whereR% (k) and TI%!(k) are the reflection coefficient from the right and the transmission coef-
ficient, respectively, associated with.5). Hence, in the exceptional case, one canldsein the
scattering data instead bf, because 0f6.19. Note also that in the exceptional cas€0,x) and
f,(0x) are linearly dependent, and we have

R[O](O)

f (0x)= T[T(O)

f,(0%). (6.20
Let f[%(k,x) and fl%(k,x) denote the Jost solutions ¢f.5) from the left and from the right,
respectively. In the generic case we have

dz

f[o](k X) = [f[o](k X): f[O](k x)]f[o](k X)f m,

(6.21)

where the Wronskianf{?(k,x); f[% (k,x)] is equal to— 2ik/T°I(k). Hence, in the generic case
from (6.21), after using the fact thaf{®(0x)=f,(0x) and f{°/(0x)=f,(0x), we have

f i ik . X dz
(0= klinoT[T(k) I(O'X)j—oc f(02)*

VIl. MARCHENKO INTEGRAL EQUATION

In this section we show that the singular integral equat®i), with the use of the Fourier
transform, can be transformed into the integral equaffo” generalizing the Marchenko integral
equatior**8=2%for the one-dimensional Schiimger equation. We establish the unique solvability
of (7.7) and describe how its solution leads to the recoverid ¢X).

Using (2.20 and the continuity op(k) andb(k)/a(k), we see thap+ (b/a) € LP(R) for any
p e (1,+]. We may then write

p(k)——m-FJ dz é%p(z), (7.2

wherep e LY(R) for g €[2,+%). The symmetry relatiof (—k) = F(k) for keR valid for p, a, and
b, implies thatp is real valued. Sincé/a belongs to AP, we haveb(k)/a(k) = — 3. y.e'kPs

whereby are different real numbers ang are real constants satisfyiity| y¢| <+c; thus we can
write (7.1) in the form

p(k):Es ye'Kbs+ fiodz dk%p(z2). (7.2

Let us write(7.2) in the concise form
J. Math. Phys., Vol. 37, No. 7, July 1996
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;mkr=Jf;dua>eWH (7.3

for a suitable real measugethat is the sum of a discrete measinéth weights vy, at the points
b,) and an absolutely continuous meas{wéh a Radon-Nikodym derivative). Let.7 denote the
Fourier transform defined by

1 (= .
(y‘g)(t)=ﬂ f_mdk eklg(k). (7.9

Since X,(-,y) and P,(-,y) appearing in(6.7) belong toH2(R), their Fourier transforms are
supported on the positive half-line; hence, we have

X|(k,y)= f:dt eiikthl(try): P|(k,Y)= fomdt eiikth|0(tly)1 (75)

whereh, ,h,oe LYR™) for anyq e[2,+). Furthermore, as seen frof®.16), J,(k,y) consists of a
finite sum of exponential terms; hence we hayg,y) = S w4(y)e*sY) where, in each interval
(Yj Yj+1)@s(y) is a constant andy(y) is either a constant or an affine functionyofThus, from
(6.9 we obtain

mwyh—§u4WM4—w—gw»t>a

Now let us take the Fourier transform of both sideg@f). We have
hi(-.y) +(ZO7 ) (- y) =hig(-,Y). (7.6)
Using (7.2 or (7.3) we can write(7.6) as the Marchenko-like integral equation

—(t+2

)
mww+f " du(2) h(-z-t-2y,y)=ho(ty), t=0,

—o0

or equivalently

hty)+ > wshu(—t—Zy—bs,y)Jrf ds o(—s—t—2y) h/(s,y)=hy(t,y), t=0.
{sibg<—t—2y} 0
(7.7

We will call (7.7) a Marchenko equation. Note that whiir=0, i.e. whenV(y) given in (2.3 is
well defined for ally eR, the integral equatioki7.7) reduces to

h|(t,y)+j:ds e(—s—t—2y) h(s,y)=—po(—-t-2y), t=0, (7.8

which is the Marchenko equatith®=2°for the ordinary Schmdinger equation. In a similar man-
ner we can also obtain a Marchenko integral equation associated with the reflection coefficient
/(Kk), but we will not list it here. The next theorem shows tfiaf7) is uniquely solvable.

Theorem 7.1: Equation(7.7) has a unique solution ih%[R") for every nonhomogeneous
term belonging td_%(R™), and the solution can be obtained through iteration.

Proof: The operator?, in (7.6) is a strict contraction om?(R), as indicated in the proof of
Theorem 6.1. Considering?(R") andH?2 (R) as subspaces &f(R), we see that/27.7, where
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7 is the Fourier transformation defined (#.4), is a unitary operator oh%[R) mappingHZ2(R)
ontoL%(R™). Thus, the operato# 7.7 ! acting fromL2(R") into L%(R™) is a strict contraction.
Hence,(7.7) is uniquely solvable and its solution can be obtained through iteration. |

Let us now discuss the recovery ld{x) from the solution of the Marchenko equatitn?).
Onceh(t,y) is obtained from(7.7), we can geK(k,y) from (7.5 and recoveH(x) by repeating
the procedure described in Sec. VI.

Let us also describe another way to recovgix). This is done in conjunction with the
algorithm described in Sec. V, whelgy; ,q; , are recovered first; recall that these are the param-
eters associated with the “hard scatterers.” Next we recover the quantities associated with the
“soft scatterers,” namely we obtai¥; ;. ,(y). This is done recursively as follows. First we solve
(7.7) only for y>y, and geth,(t,y) in the interval(yy,+=). Because of3.8) we obtairf*

dh(0+,y)
VN,N+1(Y):—2d—y, YNSY<+eo, (7.9
Zl(O,y)=1+f dz (z—y)Vnn+1(2) Zi(02), yn<y<+tco. (7.10
y

Then, as described in Sec. V, we form the new reduced reflection coeffi¢fent!(k) defined in
(5.11) and obtainVy_,n(y) from the solution of the Marchenko equation corresponding to
pIN"1(Kk) by using the analog df7.9). Continuing in this manner, we then recowgr; .4 (y) for
j=0,1,...N. Then we obtairZ,(0,y) for yeR\{y;,...,yn} as follows. From(3.1) we have

Z,(k,y;—0)=1g; Z,(k,y;+0),

Z{(k,yJ-I—O) ( Vj
L ik Bi— o
fq; I 2ik

as well a&Z,(k, +»)=1 andZ/(k, + «) = 0. HenceZ (0y) andZ(0y) satisfy the following
internal boundary conditions:

Z|’(k,yj_0): Z|(k!y]+0)1

Z,(0y;—0)=1/g; Z,(0y;+0), (7.10
, Z{(0y;+0)
Z| (O,yj_O)zT‘f’Vj Z|(O,y]_0) (713
j

Thus, in each intervaly;,y; ), we can uniquely obtaid,(0y) from V; ;. (y) by using

Z|(0,y)=(y—yj+1)2|’(0,yj+1—0)+Z|(0,y,-+1—0)+Jyy”ldz (z—y)V(z) Z,(0,2).
(7.13

Thus, using7.10), (7.11)—(7.13 we obtainZ,(0y) for yeR\{y;,...,yn}. Once we hav&(0y),
we can recoveH (x) by using the procedure outlined starting with12).

Note that although we assume that there are no bound states associat@diyidome of the
Vj j+1(y) may have bound states. In terms of the factorization forndu8, this happens when
the hard scatterer§;(k) in (4.5 overcome the bound states from the soft scattetgrs, 1(k),
resulting in no bound states f¢t.1); in other words, the poles @f ;. ,(k) in C* are canceled by
the terms inF;(k), resulting in no poles irc™ for 7(k). The recovery oWV j+1(y), even in the
presence of bound states, is well understéfosince eachV; ;,1(y) has support contained in a
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half-line, the reflection coefficient; ;. ;(k) uniquely determine¥; ;.,(y) without needing the
bound state energies and the bound state norming constants; in fact, both the bound state energies
and the norming constants are uniquely determined, by, (k) alone.

We can also obtaifd (x) by modifying the procedures described earlier. For example, using
the reduced reflection coefficient from the leftk), the analog of7.7) associated with’(k) can
be used to obtail; ; . ,(y) starting with the intervaly,,y;) and moving to the intervaly(,y,)
and continuing in this manner. One can also solve the Marchenko equations associatétkith
andp(k), respectively, simultaneously starting with the intervalg,{,) and {/y,yn+1), respec-
tively, and moving to the intervalsy(,y,) and (/n_1,Yn). respectively, and continuing in this
manner until allV; ;, ,(y) are obtained. Then, usin@.11)—(7.13 one getsZ,(0y) or Z,(0y),
from which H(x) is obtained usind6.12) or (6.16).

VIIl. EXAMPLES

In this section we illustrate the methods described in Secs. V-VII through explicitly solved
examples. In Examples 8.1-8.3 we illustrate the recoveryd f) using the solution of the
Marchenko integral equatiofr.7). In Example 8.4 we illustrate the method of Sec. V to recover
the discontinuities inH'(x)/H(x). In Example 8.5 we illustrate the alternative procedure de-
scribed in Sec. VII using5.11). Finally, In Example 8.6 we illustrate the recovery ld{x) in
terms of the solutions of the singular integral equatit3) and (6.10.

Example 8.11et us demonstrate the Marchenko method of Sec. VII. As our scattering data,
for a givenQ(x) with no bound states and a givéh, , let us use

k+ia
k+ivy’

p(k)=€ (8.2)
wheree, a, andy are real constants satisfyingl<e<1, y>0, andy*>a?é. It is straightforward
but tedious to show that foy<0 the denominator iri8.11) and (8.12) is nonzero if and only if
(a+B)e#0. Thus, in this example, we assurqret+ 8)e#0 and postpone the case+B)e=0 to
Example 8.2. Using the method of Ref. 16 we constrk) by solving the Wiener-Hopf factor-
ization problemr(k) 7(—k)=1—|p(k)|? for keR, and we obtain

k+iB
— _ 2
m(k)=+1—¢€ KFiy (8.2
where we have defined the positive constant
2 2.2
Y —a‘e
B=\ "1 (8.3

It can be verified thatr(k)|?+|p(k)|?=1 and that#{k) has no poles or zeros i@*. Since
7(0)#0, we are in the exceptional case. Using the method of Ref. 13, we obtain

1-€ 1 €

N=1, W=17¢ y1=0, a(k)= = b(k)=— = (8.9
From (3.16 we get
1—ee 2Ky
sy ={ e VY CE)
1, y>0.
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Thus, from(6.9) we obtain

ie )
_ a _ 2yy _ a2iky
Pi(Ky)= k+iy(a y)Wi-¢€?[e e], y<o, 8.6
0, y>0.

Using (8.6) in (7.5 we have

@Y ez

hio(t,y)=1 Ny

0, t>0, t+2y>0.

t>0, t+2y<0,

From (8.1 we see that we can writ@.2) as

p(K)= e+ f dt ek (1),

with

0, t<O
e(t)= {e(a ye " t>0, 8.7

and hencep(t) is supported only on=0. The Marchenko equatiai.7) has the following form:

h(t,y)=0, t>0, t+2y>0, (8.9

—(t+2y) e(a—1vy)
hi(t,y) +eh(—t=2y,y) + e(a—y)e? "2 fo ds e°h(sy)=— ——= """,

t>0, t+2y<O0. (8.9

Notice that from(8.8) we obtainX,(k,y) =0 for y>0, and hence usin@.1) and(8.5), from (6.13
we conclude that

H(x)= f(Ox)z’ ff,(Oz x>0, (8.10

wheref,(0x) is the zero-energy Jost solution from the left associated @itk). We can solve
(8.9 exactly and obtain

(B2—y))e’ + e(y—B)(a+ Ble P2V
Vi-€’[(a+B)ee 2P+ B—y]

where g is the constant ir{8.3) and the denominator does not vanish. Us{8d.1) in (7.5), for
y < 0,weget

hi(t,y)= , t>0, t+2y<0, (8.12)

(BHiK) (B €M O 1]+ (B-iK)e(y= ) a+ pe PV[1-eMF ]
(k2+ B2 V1= € (a+ Bree 27+ =]

X(ky)=
(8.12
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Hence, using8.5) and (8.12), we find
2. (ON)= [y—ea e(a+B)e 2P+ y—p <0 8.1
I( ry)_ '}/+6a 6(C¥+,3)€72’8y—y+,8' y . ( . 3

Using (8.13 in (6.12, we obtain

Y+ ea 2(y=PB)IB 2(y—B)IB

elatB)ty—B elatple*P+y-p

y—€a

_ x dz
—H+fo W, y<0, (8.14

2

—-2By _
clatPle ““ry-BE o (8.15

e(atple W —y+p

H, y—ea

HOO= £0x2 7+ ea

wherey in (8.15 is obtained in terms ok from (8.14).
Example 8.2in this example we consider the same scattering data as in Example 8.1 but with
the additional conditiofa+ B)e=0, whereg is the constant in8.3). If e=0 thenp(k)=0 and
7(k) =1, and the Marchenko equatidn.7) gives ush,(t,y)=0 for t>0 andy e R; thus, there are
no discontinuities irtH(x) or H'(x)/H(x), and we have

+
H(X)—flTX)z, xeR.

If B=—a but €#0, theny=; in this case we have

p(k) k_J T(k)=\/1—62.

" k+iy’

In this case, fox>0, (8.10 is still valid. Whenx<0, we proceed as follows. In the Marchenko
equation(8.9), putting a=—1, we obtain

~(t+2y) 2ey
hy(t,y)+ eh(—t—2y,y)—2 eV(”Zy)f ds &%h(s,y) = —= """ %),
I( y) € I( yy) Y€ 0 |( y) \/ﬁ

— €
t>0, t+2y<O0. (8.16
The solution 0of(8.16) is given by

2ey Nty

h(t,y)= oI t>0, t+2y<0. (8.17)
Using (6.5, (7.5, (8.5, (8.8, and(8.17), we obtain
_|1+e 1—ee®”Y
20y)= VT 17 e Y=O (8.18
Using (8.18 in (6.12, we obtain
l-€ 2/y 21y H fx dz 0 8.1
Tre VT 1-ee® 1-¢ "+, Fil092r *=° 8.19
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1—ee®”
1+ee®”

H, 1+e

HOO= £ 0x02 T=<

2
) . y<0, (8.20

wherey in (8.20 is obtained in terms ok from (8.19.

Example 8.31n this example, we consider the scattering data of Example 8.1fitn’e.
Wheny=*ae, we haveB=0, and hence(k) = (ek=iy)/(k+ivy). Sincep(0)=+1 is not allowed
(cf. Theorem 4.2 of Ref.)] we cannot have/=+ae. Thus, the inverse scattering problem to be
solved corresponds to the scattering data

ek—iy

p(k)= Kriy Q(x),

when there are no bound states. We haile = 1— €?k/(k + i), and hence this corresponds to

the generic case; thi$, cannot be specified arbitrarily in the scattering data, and it is determined
as in(6.14). In this case(8.8) still holds. Puttinga=— /€ in (8.9), we obtain

(t+
hi(t,y)+eh(—t—2y,y)—y(1+ 6)ev(t+2y)f
0 —€

2y) v(1+e€)
ds eyshl(s’y): \/ﬁ ey(t+2y),

t>0, t+2y<0. (8.21)

The solution 0of(8.2]) is given by

h(t,y)= t>0, t+2y<0. (8.22

1—¢€?’

Using (7.5), (8.5), (8.8), and(8.22, we obtain

2(0y)= 222 g 8.23
N =2 e |
Using (8.23 in (6.12, we have
(1+e)y fx dz
T-e=2py Mo Tz *C 829

Letting x,y—— in (8.24), as in(6.14), we get

Ho— 1+€ 8.2
2910, dzif (022 ®23
Thus, from(8.24 and(8.25 we find
1-€ [§dzf(02)? 0
= <
Y= 2y . dzf 022 P
1-e  [°.dzf(02)?
H(x)= x<0. (8.26)

2yf1(0X)% [[X.. dZ/f\(02)°]*’
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Alternatively, by using(6.21) we can write(8.26) as

(1-)[f%0x);f1%0x)1? [°.. dZ/f,(0,2)
2y f(0x)?* 7

x<0.

H(x)=

This expression agrees with that obtained@rbl) of Example 6.2 in Ref. 1, but the method used
here is simpler.

Example 8.41n this example we describe how to obtaindefined in(4.4) related to discon-
tinuities in H'(x)/H(x) using the method outlined in Sec. V. Let us use the scattering data of
Example 8.1, and hencgk) is given by (8.1 and (k) is given by (8.2. We proceed as in
Example 8.1 unti8.7); we then set up the Marchenko equation only yorO, which, by(8.8),
yields h(t,y) =0. At this point we can conclude th¥ft 5(y)=0 and hencav, ,=0. Using(5.2)—

(5.5), we obtain

pUBZY) 2@ p)

N v Ji-€é2
Thus, from(5.6) we get
2e(a—y)
= 8.2
= (1+€)J1—¢€ 629

Hence H' (x)/H(x) is continuous ax=0 if and only if e(a—)=0, i.e. if and only ifp(k) in (8.2)
is a constant.

Example 8.51n this example we illustrate the iterative method outlined in Sec. VIl to recover
H(x), based on the matrix factorization {4.5). Let us again use the scattering data of Example
8.1. We proceed as in Example 8.4 andlgéx) given in(8.10 for x>0, V; (y) =0, andr; given
in (8.27. Thus, we have\, ,=I and

e(a—vy) e(a—vy)
1 Y idre " Tikare
Fa(k)= ——— - 3
I &| elamy . elay)
iK(1t e) iK(1+ )

whereA; ;,1(k) andF;(k) are the matrices defmed (|4 1) and (4.3, respectively. Fron{4.1)
and (4.5 we obtaunAO (k). Note that, in this casel®/(k) defined in(5.11) and ro(k) corre-
sponding toV 4(y) coincide. We have

L —kke K(k+iB)
fo,1(k)—m, to (k)= (k=k) (k=)' (8.28

wherek, andk_ are the constants defined as

de(y—a)

iy

x
1+
|

1+E

Next, we will solve the Marchenko equatidn.?7) for y<<O with the input of(8.28 and(8.29. In
fact, since there are no discontinuities associated with the reflection coeffici€Bt2i®, the
Marchenko equatiofi7.7) reduces td7.8). Note that the sign ok in (8.29 is the same as the sign
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of e(y—a). There are three cases to consider, narkehp, E<0, andE>0. WhenE =0, i.e. when
e=0 or a=v, we haver, (k)=0, and hencé (t,y)=0. ThusV, (y) =0, because in analogy to
(7.9 we have

dh|(0+ ,y)

Voiy)=—2 dy

—o<y<0. (8.30

ThusY,.q (k,y) =1, and sdH(x) is given by(8.10 for all xeR. Next, we consider the cage<0.
In this case botlk, andk_ lie in C™, and hence usin¢B8.28 in (7.1) we obtain

0, t<0,
o()=1{ ik k_
k+_k_

(8.3)

[e k+t—e7ik-1] >0,

The solution of the Marchenko equatién.8) with the integral kernel in8.31) is given by

0, t>-2,
hi(ty)=1 kiko (B+y)[e”—e 2P|+ e(f—a)[1-e 2]
B e(B—a)+(B+y)e P , <=2y,
where g is the constant ir{8.3). Again, using(8.30, we obtain
0, y>o0,
Voiy)=1 8B’e(B—a)(B+ye ¥ 6.9

[e(B—a)+(B+y)e 2PV]?’ y<O0.

Corresponding td&/q 4(y) in (8.32, we have the zero-energy Jost solution from the right given by

—e(p-a)+(Bty)e

Yr;O,l(an): E(ﬂ_ a)+(,8+ '}’)972By y y<0 (833
Using (3.9 we see that foy<0, Z,(0yy) is given by(8.33. Using (6.16—(6.18 and(8.33 we
obtain
2e(B—a)lB 2e(B—a)lp ~ X dz
- E(B—a)+,8+7+e(B—a)+(ﬁ+y)e*2By_ ff (022’ X<0, (8.39
- — —2py72
H(x)= €(B-a)t(Bty)e } . 635

f.(0x)%| e(B—a)+(B+y)e *H

wherey in (8.35 is obtained in terms of from (8.34), andf,(0x) is the zero-energy Jost solution
from the right associated witQ(x). Using(6.19 and(6.20, one can show thgB.34) and(8.35
are identical to8.14) and(8.15), respectively. Finally, let us briefly consider the case where the
constantE defined in(8.29 is positive. In this casek, is in C~ andk_ is in C*. Thus,V, ((y)
has one bound state. However, singg(y) is supported on a half-line, its bound state norming
constant cannot be chosen arbitrarily and is determineg k) alone?? Routine computatiort
lead us again téd(x) as given in(8.14.

Example 8.61n this example, we demonstrate the recoveryHgk) by the method outlined
in Sec. VI, namely by solving the singular integral equati¢ds) or (6.10. As our scattering
data, let us use the same scattering data as in Example 8.1, with the same restrictions on the
parameters, «, andy. First, using the method of Ref. 13 we get the quantities give(8id).
Wheny>0, we will solve(6.7); for this, using(3.16, we getJ,(k,y)=1 and from(6.9) we have
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P,(k,y)=0. Thus, the solution 0of6.7) for y>0 is given byX,(k,y)=0; hence from(6.13 we
obtainH(x) for x>0 as given in(8.10. Now let us consider the situation whgr0; in this case,
it is easier to obtain’(k) and solve(6.10. Using the method of Ref. 16 we constru¢k) given
in (8.2 and using/'(k)=—p(—k)n(k)/«(—k), we get

o k—iak+ip
/(k)__6k+iyk—i/3' (8.36
Using (8.36) in (6.11), we obtain
2' —
P.(ky)= —P B apy o, (8.37)

k—iB B+y

SinceX,(k,y) is analytic inC™, a contour integration along the boundary@f converts(6.10
into the algebraic equation,

2iep p- |
k—Ei/a 3+6«; e®X (i) =Pi(ky), y<0.

Using (8.37 and the analyticity requirement 0%, (k,y) to evaluateX,(—ig,y), we get

2ieB B—a (B+y)e?Py
k—=iB B+y B+ y+e(f—a)e®P’

From (3.17) we havelJ,(k,y)=1 for y<0. Thus, using6.5 and(8.38), we get

Xi(ky)—

X, (K,y)= y<0. (8.38

(B+ye Y —e(B-a)
(B+ye P +e(B-a)’

Thus using(6.16 and(6.18—(6.20, we obtainH(x) given in(8.15.

Z,(0y)= y<O0.
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