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Bounds for the degree of polarization
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Relations between the degree of polarization of the incident beam and that of the outgoing beam are discussed
for a number of optical devices and for scattering by particles and surfaces. Rigorous upper and lower bounds
for the degree of polarization of the outgoing beam are given for cases in which the degree of polarization of
the incident beam is known.  1995 Optical Society of America
A quantity of considerable interest in studies of
polarized light is the degree of polarization of a
beam of radiation. Every transformation of Stokes
parameters described by a Mueller matrix may change
the degree of polarization. The nature of this change,
however, is not so obvious (see, e.g., Ref. 1).

The main purpose of this Letter is to present simple
upper and lower bounds for the change of the degree
of polarization of a beam that occurs on interaction
with matter, as described by a Mueller matrix. Such
bounds can be used for testing optical devices and
numerical techniques.

We consider a quasi-monochromatic beam of radia-
tion with Stokes parameters I , Q, U , and V (see, e.g.,
Refs. 2 and 3). We write these Stokes parameters as
elements of a column vector I, called the Stokes vector,
and define the degree of polarization as

p ­ sQ2 1 U 2 1 V2d1/2yI . (1)

We always have 0 # p # 1. If a beam of radiation
with Stokes vector I1 and degree of polarization p1
creates through linear processes a beam of radiation
with Stokes vector I2 and degree of polarization p2, we
can write

I2 ­ MI1 , (2)

where the real 4 3 4 matrix M is called a Mueller
matrix. Clearly, the corresponding change of the
degree of polarization is, in general, a complicated
function of the elements of M and I1. Instead of the
elements Mij of the Mueller matrix, we will sometimes
use

mij ­ Mij yM11 . (3)

Since M11 is the largest element in absolute value,4,5 we
have

0 # jmij j # 1 . (4)

Similarly, we sometimes use the reduced Stokes
parameters (i.e., the Stokes parameters divided by the
first one) q1, u1, and v1 for the incident beam.

A useful parameter turns out to be

s ­ sm2
21 1 m2

31 1 m2
41d1/2. (5)

Apparently, s represents the degree of polarization
of a beam of outgoing radiation if the incident beam
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is unpolarized. Consequently, s is the value of p2 if
p1 ­ 0, and we have

0 # s # 1 . (6)

In the following discussion we restrict ourselves
to pure Mueller matrices, i.e., matrices that can be
derived from 2 3 2 Jones matrices. This holds for
optical devices such as quarter-wave plates and
retarders and for scattering by one particle. Pure
Mueller matrices have many interesting proper-
ties.5,6 For example, we can write

I2
2 s1 2 p2

2d ­ d2I2
1 s1 2 p2

1d , (7)

where

d2 ­ M2
11s1 2 s2d . (8)

Furthermore, we have

s2 ­ m2
12 1 m2

13 1 m2
14 . (9)

Combining Eqs. (7) and (8) and using Eq. (2) gives

1 2 p2
2 ­

M2
11s1 2 s2dI2

1 s1 2 p2
1d

sM11I1 1 M12Q1 1 M13U1 1 M14V1d2
, (10)

which may be written in the form [cf. Eq. (3)]

1 2 p2
2 ­

s1 2 s2d s1 2 p2
1d

s1 1 m12q1 1 m13u1 1 m14v1d2

­
s1 2 s2d s1 2 p2

1d
s1 1 sp1 cos gd2

, (11)

where g is the angle between the vectors
hm12, m13, m14j and hq1, u1, v1j.

For given s and p1, the maximum f sp1, s) of p2 will
be assumed for g ­ 0, while the minimum gsp1, sd of
p2 will be assumed for g ­ p. This gives

f sp1, sd ­
p1 1 s
1 1 sp1

, (12)

gsp1, sd ­
jp1 2 sj

1 2 sp1

. (13)

We have thus found very simple upper and lower
bounds for p2. Note that f sp1, sd and gsp1, sd are
both symmetric in p1 and s.
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Fig. 1. Upper (dashed curve) and lower (solid curves)
bounds for p2 as functions of p1. Here s ­ 1y4.

Figure 1 shows f sp1, sd and gsp1, sd as functions
of p1 for s ­ 0.25. If 0 , s , 1 the bounds coin-
cide for p1 ­ 0 and p1 ­ 1, yielding p2 ­ s and
p2 ­ 1, respectively [cf. Eqs. (12) and (13)]. If
0 , s , 1 the bounds for p2 are reached if
hq1, u1, v1j ­ s6p1ysd hm12, m13, m14j, where the
plus refers to the upper bound and the minus refers to
the lower bound. If 0 # s , 1, the maximal difference
f 2 g is 2sys1 1 s2d, which occurs if p1 ­ s. If s ­ 0
the bounds coincide for all values of p1, and p2 ­ p1.
Similarly, the bounds coincide if s ­ 1, and we then
have p2 ­ 1 for all values of p1. This means that if a
primary beam of unpolarized light creates completely
polarized light through a pure Mueller matrix, the
light is completely polarized for every state of polariza-
tion of the primary beam.

For practical purposes several conclusions may be
drawn from Fig. 1 or Eqs. (11)–(13). We give three
examples:

(1) If one has a pure Mueller matrix with s ­ 1y4
it is not possible to obtain a beam with p2 $ 2y3 when
beams are used with p1 , 0.5.

(2) If one wishes an instrument, characterized by a
pure Mueller matrix with 0 , s , 1, to depolarize as
much as possible one should use light with p1 ­ s and
g ­ p, i.e., hq1, u1, v1j ­ 2hm12, m13, m14j, since then
p2 ­ 0.

(3) A pure Mueller matrix has the property that
p2 ­ 1 if p1 ­ 1. For that reason a pure Mueller
matrix is often called a totally polarizing Mueller
matrix7 or a nondepolarizing matrix.8 It should be
realized, however, that a pure Mueller matrix may give
light with p2 , p1.

This concludes our discussion of pure Mueller
matrices.

Let us now consider a Mueller matrix of the type
M ­

266664
a1 b1 0 0
b1 a1 0 0
0 0 a3 b2

0 0 2b2 a3

377775 , (14)

which holds, e.g., for the scattering matrix of an
assembly of optically inactive homogeneous spheres,
also called Mie scattering. In this case [cf. Eq. (2)]

I2
2 s1 2 p2

2d ­ sa2
1 2 b2

1d sI2
1 2 Q2

1 d 2 sa2
3 1 b2

2d sU 2
1 1 V2

1 d .

(15)

When we use Eq. (81) of Ref. 9,

a2
3 1 b2

2 # a2
1 2 b2

1 , (16)

Eq. (15) yields

1 2 p2
2 $

a2
1s1 2 s2dI2

1 s1 2 p2
1d

sa1I1 1 b1Q1d2
, (17)

which can be written as

p2 #
p1 1 s
1 1 p1s

­ f sp1, sd . (18)

Thus we find exactly the same upper bound as for a
pure Mueller matrix.

Equation (15) also gives

I2
2 s1 2 p2

2d # sa2
1 2 b2

1d sI2
1 2 Q2

1 d , (19)

yielding

1 2 p2
2 #

s1 2 s2d s1 2 q2
1d

s1 2 sjq1jd2
, (20)

so that

p2 $

Ç
s 2 jq1j

1 2 sjq1j

Ç
. (21)

Suppose we now have a Mueller matrix of the form

M ­ diagsa1, a2, a3, a4d . (22)

Here

p2 ­
sa2

2q2
1 1 a2

3u2
1 1 a2

4v2
1d1/2

a1

, (23)

which satisfies the inequalities∑
minsja2j, ja3j, ja4jd

a1

∏
p1 # p2

#

∑
maxsja2j, ja3j, ja4jd

a1

∏
p1 . (24)

In particular, since maxsja2j, ja3j, ja4jd # a1,9 we have

p2 # p1 . (25)

Consequently, a diagonal Mueller matrix can never
enhance the degree of polarization.
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Fig. 2. Domains for p2yp1 (the shaded areas) for exact
backscattering by the assemblies of particles described in
the text.

An interesting special case is provided by exact
backscattering by a small volume element compris-
ing (i) randomly oriented particles having a plane of
symmetry, such as ellipsoids, and/or (ii) particles and
their mirror particles in equal numbers and in random
orientation. The scattering matrix then is

M ­ diagsa1, a2, 2a2, a1 2 2a2d , (26)
where a1 $ a2 $ 0.10 When we write x ­ a2ya1,
inequalities (24) provide in this case

xp1 # p2 # s1 2 2xdp1 if x , 1y3 ,

j1 2 2xjp1 # p2 # xp1 if x . 1y3 ,

p2 ­ p1y3 if x ­ 1y3 .

This is illustrated in Fig. 2.
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