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Abstract. The recovery of the coefficierH (x) in the one-dimensional generalized Sitinger
equation‘f%’z’ +k?H (x)?y = Q(x)y, whereH (x) is a positive, piecewise continuous function
with positive limits Hy. asx — o0, is studied. This equation describes the wave propagation in
a one-dimensional non-homogeneous medium in which the wavespé&gad lchanges abruptly

at a finite number of points and a restoring for@éx) is present. When there are no bound
states, the uniqueness #f(x) in the inversion is established for a proper choice of scattering
data. When the transmission coefficient vanishek &t0, it is shown that the scattering data
consisting of Q(x) and a reduced reflection coefficient uniquely determif), and neither

H, nor H_ need to be given as part of the scattering data. If the transmission coefficient does
not vanish wherk = 0, then one needs to include eithBr. or H_ in the scattering data to
obtain H(x) uniquely. A simple algorithm is described giving the travel times from= 0

to any discontinuity ofH (x) and the relative changes in the wavespeed in terms of the large
k-asymptotics of a (reduced) reflection coefficient. It is also shownAhaand the transmission
coefficient alone do not determine the number of discontinuitie#/ 0f), let alone the travel
times between them. Some examples are given to illustrate the algorithm.

1. Introduction

Consider the one-dimensional generalized 8dimger equation
Vkox) FRPH@M Yk, x) = Q)Y k,x)  xeR (1.1)

where the prime denotes the derivative with respect to the spatial coordinate and the
coefficients are assumed to satisfy the following conditions:

(H1) H(x) is strictly positive and piecewise continuous with jump discontinuities, at
forn=1,..., N such thatx; < --- < xy.

(H2) H(x) —» Hy asx — too, where H, are positive constants.

(H3) H — Hy € LY(R*), whereR™ = (—o0, 0) andR* = (0, 4+00).

(H4) H' is absolutely continuous ofx,, x,+1) and 2H"H — 3(H)?> € L}(x,, X,11)
forn =0,...,N, wherexg = —oco andxy;1 = o0, and L},(I) denotes the space of
measurable functiong (x) on I such thatf, dx (L + [x]?| f(x)] < oo.

(H5) Q € L1,,(R) for somea € [0, 1].

Equation (1.1) describes, in the frequency domain, the propagation of waves in a one-
dimensional non-homogeneous medium wherés energy, 1H (x) is the wavespeed, and
Q(x) is the restoring force per unit length. The discontinuitiesibfx) correspond to
abrupt changes in the scattering properties of the medium in which the wave propagates,
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the relative change#/ (x, — 0)/H (x, + 0) correspond to the jumps in the wavespeed at
the interfacest,, andy, = (j‘” dx H(x) correspond to the times required for the wave to
propagate from the fixed location= 0 to the interfacey, forn =1,..., N.

In [AKV95] we described a solution to the inverse problem of recovergr) in
terms of the scattering data consisting @fx), a (reduced) reflection coefficient/, or
H_, the bound state energies, and the bound state norming constants. In the present paper,
for simplicity, we assume that there are no bound states andxtkratl in (H5). This
will cover in particular the cas@(x) = 0. Under these assumptions the main steps in the
procedure used in [AKV95] are the following. (1) Use a (reduced) reflection coefficient to
formulate a singular integral equation, (2) solve this equation uniquely, (3) obtajnas
the solution of an algebraic equation also containing as input the solitioyx) of (1.1)
for k = 0 satisfying £{(0, x) — 1 asx — +o0, (4) putH(x) = y'(x). A similar procedure
was given by Grinberg [Gr90, Gr91] whaB(x) = 0, in which case the unique solvability
of the singular integral equation is immediate and the third step is trivial to implement.

After introducing the scattering and reduced scattering matrices and reviewing their
small and large-asymptotics in section 2, we will study two problems associated with the
recovery of H(x) in (1.1). The first problem deals with the inclusion or exclusionHof
in the scattering data. The second problem deals with the recovery of the discontinuities of
H(x) in terms of the large&-asymptotics of the scattering data. As for the first problem,
an example was given in [AKV95] where a uniqi&(x) was recovered although neither
H, nor H_ was included in the scattering data. We now understand the general theory
concerning that surprising result, and in section 3 we investigate the proper choice of the
scattering data that lead to a unigiéx). In the exceptional case, i.e. when the transmission
coefficient associated with (1.1) does not vanisk at 0, we show that one needs to include
either H, or H_ in the scattering data; otherwise, as the example in (3.1) indicates, a one-
parameter family ofH (x) with different H, leads to the same scattering data. In the
generic case, i.e. when the transmission coefficient vanishes-43, if one uses a reduced
reflection coefficient in the scattering data, then neitHgernor H_ need to be included in
the scattering data, and in faéf. are determined by using the condition (3.40) without
including eitherH, or H_ in the scattering data. On the other hand, in the generic case,
if one uses a reflection coefficient instead of a reduced reflection coefficient, in order to
determineH (x) uniquely, one can omit/,. from the scattering data if and only if (3.41) is
satisfied. All the details are given in section 3, and some examples are provided to illustrate
the proper choice of the scattering data.

The inversion method described in [AKV95] is based on a singular integral equation
whose solution eventually leads #@(x). From this method it is not clear how simple
properties of the medium, such as the number of and the travel times between discontinuities
of H(x), can be found in an elementary way without solving an integral equation. In section
4 of the present paper, we describe an algorithm that allows one to find the nomiser
discontinuities ofH (x), the travel timesy, ..., yy to these discontinuities from the fixed
locationx = 0, and the jumpsH (x, — 0)/H (x, + 0) in the wavespeed at the interfaces
by using the largek-asymptotics of a (reduced) reflection coefficient. This algorithm
does not involve any integral equations and, as some illustrative examples show, can be
implemented by hand. An algorithm to recover the travel timgs — y, and the jumps
H(x, —0)/H (x,+0) in terms of the larg&-asymptotics of the modulus of the transmission
coefficient was described by Grinberg [Gr90, Gr91] under certain technical restrictions. Our
algorithm given in section 4 does not have these restrictions. As example 4.2 indicates,
H, and the transmission coefficient alone do not in general determine even the number of
discontinuities ofH (x), let alone the travel times between the successive discontinuities of
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H(x). When the functionH (x) £;(0, x)? is known to be piecewise constant, the algorithm
described in section 4 allows us to recovéi(x) exactly. When the conditions (H1)-
(H5) are satisfied, the large-asymptotics of a (reduced) reflection coefficient are given
by an almost-periodic function df. In section 5, we characterize those functidtigr)

that satisfy (H1)—(H4) and for which the corresponding (reduced) scattering coefficients are
almost periodic functions of.

Concerning scattering and inverse scattering problems with discontinuous coefficients,
we remark that Sabatier and his co-workers [SD88, Sa89, DS92, MS94] studied the scattering
for the impedance-potential equation and that Krueger [Kr76,Kr78] studied the inverse
scattering problem fon,, — u,, + ca(x)u, + co(x)u, + c3(x)u = 0, wherex, t € R and the
coefficientscs, ¢z, c3 are piecewise continuous functions with support in a finite interval.
Krueger [Kr82] also considered,, — ¢(x)u;; = 0 whene(x) is constant forx < 0 and
piecewise continuous for > 0, and he developed an iterative method to receyey when
the incoming and reflected waves are given.

2. Preliminaries

In this section we review the small and largeasymptotics of the scattering matrix
associated with (1.1). The reader is referred to [AKV95] for the details and proofs. The
scattering coefficients associated with (1.1) are defined in terms of the Jost solution from
the left fi(k, x) and the Jost solution from the right(k, x), which satisfy the boundary
conditions

et 4 o(1) X = 400
ﬁ(k’ x) = 1 ikH_x L(k) _ikH_x
mé + 1€ +0(1) X —> —00 o
o ikHyx R(k) gEHY 4 (1) ¥ = 400
filk,x) =4 Tr(k) Ty (k)
e—ikH,x +0(2) ‘o —o0

where Ti(k) and T;(k) are the transmission coefficients from the left and from the right,
respectively, andR (k) and L(k) are the reflection coefficients from the right and from the
left, respectively. The scattering matrix associated with (1.1) is defined by
Ti(k) R(k)
5 = [L(k) Tr(k)} '
For brevity, the entries o6 (k) are also referred to collectively as scattering coefficients.
The bound states associated with (1.1) are given by the square-integrable solutions of (1.1),
and such solutions can occur only at certain discrete negative valuéskabwn as bound
state energies; = 0 is never a bound state.
As in [AKV95] we introduce the reduced scattering matrix

Tt )
a(k)_[ak) T(k)} 2.2)
where
r(k) = ,/%Tl(k)e”‘" _ ,/%Tr(k)é’“* p() = ROEA  1(k) = Lk
- +
2.3)

+o0
Ay = :l:/ ds [Hy — H(s)] A=A_+A,. (2.4)
0
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We will refer to (k) as the reduced transmission coefficient ang th) and £(k) as the
reduced reflection coefficients from the right and from the left, respectively. The entries of
o (k) collectively are also referred to as reduced scattering coefficients. The m@khixs
unitary fork € R and we have

deto (k) = 1(b)% — L) pk) = X (2.5)

T(—k)
where det denotes the matrix determinant.

As in [AKV95] we distinguish between the generic and the exceptional cases for (1.1).
The generic (exceptional) case is said to occur(@ = O (z(0) # 0). Equivalently, the
exceptional case occurs if the zero-energy Jost solutfpi@s x) and f.(0, x) are linearly
dependent, i.e. if we have

‘fl(ov-x) = )’fr(O,x) (26)

for some non-zero constant. In the generic casefi(0, x) and f;(0,x) are linearly
independent and hence(0, x); f;(0,x)] # 0, where [f; g] = f¢' — f'g denotes the
Wronskian.

Let C* denote the upper and lower half complex planes, respectivelyCand C*UR.
The following theorem proved in [AKV95] summarizes some properties of the reduced
scattering coefficients that are relevant to us.

Theorem 2.1 (i) (k) is meromorphic inC* and continuous ofR. In the generic case
7(k) vanishes linearly a& — 0 in Ct. The bound state energies correspond to the (simple,
finitely many) poles ofr (k) in C*, and such poles may occur only on the imaginary axis

in C*.
(i) p(k) and£(k) are continuous fok € R. In the generic case we haye(k)| =
[L(k)] < 1 for k ## 0 andp(0) = ¢£(0) = —1, whereas in the exceptional case we have

lp(k)| = |L(k)| < 1 for all k € R.

The detailed asymptotic behaviours of), p(k), and£¢(k) ask — O with error terms
depending orx (cf (H5)) were given in [AKV95]. Using the smakt-behaviour of the
reduced scattering coefficients, it is possible to show that when and p (k) are known,
H, can be obtained froni/_ andvice versa This can be seen as follows. In the exceptional
case we have [AKV95]

_ 71+ p(0)]
T 1-p0
where y is the constant in (2.6), and this constant is determinedldy) alone. In the
generic case we have

L0, x); f1(0, x)]?
N 4H_

wherec ;= lim;_ ot (k)/ik. Note thatf(0, x) and f;(0, x) are determined by (x) alone,
and hence their Wronskian in (2.8) is also determined)gy) alone; furthermore we have
2 = limg_o(1 — |p(k)|®/k2, while (=1)V~1¢ > 0, N being the number of bound states.
Hence,c is solely determined by (k) and \.

The local Liouville transformation on each interval;, x;11) given by

2.7)

H, (2.8)

x 1
— v = [ ds H( kox)= = (k. 2.9
v =y A BHE ) = 9 (2.9)
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transforms (1.1) into the Sabdinger equation

ok, y)
?z.y +2p(k, y) = V() (k. ) (2.10)
where

H'(x) 3H'(x)? O(x)

|4 =V = - - .

(y) ()’(x)) 2H(.x)3 4 H(.x)4 H(x)z

HenceV (y) is defined fory € R\ {y1, ..., yn}, Wwherey; = y(x;). SinceH (x) > 0 and has
positive limits Hy asx — 400, we haveyy = yo(xg) = —o0o0 andyyi1 = y(xyy1) = +00.

Note that, since the functiong (k, x) and ¢’(k, x) are continuous ak;, the functions
¢ (k, y) and dp(k, y)/dy will not be continuous ay;. From the continuity ofy (k, x) and

(2.11)

¥'(k,x) atx; for j =1,..., N, we obtain the following (internal) boundary conditions for
¢k, y):
¢k, y; —0) = /q;¢(k, y; +0) (2.12)
do(k, y; — 0) 1 do(k,y; +0)
— =k, + O+ —— (2.13)
& ARV /A
where
H()Cj — O)
= 2.14
U= H +0) (2.14)
1 H@xj—0 H'(xj+ O)}
j = — : . 2.15
K 2/H(x; + 0)H(x; — 0) [H(xj -0 H(x +0) (2.15)

It is straightforward to check that the boundary conditions (2.12)—(2.13) are self-adjoint.
So we can think of (2.10) as a Séldinger equation with potentidf (y) given by (2.11)

on the intervalsy;, y;+1) for j = 0,..., N and supplemented by the boundary conditions
(2.12)—~(2.13) at the pointg;. As shown in the following proposition, althoudh(y) is
undefined aty; for j =1,..., N, we can still associate a scattering matrix with (2.10).

Proposition 2.2 The scattering matrix for (2.10) with the boundary conditions (2.12)—
(2.13) is precisely the reduced scattering matri%) defined in (2.2).

Proof. From (2.4) and (2.9) we have
y(x) = H,x — A, +0() X — 400 (2.16)
y(x)=H_x+ A_+o0(1) X — —00. (2.17)

Hence, by using (2.16), the Jost solution from the left for (2.10) (i.e. the solution of (2.10)
such that e%¢(k, y) = 1+ o(1) asy — +o0) is given by
VH®) _ika
ik, y) = ——=—e"" fi(k, x).
VH;
Therefore, ay — —oo, from (2.1) and (2.17) it follows that

_ [H- e H_ LK) jia—a,) it

By using (2.3) we see that
1 . 2(k)
k,y)= ——ev 4 =
di(k, y) =7y + =7y
and thusz (k) is the transmission coefficient ardk) is the reflection coefficient from the
left for (2.10). Similarly, by considering the Jost solution of (2.10) from the right, one
shows that the reflection coefficient from the rightoi). O

e 4 o(1) y = —00 (2.18)
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Later in the paper we need to know how the (reduced) scattering matrix changes when

we perform a shifty — y + & for a fixed&¢ € R.

Proposition 2.3 For anyé € R, let V(y; &) = V(y + &). Consider (2.10) withV (y)
replaced byV (y; £) and boundary conditions of the form (2.12)—(2.13) at the poiptsé,
where the numerical values of; and n; are independent of. Then the scattering
coefficients forV (y) and V (y; &) are related by

t(k; £) = T(k) p(k; £) = €% p(k) e(k; ) = e 2 k). (2.19)

Prpof. The Jost solution from the left associated withiy; £) is given by (k, y; &) =
e ¢ (k, y + £). Then (2.19) is obtained by using (2.3), (2.4), and (2.18). O

Let V; ;+1(y) be the potential defined by

V() y € (¥j» yji+1)
Vi = 2.20
10 { 0 elsewhere. (2.20)
As a consequence of hypothesis (H4) we have
Vi1 € LI(R) j=0,...,N. (2.21)

Let g.; j+1(k, y) and g..; j11(k, y) denote the Jost solutions from the left and right,
respectively, associated with the potenti@l;.1(y). Then the functions defined by

1 1
ok x) = (ks gk, x) = ———g, i1k, 2.22
r]_),j+1( x) mgl,j,_l-‘rl( y) §1,1+1( x) \/mg ,]v./-‘rl( y) ( )
become solutions of (1.1). Let us introduce the matrices
njj+1(k, x) & ‘+1(k,x)i| :
Uik, x)=| "7 I =0,...,N
./a}‘f‘l( x) [}7‘;‘];'_1(](7 x) E.]‘,.]‘_;'_l(k, x) J
N
G(k) = | | Tu-an(k, x4 = O 7' 1k, x, + 0). (2.23)
n=1

Let ¢ j+1(k), r; j+1(k), and; j11(k) denote the scattering coefficients for the potential
Vi ji+1(»). It was shown in [AKV95] that

1 1
— = 1 0]G(k
(k) to,l(k)[ o )[0]

(k) [lo,l(m 1o m

[0 116G [ﬂ (2.24)

B tn . vya(k)

k) Luga(k)

p (k) ry.n+1(k) _1 [O}

=11 =/ k . 2.25

ol el ) CACI (225)
Moreover,

2ik 10,1 (k)

detl’,, ,+1(k, = — detGk) = ——~ .

) R = v ®
Let

1 1 1 1
B Y = van - 2.26
¢ Z(ﬁ ﬁ) P 2(*/? ﬁ) (2.26)

—2iky,
E(k,xn)=|:ﬂ Zz"iky,l ﬂnea Y} (2.27)
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with ¢, as in (2.14); let us also defingk) andb (k) by

atky bk ] _ T
[b(_k) a(_k)} = nl:[lE(k, Xn). (2.28)
From (2.26)—(2.27) we see that
la(k)|? = b)) =1 k eR. (2.29)

Let APY (almost periodic functions with Wiener norm) stand for the algebra of all
complex-valued functiong'(k) on R which are of the formf (k) = Zj"ifoo fjei“f, where
fi e Candi; € R for all j and Zj | fil < oo. By letting k& — oo In (2.23) and using
(2.24) and (2.25) we obtain the following theorem proved in [AKV95].

Theorem 2.4 We have

A WM+ k- occinTE (2.30)

T(k)

p(k) = —bk) +0(1) k — +o0 in R. (2.31)
a(k)

Moreover,|a(k)| > 1 onC* and the functions (k), b(k), 1/a(k), andb(k)/a(k) belong to
APV,

3. Scattering data and unigueness

The motivation for this section comes from some observations made in [AKV95] concerning
the unigueness of solutions to the inverse problem. The question of uniqueness is closely
related to the choice of an appropriate set of scattering data. Recall our assumption that there
are no bound states. We will show that in the generic case the scattering data consisting of
Q(x) and a reduced reflection coefficient uniquely deternfif(@); in the exceptional case
either H, or H_ must be specified in addition t0(x) and a reduced reflection coefficient

to determineH (x) uniquely. There is no loss of generality in usipgk) as the reduced
scattering coefficient in the scattering data, and without further mentioning it we will simply
usep(k); one can easily modify the proofs 4{k) is used instead g (k) in the scattering

data. We will also give the appropriate modification if one uses a reflection coefficient
instead of a reduced reflection coefficient in the scattering data; it then turns out that in
the generic case when (3.41) fails one also must include elfheor H_ in the scattering

data. Since the proofs essentially remain the same whether oneR(isesr L(k) as the
reflection coefficient, without loss of generality we will state and prove our results by using
only R(k).

We recall that in the absence of bound states the inversion procedure described in
[AKV95] requires two key ingredients: the potentigl(x) and the reduced reflection
coefficient p (k) (or, alternatively,R(k)). In the exceptional case one also needs to know
H, in order to determingd (x) uniquely. For example, consider the scattering data given
by O(x) = 0 andp (k) = po, Wherepy € (—1, 1) is a constant. Corresponding to this set
of data we have

H, x>0
Hx)=4{1- 3.1
2 7'00H+ x <0 3.1
1+ po

and hence a one-parameter family of functiéh&:) corresponds to the same scattering data.
In general, in the exceptional case no conditiongfnarise during the inversion procedure,
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and hence one always ends up with a one-parameter family of fundii@ng parametrized
by H,. However, the parametdgtd . will generally not be a multiplicative factor i (x)
as in (3.1). The proof that, in the exceptional case, there exists a one-parameter family of
functions H (x) depending onH,, having the same(k), and satisfying (H1)—(H4), was
not given in [AKV95]; it will be given here in theorem 3.2.

On the other hand, in the generic case, we learned from example 6.2 in [AKV95] that
H. is not a free parameter as in the exceptional case but is determinetkpand Q (x).
We have since realized that this is generally true in the generic case, and we will prove
this fact in theorem 3.1. It is possible to modify the inversion procedure of [AKV95] and
use the reflection coefficierR (k) instead of the reduced reflection coefficigrk) in the
scattering data. Somewhat surprisingly, it then turns out that in the generic case there is one
special situation, wheré/, also becomes a free parameter; this special case occurs when
(3.41) fails and it will be described in theorem 3.3.

We will first show that in the absence of bound states the scattering data appropriate
for the unique solution of the inverse problem associated with (1.1) are:

(i) in the generic casefQ(x), p(k)};

(i) in the exceptional case{Q(x), p(k), H,}.

In preparation of the proof of our first theorem we recall some results from [AKV95].
The functionQ(x) enters into our formalism through the zero-energy Jost solufit x)
and itsk-derivative f;(0, x). These two functions satisfy the following integral equations:

£i(0,x) = 1+/ &z (z — 0) Q) /(0. 2) (3.2)
£1(0, x) :iH+x+/ dz (z — x)Q(2) fi(0, 2). (3.3)

Incidentally, (3.3) shows thaf;(0, x) is also a zero-energy solution of (1.1) and is linearly
independent off; (0, x), since it grows as — +oo. From (3.2) and (3.3), the estimates

1 /10, x)| < (14 max0, —x}) exp[/ dz (1+ IZI)IQ(z)I] (3.9
1/1(0,%)| < Hy (1 + |x|>exp[/ dz (1+ IZI)ZIQ(Z)I} (3.5)

follow by iteration. SinceQ € L3(R), from (3.3) and (3.5) we conclude that
£1(0,x) = iHx + o(1) x — +o0. (3.6)

Since we assume that there are no bound states, we fid/e) > 0 for all x € R. On
letting x — —oo in (3.2) and using (3.4) we find

(O, x) = —cax +d + ¢x) X = —00 3.7)
where

cl =/ dz O(2) £i(0, 2) (3.8)

dy = 1+/ dz zQ(2) fi(0, 2) (3.9)

€(x) = —/ dz (z — x)Q(2) fi(0, 2). (3.10)



Discontinuities in non-homogeneous media 9

From (2.15) of [AKV93] it follows thate, = [f£i(O, x); f7(0,x)] > O. The’detailed
asymptotics stated in (3.7) will be needed at the end of this section. We dengie(Byx)
the unique solution of (3.3) fof/, = 1. The ratios defined by

i £i(0, x) i f1.1(0, x)

G(x)=— G = — 3.11
(x) 702 1(x) 700 (3.11)
will play an important role in the sequel. By (3.3) we have
NO,x) =H, fi10,x)  G(&x) = H;G1(x) (3.12)
and (cf (2.27) in [AKV95])
pon 1
Gi(x) = 0,392 >0 (3.13)
Moreover, using (3.6) and (3.10) we obtain
Gi1(x) =x+0(1) x — +o0. (3.14)

We now return to the inversion method of [AKV95]. The solution of the inverse problem
leads to the following implicit equation (cf (5.24) in [AKV95]):

y+ Ay +X(0,y) = H.G1(x) (3.15)

wherey = y(x) is the function defined in (2.9) anil(k, y) is the solution of the singular
integral equation

X(k, y) = Xo(k, y) + (O, X)(k, y) (3.16)
with
Zotk, ) = 1 /00 ds  p(s)e — p(0) (3.17)
oV Y= omi oo § — k410 s '
(O, X)(k,y) = L[« (—5)€ 2 X (s, y) (3.18)
yE = ) s+k—i0” ¢ 5 ) -

Note that the functiorX (k, y) is related to the solutio® (k, x, y) of (5.21) in [AKV95] by

fi(0, x)

il
The existence and uniqueness of solutions of (3.16) in the Hardy sgdé€R) with
1 < p < oo was proved in [AKV95]. Recall that the Hardy spacE (R) are the spaces

of analytic functionsF (k) on C* for which sup_ ffooo dk|F (kxie)|? is finite. The constant
A, in (3.15) is determined uniquely by the conditip0) = O, i.e.

Xk, x,y)=—iX(k,y)

A, = H,.G1(0) — X(0, 0) (3.19)
and thus (3.15) can be written as
y+ X(0,y) = H,[G1(x) — G1(0)] + X (0, 0). (3.20)

Theorem 3.1 For a given set of scattering data, if a solutifiiix) of the inverse problem
exists, then it is unique.
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Proof. In the exceptional cas¢;(0, x) — y asx — —oo, Wherey is the constant defined

in (2.6); sincef(0, x) is bounded and strictly positive, using (3.13) we conclude that the
range ofG(x) is the whole real line. In the generic case, by using (3.7), (3.11), and (3.13),
we see that

1
£i(0, 2)?

is finite. Therefore, in the generic case, by using (3.12) and (3.13), we see that the range
of G(x) is the interval(H, G1(—00), +00). A solution y(x) of (3.15) is assumed to exist

and y(x) is monotonically increasing; hence the left-hand side of (3.15) must also be
monotonically increasing as a function ef In fact, by differentiating (3.20) and using
(3.13) and @/dx = H(x), we see that the functioX (0, y) is continuously differentiable
except possibly at the points = y(x;), and

0
lim_G1(x) = Ga(=00) = G1(0) —/ dz (3.21)

dy +XO.»] _  Hy
dy H(x) fi(0, x)?

Since the ranges of both sides of (3.15) must be equal and.lijy y(x) = 400, we
conclude that in the exceptional case

>0 yeRN\{y,...,y}

Jim [y + X(0,3)] = oo.
In the generic case we have
Jim [y + X0, )] = +o0o
and from (3.20) and (3.21) we conclude that the limit
w = yﬂrpoo[y + X (0, )] (3.22)

exists and is finite, and that
w = H[G1(—00) — G1(0)] + X (0, 0). (3.23)
Hence, solving (3.23) foH, we obtain

_ w-X(0,0
~ G1(—o0) — G1(0)

which shows that in the generic cagk is determined uniquely by (k) and Q(x). This

is the reason why we do not includg, in the scattering data for the generic case. In the
exceptional case both sides of (3.15) have infinite range and hence there is no restriction
on H, arising from the implicit equation (3.15). From the monotonicity of the two sides

of (3.15) it is clear that (3.15) is uniquely solvable fotx). The constant,, the function

X(0, y), and, in the generic case, the valuerf are determined uniquely by the scattering
data. Hence the proof is complete. O

H. (3.24)

In the rest of this section we will obtain some further results on the functich y).
The first piece of information comes from the fact that the two expressiond for(2.4)
and (3.19), must agree. Let us temporarily denote the constant in (Z.Aﬁbyind the
constant in (3.19) byd'?. Then

AP = / ds[H. — H(s)] + /OO ds[Hy — H(s)] = Hyx — y(x) + 0(1) (3.25)
0 x
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whereo(1) stands for terms that go to zero as> +oo. ReplacingA, by A(f) in (3.15),
from (3.14), (3.15), and (3.25) we obtain

AL = 4P 4+ X0, y) +0(1).
Hence,AY = A? if and only if

lim X(0,y)=0. (3.26)

y—>+oo

This amounts to a condition op(k). For example, (3.26) holds (k) has an analytic
continuation intoC* and obeys the estimat@ (k)| < c1exp(czlmk) on C+ for some
constantse; andc,. This follows from (3.16)—(3.18) by contour integration and iteration.
The examples discussed in [AKV95] have this property.

The fact that in the exceptional case the constantis not restricted by (3.15) suggests
that it is a free parameter in the sense described in the introduction to this section. The
next theorem will make this notion precise. We will distinguish a particular fundtigix)
satisfying (H1)—-(H4) and denote its reduced scattering matrixloy) and the corresponding
solutionX (0, y) of (3.16) byX,(0, y). A subscript zero will be used also on other quantities
to indicate that they are associated wifg(x); e.g. we will write og(k), po(k), and Ag .
for the quantitiess (k), p(k), and A, defined in (2.2)—(2.4), etc. Then we consider (3.15)
with Xo(0, y) in place ofX (0, y), but on the right-hand side we lea¥#, > 0 and view it
as a parameter (sd; need not be equal t# . ); in other words, we consider

Y+ Ay + Xo(0,y) = HyG1(x). (3.27)
In the following, the quantities that do not carry a subscript zero are associated with
the solutiony(x) of (3.27) for a givenH,. The following theorem shows that, in the

exceptional case, there is a one-parameter family of functis) with parameterH,,
which corresponds to the same scattering détéx), o (k)}.

Theorem 3.2 Suppose we are in the exceptional case withe L1(R) and thatHo(x)
obeys (H1)—(H4). Then for any/, > 0, the functionH (x) = y’(x), wherey(x) is the
solution of (3.27), also obeys (H1)—(H4). Moreovei(k) = og(k).

Proof. We will first verify (H1)-(H4) in the order (H2), (H3), (H1), and (H4).
Differentiating (3.27) with respect to and usingG}(x) = 1/f(0, x)? (cf (3.13)) we get

v/ _ H+ _
X400, y) = HoonoaEt (3.28)

where the prime orX((0, y) denotes they-derivative. Replacing in (3.28)(x) and H,
by Ho(x) and Hp ., respectively, and letting — 400, we obtain
Ho ¢
Ho,_y?
where we have also used (2.6). Sinkg(x) is bounded and bounded away from zero by

(H1) and (H2), we see from (3.28) tha{,(0, y) must obey an estimate of the form

0<C1<1+X50,y)<Cy<o0 (3.30)

for some constant§; andC,. Now return to (3.28) with an arbitrardf (x). By using (3.29)
and (3.30) we conclude thai (x) must approach finite limits as — +oo; in particular
lim,_. o H(x) = Hy. Moreover, fromx — —oo, we obtain

H, _ Ho.

— = 3.31
= (3.31)

IiT X4(0,y) =0 lim X;(0,y) = -1 (3.29)
y——+00 y—>—00
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i.e. the ratioH, /H_ is the same for all solutions of (3.27). This shows tik&tx) obeys
(H2). In order to deal with (H3) we recall that from (3.2) and the assumpfion L%(R)
it follows that (cf [DT79], lemma 1, p 130)

1— £i(0,) € LYR"Y) ¥y — fi(0,-) € LYR"). (3.32)
Now write (3.28) as
Hy—H(x) 1- £(0,x)?
H(x) fi(0, x)? £i(0, x)2

Since Hy(x) obeys (H3), using (3.32) we ha\fé{)(o, ) e LY(R*). Using (3.33) we see that
H — H, € LY(R"). Similarly, whenx < 0 we write

. He . H.[ H-HE  y*>—fi0x?
YOV =g ti=y [H(x)ﬁ(o,x)z 0,072
and, since fotH (x) = Hy(x) the right-hand side is i’ (R™), the left-hand side must be in

LY(R™). HenceH — H_ € L*(R™), i.e H(x) obeys (H3). Next we consider (H1). Solving
(3.28) for H (x) we obtain

X450, y) = (3.33)

H,
£i(0, x)?[1 + X5(0, y)]
The pointSxo1,...,xon Where Hyp(x) has discontinuities determine, via (2.12), the
points yq, ..., vy, Where 5(6(0, y) has discontinuities. Then, for an arbitraf§(x) the
discontinuitiesy; are given byy; = ;7 ds H(s). Thus the number of discontinuities is the
same for all functiondd (x) given by (3.34). The estimate (3.30) guarantees #iat) is
bounded from above and bounded away from zero. Tius) obeys (H1). The verification
of (H4) and p(k) = po(k) will be done together, by using the Liouville transformation
given in (2.9)—(2.11). By differentiating (3.34), after lengthy calculations, we obtain for the
potential V(y) in (2.11)

3 X0, Xg©.)
4[1+ X500, ]2 2[1+ X;p(0, y)]
The boundary conditions a} are given by (2.12)—(2.13) with

H(x) (3.34)

V() =

)’ER\{)’l,--wYN}. (335)

14 X40.y,4+0

gi=-"7 (3.36)
714 X0,y, - 0)
o1 X0y+0 XG0, -0
"2 [14 X500,y + 012 [1+ X450, y; — 0)]2
xy/1+ Xp(0, v + 01/ 1+ Xp(0, y; — 0). (3.37)

Since Hy(x) satisfies (H4)V (y) satisfies (2.21) and, in turn, this implies thfétx) satisfies
(H4). The essential point of (3.35)—(3.37) is thaty) and the boundary conditions depend
only on pg(k) and not onH,. Therefore, the scattering matrix for (3.35) does not depend
on H,, i.e. by proposition 2.2 we have(k) = og(k). O

We remark that in the case whap(x) = 0 we can obtainH (x) from Hy(x) by a
scaling transformation, namely

H
H(x) = ﬁHO(HM/HO.Jr)-
,+



Discontinuities in non-homogeneous media 13

Furthermore, from (2.7) and (3.29) it follows that

L 200(0)
lim X,0,y) = —————
AT %O =10
which complements (3.26).

Next we discuss the extensions of theorems 3.1 and 3.2 to the caseRwhes known

instead ofp (k) as part of the scattering data. In view of (2.3), (3.15) assumes the form
Y+ AL+ X100,y + Ay) = H,G1(x). (3.38)

Here X1(0, y) is the function obtained by solving (3.16) wigh(k) replaced byR(k). We
have used the fact that, if in (3.16)—(3.18) we replace) by p(k)e?*? with § € R, then
this amounts to a shiff — y +6; in our case® = A,. The constanti, is determined by

AL + X1(0, AL) = H.G1(0). (3.39)

Since both sides of (3.38) are monotonically increasing functions of their respective
variables,A . is determined uniquely. In the generic case, we let (cf (3.22))

wo = lim [z + X1(0, 2)].
Z—>—00

Then, by (3.38),H, is given as
wo

- 3.40
G1(—00) ( )

H,
provided that
G1(—0o0) # 0. (3.41)

If G1(—o0) =0, thenH, remains undetermined. Note thatGfi(—oo) = 0, we must also
have wg = 0 in order for (3.38) to be solvable for as a function ofx. We will show
below that if G1(—o0) = 0, thenH, is a free parameter as in the exceptional case. It is
interesting to see that in the constructionffx) from R (k) one may encounter this special
situation which does not arise if one starts frartk) (the denominator in (3.24) is never
zero). Hence, ifo(k) is replaced byR(k), then the scattering data should be redefined as
follows.
(1) In the generic case:
(@) if G1(—00) # 0: {Q(x), R(K)};
(b) if G1(—00) =0: {Q(x), R(k), H.}.
(2) In the exceptional cas€Q(x), R(k), H,}.

Theorem 3.3 Suppose thap e L%(IR{) and that there are no bound states. Then the
solution of the inverse problem with the above scattering data is unique. Moreover, in the
generic case withG;(—o0) = 0 and in the exceptional case, the constait is a free
parameter in the sense that for any choicedof > 0, the functionH (x) resulting from the
solution of (3.38) corresponds to the same reflection coeffidighy.

Proof. The uniqueness follows as in the proof of theorem 3.1 from the monotonicity of
both sides of (3.38). The proof that in the exceptional ddsds a free parameter and that
the reflection coefficient does not depend Bn is similar as in the proof of theorem 3.2,
the only difference being that the potentia(y) in (3.35) is now replaced by (y + A.).

If po(k) denotes the reduced reflection coefficient for a particular fundtigx), then, by
proposition 2.3 withé = A, — Ag 4,

pk) = X0 po (k)
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and thus, by (2.3),
R(k) = Ro(k). (3.42)

It remains to deal with the generic case whgn(—oo) = 0. We first show that for any
H, the functionH (x) arising from the solution of (3.38) obeys (H2) and (H3). It suffices
to considerx < 0, since forx > O the reasoning is the same as in the case of theorem 3.2;
there is no difference between the generic and exceptional casesxwhdén Since in the
generic casef;(0, x) does not approach a finite limit as— —oo, the arguments based
on (3.28) have to be refined. We first describe the idea behind the proof and then fill in
the technical details. Again we assume that there is a solution) with a corresponding
function Hy(x) obeying (H1)—(H4). We can think aff(x) as the functionH (x) that, via
its reflection coefficient, determingé; (0, y) in (3.38). Now define; = 5(x) such that

H,G1(n) = Ho+G1(x). (3.43)

Due to the monotonicity of71(x), n(x) is uniquely determined, and it satisfigéc) — —oo
asx — —oo. In order to avoid possible confusion we mention that the relevant function is
y(n) and noty(n(x)); in fact, we havey(n(x)) = yo(x). From (3.38) and (3.43) we have

Y + Ay + X1(0, y() + A) = yo(x) + Aoy + X1(0, yo(x) + Ao ).
Consequently, by the monotonicity of the functior- X1(0, z), we conclude that

y(m) + Ay = yo(x) + Ag +- (3.44)
Differentiating (3.44) with respect te we obtain
Yo(x) = ¥ (mn’ (x). (3.45)

Let us assume for the moment thgtx) has a limit asx — —oco. Theny’(n) also has a
limit as n — —oo, which we callH_, and (3.45) implies that

. , Hp
xlnjoo n'(x) = T (3.46)
Moreover, we can write
y(n) —H- = ! [yo(x) — Ho -] + i [HO_ - n/(x)} :
n'(x) ‘ n(x) | H-
This suggests that in order to verify (H3) féf(x) we must show that
% —n' e Li(R7) (3.47)

since the difference((x) — Ho - satisfies (H3) by assumption.
Next we turn to the justification of the steps leading to (3.47) and of (3.47) itself.
Integrating (3.13) and using1(—o0) = 0 and (3.7)—(3.10), we obtain

* dz 1 d 2 [ a(z) 1)
G = — == — 1+ — dz—"+0|— —00.
1(x) /;OO ﬁ(o’ Z)Z c|2x C|3_x2 + C|3 . Z Z3 + <x3 X —> o
(3.48)
Let
o a@)
px) = dz —-. (3.49)
—o0 z
Using (3.48) in (3.43) we have
n(x) = B 4 o) x = —00 (3.50)
Ho ¢
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and then using (3.50) we obtain

H d(Hy. — H 2H 1
n) = oty Ao = ) 2R oy o] + 0 () x > —o0,
Ho ¢ cHo 4 cHo 4 x
(3.51)

We have left am-dependent term on the right-hand side in order to combine it with another
term later. From (3.51) we obtain

an—d _ Hy 2H, x[xp(x) — ne(n)] L0 < 1)

ax—d Ho, Hoy ax —d x2

X — —00. (3.52)

Differentiating (3.43) and using (3.13) we get

0 (x) = Ho 1 £i(0,n)? _ Hoy (e — d)?[L—am)/(can —d)]?
H. £i(0,x)2  Hy (ax —d)?[1—e(x)/(ax —d)]?

Expanding the right-hand side of (3.53) with the help of (3.51) and (3.52), we find

2
n'(x) = ks + Hy [ZW(x)Jr alx) _ <2n<0(n)+6'(nn))]

X

(3.53)

Ho, ¢ Ho4
1
+0 (2) X — —00. (3.54)
X
From (3.54) we see that
H
lim 7'(x) = —— (3.55)
X——00 [—]0’Jr

and hence the steps leading to (3.46) have been justified. Moreover, comparing (3.46) and
(3.55) we obtain

Ho_Ho,. = H_H,. (3.56)
By (3.54) and (3.56), in order to verify (3.47) it suffices to show that

I(x) = 2xp(x) + @ e LYR).
Using (3.10), (3.49), and integration by parts we obtain

rw=x [ &g [ oo,
Hence

|1<x>|</ d 101/, 2)]

and thus after another integration by parts, we obtain

0 0
/ dx|1(x>|<f dz 1211 Q)1 /(0. 2)] < oo

This proves (H3). Property (H1) is clear from (3.45). The verification of (H4) and of
R(k) = Ro(k) is done as in the exceptional case. O
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We remark that, in addition to (3.42), we have from (2.3) and (2.19)
L(k) = e 2*(A=20) 1 (k).
Moreover, in the exceptional case, using (3.31) we get
Titk) = €"4 VT (k) Tik) = €4V T, (k)

and in the generic case, using (3.56), we have

T = Ot @y 4 T = AT (),
H, Ho +
Hence unlike theorem 3.2, the scattering matriSgg) are not the same for all potentials
H (x) resulting from the solution of (3.38).
The following example illustrates the cagg(—oco) = 0, in which caseH, needs to
be specified as part of the scattering data in order to olifdir) uniquely.

Example 3.4 In order to avoid lengthy formulae we assume t@ak) = §(x — 1), wheres
denotes the Dirac delta function. ThiXx) does not satisfy (H5), but it can be approximated
by O(x) that do, without affecting the conclusions of the example. For the reflection
coefficient we take

1+ ik' ok
-1+ 3ik
Such reflection coefficients were considered in [AKV95] (example 6.2, with= 1/3,
& =1/3 andg = —4), where we solved (3.16). We have

R(k) = (3.57)

0 y>2
X10,y) =1 06—y -1
- y<2
3—y
©0.x) = 1 x>1
fO =1, x<1
i f 0 X x>1
_I A —
£12(0. x) 1 x < 1.
Therefore
X x>1
G =
1(x) 1 o1
2—x

Thus we are in the generic case with (—oo) = 0 and we also have, = 0. From (3.39)
we obtainA, = H, /2 if H, > 4andA, =3 — (4/H,) if H; < 4. Solving (3.38) we
obtain

) if H, > 2:
H+ x>1
H, 4—H, .
< <
H(x)=1{ 2-x)2 2 *
2 4—H,
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(i) if 0 < H, < 2:

H 2
-~ =
+ X H,
2 2
H(x)= m 1<X<H7+
2
— x<1
H
(i) if H. =2:
2 x>1
Hx) =
1 x < 1.

The functionsH (x) all have the same reflection coefficient given by (3.57), independently
of the value of H,. Note that the product of lim, ., H(x) and H, does not depend on
H, (cf (3.56)).

4. An algorithm to recover discontinuities

In this section we first show how certain characteristic quantities associated with the
discontinuities ofH (x) can be recovered knowing only the leading asymptotic behaviour
of p(k) for largek. Among these quantities are the numbéof discontinuities, the values
y;,» and the ratiog;; given by (2.14). Later in the section we will study the recovery of
these quantities when the largeasymptotics ofR (k) is used instead of the asymptotics of
p(k). The algorithm described here can be applied to the (reduced) reflection coefficient
associated with (1.1) satisfying (H1)—(H5), and it is not restricted to sectionally constant
H(x). We will see that, in the special case whHiix) is sectionally constant, our algorithm
recoversH (x) exactly.

According to (2.31) the leading term @f(k) ask — oo is given by

‘ b(k)
Pas(k) = atk)
and from (2.26)—(2.28) we see thais(k) is completely determined by, y;, andg; for
j =1,...,N. In particular, Q(x) has no influence omygk). In order to recover the
locationsxy, . .., xy of the discontinuities, further information aboHt(x) is required. For
example, if H(x) is known to be piecewise constant, giveg(k) and eitherH, or H_,
the pointsxs, ..., xy can be determined uniquely; hence in this special cade,) itself

is recovered uniquely by our algorithm. As we will see in section 5, wh@n = pas(k),
the productH (x) £i(0, x)? is a piecewise constant function; in that case our algorithm also
yields H(x) in terms ofp(k) and eitherH, or H_.

We first observe thafa(k)|? = 1/(1 — | pas(k)|?) and that one can construgtk) from
la(k)| as described in [AKV94]. Henck(k) = —pas(k)a(k) is also known. Therefore, we
may assume that(k) and b(k) are known separately. Note that in an applicatiggk)
might not initially be available as the ratieb(k)/a(k) with given functionsa(k) andb(k).
However, as indicated in theorem 24,(k) is almost periodic, and hence from a given
p(k) we can always fingb,s(k) in the form

pasth) = Y p,em

n=—0o0
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with Y°°° |pal < 00, n, € R, and
1 [t i
, = lim — dk p(k)e "*m,
P L—+o0 2L \/;L ,O( )

Note thatp, are real because of the symmeipys(—k) = pas(k) for k € R. For later
reference we list the expressions fok) andb(k) whenN =1, 2, 3, 4.

If N =1:
ak) = a1 eL1p(k) = pa. (4.1)

If N=2:
a(k) = arop + 1o 02 (4.2)
92h(k) = a1y + Prop€?F0TY, (4.3)

If N=3:
a(k) = a10p03 + P1Poas€ 2 + oy B BT 4 By i a3 (4.4)
3 (k) = a10Bs + P1P2B3E” V2 + a1 Boatg€® 0D+ Brarperge®t 3TN, (4.5)

If N =4:

a(k) = a1000304 + P1B20r3cta€ 02 + a1 B Brora€ 03D + Bary Baorg€® 0TI
+o10oBaBa O + oy fooraa? O+ BrarprsBae?t OV
+B1B2BaPa€ e (4.6)

b (k) = ar0003a + P1oafa€® 2V + a1 foPafa’ VT + Bragfiafae O
+or102B304€" 04 oy Brargerg€ 04+ Brarpargars €O
+B1B2Paaa€® T2 (4.7)

The expressions fosi(k) and b(k) when N is arbitrary can be obtained from (2.28);
the expression fou(k) was also given in [Gr91]. In the following we will make certain
statements about the general formaak) and b(k). These can all be easily proved by
induction onN noting the fact that in view of (2.28) adding a discontinuity on the right
corresponds to a multiplication from the right by a known matrix. For example, we note
thata (k) andb(k) are exponential polynomials having at mo$t2 non-zero terms. Note
also that for a givenv, e*¥p(k) is obtained fromu(k) andvice versaby interchanging
ay andBy. We write

k) =ao+ Y a,& (4.8)
b(k) = Z b, €2ké

whereag > 0 anda,, b, are non-zero real constants. It is evident from (4.1)—(4.7) and can
also be proved by induction oN thati, > 0, and that the, are of the form,, — yy.

Next we list the steps of the algorithm allowing us to recolery;, andg; from pas(k).
Recall thata(k) andb(k) are known wherp,g(k) is given.

(1) From b(k), we obtainyy as yy = —min, §,. Note that the coefficient of that
exponential term isap - - - ay_18n-

(2) The constant term in(k) is equal toojay - - - ay_10n.

(3) From the ratio of the coefficients in steps (1) and (2) above, we oftainy and
hence

1+ By/an

=1 pyjan
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(4) We construct the matri¥ (k, xy) defined in (2.27) by usingy andgy.
(5) From (2.27), we obtain the matrig(k, xy)~* and then define

[ aUk)y Nk } .:[ a(k) bk

-1
PIV-Uk)  aN-U(—k) | T | b(—k) a(—k):|E(k’xN) :

Note thata!¥~1(k), when not constant, has again the form (4.8) wigh> 0 anda,, b,
non-zero real constants, but with fewer terms.

(6) We replace:(k) andb(k) by al¥=YH(k) andbN-U(k), respectively, and repeat steps
(1)—(5). This results in functions!¥~2l(k) and »I¥-?(k). We repeat the procedure until
the matrix in step (5) no longer contains any exponential terms on the diagonal, i.e. until
we arrive at the matrixt (k, x1). From it we findy; andg;.

Note that it is possible to determing right after step (1) of the algorithm as follows.
From (4.8) we obtainyy — y1 asyy — y1 = max, A,; note that there is a unique term
for which this maximum occurs and that the coefficient in front of this exponential term
is Biao---any_18n; hence, having obtainegdy from step (1), we also have;. This
determination ofy; can help us to check the correctness of the computations sinte
also determined as explained in step (6). There are also ways to speed up the algorithm if
further information onH (x) is available. For example, (x) = 0, H, is given, andH (x)
is known to be piecewise constant, then theorem 5.1 impliesgtigt = pas(k). We can
therefore use (0) = —b(0)/a(0) in (2.7) withy = 1 to determineH_ = H (x; — 0). Then
we can use the fact that under a reflection> —x the functiona(k) remains invariant,
whereas the functioh(k) changes to-b(—k). Using this property, we can determige
at the same time we determigg. Then, we can carry out the algorithm by working from
both ends. As we will see in section 5, wheneygk) = pas(k), our algorithm gives us
H(x) in terms ofp(k) and H,..

In the following example we illustrate the above algorithm (without the improvements
mentioned in the previous paragraph). Assumiii¢yx) is piecewise constant anH, is
given, we also determine the values ..., xy.

Example 4.1 Assumea(k) = f1(k)/1008/2 andb(k) = e "% f,(k)/1008/2, where

fi(k) = 1625+ 130&™ — 5062 4 2564k _ 258k | 20k _ 13085k _ 652K
fok) = 325+ 26€* — 106/?k 4 1254k _ 58k | 100 — 650&%% — 32582k,

From the term 325¢% /10082 in b(k), we see that

325
—2yy = —76 o1 -an-1Bn = 1008/2
and from the constant term (k) we obtain
1625
o1 ON_10N = m

Henceyy = 38 andgy/ay = 325/1625= 1/5, and sogy = 3/2. Next we construct
—2ikyy
E(k,xy) = [ ay  Pne } by using (2.26) withx = N and obtainay =
By PN oy
By = Tjé’ and thus

1 5 g6k
E(k,XN)=m[e76ik 5 ]

_5_
26’
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ak)  b(k)

b(—k) a(—k)
yn—1 = 16 andgy_1 = 7/6. A further repetition giveyy_, = —5 andgy_, = 3/7. We
also obtain

Then we form the matri>{ } E(k, xy)~t and execute step (6). We obtain

N-3 i

1 5 —elelki|
| | Ek,x,) = — i .
11 ( ) — [ o 16ik 5

Since there are no exponential terms on the diagonal, this must be the h&ktrix;).
HenceN =4, y; = —8, andgq; = 2/3.

If we further assume thafl, = 4 and thatH(x) is piecewise constant, using
H(x4+0) = H, = 4 andgs = 2/3, we obtainH(x4 — 0) = H(xz + 0) = 6; then
using gz = 7/6 we obtainH(xz3 — 0) = H(x, + 0) = 7; from ¢, = 3/7 we have
H(x; — 0) = H(xy + 0) = 3; finally, usingq, = 2/3 we obtainH(x; — 0) = H_ = 2.
Hence we have

2 y < —8

3 —-8<y<-5
Hx)=37 —-5<y<16

6 16<y <38

4 y > 38.

Finally, by usingy; = f,’ ds H(s), we obtainx; = —12/7, x = —5/7, x3 = 16/7, and
x4 = 125/21.

Let us also note that in the special case wiiBx) is piecewise constant, it is possible,
under certain restrictions, to recovék(x) by using an algorithm described in Ware and
Aki [WAG69], which is known as the Goupillaud solution. However, that algorithm is only
applicable wherH (x) is piecewise constant and each interval in whifx) is constant can
be divided into a number of subintervals such that the travel times through these subintervals
are the same. Because of the latter restriction, the Goupillaud method is unable to exactly
recover a piecewise constaHt(x) even in simple cases. For example, whétx) = 2 for
x € (0,1) andH(x) = 3 for x € (1,1+ ), it is impossible to subdivide these intervals
into a finite number of subintervals for which the travel times are the same, since we cannot
find integersp, ¢ such that 2p = 37 /¢. In our opinion, the Goupillaud solution is more
suitable as an approximate inversion method for a continuous non-homogeneous medium
modeled by a layered medium with a suitably chosen number of layers. By contrast, the
method described in this paper can be used in the special case of piecewise cHtistant
without such limitations.

An algorithm for findingN, ¢;, and the differenceg; := y;;1—y; for j=1,...,N—-1
from |a(k)| alone was given in [Gr90, Gr91]. Below we will only refer to [Gr91], where a
more detailed account was given. In [Gr91] there is the additional restrictioTithBt has
to be irrational whenever= j; this restriction implies that the exponents of tHe 2terms
in a(k) are all different. Without this restriction some of the term&{h) or b(k) may have
the same exponential factors and hence the number of distinct terik)ior b(k) may be
less than 21, in which case the algorithm of [Gr91] cannot lead to a uniglg). Since
the coefficients of the exponential termstitk) may be positive as well as negative, it is
possible that sometimes the number of terma (k) may be different from that i (k). In
general, one cannot even obtdihfrom |a(k)| and H, alone (or even fromu(k) and H,
alone). Our algorithm described in this section does not have such restrictions; furthermore,
it only involves simple algebraic matrix operations and hence it is easy to implement.
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In the following example we show that one cannot even determvinfieom a(k) and
H. alone.

Example 4.2 Let

45 5 ) 15 _ 1 _ 15
a (k) - - _ 7624”( b (k) — 7e724lk _ e—12lk _ =
T 166 16V6 ATV 276 16/
Assuming thatH (x) = Hy(x) is piecewise constant anfd, = 3/2, our algorithm gives us
1 x<0
" 2 O<x<3
1) = 3 3<x <5
% x > 5.
_ 3 _ 5 _ 3 _ _i _ _i . i
We havea; = 2 2= s = 55 PL= 55 B =~ and Bz = 55 Note

that in this exampleV = 3, y; = 0, y, = 6, andys = 12. Also, 818203 = —a18283, and
thus the second and third terms on the right-hand side of (4.4) cancel. Now let
—4 — «/241e_24ik n -4+ /241

1616 16v6

Assuming again thafl (x) = H,(x) is piecewise constant and, = 3/2, our algorithm
gives us

az(k) = ai(k) ba(k) =

1 x <0
25— /241

HBW=1"15 = 0.5922... 0 < x < 3(25+4 +/241) = 20.2620....
3

5 x > 2(25+ +/241).

Note that nowN = 2, but thata(k) is the same foiHH,(x) and H,(x).
Finally, we discuss the modifications needed in our algorithm wRggk) is known
instead ofp,s(k). By Ras(k) we mean the almost periodic part 8{k) given by (cf (2.3))

Ras(k) = pas(k)e= 24+, (4.9)

In order to deal with the factor€*4+ we consider for a moment the shifted functions
Q(x; k)= Q(x +«) and H(x; k) = H(x + «). It follows that the corresponding potential
V(y; k) in (2.11) satisfied/(-; k) = V(- + y(x)). Therefore, proposition 2.3 implies that

pk; k) = exp[Zik /: ds H(S)}p(k)
and thus

Pastk; k) = exp[Zik /OK ds H(s)i|,0as(k). (4.10)
Now choose¢g such that

/OKO ds H(s) = —A,. (4.11)

Then we see from (4.9)—(4.11) thats(k; ko) = Ras(k). Hence we can use the algorithm
with Ras(k) because it can be viewed as the reduced reflection coefficient associated with
Q(x; ko) and H(x; ko). Note that the parameters and N are invariant under the shift,
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and so are the differences — y;. The valuesy,, ; andy,, ;, where H (x; ko) andV (y; o)
have discontinuities, are given by

Ko
Xko,j = Xj — Ko YVio,j = Vi —f ds H(s).
0

Thus it is the values oV, ¢;, andy,, ; that we obtain as a result of applying the algorithm
to Ras(k). Of course, ifp(k), O(x), and H, are known, them, is also known (cf (3.19)
and (3.39)), and henog can be determined from (4.11).

If H(x) is known to be piecewise constant, then givp(k) and H,, our algorithm
allows us to determinéd (x; ko), including the pointsx,, 1, ..., x,. . Furthermore, we
can findkg by using (2.4), (4.11), and the fact that(x) = H(x — ko; ko). This leads
to the equationkg = —A,, +/Hy, where A, 1 is given by (2.4) in terms ofd (x; «o).
Consequently, we can completely determine a piecewise conAtant from R,g(k) and
H,.

5. Inversion for almost periodic reflection coefficients

In this section, when there are no bound states, we characterize those fudttionthat
satisfy (H1)—(H4) and whose scattering coefficients are almost periodic functidnsveé
first determine the function& (x) for which

b(k)
a(k)’

By theorem 2.4, if (5.1) holds, thems € APY due to theorem 2.4. Conversely gfe APV,
thenp+b/a € APY. Then theo(1)-term in (2.31) must be identically zero and (5.1) follows.
In other words o (k) = pas(k) if and only if p € AP". Next note that whem (k) = pas(k),
by using (2.29) and the unitarity of the matrxk), we have Y|t (k)| = |a(k)|. Hence

7(0) # 0, and we are automatically in the exceptional case. Usifigk) = t(k) and
a(—k) = a(k) for k € R, we obtain

p (k) = pastk) = — (5.1)

1
kak)= ——— keR. 5.2
That) = -5 € (5.2)
Note thata(k) and Yz (k) are analytic inC*, and in the absence of bound state®) is
analytic inC+. Thus, in the absence of bound states, using (2.30), (5.2), and Liouville’s
theorem, we conclude that

1
k)= ——. 5.3
k) = ® (5.3)
Furthermore, by using (2.5), (2.29), (5.1), and (5.3) we see that
bk ak)
= =— " =—pk)— . € APV,
L(k) = Las(k) 2k p(k)a(k) €
A close inspection of the origins of the(1)-terms in (2.30) and (2.31) suggests that the
conditionV(y) =0 for y € R\ {y1,..., yn} Will be part of any necessary and sufficient

conditions for (5.1) to be valid. So itis natural to investigate this in more deta¥f; if1(y)
given in (2.20) vanishes, then we haye; j11(k,y) = €* andg, ; j11(k,y) = € in
(2.22), and therefore

1-‘n—l,n (kv Xn — 0)
1 gk 1 @ik
— [ ~H (x,—0) Vv H(x,—0) i|
i B = 0Yakn H'(x,=0)  Hky, it SH(r — 0)e— ik H'(x,=0)  —iky,
|k H(-xn - 0)é I — 2[_1(;’6_0)3/2é Y _|k H(xn - O)e eyn — 2H(x:_0)3/ze Ik
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Fn.n+1(ka Xn + 0)

1 eik}’u 1 e—ik}’n
— [ ~H(x,+0) v/ H(x,+0) i|
| iky, _  H'(,40) Sky, _; —iky, _  H'(x,+0) ~—iky, |~
ik/H (x, + 0)& sl d ik H(x, + 0)€ il e
Hence

F%mwm—m*mﬂdhm+m=Ewwn+%ﬁmmn (5.4)

where E (k, x,,) is the matrix defined in (2.27),, is given by (2.15), and

1 e—2iky,,
B(k,x,,): [_eZikyn _1 i|

Note thatv, = 0 if and only if H'(x)/H (x) is continuous atv,. Hence if H' (x)/H (x)
is continuous at each,, then by (2.25) and (5.4), we hawgk) = 1/a(k) and p(k) =
—b(k)/ak). SOV, ,+1(y) =0 forn =0,..., N and the continuity ofH'(x)/H (x) are
sufficient for (5.1) to hold. Now we ask what functio#s(x) lead toV, ,+1(y) = 0O, or
equivalently

H'(x) 3H®)? Q) B
2H(x)® 4 Hx*  Hx? 0 X € (X, Xn41) n=0,...,N. (5.5)

SubstitutingH (x) = ¢/ h(x)? in (5.5) we obtain

h'(x) = Q(x)h(x) (5.6)

that is, h(x) can be any zero-energy solution of (1.1). Since we allBwx) to be
discontinuous, we are looking for different solutions on each intgpyal;1). Forx > xy

we must choosé (x) proportional tof; (0, x); this is becausg; (0, x) is a constant multiple

of £1(0, x) and there are no other linearly independent solutions of (5.6) that remain bounded
asx — +o00. Hence, in order to havél (x) approaching a positive limit as — +oo, we

need to choose

H(x) =

H.,
—_— > .

Aoz T

Let us now impose the condition that’(x)/H (x) be continuous at each,. Beginning
with xy, sinceH'(x)/H (x) = —2f/(0, x)/£i(0, x), we see that the logarithmic derivative
of £1(0, x) has to be continuous afy. Therefore, onxy_1, xy), the solutionH (x) of (5.5)
must be a constant multiple of/£(0, x)?. Arguing similarly on every intervaix,, x,1)
we obtain recursively

hnn+1
H(x) = . € (X, X, =0,1,...,N 5.7
=Gy FEGmrm) on (5.7)
wherehy y4+1 = Hy and
H(x, —0)
hnf n — 7}%1” = nhnn :1,...,N. 58
1, H(x, +0) i+l = Gnlnn+1 n (5.8)

So we have constructed a class of functiatiéx) for which (5.1) holds. Note that the
algorithm described in section 4 can be used to ob#in,; in terms of A, and pas(k).
The next theorem shows that afi(x) satisfying (H1)—(H4) and for whicly (k) = pas(k)
must be given by (5.7).

Theorem 5.1 In the absence of bound states, for a gig&gx), consider allH (x) satisfying
(H1)—-(H4). Then,p(k) = pas(k) if and only H (x) is of the form (5.7).
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Proof. If H(x) is of the form (5.7), then from (2.11)—(2.15) we see that= 0 for
n=1...,N,andV(y) = 0 everywhere except af,. Hence (5.1) follows from (2.25) and
(5.4). Conversely, suppose (5.1) holds. Froggk) by means of the algorithm in section 4
we can determine the parameteys y;, andg; of H(x) for j = 1,..., N. Then we use
H, and the parameterg in (5.8) to construct a functiodf (x) that is of the form (5.7).
We then know the form of the functioH (x) on each intervaly,, y,.1) and all we need

to do is find the pointsy, ..., xy that correspond tox, ..., yy, respectively. IfN =1
andy; = 0, thenx; = 0. If N =1 andy; # 0, then we can proceed as in the case: 2.
If N > 2, then at leastV — 1 of the pointsys, - - -, yy must be non-zero. If at least one of

these is positive, we can pick the smallest of them, sayThenx, is uniquely determined
by

Yoo /X” dz (5.9)
hpfl,p 0 ﬁ(oa Z)Z .
and we recursively determing,1, ..., xy using
Yp+1—Yp /"”“ dz
hp.pt1 y  fi(0,2)%
Similarly, we can determine,_1, x,—», ..., x1. If all y; are non-positive, then we pick

the one with smallest absolute value that is non-zero (eitheor yy_;) and find the
corresponding; by using the appropriate integral of the form (5.9). We know that for the
resulting functionH (x), (5.1) is satisfied, becausé(y) = 0 for y € R\ {y1, ..., yy} and
H'(x)/H (x) is continuous. By construction, thi (x) is uniquely determined by (x),
p(k), andH,. Hence, by theorem 3.1, it is the only possilsiéx) for which (5.1) holds]

We remark that we can prove an analogue of theorem 5.1 whien= pas(k) is replaced
by R(k) = Ras(k), by arguing as in the proof of theorem 5.1 using (2.3) and (4.10).
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