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The recovery of the coefficientH(x) in the one-dimensional generalized Schro¨-
dinger equationd2c/dx21k2H(x)2c5Q(x)c, whereH(x) is a positive, piece-
wise continuous function with positive limitsH6 asx→6`, is studied. The large-k
asymptotics of the wave functions and the scattering coefficients are analyzed. A
factorization formula is given expressing the total scattering matrix as a product of
simpler scattering matrices. Using this factorization an algorithm is presented to
obtain the discontinuities inH(x) andH8(x)/H(x) in terms of the large-k asymp-
totics of the reflection coefficient. When there are no bound states, it is shown that
H(x) is recovered from an appropriate set of scattering data by using the solution
of a singular integral equation, and the unique solvability of this integral equation
is established. An equivalent Marchenko integral equation is derived and is shown
to be uniquely solvable; the unique recovery ofH(x) from the solution of this
Marchenko equation is presented. Some explicit examples are given, illustrating the
recovery ofH(x) from the solution of the singular integral equation and from that
of the Marchenko equation. ©1996 American Institute of Physics.@S0022-
2488~96!02606-0#

I. INTRODUCTION

Consider the one-dimensional generalized Schro¨dinger equation,

c9~k,x!1k2H~x!2c~k,x!5Q~x!c~k,x!, xPR, ~1.1!

which describes the propagation of waves in a one-dimensional nonhomogeneous, nonabsorptive
medium, wherek2 is energy, 1/H(x) is the wave speed, andQ(x) is the restoring force density.
The discontinuities ofH(x) correspond to abrupt changes in the properties of the medium in
which the wave propagates. The prime denotes the derivative with respect to the spatial coordi-
nate, and the coefficientsH(x) andQ(x) are assumed to satisfy the following conditions:
~H1! H(x) is strictly positive and piecewise continuous with jump discontinuities atxn for

n51,...,N, such thatx1,•••,xN .
~H2! H(x)→H6 asx→6`, whereH6 are positive constants.
~H3! H2H6PL1~R6!, whereR25~2`,0! andR15~0,1`!.
~H4! H8 is absolutely continuous on (xn ,xn11) and 2H9H23(H8)2PL1

1(xn ,xn11), for
n50,...,N, wherex052` and xN1151`, and Lb

1(I ) denotes the space of measurable
functions f (x) on I , such that* I dx (11uxu)bu f (x)u,1`.

~H5! Q(x) is real valued and belongs toL1
1~R!.

The scattering solutions of~1.1! are those behaving likeeikH6x or e2 ikH6x as x→6`, and
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such solutions occur whenk2.0. Among the scattering solutions are the Jost solution from the left
f l(k,x) and the Jost solution from the rightf r(k,x) satisfying the boundary conditions

f l~k,x!5H eikH1x1o~1!, x→1`,
1

Tl~k!
eikH2x1

L~k!

Tl~k!
e2 ikH2x1o~1!, x→2`,

f r~k,x!5H 1

Tr~k!
e2 ikH1x1

R~k!

Tr~k!
eikH1x1o~1!, x→1`,

e2 ikH2x1o~1!, x→2`,

whereTl(k) andTr(k) are the transmission coefficients from the left and from the right, respec-
tively, andL(k) andR(k) are the reflection coefficients from the left and from the right, respec-
tively. For each fixedxPR, the Jost solutions have continuous extensions to the upper half
complex planeC1, and they are analytic there.1 The reduced transmission coefficientt(k), the
reduced reflection coefficientsr(k) from the right andl (k) from the left, respectively, are defined
as

t~k!5AH1

H2
Tl~k!eikA5AH2

H1
Tr~k!eikA, ~1.2!

r~k!5R~k!e2ikA1, l ~k!5L~k!e2ikA2, ~1.3!

where

A656E
0

6`

ds@H62H~s!#, A5A11A2 . ~1.4!

If t~0!Þ0, which is called the exceptional case, the Jost solutionsf l(0,x) and f r(0,x) are
linearly dependent. Ift~0!50, which is called the generic case,f l(0,x) and f r(0,x) are linearly
independent, and in this caset(k) vanishes linearly ask→0. Usually these two cases need to be
analyzed separately, and the small-k analysis of the scattering problem in the exceptional case
requires tedious estimates. However, the fact2 that an exceptional case can always be decomposed
into two generic cases is expected to simplify the analysis of the scattering problem in the
exceptional case.

In general,~1.1! may have bound states, i.e. nontrivial solutions belonging toL2„R,H(x)2dx….
Since the treatment of bound states requires many separate arguments, we do not consider them in
this paper. Bound states were already studied in Ref. 1 and further results may appear in the future.
Thus, we assume that~1.1! does not have any bound states. The number of bound states for~1.1!
is equal3 to the number of bound states for the Schro¨dinger equation,

F9~k,x!1k2F~k,x!5Q~x!F~k,x!, xPR, ~1.5!

and hence our assumption can be restated by saying thatQ(x) does not have any bound states.
The inverse scattering problem in which we are interested consists of the recovery ofH(x) in

~1.1! from an appropriate set of scattering data. The analysis of the scattering problem in a
discontinuous medium is the first step to analyze the inverse scattering problem, and we mention
the relevant work4–7 of Sabatier and his collaborators on the scattering in a discontinuous medium
in one and three dimensions governed by$a(x)22

“–@a(x)2“#1k22V(x)%f(k,x)50. In Ref. 4
Sabatier estimated the large-k asymptotics of the scattering data and also briefly discussed the
inverse scattering problem in such a medium. Various authors have studied inverse scattering
problems for differential equations with discontinuous coefficients, as exemplified by Krueger’s
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work8–10and the bibliography of Ref. 1. Of more direct concern to us is the work by Sabatier4 and
Grinberg.11,12Grinberg, in the special~but still important! caseQ(x)50, developed a method to
recoverH(x) using the solution of a singular integral equation; in this special case there are no
bound states, the exceptional case occurs, and the norm of the associated singular integral operator
is strictly less than unity so that the integral equation has a unique solution that can be obtained
through iteration. The general case with nontrivialQ(x) and with bound states was analyzed by a
similar method in Ref. 1, andH(x) was recovered from the solution of a singular integral equation
under the assumptionQPL11a

1 ~R! for someaP~0,1#. In Ref. 13 the scattering data leading to a
unique solution of the inverse problem were specified.

In this paper, when there are no bound states, we develop a method to obtainH(x) from the
scattering data consisting ofQ(x), r(k), andH1 . As already known,

13H1 must be omitted from
the scattering data in the generic case, but in the exceptional case it needs to be specified in the
scattering data in order to obtainH(x) uniquely; this is also true in the method presented here.
Note also that, in the scattering data, one can usel ~k! instead ofr(k) and one can also useH2

instead ofH1 . The method given here and the method of Ref. 1 have some similarities and
differences. The method used here holds wheneverQPL1

1~R!, whereas in Ref. 1, for technical
reasons, we neededQPL11a

1 ~R! for someaP~0,1#. In both methods a singular integral equation
is formulated and from its solutionH(x) is recovered; however, in the present paper we exploit
the large-k behavior of the reduced scattering coefficients, thus avoiding complications encoun-
tered in Ref. 1 ask→0. A crucial result here is Proposition 2.1, which strengthens the result of
Theorem 2.4 in Ref. 1. From the solution atk50 of the singular integral equation one findsH(x)
as thex-derivative of the solutiony(x) of a separable differential equation under the initial
conditiony~0!50. Furthermore, when the reduced reflection coefficientr(k) is an almost periodic
function, the singular integral equation of the present paper becomes trivial, and so does the
computation ofH(x); in Ref. 1, even this relatively simple case required extensive calculations.

WhenH(x) andH8(x) have no discontinuities, the large-k asymptotics of the reduced scat-
tering coefficients defined in~1.2!–~1.3! are known to be of the formt(k)215O(1/k), r(k)
5O(1/k), andl (k)5O(1/k). It is also known that each discontinuity ofH(x) contributes to the
almost periodic part of theO~1! terms in these asymptotics. We refer the reader to Refs. 1, 4,
11–13 for details. In this paper we show that the discontinuities inH8(x)/H(x) are responsible for
some of theO(1/k) terms in these asymptotics; in fact, we develop an algorithm to recover the
jumps inH8(x)/H(x) from the large-k asymptotics of a reduced reflection coefficient.

This paper is organized as follows. In Sec. II we study the large-k asymptotics of the reduced
scattering coefficients. In Sec. III we study the large-k asymptotics of certain wave functions
defined in ~3.1!–~3.2!. In Sec. IV we present a factorization formula expressing the reduced
scattering matrix as a matrix product of scattering matrices corresponding to potentials supported
on a finite interval or on a half-line and those corresponding to discontinuities inH(x) and
H8(x)/H(x). In Sec. V we present an algorithm to recover the discontinuities inH(x) and
H8(x)/H(x) from the large-k asymptotics of the scattering data, thus generalizing the work of
Ref. 13 regarding the discontinuities inH(x). The results in Secs. II and III are used in Sec. VI in
order to convert a key Riemann-Hilbert problem into a pair of uncoupled singular integral equa-
tions; in this section we also establish the unique solvability of these integral equations and show
how to recoverH(x) from the solution of either singular integral equation. In Sec. VII we show
that each singular integral equation can be converted into a Marchenko integral equation that is
uniquely solvable, and we describe the recovery ofH(x) from the solution of a Marchenko
equation. Hence, the inverse problem is solved by recoveringH(x) either by the method of Sec.
VI or by that of Sec. VII. In Section VIII we present some examples illustrating the recovery of
H(x) using the solution of a singular integral equation and using the solution of a Marchenko
equation; we also illustrate the algorithm of recovery of the discontinuities inH8(x)/H(x).
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II. SCATTERING COEFFICIENTS

In this section we analyze the large-k asymptotics of the reduced scattering coefficients de-
fined in ~1.2!–~1.3!. Under the Liouville transformation

y5y~x!5E
0

x

ds H~s!, c~k,x!5
1

AH~x!
f~k,y!, ~2.1!

the generalized Schro¨dinger equation~1.1! is transformed into

d2f~k,y!

dy2
1k2f~k,y!5V~y!f~k,y!, ~2.2!

where

V„y~x!…5
H9~x!

2H~x!3
2
3

4

H8~x!2

H~x!4
1

Q~x!

H~x!2
. ~2.3!

SinceH(x) is assumed to have jump discontinuities atxj for j51,...,N, the quantityV(y) is
undefined atyj5y(xj ). However,V(y) is well defined in each of the intervals (yj ,yj11) for
j50,...,N; thus, the Liouville transformation can be used on each interval (xj ,xj11) although it
cannot be used onR. SinceH(x) is strictly positive with positive limits asx→6`, it follows that
y05y(x0)52` andyN115y(xN11)51`. The constantsqj , defined by

qj5
H~xj20!

H~xj10!
, ~2.4!

correspond to the relative jumps in the wave speed at the interfacesxj , andyj correspond to the
times required for the wave to propagate from the fixed locationx50 to the interfacesxj for
j51,...,N.

Let Vj , j11(y) be the potential defined by

Vj , j11~y!5 HV~y!, yP~yj ,yj11!,
0, elsewhere, ~2.5!

whereV(y) is the quantity in~2.3!. From ~H4! it follows thatVj , j11PL1
1~R! for j50,...,N. Let

Yl ; j , j11(k,y) andYr ; j , j11(k,y) denote the Faddeev functions1 from the left and from the right,
respectively, associated with the potentialVj , j11(y). We have1

Yl ; j , j11~k,y!5H 1

t j , j11~k!
@11 l j , j11~k!e22iky#, y<yj , j51,...,N, kPC1,

1

t0,1~k!
@11 l 0,1~k!e22iky#1o~1!, y→2`, j50, kPR,

~2.6!

Yr ; j , j11~k,y!5H 1

t j , j11~k!
@11r j , j11~k!e2iky#, y>yj11 , j50,...,N21, kPC1,

1

tN,N11~k!
@11r N,N11~k!e2iky#1o~1!, y→1`, j5N, kPR,

~2.7!

where t j , j11(k), r j , j11(k), and l j , j11(k) denote the transmission coefficient and the reflection
coefficients from the right and from the left, respectively, for the potentialVj , j11(y). Since
Vj , j11PL1

1~R!, it follows that for each fixedyPR we have

3221Aktosun, Klaus, and van der Mee: Inverse problem with discontinuous wave speed

J. Math. Phys., Vol. 37, No. 7, July 1996

Downloaded¬15¬Aug¬2002¬to¬129.74.199.113.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright,¬see¬http://ojps.aip.org/jmp/jmpcr.jsp



Yl ; j , j11~k,y!511O~1/k!, Yl ; j , j118 ~k,y!5o~1!, k→` in C1, ~2.8!

Yr ; j , j11~k,y!511O~1/k!, Yr ; j , j118 ~k,y!5o~1!, k→` in C1. ~2.9!

Using ~2.1! it can be shown that the functions defined by

h j , j11~k,x!5
1

AH~x!
eikyYl ; j , j11~k,y!, j j , j11~k,x!5

1

AH~x!
e2 ikyYr ; j , j11~k,y!,

~2.10!

are solutions of~1.1!. Let us introduce the matrices

G j , j11~k,x!5Fh j , j11~k,x! j j , j11~k,x!

h j , j118 ~k,x! j j , j118 ~k,x!
G , j50,...,N, ~2.11!

G ~k!5 )
n51

N

Gn21,n~k,xn20!21Gn,n11~k,xn10!. ~2.12!

It was shown in Ref. 1 that

1

t~k!
5

1

t0,1~k!
@1 0#G ~k!F10G5 1

tN,N11~k!
@0 1#G ~k!21F01G , ~2.13!

l ~k!

t~k!
5F l 0,1~k!

t0,1~k!
1GG ~k!F10G , ~2.14!

r~k!

t~k!
5F1 r N,N11~k!

tN,N11~k! GG ~k!21F01G . ~2.15!

Moreover,

detGn,n11~k,x!52
2ik

tn,n11~k!
, detG ~k!5

t0,1~k!

tN,N11~k!
.

Let

an5
1

2 S Aqn1
1

Aqn
D , bn5

1

2 S Aqn2
1

Aqn
D , ~2.16!

E~k,xn!5F an bne
22ikyn

bne
2ikyn an

G , ~2.17!

with qn as in ~2.4!; let us also definea(k) andb(k) by

F a~k! b~k!

b~2k! a~2k!
G5 )

n51

N

E~k,xn!. ~2.18!

Let APW ~almost periodic functions with Wiener norm! stand for the algebra of all complex-
valued functionsf (k) onR that are of the formf (k) 5 ( j52`

` f je
ikl j , wheref jPC andljPR for
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all j and(j u f j u,1`. It is already known1 that the functionsa(k), b(k), 1/a(k), andb(k)/a(k)
belong to APW. In the next proposition we obtain the large-k asymptotics of the reduced scattering
coefficientst(k), r(k), andl ~k!.

Proposition 2.1:Under assumptions~H1!–~H5! we have

t~k!5
1

a~k!
1OS 1kD , k→` in C1, ~2.19!

r~k!52
b~k!

a~k!
1OS 1kD , k→6`, ~2.20!

l ~k!5
b~2k!

a~k!
1OS 1kD , k→6`, ~2.21!

wherea(k) andb(k) are the quantities defined in~2.18!.
Proof: Using ~2.8!–~2.10! we obtain

Gn,n11~k,xn1120!21Gn11,n12~k,xn1110!

5F an11„11O~1/k!… bn11e
22ikyn11

„11O~1/k!…

bn11e
2ikyn11

„11O~1/k!… an11„11O~1/k!…
G , k→` in C1,

~2.22!

wherean andbn are the constants defined in~2.16!. Furthermore, using~2.13!–~2.15! and the
fact14 that

t j , j11~k!511O~1/k!, k→` in C1,

r j , j11~k!5O~1/k!, l j , j11~k!5O~1/k!, k→6`,

we obtain~2.19!–~2.21!. j

Proposition 2.1 is an improvement over Theorem 2.4 in Ref. 13, where the error terms in
~2.19!–~2.21! were only shown to beo~1!. We refer the reader to Refs. 1 and 13 for various other
properties of the reduced scattering coefficients.

III. ESTIMATES ON WAVE FUNCTIONS

In this section we analyze the large-k behavior of the scattering solutions of~2.2!. As in
~5.1!–~5.2! of Ref. 1, let us define the Faddeev functionsZl(k,y) andZr(k,y), from the left and
from the right, respectively, associated with~2.2!:

Zl~k,y!5AH~x!

H1
e2 iky2 ikA1 f l~k,x!, ~3.1!

Zr~k,y!5AH~x!

H2
eiky2 ikA2 f r~k,x!, ~3.2!

wherey is the quantity defined in~2.1! andA6 are the constants in~1.4!. Note thateikyZl(k,y)
ande2 ikyZr(k,y) are the Jost solutions from the left and from the right, respectively, of~2.2!. In
this section we analyze the large-k asymptotics ofZl(k,y) andZr(k,y).
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The next proposition shows that, for each fixedyPR\$y1 ,...,yN%, the Faddeev functions can
be written as the sum of an almost periodic function and a continuous function, the latter vanishing
ask→` in C1.

Proposition 3.1:For each fixedyPR\$y1 ,...,yN%, we have

Zl~k,y!5Jl~k,y!1O~1/k!, Zr~k,y!5Jr~k,y!1O~1/k!, k→` in C1, ~3.3!

where

Jl~k,y!5@1 e22iky#S )
n5 j11

N

E~k,xn!D F10G , yP~yj ,yj11!, j50,...,N21, ~3.4!

Jl~k,y!51, yP~yN ,1`!, ~3.5!

Jr~k,y!51, yP~2`,y1!, ~3.6!

Jr~k,y!5@e2iky 21#S )
n5 j

1

E~k,xn!D F 0
21G , yP~yj ,yj11!, j51,...,N, ~3.7!

with E(k,xn) defined in~2.17!. The product notation in~3.7! means thatn decreases fromj to 1.
Proof:WhenyP(yN ,1`), from ~3.13!, ~3.15!, ~3.21! of Ref. 1 and~2.10! and~3.1!, we have

Zl~k,y!5Yl ;N,N11~k,y!, yP~yN ,1`!, ~3.8!

and henceZl(k,y)511O(1/k) as k→` in C1. Thus, we have~3.3! with Jl(k,y) as in ~3.5!.
Similarly, from ~3.13!, ~3.15!, ~3.22! of Ref. 1 and~2.10! and ~3.2!, we get

Zr~k,y!5Yr ;0,1~k,y!, yP~2`,y1!, ~3.9!

and henceZr(k,y)511O(1/k) ask→` in C1. Thus, we have~3.3! with Jr(k,y) as in ~3.6!.
WhenyP(yj ,yj11) with 0< j<N21, from ~3.25! of Ref. 1 and~3.1!, we see that

Zl~k,y!5@1 0#AH~x!e2 ikyG j , j11~k,x!

3S )
n5 j

N21

Gn,n11~k,xn1120!21Gn11,n12~k,xn1110!D F10G , ~3.10!

whereG j , j11(k,x) is the matrix defined in~2.11!. From ~2.8!–~2.10! we have

@1 0#AH~x!e2 ikyG j , j11~k,x!5@11O~1/k! e22iky
„11O~1/k!…#. ~3.11!

Hence, using~2.22! and ~3.11! in ~3.10!, we obtain

Zl~k,y!5Jl~k,y!@11O~1/k!#, k→` in C1, ~3.12!

with Jl(k,y) as in ~3.4!. Similarly, whenyP(yj ,yj11) with 1< j<N, from ~3.26! of Ref. 1 and
~3.2!, we see that

Zr~k,y!5@1 0#AH~x!eikyG j , j11~k,x!S )
n5 j

1

Gn,n11~k,xn10!21Gn11,n12~k,xn20!D F01G .
~3.13!

From ~2.8!–~2.10! we have
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@1 0#AH~x!eikyG j , j11~k,x!5@e2iky„11O~1/k!… 11O~1/k!#. ~3.14!

Using ~2.22! and ~3.14! in ~3.13!, we obtain

Zr~k,y!5Jr~k,y!@11O~1/k!#, k→` in C1, ~3.15!

with Jr(k,y) as in ~3.7!. Note that for each fixedyPR\$y1 ,...,yN% the functionsJl(k,y) and
Jr(k,y) are uniformly bounded inC1, and hence we see that~3.12! and ~3.15! imply ~3.3!. j

Recall that the Hardy spacesH6
p ~R! are defined as the spaces of all functionsf (k) that are

analytic inkPC6 and satisfy supe.0*2`
` dk u f (k6 i e)up,1`.

Theorem 3.2: For each fixed yPR\$y1 ,...,yN%, the functions Zl(k,y)2Jl(k,y) and
Zr(k,y)2Jr(k,y) belong to the Hardy spaceH1

2 ~R!.
Proof: It is proved in Theorem 2.1 of Ref. 1 that, for each fixedxPR\$x1 ,...,xN%, f l(k,x) and

f r(k,x) are continuous functions ofk in C1 and analytic inC1; therefore, for each fixed
yPR\$y1 ,...,yN%, the Faddeev functionsZl(k,y) andZr(k,y) are continuous inC1 and analytic
in C1. From~3.4!–~3.7! we see thatJl(k,y) andJr(k,y) are continuous inC

1 and analytic inC1.
Hence, by Proposition 3.1 we can conclude thatZl(k,y)2Jl(k,y) andZr(k,y)2Jr(k,y) belong to
the Hardy spaceH1

2 ~R!. j

Note that we can also conclude the analyticity inC1 and continuity inC1 of Zl(k,y) and
Zr(k,y) from ~3.10! and~3.13!, respectively, because the matrices there have these properties. At
first the inverse matrices in~3.10! and ~3.13! seem to have a~1/k! singularity atk50 in the
exceptional case; however, if anyVn,n11(y) are exceptional potentials, we can divide each of
those intervals (yn ,yn11) into two subintervals such that the fragments on the two subintervals are
generic;2 hence, even in the exceptional case, from~3.10! and ~3.13!, we can conclude that
Zl(k,y) andZr(k,y) are analytic inC1 and continuous inC1.

Note that the matrix productE(k,xj11)•••E(k,xN) in ~3.4! can be explicitly evaluated in
analogy to~2.28! of Ref. 13. Let us write

)
n5 j11

N

E~k,xn!5F Aj~k! Bj~k!

Bj~2k! Aj~2k!
G ,

whereAj (k) andBj (k) will be explicitly evaluated. Thus, we can write~3.4!–~3.5! as

Jl~k,y!5@Aj~k!1e22ikyBj~2k!#, yP~yj ,yj11!, ~3.16!

with AN(k)51 andBN(k)50. Using induction, we can show thatAj (k) ande
22ikyBj (2k) both

are exponential polynomials having at most 2N2 j terms. All the coefficients in the exponential
polynomials are real constants and all the exponentials are bounded by 1 in absolute value in
C1. For future reference, we listAj (k) andBj (k) for j5N21, N22, N23.
If j5N21,

AN21~k!5aN , e2ikyNBN21~k!5bN .

If j5N22,

AN22~k!5aN21aN1bN21bNe
2ik~yN2yN21!,

e2ikyNBN22~k!5aN21bN1bN21aNe
2ik~yN2yN21!.

If j5N23,
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AN23~k!5aN22aN21aN1bN22bN21aNe
2ik~yN212yN22!

1aN22bN21bNe
2ik~yN2yN21!1bN22aN21bNe

2ik~yN2yN22!,

e2ikyNBN23~k!5aN22aN21bN1bN22bN21bNe
2ik~yN212yN22!

1aN22bN21aNe
2ik~yN2yN21!1bN22aN21aNe

2ik~yN2yN22!.

We see that, forj<N21, the terme2ikyNBj (k) is obtained fromAj (k) by interchangingbN with
aN .

In a similar manner, using

E~k,xj !
21•••E~k,x1!

215@E~k,x1!•••E~k,xj !#
21,

we can explicitly evaluate the matrix productE(k,x1)•••E(k,xj ) appearing in~3.7! in analogy to
~2.28! of Ref. 13. Let us write

)
n51

j

E~k,xn!5F Cj~k! Dj~k!

Dj~2k! Cj~2k!
G ,

whereCj (k) andDj (k) will be explicitly evaluated. Thus, we can write~3.6!–~3.7! as

Jr~k,y!5@Cj~k!2e2ikyD j~2k!#, yP~yj ,yj11!, ~3.17!

with C0(k)51 andD0(k)50. Using induction, we can show thatCj (k) ande
2ikyD j (2k) both are

exponential polynomials having at most 2j terms. All the coefficients in the exponential polyno-
mials are real constants and all the exponentials are bounded by 1 in absolute value inC1. For
future reference, we listCj (k) andDj (k) for j51, 2, 3.
If j51,

C1~k!5a1 , e2iky1D1~k!5b1 .

If j52,

C2~k!5a1a21b1b2e
2ik~y22y1!, e2iky2D2~k!5a1b21b1a2e

2ik~y22y1!.

If j53,

C3~k!5a1a2a31b1b2a3e
2ik~y22y1!1a1b2b3e

2ik~y32y2!1b1a2b3e
2ik~y32y1!,

e2iky3D3~k!5a1a2b31b1b2b3e
2ik~y22y1!1a1b2a3e

2ik~y32y2!1b1a2a3e
2ik~y32y1!.

We see that, forj>1, the terme2ikyjD j (k) is obtained fromCj (k) by interchangingbj with aj .

IV. FACTORIZATION

In this section we generalize the factorization formula of Ref. 15 and show that the reduced
scattering matrix corresponding to~1.1! can be expressed in terms of the scattering matrices
corresponding to the potentialsVj , j11(y) defined in~2.5! and certain matrices associated with the
discontinuities ofH(x) andH8(x)/H(x). Using the scattering coefficients introduced in~2.6!–
~2.7!, let us define
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L j , j11~k!5F 1

t j , j11~k!
2
r j , j11~k!

t j , j11~k!

l j , j11~k!

t j , j11~k!

1

t j , j11~2k!

G , j50,1,...,N, ~4.1!

L~k!5F 1

t~k!
2

r~k!

t~k!

l ~k!

t~k!

1

t~2k!

G , ~4.2!

F j~k!5F a j1
n j

2ik S b j1
n j

2ik De22ikyj

S b j2
n j

2ik De2ikyj a j2
n j

2ik

G , j51,...,N, ~4.3!

whereaj andbj are the constants defined in~2.16! and

n j5
1

2AH~xj20!H~xj10!
FH8~xj20!

H~xj20!
2
H8~xj10!

H~xj10! G . ~4.4!

Note that nj50 if and only if H8(x)/H(x) is continuous atxj . Following Sabatier’s
terminology4–7 we can refer toF j (k) as a ‘‘hard scatterer’’ andL j , j11(k) as a ‘‘soft scatterer.’’
The following theorem shows how the matrices defined in~4.1!–~4.3! are related to one another.

Theorem 4.1:We have

L5L0,1F1L1,2F2L2,3•••FNLN,N11 , ~4.5!

whereL, Lj , j11, andF j are the matrices defined in~4.2!, ~4.1!, and~4.3!, respectively.
Proof: Note that we haveL j , j115GjD j , where we have defined

Gj5F 1

t j , j11~k!
0

l j , j11~k!

t j , j11~k!
1
G , Dj5F1 2r j , j11~k!

0 t j , j11~k!
G .

Using the displayed equation in Ref. 1 following~14.4!, we can relateL(k) andG (k) defined in
~2.12! asL5G0GDN . Inserting the identity matricesGjGj

21 andDjD j
21 in the appropriate places

in ~2.12!, we obtain

L5G0D0)
n51

N

@Dn21
21 Gn21,n~k,xn20!21Gn,n11~k,xn10!Gn

21#@GnDn#. ~4.6!

Using ~2.11!, it can be checked that

Dn21
21 Gn21,n~k,xn20!21Gn,n11~k,xn10!Gn

215Fn , ~4.7!

whereFn are the matrices defined in~4.3!. Thus, using~4.7! in ~4.6!, we get~4.5!. j

It is already known13 that the functionH(x) given by
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H~x!5
hj , j11

f l~0,x!2
, xP~xj ,xj11!, j50,...,N,

hN,N115H1 ; hj21,j5qjhj , j11 , j50,...,N,

corresponds to the scattering dataQ(x), r(k)52b(k)/a(k), and t(k)51/a(k); as seen from
Proposition 2.1, the scattering coefficients in this case coincide with their asymptotic expressions
as k→6`. In this case, the matrix factorization given in~4.5! reduces to the factorization in
~2.18!. This is because in this casenj given in ~4.4! vanishes, and hence the matrixF j (k) defined
in ~4.3! becomes equal toE(k,xj ) defined in~2.17!; in fact,F j (k)5E(k,xj ) if and only if nj50.
Furthermore, in this caseVj , j11(y)50 and henceL j , j11(k)5I ; in fact,L j , j11(k)5I if and only
if Vj , j11(y)50. In this case, we also haveZl(k,y)5Jl(k,y) andZr(k,y)5Jr(k,y).

Now let us ask the following question. If we chooseVj , j11(y)50 for j50,1,...,N, but still
allow njÞ0, what is the correspondingH(x)? From the factorization formula~4.5!, by letting
L j , j11(k)5I , we can explicitly evaluate the corresponding scattering matrix. In this case, the
correspondingH(x) is given by

AH~x!5
1

aj f l~0,x!1bj f r~0,x!
, xP~xj ,xj11!, j50,...,N, ~4.8!

aN5
1

AH1

, bN50, ~4.9!

andaj ,bj for j50,1,...,N21, will be determined recursively by using the jumps inH(x) and
H8(x)/H(x) according to~2.4! and ~4.4!, respectively. Using~4.8! in ~2.4!, we obtain

aj f l~0,xj !1bj f r~0,xj !

aj21f l~0,xj !1bj21f r~0,xj !
5Aqj , j51,...,N. ~4.10!

From ~4.8! we have

H8~x!

H~x!
522

aj f l8~0,x!1bj f r8~0,x!

aj f l~0,x!1bj f r~0,x!
, ~4.11!

and hence from~4.4! we get

aj21f l8~0,xj !1bj21f r8~0,xj !

aj21f l~0,xj !1bj21f r~0,xj !
2
aj f l8~0,xj !1bj f r8~0,xj !

aj f l~0,xj !1bj f r~0,xj !
52n jAH~xj20!H~xj10!, j51,...,N.

~4.12!

Solving the linear system~4.10! and ~4.12! with unknownsaj21 andbj21 in terms ofaj andbj
and known quantities, and using~4.9!, we obtain

aj215
aj

Aqj
1

n j f r~0,xj !AH~xj10!

@ f l~0,x!; f r~0,x!#
, j51,...,N; aN5

1

AH1

, ~4.13!

bj215
bj

Aqj
2

n j f l~0,xj !AH~xj10!

@ f l~0,x!; f r~0,x!#
, j51,...,N; bN50, ~4.14!

where@ f l(0,x); f r(0,x)# 5 f l(0,x) f r8(0,x) 2 f l8(0,x) f r(0,x) is the Wronskian, which is a constant
completely determined byQ(x) alone. We can also obtain the Jost solutions for~1.1! explicitly. In
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this case, sinceVj , j11(y)50, we haveYl ; j , j11(k,y)51 andYr ; j , j11(k,y)51; thus, the matrix
Gj , j11(k,x) defined in~2.11! is determined by using~2.10!. Hence, using~3.8! and ~3.10! the
Faddeev functionZl(k,y) is determined, and using~3.9! and~3.13! the Faddeev functionZr(k,y)
is determined. Then we obtainf l(k,x) and f r(k,x) as in ~3.1!–~3.2!.

Note that in the above procedure, in caseQ(x) is an exceptional potential, i.e., iff l(0,x) and
f r(0,x) are linearly dependent, in~4.8!–~4.14! we need to replacef r(0,x) by a zero-energy
solution of ~1.5! linearly independent off l(0,x), such asc(x)5 f l(0,x)*0

x dy/ f l(0,y)
2; with this

choice ofc(x), we have [f l(0,x);c(x)]51. In the exceptional case, it turns out that although
different choices forc(x) lead to different coefficientsaj andbj , the resultingH(x) is indepen-
dent of the choice ofc(x). Also note that, ifN51, it is necessary that the generic case occurs;
however, forN>2 the exceptional case may occur.

V. AN ALGORITHM TO RECOVER JUMPS IN H8(x )/H(x )

In Ref. 13 we described an algorithm to recoverN, yj , andqj associated with the disconti-
nuities ofH(x) in terms of the leading asymptotic behavior of the scattering data ask→6`. In
this section we will analyze theO(1/k) terms in the scattering data and will describe an algorithm
to recover the constantsnj associated with the discontinuities ofH8(x)/H(x) from the almost
periodic part of theO(1/k) terms in the scattering data. The algorithm of Ref. 13 must be applied
first to recoverN, yj , and qj before the algorithm to recovernj is used. In order to use the
algorithm, one also needs to know the value ofwN,N11, where we have defined

wj , j115E
yj

yj11
dz Vj , j11~z!,

with Vj , j11(y) being the quantity defined in~2.5!. The constantwN,N11 can be obtained from a
reduced reflection coefficient in various ways without solving the entire inverse problem. For
example, as we will see in Sec. VII, we havewN,N1152hl(01,yN), wherehl(t,y) is the solution
of the Marchenko equation~7.7! that is uniquely solvable; hence the solution of~7.7! at the fixed
point yN gives uswN,N11.

SinceVj , j11PL1
1~R!, the scattering coefficients associated withVj , j11(y) satisfy

14

1

t j , j11~k!
511

wj , j11

2ik
1oS 1kD , k→6`,

r j , j11~k!

t j , j11~k!
5oS 1kD , l j , j11~k!

t j , j11~k!
5oS 1kD , k→6`,

and hence from~4.1! we have

L j , j11~k!5I1
wj , j11

2ik
J1oS 1kD , k→6`,

where we have definedJ5diag~1,21!. Let us write~4.3! in the form

F j5Ej1
n j

2ik
U j ,

whereEj is the matrixE(k,xj ) defined in~2.17! and

Uj5F 1 e22ikyj

2e2ikyj 21 G .
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Thus, ask→6`, from ~4.5! we obtainL5E1E2•••EN1O(1/k) and

2ik@L2E1E2•••EN#5w0,1JE1E2•••EN1w1,2E1JE2•••EN1•••1wN,N11E1E2•••ENJ

1n1U1E2•••EN1n2E1U2E3•••EN1•••1nNE1E2•••EN21UN1o~1!.

~5.1!

Thus, from~2.18! and ~4.2! we see that~5.1! allows us to express

2ikF 1

t~k!
2a~k!G5D~k!1o~1!, k→6`, ~5.2!

22ikFr~k!

t~k!
1b~k!G5V~k!1o~1!, k→6`, ~5.3!

where D(k) and V(k) are linear combinations ofw0,1,...,wN,N11 and n1 ,...,nN with almost
periodic polynomials as coefficients.

Let us now explain how to computenN . WhenN51 we have

D~k!5~w0,11w1,2!a11n1[D1 , ~5.4!

e2iky1V~k!5~w0,12w1,2!b11n1[V1 . ~5.5!

Multiplying ~5.4! by b1 and ~5.5! by a1, and subtracting the resulting equations, we obtain

n15
1

a12b1
@2w1,2a1b11a1V12b1D1#. ~5.6!

WhenN52, we have

D~k!5D11e2ik~y22y1!D2 , ~5.7!

e2iky2V~k!5V11e2ik~y22y1!V2 , ~5.8!

where we have defined

D15~w0,11w1,21w2,3!a1a21n1a21n2a1 , ~5.9!

V15~w0,11w1,22w2,3!a1b21n1b21n2a1 , ~5.10!

D25~w0,12w1,21w2,3!b1b21n1b22n2b1 ,

V25~w0,12w1,22w2,3!b1a21n1a22n2b1 .

Multiplying ~5.9! by b2 and ~5.10! by a2 and subtracting the resulting equations, we obtain

a1~b22a2!n2522w2,3a1a2b21b2D12a2V1 ,

and hence

n25
1

a22b2
F2w2,3a2b21

a2V12b2D1

a1
G .
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As can be seen from~5.4!, ~5.5!, ~5.7!, and ~5.8!, and in general be proved by induction, the
quantitye2ikyNV(k) is obtained fromD(k) by interchangingbN with aN and by changing the sign
of wN,N11. It can also be shown thatD(k) and e2ikyNV(k) both are exponential polynomials
having at most 2N21 nonzero terms. To computenN for arbitraryN, we letD1 andV1 denote the
constant terms in the almost periodic polynomialsD(k) ande2ikyNV(k), respectively. From~5.1!
we have

D15S (
j50

N

wj , j111(
j51

N
n j

a j
D )
n51

N

an ,

V15S 22wN,N11bN1bN(
j50

N

wj , j111bN(
j51

N21
n j

a j
1nND )

n51

N21

an .

Using

bND12aNV152wN,N11bN)
j51

N

a j1nN~bN2aN! )
j51

N21

a j ,

we get

nN5
1

aN2bN
F2wN,N11aNbN1

aNV12bND1

P j51
N21a j

G .
After obtainingnN , we can recovernN21 as follows. The solution of the Marchenko equation

in the interval ~yN ,1`! yields VN,N11(y) by ~7.9!; thus also we have the matrixLN,N11(k)
defined in~4.1! because it is determined by the scattering matrix of the potentialVN,N11(y). Note
that from the unitarity of the scattering matrix corresponding to the potentialVj , j11(y), we have
detL j , j11(k)51. Using ~2.16! it can be shown that detF j (k)51. Thus, we can easily form the
matrixLLN,N11

21 FN
21 and recovernN21 from this matrix, as we have recoverednN from the matrix

L. Note that the reduced reflection coefficient from the right associated with the matrix
LLN,N11

21 FN
21 is given by

r@N21#~k!52

@1 0#LLN,N11
21 FN

21F01G
@1 0#LLN,N11

21 FN
21F10G . ~5.11!

OncenN21 is obtained, we recursively get the remainingnN22,...,n1.

VI. A SINGULAR INTEGRAL EQUATION

In this section, when there are no bound states, we formulate the singular integral equation
~6.7! whose kernel and nonhomogeneous term are determined by the reduced reflection coefficient
r(k). We also show that~6.7! is uniquely solvable and its solution leads to the recovery ofH(x).
In a similar manner, we formulate the singular integral equation~6.10! in terms ofl ~k! and prove
its unique solvability and show that its solution also leads to the recovery ofH(x).

For each fixedyPR\$y1 ,...,yN%, from ~5.11! of Ref. 1, we have

FZl~2k,y!

Zr~2k,y!G5F t~k! 2r~k!e2iky

2l ~k!e22iky t~k!
GFZr~k,y!

Zl~k,y! G , kPR. ~6.1!
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Using ~2.19!–~2.21! and ~3.3!, we obtain

F Jl~2k,y!

Jr~2k,y!G5F 1

a~k!

b~k!

a~k!
e2iky

2
b~2k!

a~k!
e22iky

1

a~k!

G FJr~k,y!

Jl~k,y! G , kPR. ~6.2!

Subtracting~6.2! from ~6.1!, we get

Zl~2k,y!2Jl~2k,y!5Ft~k!2
1

a~k!GZr~k,y!1
1

a~k!
@Zr~k,y!2Jr~k,y!#

2r~k!e2iky@Zl~k,y!2Jl~k,y!#2Fr~k!1
b~k!

a~k!Ge2ikyJl~k,y!, ~6.3!

Zr~2k,y!2Jr~2k,y!5Ft~k!2
1

a~k!GZl~k,y!1
1

a~k!
@Zl~k,y!2Jl~k,y!#

2l ~k!e22iky@Zr~k,y!2Jr~k,y!#2F l ~k!2
b~2k!

a~k! Ge22ikyJr~k,y!.

~6.4!

Let us analyze~6.3!. Using Propositions 2.1 and 3.1 and Theorem 3.2, for each fixedy, in the
absence of bound states, of the four terms on the right-hand side, we see that the first two belong
to the Hardy spaceH1

2 ~R! and the last two belong toL2~R!; the term on the left-hand side belongs
to H2

2 ~R!. Let P6 denote the orthogonal projection operators fromL2~R! ontoH6
2 ~R!, i.e.

~P6 f !~k!5
61

2p i E2`

` ds

s2k7 i0
f ~s!.

Let us define

Xl~k,y!5Zl~2k,y!2Jl~2k,y!, Xr~k,y!5Zr~2k,y!2Jr~2k,y!. ~6.5!

Applying the projectionP2 on both sides of~6.3!, we obtain

Xl~•,y!1P2„re
2i ~• !yJXl~•,y!…52P2S Fr1

b

aGe2i ~• !yJl~•,y! D , ~6.6!

where~J f !(k)5 f (2k). Note that~6.6! is a singular integral equation and can be written as

Xl~k,y!1~O lXl !~k,y!5Pl~k,y!, kPR, ~6.7!

where we have defined

~O lX!~k!5
1

2p i E2`

` ds

s1k2 i0
r~2s!e22isyX~s!, kPR, ~6.8!

Pl~k,y!5
1

2p i E2`

` ds

s2k1 i0 Fr~s!1
b~s!

a~s!Ge2isyJl~s,y!. ~6.9!
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Notice that the integral operatorO l defined in~6.8! is the same as the operator defined in~5.23! of
Ref. 1. Comparing~5.21! of Ref. 1 and~6.7!, we see that the kernels in these two integral
equations differ by a minus sign. We also recall that the solution of the singular integral equation
of Ref. 1 is given byXl(k,y) 5 @Zl(2k,y) 2 Zl(0,y)#/@kAH(x)#, whereZl(k,y) is the quantity
defined in~3.1!, whereas the solution of the integral equation of this paper is given by~6.5!. The
factor 1/k in the expression forXl(k,y) used in Ref. 1 was introduced to ensure thatXl(k,y)
belongs to an appropriate Hardy space, namely toH2

p ~R! if p,1/~12a!. However, this factor,
while providing the desired behavior ask→`, introduced some complications atk50. With the
present definition~6.5! it is easy to show thatXl(k,y) is continuous ask→0 in C1 and
Xl(k,y)5O(1/k) as k→` in C1, without imposing any stronger condition onQ(x) than
QPL1

1~R!.
In a similar manner, in the absence of bound states, from~6.4! we obtain

Xr~•,y!1P2„l e
22i ~• !yJXr~•,y!…52P2S F l 2

Jb

a Ge22i ~• !yJr~•,y! D ,
which is equivalent to

Xr~k,y!1~O rXr !~k,y!5Pr~k,y!, kPR, ~6.10!

where we have defined

~O rX!~k!5
1

2p i E2`

` ds

s1k2 i0
l ~2s!e2isyX~s!, kPR,

Pr~k,y!5
1

2p i E2`

` ds

s2k1 i0 F l ~s!2
b~2s!

a~s! Ge22isyJr~s,y!. ~6.11!

The solvability of~6.7! and ~6.10! is analyzed in the next theorem.
Theorem 6.1:The singular integral equation~6.7! has a unique solutionXlPH2

2 ~R! for every
nonhomogeneous term belonging toH2

2 ~R!, and the solution can be obtained through iteration.
Similarly, ~6.10! has a unique solutionXrPH2

2 ~R! for every nonhomogeneous term belonging to
H2
2 ~R! and the solution can be obtained through iteration.
Proof: The operatorO l defined in~6.8! is a strict contraction onH2

2 ~R!, which is proved in
Theorem 7.1 of Ref. 1. Hence,~6.7! is uniquely solvable and its solution can be obtained through
iteration. The proof for~6.10! is given in the same manner. j

Next we will recoverH(x) from an appropriate set of scattering data. We will consider the
generic and exceptional cases separately because the scattering data in these two cases are not the
same.

Let us first consider the generic case; in this case an appropriate set of scattering data consists
of $r(k),Q(x)%. We proceed as follows. Using the method of Ref. 16, fromr(k) we getb(k) and
a(k); then from these we getN, $y1 ,...,yN%, and $q1 ,...,qN% by using the method of Ref. 13.
Hence, we haveaj andbj for j51,...,N. SinceQ(x) is known, we also know the zero-energy Jost
solutions of~1.5!; these Jost solutions are identical to the zero-energy Jost solutions of~1.1!. For
example, we can getf l(0,x) by using~5.25! of Ref. 1. Next we obtainJl(k,y) using ~3.4! and
~3.5!. Note thatJl(k,y) is uniquely constructed fromr(k) because we already haveyj , aj , andbj

for j51,...,N. From ~3.1! and the fact thatH(x)5dy/dx, we have

dy

Zl~0,y!2
5H1

dx

f l~0,x!2
. ~6.12!
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UsingJl(k,y) andr(k) in ~6.7!, we obtainXl(k,y) uniquely. Then using~6.5!, we write~6.12! in
the form

dy

@Xl~0,y!1Jl~0,y!#2
5H1

dx

f l~0,x!2
. ~6.13!

We getH1 from ~6.13! as

H15
*2`
0 dy/@Xl~0,y!1Jl~0,y!#2

*2`
0 dx/ f l~0,x!2

. ~6.14!

Note that both integrals in~6.14! converge because17 in the generic case,f l(0,x)
2 grows likex2 as

x→2` andZl(0,y)
2 grows likey2 asy→2`. Next, using a generalization of the method given in

Theorem 5.1 of Ref. 13, we obtainx1 ,...,xN . This is done as follows. IfN51 andy150, then
x150. If N51 andy1Þ0, then we can proceed as in the caseN>2. If N>2, then at leastN21 of
the pointsy1 ,...,yN must be nonzero. If at least one of these is positive, we can pick the smallest
of them, sayyp . Thenxp is uniquely determined by

E
0

yp dy

@Xl~0,y!1Jl~0,y!#2
5H1E

0

xp dx

f l~0,x!2
, ~6.15!

and we recursively determinexp11,...,xN using

E
yp

yp11 dy

@Xl~0,y!1Jl~0,y!#2
5H1E

xp

xp11 dx

f l~0,x!2
.

Similarly, we can determinexp21,xp22,...,x1 . If all yj are nonpositive, then we pick the one with
the smallest absolute value that is nonzero~eitheryN or yN21! and find the correspondingxj by
using the appropriate integral of the form~6.15!. Having found eachxj corresponding toyj , we
obtain y(x) by solving the first-order separable ordinary differential equation~6.13! with the
initial condition y(xi)5yi . Havingy(x) in each interval (xj ,xj11), we getH(x)5dy/dx.

Now let us consider the exceptional case. In this case, we cannot use~6.14! to obtainH1 . In
fact, for the unique recovery ofH(x) we need to includeH1 in the scattering data; otherwise, we
get a one-parameter family ofH(x) corresponding to the set$r(k),Q(x)%. Thus, in the excep-
tional case, we recoverH(x) from the scattering data$r(k),H1 ,Q(x)% by the method outlined in
the generic case.

Note that one can also recoverH(x) from the solution of the singular integral equation~6.10!
using the scattering data$l (k),Q(x)% in the generic case and using$l (k),Q(x),H1% in the
exceptional case. One then needs to solve the analog of~6.12! given by

dy

Zr~0,y!2
5H2

dx

f r~0,x!2
, ~6.16!

with the condition y(0)50. Note that from~6.5! we haveZr(0,y)5Xr(0,y)1Jr(0,y), and
f r(0,x) is the zero-energy Jost solution from the right of~1.5! corresponding toQ(x). The poten-
tial Q(x) uniquely determines14,18–20 f r(0,x), for example, by

f r~0,x!511E
2`

x

dz ~x2z!Q~z! f r~0,z!. ~6.17!

Once we obtainy as a function ofx from ~6.16!, we recoverH(x) as
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H~x!5H2

Zr~0,y!2

f r~0,x!2
. ~6.18!

Note that, in the exceptional case,H2 can be expressed in terms ofH1 by using~5.29! of Ref. 1,
namely,

H25H1

12r~0!

11r~0! S 11R@0#~0!

T@0#~0!
D 2, ~6.19!

whereR[0] (k) andT[0] (k) are the reflection coefficient from the right and the transmission coef-
ficient, respectively, associated with~1.5!. Hence, in the exceptional case, one can useH2 in the
scattering data instead ofH1 because of~6.19!. Note also that in the exceptional casef l(0,x) and
f r(0,x) are linearly dependent, and we have17

f r~0,x!5
11R@0#~0!

T@0#~0!
f l~0,x!. ~6.20!

Let f l
[0] (k,x) and f r

[0] (k,x) denote the Jost solutions of~1.5! from the left and from the right,
respectively. In the generic case we have

f r
@0#~k,x!5@ f l

@0#~k,x!; f r
@0#~k,x!# f l

@0#~k,x!E
2`

x dz

f l
@0#~k,z!2

, ~6.21!

where the Wronskian [f l
[0] (k,x); f r

[0] (k,x)] is equal to22ik/T[0] (k). Hence, in the generic case
from ~6.21!, after using the fact thatf l

[0] (0,x)5 f l(0,x) and f r
[0] (0,x)5 f r(0,x), we have

f r~0,x!5F lim
k→0

22ik

T@0#~k!G f l~0,x!E
2`

x dz

f l~0,z!2
.

VII. MARCHENKO INTEGRAL EQUATION

In this section we show that the singular integral equation~6.7!, with the use of the Fourier
transform, can be transformed into the integral equation~7.7! generalizing the Marchenko integral
equation14,18–20for the one-dimensional Schro¨dinger equation. We establish the unique solvability
of ~7.7! and describe how its solution leads to the recovery ofH(x).

Using ~2.20! and the continuity ofr(k) andb(k)/a(k), we see thatr1(b/a)PLp~R! for any
pP~1,1`#. We may then write

r~k!52
b~k!

a~k!
1E

2`

`

dz eikz%~z!, ~7.1!

where%PLq~R! for qP@2,1`!. The symmetry relationF(2k) 5 F(k) for kPR valid for r, a, and
b, implies that% is real valued. Sinceb/a belongs to APW, we haveb(k)/a(k) 5 2(sgse

ikbs

wherebs are different real numbers andgs are real constants satisfying(sugsu,1`; thus we can
write ~7.1! in the form

r~k!5(
s

gse
ikbs1E

2`

`

dz eikz%~z!. ~7.2!

Let us write~7.2! in the concise form
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r~k!5E
2`

`

dm~ t ! eikt, ~7.3!

for a suitable real measurem that is the sum of a discrete measure~with weightsgs at the points
bs! and an absolutely continuous measure~with a Radon-Nikodym derivative%!. LetF denote the
Fourier transform defined by

~F g!~ t !5
1

2p E
2`

`

dk eiktg~k!. ~7.4!

SinceXl(•,y) and Pl(•,y) appearing in~6.7! belong toH2
2 ~R!, their Fourier transforms are

supported on the positive half-line; hence, we have

Xl~k,y!5E
0

`

dt e2 ikthl~ t,y!, Pl~k,y!5E
0

`

dt e2 ikthl0~ t,y!, ~7.5!

wherehl ,hl0PLq~R1! for anyqP@2,1`!. Furthermore, as seen from~3.16!, Jl(k,y) consists of a
finite sum of exponential terms; hence we haveJl(k,y) 5 (svs(y)e

ikzs(y), where, in each interval
(yj ,yj11),vs(y) is a constant andzs(y) is either a constant or an affine function ofy. Thus, from
~6.9! we obtain

hl0~ t,y!52(
s

vs~y!%„2t22y2zs~y!…, t>0.

Now let us take the Fourier transform of both sides of~6.7!. We have

hl~•,y!1~F O lF
21hl !~•,y!5hl0~•,y!. ~7.6!

Using ~7.2! or ~7.3! we can write~7.6! as the Marchenko-like integral equation

hl~ t,y!1E
2`

2~ t12y!

dm~z! hl~2z2t22y,y!5hl0~ t,y!, t>0,

or equivalently

hl~ t,y!1 (
$s:bs,2t22y%

gshl~2t22y2bs ,y!1E
0

`

ds %~2s2t22y! hl~s,y!5hl0~ t,y!, t>0.

~7.7!

We will call ~7.7! a Marchenko equation. Note that whenN50, i.e. whenV(y) given in ~2.3! is
well defined for allyPR, the integral equation~7.7! reduces to

hl~ t,y!1E
0

`

ds %~2s2t22y! hl~s,y!52%~2t22y!, t>0, ~7.8!

which is the Marchenko equation14,18–20for the ordinary Schro¨dinger equation. In a similar man-
ner we can also obtain a Marchenko integral equation associated with the reflection coefficient
l ~k!, but we will not list it here. The next theorem shows that~7.7! is uniquely solvable.

Theorem 7.1: Equation~7.7! has a unique solution inL2~R1! for every nonhomogeneous
term belonging toL2~R1!, and the solution can be obtained through iteration.

Proof: The operatorO l in ~7.6! is a strict contraction onH2
2 ~R!, as indicated in the proof of

Theorem 6.1. ConsideringL2~R1! andH2
2 ~R! as subspaces ofL2~R!, we see thatA2pF , where
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F is the Fourier transformation defined in~7.4!, is a unitary operator onL2~R! mappingH2
2 ~R!

ontoL2~R1!. Thus, the operatorF O lF
21 acting fromL2~R1! into L2~R1! is a strict contraction.

Hence,~7.7! is uniquely solvable and its solution can be obtained through iteration. j

Let us now discuss the recovery ofH(x) from the solution of the Marchenko equation~7.7!.
Oncehl(t,y) is obtained from~7.7!, we can getXl(k,y) from ~7.5! and recoverH(x) by repeating
the procedure described in Sec. VI.

Let us also describe another way to recoverH(x). This is done in conjunction with the
algorithm described in Sec. V, whereN,yj ,qj , are recovered first; recall that these are the param-
eters associated with the ‘‘hard scatterers.’’ Next we recover the quantities associated with the
‘‘soft scatterers,’’ namely we obtainVj , j11(y). This is done recursively as follows. First we solve
~7.7! only for y.yN and gethl(t,y) in the interval~yN ,1`!. Because of~3.8! we obtain21

VN,N11~y!522
dhl~01,y!

dy
, yN,y,1`, ~7.9!

Zl~0,y!511E
y

`

dz ~z2y!VN,N11~z! Zl~0,z!, yN,y,1`. ~7.10!

Then, as described in Sec. V, we form the new reduced reflection coefficientr [N21](k) defined in
~5.11! and obtainVN21,N(y) from the solution of the Marchenko equation corresponding to
r [N21](k) by using the analog of~7.9!. Continuing in this manner, we then recoverVj , j11(y) for
j50,1,...,N. Then we obtainZl(0,y) for yPR\$y1 ,...,yN% as follows. From~3.1! we have

Zl~k,yj20!5Aqj Zl~k,yj10!,

Zl8~k,yj20!5
Zl8~k,yj10!

Aqj
22ikS b j2

n j

2ik DZl~k,yj10!,

as well asZl(k,1`)51 andZl8(k, 1 `) 5 0. Hence,Zl(0,y) andZl8(0,y) satisfy the following
internal boundary conditions:

Zl~0,yj20!5Aqj Zl~0,yj10!, ~7.11!

Zl8~0,yj20!5
Zl8~0,yj10!

Aqj
1n j Zl~0,yj20!. ~7.12!

Thus, in each interval (yj ,yj11), we can uniquely obtainZl(0,y) from Vj , j11(y) by using

Zl~0,y!5~y2yj11!Zl8~0,yj1120!1Zl~0,yj1120!1E
y

yj11
dz ~z2y!V~z! Zl~0,z!.

~7.13!

Thus, using~7.10!, ~7.11!–~7.13! we obtainZl(0,y) for yPR\$y1 ,...,yN%. Once we haveZl(0,y),
we can recoverH(x) by using the procedure outlined starting with~6.12!.

Note that although we assume that there are no bound states associated with~1.1!, some of the
Vj , j11(y) may have bound states. In terms of the factorization formula~4.5!, this happens when
the hard scatterersF j (k) in ~4.5! overcome the bound states from the soft scatterersL j , j11(k),
resulting in no bound states for~1.1!; in other words, the poles oft j , j11(k) in C

1 are canceled by
the terms inF j (k), resulting in no poles inC1 for t(k). The recovery ofVj , j11(y), even in the
presence of bound states, is well understood;22 since eachVj , j11(y) has support contained in a
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half-line, the reflection coefficientr j , j11(k) uniquely determinesVj , j11(y) without needing the
bound state energies and the bound state norming constants; in fact, both the bound state energies
and the norming constants are uniquely determined byr j , j11(k) alone.

We can also obtainH(x) by modifying the procedures described earlier. For example, using
the reduced reflection coefficient from the leftl ~k!, the analog of~7.7! associated withl ~k! can
be used to obtainVj , j11(y) starting with the interval (y0 ,y1) and moving to the interval (y1 ,y2)
and continuing in this manner. One can also solve the Marchenko equations associated withl ~k!
andr(k), respectively, simultaneously starting with the intervals (y0 ,y1) and (yN ,yN11), respec-
tively, and moving to the intervals (y1 ,y2) and (yN21,yN), respectively, and continuing in this
manner until allVj , j11(y) are obtained. Then, using~7.11!–~7.13! one getsZl(0,y) or Zr(0,y),
from whichH(x) is obtained using~6.12! or ~6.16!.

VIII. EXAMPLES

In this section we illustrate the methods described in Secs. V–VII through explicitly solved
examples. In Examples 8.1–8.3 we illustrate the recovery ofH(x) using the solution of the
Marchenko integral equation~7.7!. In Example 8.4 we illustrate the method of Sec. V to recover
the discontinuities inH8(x)/H(x). In Example 8.5 we illustrate the alternative procedure de-
scribed in Sec. VII using~5.11!. Finally, In Example 8.6 we illustrate the recovery ofH(x) in
terms of the solutions of the singular integral equations~6.7! and ~6.10!.

Example 8.1:Let us demonstrate the Marchenko method of Sec. VII. As our scattering data,
for a givenQ(x) with no bound states and a givenH1 , let us use

r~k!5e
k1 ia

k1 ig
, ~8.1!

wheree, a, andg are real constants satisfying21,e,1, g.0, andg2.a2e2. It is straightforward
but tedious to show that fory<0 the denominator in~8.11! and ~8.12! is nonzero if and only if
~a1b!eÞ0. Thus, in this example, we assume~a1b!eÞ0 and postpone the case~a1b!e50 to
Example 8.2. Using the method of Ref. 16 we constructt(k) by solving the Wiener-Hopf factor-
ization problemt(k)t(2k)512ur(k)u2 for kPR, and we obtain

t~k!5A12e2
k1 ib

k1 ig
, ~8.2!

where we have defined the positive constant

b5Ag22a2e2

12e2
. ~8.3!

It can be verified thatut(k)u21ur(k)u251 and thatt(k) has no poles or zeros inC1. Since
t~0!Þ0, we are in the exceptional case. Using the method of Ref. 13, we obtain

N51, q15
12e

11e
, y150, a~k!5

1

A12e2
, b~k!52

e

A12e2
. ~8.4!

From ~3.16! we get

Jl~k,y!5H 12ee22iky

A12e2
, y,0,

1, y.0.

~8.5!
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Thus, from~6.9! we obtain

Pl~k,y!5H i e

k1 ig
~a2g!A12e2 @e2gy2e2iky#, y,0,

0, y.0.
~8.6!

Using ~8.6! in ~7.5! we have

hl0~ t,y!5H 2
e~a2g!

A12e2
eg~ t12y!, t.0, t12y,0,

0, t.0, t12y.0.

From ~8.1! we see that we can write~7.2! as

r~k!5e1E
2`

`

dt eikt%~ t !,

with

%~ t !5 H0, t,0
e~a2g!e2gt, t.0, ~8.7!

and hence%(t) is supported only ont>0. The Marchenko equation~7.7! has the following form:

hl~ t,y!50, t.0, t12y.0, ~8.8!

hl~ t,y!1ehl~2t22y,y!1e~a2g!eg~ t12y!E
0

2~ t12y!

ds egshl~s,y!52
e~a2g!

A12e2
eg~ t12y!,

t.0, t12y,0. ~8.9!

Notice that from~8.8! we obtainXl(k,y)50 for y.0, and hence using~8.1! and~8.5!, from ~6.13!
we conclude that

H~x!5
H1

f l~0,x!2
, y5H1E

0

x dz

f l~0,z!2
, x.0, ~8.10!

where f l(0,x) is the zero-energy Jost solution from the left associated withQ(x). We can solve
~8.9! exactly and obtain

hl~ t,y!5
~b22g2!ebt1e~g2b!~a1b!e2b~ t12y!

A12e2@~a1b!ee22by1b2g#
, t.0, t12y,0, ~8.11!

whereb is the constant in~8.3! and the denominator does not vanish. Using~8.11! in ~7.5!, for
y , 0, we get

Xl~k,y!5
~b1 ik !~b22g2!@e2y~ ik2b!21#1~b2 ik !e~g2b!~a1b!e22by@12e2y~b1 ik !#

~k21b2!A12e2@~a1b!ee22by1b2g#
.

~8.12!
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Hence, using~8.5! and ~8.12!, we find

Zl~0,y!5Ag2ea

g1ea

e~a1b!e22by1g2b

e~a1b!e22by2y1b
, y,0. ~8.13!

Using ~8.13! in ~6.12!, we obtain

g1ea

g2ea Fy1
2~g2b!/b

e~a1b!1g2b
2

2~g2b!/b

e~a1b!e22by1g2b G5H1E
0

x dz

f l~0,z!2
, y,0, ~8.14!

H~x!5
H1

f l~0,x!2
g2ea

g1ea Fe~a1b!e22by1g2b

e~a1b!e22by2g1b G2, y,0, ~8.15!

wherey in ~8.15! is obtained in terms ofx from ~8.14!.
Example 8.2:In this example we consider the same scattering data as in Example 8.1 but with

the additional condition~a1b!e50, whereb is the constant in~8.3!. If e50 thenr(k)50 and
t(k)51, and the Marchenko equation~7.7! gives ushl(t,y)50 for t.0 andyPR; thus, there are
no discontinuities inH(x) or H8(x)/H(x), and we have

H~x!5
H1

f l~0,x!2
, xPR.

If b52a but eÞ0, theng5b; in this case we have

r~k!5e
k2 ig

k1 ig
, t~k!5A12e2.

In this case, forx.0, ~8.10! is still valid. Whenx,0, we proceed as follows. In the Marchenko
equation~8.9!, puttinga52g, we obtain

hl~ t,y!1ehl~2t22y,y!22geeg~ t12y!E
0

2~ t12y!

ds egshl~s,y!5
2eg

A12e2
eg~ t12y!,

t.0, t12y,0. ~8.16!

The solution of~8.16! is given by

hl~ t,y!5
2eg

A12e2
eg~ t12y!

11ee2gy , t.0, t12y,0. ~8.17!

Using ~6.5!, ~7.5!, ~8.5!, ~8.8!, and~8.17!, we obtain

Zl~0,y!5A11e

12e

12ee2gy

11ee2gy , y,0. ~8.18!

Using ~8.18! in ~6.12!, we obtain

12e

11e Fy1
2/g

12ee2gy2
2/g

12eG5H1E
0

x dz

f l~0,z!2
, x,0, ~8.19!
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H~x!5
H1

f l~0,x!2
11e

12e S 12ee2gy

11ee2gyD 2, y,0, ~8.20!

wherey in ~8.20! is obtained in terms ofx from ~8.19!.
Example 8.3:In this example, we consider the scattering data of Example 8.1 withg25a2e2.

Wheng56ae, we haveb50, and hencer(k)5(ek6 ig)/(k1 ig). Sincer~0!511 is not allowed
~cf. Theorem 4.2 of Ref. 1!, we cannot haveg51ae. Thus, the inverse scattering problem to be
solved corresponds to the scattering data

r~k!5
ek2 ig

k1 ig
, Q~x!,

when there are no bound states. We havet(k) 5 A12e2k/(k 1 ig), and hence this corresponds to
the generic case; thusH1 cannot be specified arbitrarily in the scattering data, and it is determined
as in ~6.14!. In this case,~8.8! still holds. Puttinga52g/e in ~8.9!, we obtain

hl~ t,y!1ehl~2t22y,y!2g~11e!eg~ t12y!E
0

2~ t12y!

ds egshl~s,y!5
g~11e!

A12e2
eg~ t12y!,

t.0, t12y,0. ~8.21!

The solution of~8.21! is given by

hl~ t,y!5
g

A12e2
, t.0, t12y,0. ~8.22!

Using ~7.5!, ~8.5!, ~8.8!, and~8.22!, we obtain

Zl~0,y!5
12e22gy

A12e2
, y,0. ~8.23!

Using ~8.23! in ~6.12!, we have

~11e!y

12e22gy
5H1E

0

x dz

f l~0,z!2
, x,0. ~8.24!

Letting x,y→2` in ~8.24!, as in~6.14!, we get

H15
11e

2g*2`
0 dz/ f l~0,z!2

. ~8.25!

Thus, from~8.24! and ~8.25! we find

y5
12e

2g

*0
x dz/ f l~0,z!2

*2`
x dz/ f l~0,z!2

, x,0,

H~x!5
12e

2g f l~0,x!2
*2`
0 dz/ f l~0,z!2

@*2`
x dz/ f l~0,z!2#2

, x,0. ~8.26!
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Alternatively, by using~6.21! we can write~8.26! as

H~x!5
~12e!@ f l

@0#~0,x!; f r
@0#~0,x!#2

2g

*2`
0 dz/ f l~0,z!2

f r~0,x!2
, x,0.

This expression agrees with that obtained in~6.51! of Example 6.2 in Ref. 1, but the method used
here is simpler.

Example 8.4:In this example we describe how to obtainnj defined in~4.4! related to discon-
tinuities in H8(x)/H(x) using the method outlined in Sec. V. Let us use the scattering data of
Example 8.1, and hencer(k) is given by ~8.1! and t(k) is given by ~8.2!. We proceed as in
Example 8.1 until~8.7!; we then set up the Marchenko equation only fory.0, which, by~8.8!,
yieldshl(t,y)50. At this point we can conclude thatV1,2(y)50 and hencew1,250. Using~5.2!–
~5.5!, we obtain

D15
2~b2g!

A12e2
, V15

2e~a2b!

A12e2
.

Thus, from~5.6! we get

n15
2e~a2g!

~11e!A12e2
. ~8.27!

Hence,H8(x)/H(x) is continuous atx50 if and only if e~a2g!50, i.e. if and only ifr(k) in ~8.1!
is a constant.

Example 8.5:In this example we illustrate the iterative method outlined in Sec. VII to recover
H(x), based on the matrix factorization in~4.5!. Let us again use the scattering data of Example
8.1. We proceed as in Example 8.4 and getH(x) given in~8.10! for x.0,V1,2(y)50, andn1 given
in ~8.27!. Thus, we haveL1,25I and

F1~k!5
1

A12e2 F 11
e~a2g!

ik~11e!
2e1

e~a2g!

ik~11e!

2e2
e~a2g!

ik~11e!
12

e~a2g!

ik~11e!

G ,
whereL j , j11(k) andF j (k) are the matrices defined in~4.1! and ~4.3!, respectively. From~4.1!
and ~4.5! we obtainL0,1(k). Note that, in this case,r@0#(k) defined in~5.11! and r 0,1(k) corre-
sponding toV0,1(y) coincide. We have

r 0,1~k!5
2k1k2

~k2k1!~k2k2!
, t0,1~k!5

k~k1 ib!

~k2k1!~k2k2!
, ~8.28!

wherek1 andk2 are the constants defined as

k652
i

2

g1ea

11e
@16A11E#, E5

4e~g2a!

~12e!~g1ea!
. ~8.29!

Next, we will solve the Marchenko equation~7.7! for y,0 with the input of~8.28! and~8.29!. In
fact, since there are no discontinuities associated with the reflection coefficient in~8.28!, the
Marchenko equation~7.7! reduces to~7.8!. Note that the sign ofE in ~8.29! is the same as the sign
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of e~g2a!. There are three cases to consider, namelyE50,E,0, andE.0. WhenE50, i.e. when
e50 or a5g, we haver 0,1(k)50, and hencehl(t,y)50. ThusV0,1(y)50, because in analogy to
~7.9! we have

V0,1~y!522
dhl~01,y!

dy
, 2`,y,0. ~8.30!

ThusYl ;0,1(k,y)51, and soH(x) is given by~8.10! for all xPR. Next, we consider the caseE,0.
In this case bothk1 andk2 lie in C2, and hence using~8.28! in ~7.1! we obtain

%~ t !5H 0, t,0,
ik1k2

k12k2
@e2 ik1t2e2 ik2t#, t.0.

~8.31!

The solution of the Marchenko equation~7.8! with the integral kernel in~8.31! is given by

hl~ t,y!5H 0, t.22y,
k1k2

b

~b1g!@ebt2e22by#1e~b2a!@12e2b~ t12y!#

e~b2a!1~b1g!e22by , t,22y,

whereb is the constant in~8.3!. Again, using~8.30!, we obtain

V0,1~y!5H 0, y.0,

2
8b2e~b2a!~b1g!e22by

@e~b2a!1~b1g!e22by#2
, y,0.

~8.32!

Corresponding toV0,1(y) in ~8.32!, we have the zero-energy Jost solution from the right given by

Yr ;0,1~0,y!5
2e~b2a!1~b1g!e22by

e~b2a!1~b1g!e22by , y,0. ~8.33!

Using ~3.9! we see that fory,0, Zr(0,y) is given by~8.33!. Using ~6.16!–~6.18! and ~8.33! we
obtain

y2
2e~b2a!/b

e~b2a!1b1g
1

2e~b2a!/b

e~b2a!1~b1g!e22by 5H2E
0

x dz

f r~0,z!2
, x,0, ~8.34!

H~x!5
H2

f r~0,x!2 F2e~b2a!1~b1g!e22by

e~b2a!1~b1g!e22by G2, x,0, ~8.35!

wherey in ~8.35! is obtained in terms ofx from ~8.34!, andf r(0,x) is the zero-energy Jost solution
from the right associated withQ(x). Using~6.19! and~6.20!, one can show that~8.34! and~8.35!
are identical to~8.14! and ~8.15!, respectively. Finally, let us briefly consider the case where the
constantE defined in~8.29! is positive. In this case,k1 is in C2 andk2 is in C1. Thus,V0,1(y)
has one bound state. However, sinceV0,1(y) is supported on a half-line, its bound state norming
constant cannot be chosen arbitrarily and is determined byr 0,1(k) alone.

22 Routine computations21

lead us again toH(x) as given in~8.14!.
Example 8.6:In this example, we demonstrate the recovery ofH(x) by the method outlined

in Sec. VI, namely by solving the singular integral equations~6.7! or ~6.10!. As our scattering
data, let us use the same scattering data as in Example 8.1, with the same restrictions on the
parameterse, a, andg. First, using the method of Ref. 13 we get the quantities given in~8.4!.
Wheny.0, we will solve~6.7!; for this, using~3.16!, we getJl(k,y)51 and from~6.9! we have
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Pl(k,y)50. Thus, the solution of~6.7! for y.0 is given byXl(k,y)50; hence from~6.13! we
obtainH(x) for x.0 as given in~8.10!. Now let us consider the situation wheny,0; in this case,
it is easier to obtainl ~k! and solve~6.10!. Using the method of Ref. 16 we constructt(k) given
in ~8.2! and usingl ~k!52r~2k!t~k!/t~2k!, we get

l ~k!52e
k2 ia

k1 ig

k1 ib

k2 ib
. ~8.36!

Using ~8.36! in ~6.11!, we obtain

Pr~k,y!5
2i eb

k2 ib

b2a

b1g
e2by, y,0. ~8.37!

SinceXr(k,y) is analytic inC
2, a contour integration along the boundary ofC2 converts~6.10!

into the algebraic equation,

Xr~k,y!2
2i eb

k2 ib

b2a

b1g
e2byXr~2 ib,y!5Pr~k,y!, y,0.

Using ~8.37! and the analyticity requirement onXr(k,y) to evaluateXr(2 ib,y), we get

Xr~k,y!5
2i eb

k2 ib

b2a

b1g

~b1g!e2by

b1g1e~b2a!e2by , y,0. ~8.38!

From ~3.17! we haveJr(k,y)51 for y,0. Thus, using~6.5! and ~8.38!, we get

Zr~0,y!5
~b1g!e22by2e~b2a!

~b1g!e22by1e~b2a!
, y,0.

Thus using~6.16! and ~6.18!–~6.20!, we obtainH(x) given in ~8.15!.
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