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Abstract. The recovery of the coefficientH(x) in the one-dimensional generalized Schrödinger

equationd2ψ

dx2 + k2H(x)2ψ = Q(x)ψ , whereH(x) is a positive, piecewise continuous function
with positive limitsH± asx → ±∞, is studied. This equation describes the wave propagation in
a one-dimensional non-homogeneous medium in which the wavespeed 1/H(x) changes abruptly
at a finite number of points and a restoring forceQ(x) is present. When there are no bound
states, the uniqueness ofH(x) in the inversion is established for a proper choice of scattering
data. When the transmission coefficient vanishes atk = 0, it is shown that the scattering data
consisting ofQ(x) and a reduced reflection coefficient uniquely determineH(x), and neither
H+ norH− need to be given as part of the scattering data. If the transmission coefficient does
not vanish whenk = 0, then one needs to include eitherH+ or H− in the scattering data to
obtainH(x) uniquely. A simple algorithm is described giving the travel times fromx = 0
to any discontinuity ofH(x) and the relative changes in the wavespeed in terms of the large
k-asymptotics of a (reduced) reflection coefficient. It is also shown thatH+ and the transmission
coefficient alone do not determine the number of discontinuities ofH(x), let alone the travel
times between them. Some examples are given to illustrate the algorithm.

1. Introduction

Consider the one-dimensional generalized Schrödinger equation

ψ ′′(k, x)+ k2H(x)2ψ(k, x) = Q(x)ψ(k, x) x ∈ R (1.1)

where the prime denotes the derivative with respect to the spatial coordinate and the
coefficients are assumed to satisfy the following conditions:

(H1) H(x) is strictly positive and piecewise continuous with jump discontinuities atxn
for n = 1, . . . , N such thatx1 < · · · < xN .

(H2) H(x) → H± asx → ±∞, whereH± are positive constants.
(H3) H −H± ∈ L1(R±), whereR− = (−∞, 0) andR+ = (0,+∞).
(H4) H ′ is absolutely continuous on(xn, xn+1) and 2H ′′H − 3(H ′)2 ∈ L1

1(xn, xn+1)

for n = 0, . . . , N , wherex0 = −∞ and xN+1 = +∞, andL1
β(I ) denotes the space of

measurable functionsf (x) on I such that
∫
I

dx (1 + |x|)β |f (x)| < ∞.
(H5) Q ∈ L1

1+α(R) for someα ∈ [0, 1].
Equation (1.1) describes, in the frequency domain, the propagation of waves in a one-

dimensional non-homogeneous medium wherek2 is energy, 1/H(x) is the wavespeed, and
Q(x) is the restoring force per unit length. The discontinuities ofH(x) correspond to
abrupt changes in the scattering properties of the medium in which the wave propagates,
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the relative changesH(xn − 0)/H(xn + 0) correspond to the jumps in the wavespeed at
the interfacesxn, andyn = ∫ xn

0 dx H(x) correspond to the times required for the wave to
propagate from the fixed locationx = 0 to the interfacesyn for n = 1, . . . , N .

In [AKV95] we described a solution to the inverse problem of recoveringH(x) in
terms of the scattering data consisting ofQ(x), a (reduced) reflection coefficient,H+ or
H−, the bound state energies, and the bound state norming constants. In the present paper,
for simplicity, we assume that there are no bound states and thatα = 1 in (H5). This
will cover in particular the caseQ(x) = 0. Under these assumptions the main steps in the
procedure used in [AKV95] are the following. (1) Use a (reduced) reflection coefficient to
formulate a singular integral equation, (2) solve this equation uniquely, (3) obtainy(x) as
the solution of an algebraic equation also containing as input the solutionfl(0, x) of (1.1)
for k = 0 satisfyingfl(0, x) → 1 asx → +∞, (4) putH(x) = y ′(x). A similar procedure
was given by Grinberg [Gr90, Gr91] whenQ(x) = 0, in which case the unique solvability
of the singular integral equation is immediate and the third step is trivial to implement.

After introducing the scattering and reduced scattering matrices and reviewing their
small and largek-asymptotics in section 2, we will study two problems associated with the
recovery ofH(x) in (1.1). The first problem deals with the inclusion or exclusion ofH±
in the scattering data. The second problem deals with the recovery of the discontinuities of
H(x) in terms of the largek-asymptotics of the scattering data. As for the first problem,
an example was given in [AKV95] where a uniqueH(x) was recovered although neither
H+ nor H− was included in the scattering data. We now understand the general theory
concerning that surprising result, and in section 3 we investigate the proper choice of the
scattering data that lead to a uniqueH(x). In the exceptional case, i.e. when the transmission
coefficient associated with (1.1) does not vanish atk = 0, we show that one needs to include
eitherH+ or H− in the scattering data; otherwise, as the example in (3.1) indicates, a one-
parameter family ofH(x) with different H+ leads to the same scattering data. In the
generic case, i.e. when the transmission coefficient vanishes atk = 0, if one uses a reduced
reflection coefficient in the scattering data, then neitherH+ norH− need to be included in
the scattering data, and in factH± are determined by using the condition (3.40) without
including eitherH+ or H− in the scattering data. On the other hand, in the generic case,
if one uses a reflection coefficient instead of a reduced reflection coefficient, in order to
determineH(x) uniquely, one can omitH± from the scattering data if and only if (3.41) is
satisfied. All the details are given in section 3, and some examples are provided to illustrate
the proper choice of the scattering data.

The inversion method described in [AKV95] is based on a singular integral equation
whose solution eventually leads toH(x). From this method it is not clear how simple
properties of the medium, such as the number of and the travel times between discontinuities
of H(x), can be found in an elementary way without solving an integral equation. In section
4 of the present paper, we describe an algorithm that allows one to find the numberN of
discontinuities ofH(x), the travel timesy1, . . . , yN to these discontinuities from the fixed
location x = 0, and the jumpsH(xn − 0)/H(xn + 0) in the wavespeed at the interfaces
by using the largek-asymptotics of a (reduced) reflection coefficient. This algorithm
does not involve any integral equations and, as some illustrative examples show, can be
implemented by hand. An algorithm to recover the travel timesyn+1 − yn and the jumps
H(xn−0)/H(xn+0) in terms of the largek-asymptotics of the modulus of the transmission
coefficient was described by Grinberg [Gr90, Gr91] under certain technical restrictions. Our
algorithm given in section 4 does not have these restrictions. As example 4.2 indicates,
H+ and the transmission coefficient alone do not in general determine even the number of
discontinuities ofH(x), let alone the travel times between the successive discontinuities of
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H(x). When the functionH(x)fl(0, x)2 is known to be piecewise constant, the algorithm
described in section 4 allows us to recoverH(x) exactly. When the conditions (H1)–
(H5) are satisfied, the largek-asymptotics of a (reduced) reflection coefficient are given
by an almost-periodic function ofk. In section 5, we characterize those functionsH(x)
that satisfy (H1)–(H4) and for which the corresponding (reduced) scattering coefficients are
almost periodic functions ofk.

Concerning scattering and inverse scattering problems with discontinuous coefficients,
we remark that Sabatier and his co-workers [SD88, Sa89, DS92, MS94] studied the scattering
for the impedance-potential equation and that Krueger [Kr76, Kr78] studied the inverse
scattering problem foruxx − utt + c1(x)ux + c2(x)ut + c3(x)u = 0, wherex, t ∈ R and the
coefficientsc1, c2, c3 are piecewise continuous functions with support in a finite interval.
Krueger [Kr82] also considereduxx − ε(x)utt = 0 whenε(x) is constant forx < 0 and
piecewise continuous forx > 0, and he developed an iterative method to recoverε(x) when
the incoming and reflected waves are given.

2. Preliminaries

In this section we review the small and largek-asymptotics of the scattering matrix
associated with (1.1). The reader is referred to [AKV95] for the details and proofs. The
scattering coefficients associated with (1.1) are defined in terms of the Jost solution from
the left fl(k, x) and the Jost solution from the rightfr(k, x), which satisfy the boundary
conditions

fl(k, x) =


eikH+x + o(1) x → +∞
1

Tl(k)
eikH−x + L(k)

Tl(k)
e−ikH−x + o(1) x → −∞

fr(k, x) =


1

Tr(k)
e−ikH+x + R(k)

Tr(k)
eikH+x + o(1) x → +∞

e−ikH−x + o(1) x → −∞

(2.1)

whereTl(k) and Tr(k) are the transmission coefficients from the left and from the right,
respectively, andR(k) andL(k) are the reflection coefficients from the right and from the
left, respectively. The scattering matrix associated with (1.1) is defined by

S(k) =
[
Tl(k) R(k)

L(k) Tr(k)

]
.

For brevity, the entries ofS(k) are also referred to collectively as scattering coefficients.
The bound states associated with (1.1) are given by the square-integrable solutions of (1.1),
and such solutions can occur only at certain discrete negative values ofk2 known as bound
state energies;k = 0 is never a bound state.

As in [AKV95] we introduce the reduced scattering matrix

σ(k) =
[
τ(k) ρ(k)

`(k) τ (k)

]
(2.2)

where

τ(k) =
√
H+
H−

Tl(k)e
ikA =

√
H−
H+

Tr(k)e
ikA ρ(k) = R(k)e2ikA+ `(k) = L(k)e2ikA−

(2.3)

A± = ±
∫ ±∞

0
ds [H± −H(s)] A = A− + A+. (2.4)
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We will refer to τ(k) as the reduced transmission coefficient and toρ(k) and `(k) as the
reduced reflection coefficients from the right and from the left, respectively. The entries of
σ(k) collectively are also referred to as reduced scattering coefficients. The matrixσ(k) is
unitary for k ∈ R and we have

detσ(k) = τ(k)2 − `(k)ρ(k) = τ(k)

τ (−k) (2.5)

where det denotes the matrix determinant.
As in [AKV95] we distinguish between the generic and the exceptional cases for (1.1).

The generic (exceptional) case is said to occur ifτ(0) = 0 (τ(0) 6= 0). Equivalently, the
exceptional case occurs if the zero-energy Jost solutionsfl(0, x) andfr(0, x) are linearly
dependent, i.e. if we have

fl(0, x) = γfr(0, x) (2.6)

for some non-zero constantγ . In the generic casefl(0, x) and fr(0, x) are linearly
independent and hence [fl(0, x); fr(0, x)] 6= 0, where [f ; g] = fg′ − f ′g denotes the
Wronskian.

Let C± denote the upper and lower half complex planes, respectively, andC± = C±∪R.
The following theorem proved in [AKV95] summarizes some properties of the reduced
scattering coefficients that are relevant to us.

Theorem 2.1. (i) τ(k) is meromorphic inC+ and continuous onR. In the generic case
τ(k) vanishes linearly ask → 0 in C+. The bound state energies correspond to the (simple,
finitely many) poles ofτ(k) in C+, and such poles may occur only on the imaginary axis
in C+.

(ii) ρ(k) and `(k) are continuous fork ∈ R. In the generic case we have|ρ(k)| =
|`(k)| < 1 for k 6= 0 andρ(0) = `(0) = −1, whereas in the exceptional case we have
|ρ(k)| = |`(k)| < 1 for all k ∈ R.

The detailed asymptotic behaviours ofτ(k), ρ(k), and`(k) ask → 0 with error terms
depending onα (cf (H5)) were given in [AKV95]. Using the smallk-behaviour of the
reduced scattering coefficients, it is possible to show that whenQ(x) andρ(k) are known,
H+ can be obtained fromH− andvice versa. This can be seen as follows. In the exceptional
case we have [AKV95]

H+ = γ 2[1 + ρ(0)]

1 − ρ(0)
H− (2.7)

whereγ is the constant in (2.6), and this constant is determined byQ(x) alone. In the
generic case we have

H+ = c2[fl(0, x); fr(0, x)]2

4H−
(2.8)

wherec := limk→0 τ(k)/ik. Note thatfl(0, x) andfr(0, x) are determined byQ(x) alone,
and hence their Wronskian in (2.8) is also determined byQ(x) alone; furthermore we have
c2 = limk→0(1 − |ρ(k)|2)/k2, while (−1)N−1c > 0, N being the number of bound states.
Hence,c is solely determined byρ(k) andN .

The local Liouville transformation on each interval(xj , xj+1) given by

y = y(x) =
∫ x

0
ds H(s) ψ(k, x) = 1√

H(x)
φ(k, y) (2.9)



Discontinuities in non-homogeneous media 5

transforms (1.1) into the Schrödinger equation

d2φ(k, y)

dy2
+ k2φ(k, y) = V (y)φ(k, y) (2.10)

where

V (y) = V (y(x)) = H ′′(x)
2H(x)3

− 3

4

H ′(x)2

H(x)4
+ Q(x)

H(x)2
. (2.11)

HenceV (y) is defined fory ∈ R\{y1, . . . , yN }, whereyj = y(xj ). SinceH(x) > 0 and has
positive limitsH± asx → ±∞, we havey0 = y0(x0) = −∞ andyN+1 = y(xN+1) = +∞.
Note that, since the functionsψ(k, x) and ψ ′(k, x) are continuous atxj , the functions
φ(k, y) and dφ(k, y)/dy will not be continuous atyj . From the continuity ofψ(k, x) and
ψ ′(k, x) at xj for j = 1, . . . , N , we obtain the following (internal) boundary conditions for
φ(k, y):

φ(k, yj − 0) = √
qjφ(k, yj + 0) (2.12)

dφ(k, yj − 0)

dy
= νjφ(k, yj + 0)+ 1√

qj

dφ(k, yj + 0)

dy
(2.13)

where

qj = H(xj − 0)

H(xj + 0)
(2.14)

νj = 1

2
√
H(xj + 0)H(xj − 0)

[
H ′(xj − 0)

H(xj − 0)
− H ′(xj + 0)

H(xj + 0)

]
. (2.15)

It is straightforward to check that the boundary conditions (2.12)–(2.13) are self-adjoint.
So we can think of (2.10) as a Schrödinger equation with potentialV (y) given by (2.11)
on the intervals(yj , yj+1) for j = 0, . . . , N and supplemented by the boundary conditions
(2.12)–(2.13) at the pointsyj . As shown in the following proposition, althoughV (y) is
undefined atyj for j = 1, . . . , N , we can still associate a scattering matrix with (2.10).

Proposition 2.2. The scattering matrix for (2.10) with the boundary conditions (2.12)–
(2.13) is precisely the reduced scattering matrixσ(k) defined in (2.2).

Proof. From (2.4) and (2.9) we have

y(x) = H+x − A+ + o(1) x → +∞ (2.16)

y(x) = H−x + A− + o(1) x → −∞. (2.17)

Hence, by using (2.16), the Jost solution from the left for (2.10) (i.e. the solution of (2.10)
such that e−ikyφl(k, y) = 1 + o(1) asy → +∞) is given by

φl(k, y) =
√
H(x)√
H+

e−ikA+fl(k, x).

Therefore, asy → −∞, from (2.1) and (2.17) it follows that

φl(k, y) =
√
H−
H+

e−ikA

Tl(k)
eiky +

√
H−
H+

L(k)

Tl(k)
eik(A−−A+)e−iky + o(1).

By using (2.3) we see that

φl(k, y) = 1

τ(k)
eiky + `(k)

τ (k)
e−iky + o(1) y → −∞ (2.18)

and thusτ(k) is the transmission coefficient and̀(k) is the reflection coefficient from the
left for (2.10). Similarly, by considering the Jost solution of (2.10) from the right, one
shows that the reflection coefficient from the right isρ(k). �
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Later in the paper we need to know how the (reduced) scattering matrix changes when
we perform a shifty → y + ξ for a fixedξ ∈ R.

Proposition 2.3. For anyξ ∈ R, let V (y; ξ) = V (y + ξ). Consider (2.10) withV (y)
replaced byV (y; ξ) and boundary conditions of the form (2.12)–(2.13) at the pointsyj − ξ ,
where the numerical values ofqj and µj are independent ofξ . Then the scattering
coefficients forV (y) andV (y; ξ) are related by

τ(k; ξ) = τ(k) ρ(k; ξ) = e2ikξρ(k) `(k; ξ) = e−2ikξ `(k). (2.19)

Proof. The Jost solution from the left associated withV (y; ξ) is given byφl(k, y; ξ) =
e−ikξφl(k, y + ξ). Then (2.19) is obtained by using (2.3), (2.4), and (2.18). �

Let Vj,j+1(y) be the potential defined by

Vj,j+1(y) =
{
V (y) y ∈ (yj , yj+1)

0 elsewhere.
(2.20)

As a consequence of hypothesis (H4) we have

Vj,j+1 ∈ L1
1(R) j = 0, . . . , N. (2.21)

Let gl;j,j+1(k, y) and gr;j,j+1(k, y) denote the Jost solutions from the left and right,
respectively, associated with the potentialVj,j+1(y). Then the functions defined by

ηj,j+1(k, x) = 1√
H(x)

gl;j,j+1(k, y) ξj,j+1(k, x) = 1√
H(x)

gr;j,j+1(k, y) (2.22)

become solutions of (1.1). Let us introduce the matrices

0j,j+1(k, x) =
[
ηj,j+1(k, x) ξj,j+1(k, x)

η′
j,j+1(k, x) ξ ′

j,j+1(k, x)

]
j = 0, . . . , N

G(k) =
N∏
n=1

0n−1,n(k, xn − 0)−10n,n+1(k, xn + 0). (2.23)

Let tj,j+1(k), rj,j+1(k), and lj,j+1(k) denote the scattering coefficients for the potential
Vj,j+1(y). It was shown in [AKV95] that

1

τ(k)
= 1

t0,1(k)
[ 1 0]G(k)

[
1
0

]
= 1

tN,N+1(k)
[ 0 1]G(k)−1

[
0
1

]
(2.24)

`(k)

τ (k)
=

[ l0,1(k)
t0,1(k)

1
]
G(k)

[
1
0

]
ρ(k)

τ (k)
=

[
1

rN,N+1(k)

tN,N+1(k)

]
G(k)−1

[
0
1

]
. (2.25)

Moreover,

det0n,n+1(k, x) = − 2ik

tn,n+1(k)
detG(k) = t0,1(k)

tN,N+1(k)
.

Let

αn = 1

2

(√
qn + 1√

qn

)
βn = 1

2

(√
qn − 1√

qn

)
(2.26)

E(k, xn) =
[

αn βne−2ikyn

βne2ikyn αn

]
(2.27)
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with qn as in (2.14); let us also definea(k) andb(k) by[
a(k) b(k)

b(−k) a(−k)
]

=
N∏
n=1

E(k, xn). (2.28)

From (2.26)–(2.27) we see that

|a(k)|2 − |b(k)|2 = 1 k ∈ R. (2.29)

Let APW (almost periodic functions with Wiener norm) stand for the algebra of all
complex-valued functionsf (k) on R which are of the formf (k) = ∑∞

j=−∞ fje
ikλj , where

fj ∈ C and λj ∈ R for all j and
∑
j |fj | < ∞. By letting k → ∞ in (2.23) and using

(2.24) and (2.25) we obtain the following theorem proved in [AKV95].

Theorem 2.4. We have
1

τ(k)
= a(k)[1 + o(1)] k → ∞ in C+ (2.30)

ρ(k) = −b(k)
a(k)

+ o(1) k → ±∞ in R. (2.31)

Moreover,|a(k)| > 1 on C+ and the functionsa(k), b(k), 1/a(k), andb(k)/a(k) belong to
APW .

3. Scattering data and uniqueness

The motivation for this section comes from some observations made in [AKV95] concerning
the uniqueness of solutions to the inverse problem. The question of uniqueness is closely
related to the choice of an appropriate set of scattering data. Recall our assumption that there
are no bound states. We will show that in the generic case the scattering data consisting of
Q(x) and a reduced reflection coefficient uniquely determineH(x); in the exceptional case
eitherH+ or H− must be specified in addition toQ(x) and a reduced reflection coefficient
to determineH(x) uniquely. There is no loss of generality in usingρ(k) as the reduced
scattering coefficient in the scattering data, and without further mentioning it we will simply
useρ(k); one can easily modify the proofs if̀(k) is used instead ofρ(k) in the scattering
data. We will also give the appropriate modification if one uses a reflection coefficient
instead of a reduced reflection coefficient in the scattering data; it then turns out that in
the generic case when (3.41) fails one also must include eitherH+ or H− in the scattering
data. Since the proofs essentially remain the same whether one usesR(k) or L(k) as the
reflection coefficient, without loss of generality we will state and prove our results by using
only R(k).

We recall that in the absence of bound states the inversion procedure described in
[AKV95] requires two key ingredients: the potentialQ(x) and the reduced reflection
coefficientρ(k) (or, alternatively,R(k)). In the exceptional case one also needs to know
H+ in order to determineH(x) uniquely. For example, consider the scattering data given
by Q(x) = 0 andρ(k) = ρ0, whereρ0 ∈ (−1, 1) is a constant. Corresponding to this set
of data we have

H(x) =

H+ x > 0

1 − ρ0

1 + ρ0
H+ x < 0

(3.1)

and hence a one-parameter family of functionsH(x) corresponds to the same scattering data.
In general, in the exceptional case no conditions onH+ arise during the inversion procedure,
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and hence one always ends up with a one-parameter family of functionsH(x), parametrized
by H+. However, the parameterH+ will generally not be a multiplicative factor inH(x)
as in (3.1). The proof that, in the exceptional case, there exists a one-parameter family of
functionsH(x) depending onH+, having the sameρ(k), and satisfying (H1)–(H4), was
not given in [AKV95]; it will be given here in theorem 3.2.

On the other hand, in the generic case, we learned from example 6.2 in [AKV95] that
H+ is not a free parameter as in the exceptional case but is determined byρ(k) andQ(x).
We have since realized that this is generally true in the generic case, and we will prove
this fact in theorem 3.1. It is possible to modify the inversion procedure of [AKV95] and
use the reflection coefficientR(k) instead of the reduced reflection coefficientρ(k) in the
scattering data. Somewhat surprisingly, it then turns out that in the generic case there is one
special situation, whereH+ also becomes a free parameter; this special case occurs when
(3.41) fails and it will be described in theorem 3.3.

We will first show that in the absence of bound states the scattering data appropriate
for the unique solution of the inverse problem associated with (1.1) are:

(i) in the generic case:{Q(x), ρ(k)};
(ii) in the exceptional case:{Q(x), ρ(k),H+}.
In preparation of the proof of our first theorem we recall some results from [AKV95].

The functionQ(x) enters into our formalism through the zero-energy Jost solutionfl(0, x)
and itsk-derivativeḟl(0, x). These two functions satisfy the following integral equations:

fl(0, x) = 1 +
∫ ∞

x

dz (z − x)Q(z)fl(0, z) (3.2)

ḟl(0, x) = iH+x +
∫ ∞

x

dz (z − x)Q(z)ḟl(0, z). (3.3)

Incidentally, (3.3) shows thaṫfl(0, x) is also a zero-energy solution of (1.1) and is linearly
independent offl(0, x), since it grows asx → +∞. From (3.2) and (3.3), the estimates

|fl(0, x)| 6 (1 + max{0,−x}) exp

[ ∫ ∞

−∞
dz (1 + |z|)|Q(z)|

]
(3.4)

|ḟl(0, x)| 6 H+(1 + |x|) exp

[ ∫ ∞

−∞
dz (1 + |z|)2|Q(z)|

]
(3.5)

follow by iteration. SinceQ ∈ L1
2(R), from (3.3) and (3.5) we conclude that

ḟl(0, x) = iH+x + o(1) x → +∞. (3.6)

Since we assume that there are no bound states, we havefl(0, x) > 0 for all x ∈ R. On
letting x → −∞ in (3.2) and using (3.4) we find

fl(0, x) = −clx + dl + εl(x) x → −∞ (3.7)

where

cl =
∫ ∞

−∞
dz Q(z)fl(0, z) (3.8)

dl = 1 +
∫ ∞

−∞
dz zQ(z)fl(0, z) (3.9)

εl(x) = −
∫ x

−∞
dz (z − x)Q(z)fl(0, z). (3.10)
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From (2.15) of [AKV93] it follows that cl = [fl(0, x); fr(0, x)] > 0. The detailed
asymptotics stated in (3.7) will be needed at the end of this section. We denote byḟl,1(0, x)
the unique solution of (3.3) forH+ = 1. The ratios defined by

G(x) = −i
ḟl(0, x)

fl(0, x)
G1(x) = −i

ḟl,1(0, x)

fl(0, x)
(3.11)

will play an important role in the sequel. By (3.3) we have

ḟl(0, x) = H+ḟl,1(0, x) G(x) = H+G1(x) (3.12)

and (cf (2.27) in [AKV95])

G′
1(x) = 1

fl(0, x)2
> 0. (3.13)

Moreover, using (3.6) and (3.10) we obtain

G1(x) = x + o(1) x → +∞. (3.14)

We now return to the inversion method of [AKV95]. The solution of the inverse problem
leads to the following implicit equation (cf (5.24) in [AKV95]):

y + A+ + X̃(0, y) = H+G1(x) (3.15)

wherey = y(x) is the function defined in (2.9) and̃X(k, y) is the solution of the singular
integral equation

X̃(k, y) = X̃0(k, y)+ (OyX̃)(k, y) (3.16)

with

X̃0(k, y) = 1

2π i

∫ ∞

−∞

ds

s − k + i0

ρ(s)e2isy − ρ(0)

s
(3.17)

(OyX̃)(k, y) = 1

2π i

∫ ∞

−∞

ds

s + k − i0
ρ(−s)e−2isyX̃(s, y). (3.18)

Note that the functioñX(k, y) is related to the solutionX(k, x, y) of (5.21) in [AKV95] by

X(k, x, y) = −iX̃(k, y)
fl(0, x)√
H+

.

The existence and uniqueness of solutions of (3.16) in the Hardy spacesH
p
−(R) with

1 < p < ∞ was proved in [AKV95]. Recall that the Hardy spacesH
p
±(R) are the spaces

of analytic functionsF(k) onC± for which supε>0

∫ ∞
−∞ dk|F(k±iε)|p is finite. The constant

A+ in (3.15) is determined uniquely by the conditiony(0) = 0, i.e.

A+ = H+G1(0)− X̃(0, 0) (3.19)

and thus (3.15) can be written as

y + X̃(0, y) = H+[G1(x)−G1(0)] + X̃(0, 0). (3.20)

Theorem 3.1. For a given set of scattering data, if a solutionH(x) of the inverse problem
exists, then it is unique.
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Proof. In the exceptional case,fl(0, x) → γ asx → −∞, whereγ is the constant defined
in (2.6); sincefl(0, x) is bounded and strictly positive, using (3.13) we conclude that the
range ofG(x) is the whole real line. In the generic case, by using (3.7), (3.11), and (3.13),
we see that

lim
x→−∞G1(x) = G1(−∞) = G1(0)−

∫ 0

−∞
dz

1

fl(0, z)2
(3.21)

is finite. Therefore, in the generic case, by using (3.12) and (3.13), we see that the range
of G(x) is the interval(H+G1(−∞),+∞). A solution y(x) of (3.15) is assumed to exist
and y(x) is monotonically increasing; hence the left-hand side of (3.15) must also be
monotonically increasing as a function ofy. In fact, by differentiating (3.20) and using
(3.13) and dy/dx = H(x), we see that the functioñX(0, y) is continuously differentiable
except possibly at the pointsyj = y(xj ), and

d[y + X̃(0, y)]

dy
= H+
H(x)fl(0, x)2

> 0 y ∈ R \ {y1, . . . , yN }.

Since the ranges of both sides of (3.15) must be equal and limx→±∞ y(x) = ±∞, we
conclude that in the exceptional case

lim
y→±∞[y + X̃(0, y)] = ±∞.

In the generic case we have

lim
y→+∞[y + X̃(0, y)] = +∞

and from (3.20) and (3.21) we conclude that the limit

w := lim
y→−∞[y + X̃(0, y)] (3.22)

exists and is finite, and that

w = H+[G1(−∞)−G1(0)] + X̃(0, 0). (3.23)

Hence, solving (3.23) forH+ we obtain

H+ = w − X̃(0, 0)

G1(−∞)−G1(0)
(3.24)

which shows that in the generic caseH+ is determined uniquely byρ(k) andQ(x). This
is the reason why we do not includeH+ in the scattering data for the generic case. In the
exceptional case both sides of (3.15) have infinite range and hence there is no restriction
on H+ arising from the implicit equation (3.15). From the monotonicity of the two sides
of (3.15) it is clear that (3.15) is uniquely solvable fory(x). The constantA+, the function
X̃(0, y), and, in the generic case, the value ofH+ are determined uniquely by the scattering
data. Hence the proof is complete. �

In the rest of this section we will obtain some further results on the functionX̃(0, y).
The first piece of information comes from the fact that the two expressions forA+, (2.4)
and (3.19), must agree. Let us temporarily denote the constant in (2.4) byA

(1)
+ and the

constant in (3.19) byA(2)+ . Then

A
(1)
+ =

∫ x

0
ds [H+ −H(s)] +

∫ ∞

x

ds [H+ −H(s)] = H+x − y(x)+ o(1) (3.25)
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whereo(1) stands for terms that go to zero asx → +∞. ReplacingA+ by A(2)+ in (3.15),
from (3.14), (3.15), and (3.25) we obtain

A
(1)
+ = A

(2)
+ + X̃(0, y)+ o(1).

Hence,A(1)+ = A
(2)
+ if and only if

lim
y→+∞ X̃(0, y) = 0. (3.26)

This amounts to a condition onρ(k). For example, (3.26) holds ifρ(k) has an analytic
continuation intoC+ and obeys the estimate|ρ(k)| 6 c1 exp(c2 Im k) on C+ for some
constantsc1 and c2. This follows from (3.16)–(3.18) by contour integration and iteration.
The examples discussed in [AKV95] have this property.

The fact that in the exceptional case the constantH+ is not restricted by (3.15) suggests
that it is a free parameter in the sense described in the introduction to this section. The
next theorem will make this notion precise. We will distinguish a particular functionH0(x)

satisfying (H1)–(H4) and denote its reduced scattering matrix byσ0(k) and the corresponding
solutionX̃(0, y) of (3.16) byX̃0(0, y). A subscript zero will be used also on other quantities
to indicate that they are associated withH0(x); e.g. we will writeσ0(k), ρ0(k), andA0,+
for the quantitiesσ(k), ρ(k), andA+ defined in (2.2)–(2.4), etc. Then we consider (3.15)
with X̃0(0, y) in place ofX̃(0, y), but on the right-hand side we leaveH+ > 0 and view it
as a parameter (soH+ need not be equal toH0,+); in other words, we consider

y + A+ + X̃0(0, y) = H+G1(x). (3.27)

In the following, the quantities that do not carry a subscript zero are associated with
the solutiony(x) of (3.27) for a givenH+. The following theorem shows that, in the
exceptional case, there is a one-parameter family of functionsH(x) with parameterH+,
which corresponds to the same scattering data{Q(x), ρ(k)}.
Theorem 3.2. Suppose we are in the exceptional case withQ ∈ L1

2(R) and thatH0(x)

obeys (H1)–(H4). Then for anyH+ > 0, the functionH(x) = y ′(x), wherey(x) is the
solution of (3.27), also obeys (H1)–(H4). Moreover,σ(k) = σ0(k).

Proof. We will first verify (H1)–(H4) in the order (H2), (H3), (H1), and (H4).
Differentiating (3.27) with respect tox and usingG′

1(x) = 1/fl(0, x)2 (cf (3.13)) we get

X̃′
0(0, y) = H+

H(x)fl(0, x)2
− 1 (3.28)

where the prime onX̃0(0, y) denotes they-derivative. Replacing in (3.28)H(x) andH+
by H0(x) andH0,+, respectively, and lettingx → ±∞, we obtain

lim
y→+∞ X̃

′
0(0, y) = 0 lim

y→−∞ X̃
′
0(0, y) = H0,+

H0,−γ 2
− 1 (3.29)

where we have also used (2.6). SinceH0(x) is bounded and bounded away from zero by
(H1) and (H2), we see from (3.28) thatX̃′

0(0, y) must obey an estimate of the form

0< C1 6 1 + X̃′
0(0, y) 6 C2 < ∞ (3.30)

for some constantsC1 andC2. Now return to (3.28) with an arbitraryH(x). By using (3.29)
and (3.30) we conclude thatH(x) must approach finite limits asx → ±∞; in particular
limx→+∞H(x) = H+. Moreover, fromx → −∞, we obtain

H+
H−

= H0,+
H0,−

(3.31)
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i.e. the ratioH+/H− is the same for all solutions of (3.27). This shows thatH(x) obeys
(H2). In order to deal with (H3) we recall that from (3.2) and the assumptionQ ∈ L1

2(R)
it follows that (cf [DT79], lemma 1, p 130)

1 − fl(0, ·) ∈ L1(R+) γ − fl(0, ·) ∈ L1(R−). (3.32)

Now write (3.28) as

X̃′
0(0, y) = H+ −H(x)

H(x)fl(0, x)2
+ 1 − fl(0, x)2

fl(0, x)2
. (3.33)

SinceH0(x) obeys (H3), using (3.32) we havẽX′
0(0, ·) ∈ L1(R+). Using (3.33) we see that

H −H+ ∈ L1(R+). Similarly, whenx < 0 we write

X̃′
0(0, y)− H+

H−γ 2
+ 1 = H+

H−

[
H− −H(x)

H(x)fl(0, x)2
+ γ 2 − fl(0, x)2

fl(0, x)2γ 2

]
and, since forH(x) = H0(x) the right-hand side is inL1(R−), the left-hand side must be in
L1(R−). HenceH −H− ∈ L1(R−), i.eH(x) obeys (H3). Next we consider (H1). Solving
(3.28) forH(x) we obtain

H(x) = H+
fl(0, x)2[1 + X̃′

0(0, y)]
. (3.34)

The points x0,1, . . . , x0,N where H0(x) has discontinuities determine, via (2.12), the
points y1, . . . , yN , where X̃′

0(0, y) has discontinuities. Then, for an arbitraryH(x) the
discontinuitiesxj are given byyj = ∫ xj

0 ds H(s). Thus the number of discontinuities is the
same for all functionsH(x) given by (3.34). The estimate (3.30) guarantees thatH(x) is
bounded from above and bounded away from zero. ThusH(x) obeys (H1). The verification
of (H4) andρ(k) = ρ0(k) will be done together, by using the Liouville transformation
given in (2.9)–(2.11). By differentiating (3.34), after lengthy calculations, we obtain for the
potentialV (y) in (2.11)

V (y) = 3

4

X̃′′
0(0, y)

2

[1 + X̃′
0(0, y)]

2
− X̃′′′

0 (0, y)

2[1 + X̃′
0(0, y)]

y ∈ R \ {y1, . . . , yN }. (3.35)

The boundary conditions atyj are given by (2.12)–(2.13) with

qj = 1 + X̃′
0(0, yj + 0)

1 + X̃′
0(0, yj − 0)

(3.36)

νj = 1

2

[
X̃′′

0(0, yj + 0)

[1 + X̃′
0(0, yj + 0)]2

− X̃′′
0(0, yj − 0)

[1 + X̃′
0(0, yj − 0)]2

]

×
√

1 + X̃′
0(0, yj + 0)

√
1 + X̃′

0(0, yj − 0). (3.37)

SinceH0(x) satisfies (H4),V (y) satisfies (2.21) and, in turn, this implies thatH(x) satisfies
(H4). The essential point of (3.35)–(3.37) is thatV (y) and the boundary conditions depend
only on ρ0(k) and not onH+. Therefore, the scattering matrix for (3.35) does not depend
onH+, i.e. by proposition 2.2 we haveσ(k) = σ0(k). �

We remark that in the case whenQ(x) = 0 we can obtainH(x) from H0(x) by a
scaling transformation, namely

H(x) = H+
H0,+

H0(H+x/H0,+).
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Furthermore, from (2.7) and (3.29) it follows that

lim
y→−∞ X̃

′
0(0, y) = 2ρ0(0)

1 − ρ0(0)

which complements (3.26).
Next we discuss the extensions of theorems 3.1 and 3.2 to the case whenR(k) is known

instead ofρ(k) as part of the scattering data. In view of (2.3), (3.15) assumes the form

y + A+ + X̃1(0, y + A+) = H+G1(x). (3.38)

Here X̃1(0, y) is the function obtained by solving (3.16) withρ(k) replaced byR(k). We
have used the fact that, if in (3.16)–(3.18) we replaceρ(k) by ρ(k)e2ikθ with θ ∈ R, then
this amounts to a shifty → y + θ ; in our caseθ = A+. The constantA+ is determined by

A+ + X̃1(0, A+) = H+G1(0). (3.39)

Since both sides of (3.38) are monotonically increasing functions of their respective
variables,A+ is determined uniquely. In the generic case, we let (cf (3.22))

w0 = lim
z→−∞[z + X̃1(0, z)].

Then, by (3.38),H+ is given as

H+ = w0

G1(−∞)
(3.40)

provided that

G1(−∞) 6= 0. (3.41)

If G1(−∞) = 0, thenH+ remains undetermined. Note that ifG1(−∞) = 0, we must also
havew0 = 0 in order for (3.38) to be solvable fory as a function ofx. We will show
below that ifG1(−∞) = 0, thenH+ is a free parameter as in the exceptional case. It is
interesting to see that in the construction ofH(x) from R(k) one may encounter this special
situation which does not arise if one starts fromρ(k) (the denominator in (3.24) is never
zero). Hence, ifρ(k) is replaced byR(k), then the scattering data should be redefined as
follows.

(1) In the generic case:
(a) if G1(−∞) 6= 0: {Q(x), R(k)};
(b) if G1(−∞) = 0: {Q(x), R(k),H+}.

(2) In the exceptional case:{Q(x), R(k),H+}.
Theorem 3.3. Suppose thatQ ∈ L1

2(R) and that there are no bound states. Then the
solution of the inverse problem with the above scattering data is unique. Moreover, in the
generic case withG1(−∞) = 0 and in the exceptional case, the constantH+ is a free
parameter in the sense that for any choice ofH+ > 0, the functionH(x) resulting from the
solution of (3.38) corresponds to the same reflection coefficientR(k).

Proof. The uniqueness follows as in the proof of theorem 3.1 from the monotonicity of
both sides of (3.38). The proof that in the exceptional caseH+ is a free parameter and that
the reflection coefficient does not depend onH+ is similar as in the proof of theorem 3.2,
the only difference being that the potentialV (y) in (3.35) is now replaced byV (y + A+).
If ρ0(k) denotes the reduced reflection coefficient for a particular functionH0(x), then, by
proposition 2.3 withξ = A+ − A0,+,

ρ(k) = e2ik(A+−A0,+)ρ0(k)
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and thus, by (2.3),

R(k) = R0(k). (3.42)

It remains to deal with the generic case whenG1(−∞) = 0. We first show that for any
H+ the functionH(x) arising from the solution of (3.38) obeys (H2) and (H3). It suffices
to considerx < 0, since forx > 0 the reasoning is the same as in the case of theorem 3.2;
there is no difference between the generic and exceptional cases whenx > 0. Since in the
generic case,fl(0, x) does not approach a finite limit asx → −∞, the arguments based
on (3.28) have to be refined. We first describe the idea behind the proof and then fill in
the technical details. Again we assume that there is a solutiony0(x) with a corresponding
functionH0(x) obeying (H1)–(H4). We can think ofH0(x) as the functionH(x) that, via
its reflection coefficient, determines̃X1(0, y) in (3.38). Now defineη = η(x) such that

H+G1(η) = H0,+G1(x). (3.43)

Due to the monotonicity ofG1(x), η(x) is uniquely determined, and it satisfiesη(x) → −∞
asx → −∞. In order to avoid possible confusion we mention that the relevant function is
y(η) and noty(η(x)); in fact, we havey(η(x)) = y0(x). From (3.38) and (3.43) we have

y(η)+ A+ + X̃1(0, y(η)+ A+) = y0(x)+ A0,+ + X̃1(0, y0(x)+ A0,+).

Consequently, by the monotonicity of the functionz + X̃1(0, z), we conclude that

y(η)+ A+ = y0(x)+ A0,+. (3.44)

Differentiating (3.44) with respect tox we obtain

y ′
0(x) = y ′(η)η′(x). (3.45)

Let us assume for the moment thatη′(x) has a limit asx → −∞. Theny ′(η) also has a
limit as η → −∞, which we callH−, and (3.45) implies that

lim
x→−∞ η

′(x) = H0,−
H−

. (3.46)

Moreover, we can write

y ′(η)−H− = 1

η′(x)
[y ′

0(x)−H0,−] + H−
η′(x)

[
H0,−
H−

− η′(x)
]
.

This suggests that in order to verify (H3) forH(x) we must show that

H0,−
H−

− η′ ∈ L1(R−) (3.47)

since the differencey ′
0(x)−H0,− satisfies (H3) by assumption.

Next we turn to the justification of the steps leading to (3.47) and of (3.47) itself.
Integrating (3.13) and usingG1(−∞) = 0 and (3.7)–(3.10), we obtain

G1(x) =
∫ x

−∞

dz

fl(0, z)2
= − 1

c2
l x

− dl

c3
l x

2
+ 2

c3
l

∫ x

−∞
dz
εl(z)

z3
+O

(
1

x3

)
x → −∞.

(3.48)

Let

ϕ(x) =
∫ x

−∞
dz
εl(z)

z3
. (3.49)

Using (3.48) in (3.43) we have

η(x) = H+
H0,+

x +O(1) x → −∞ (3.50)
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and then using (3.50) we obtain

η(x) = H+
H0,+

x + dl(H0,+ −H+)
clH0,+

+ 2H+x
clH0,+

[xϕ(x)− ηϕ(η)] +O

(
1

x

)
x → −∞.

(3.51)

We have left anη-dependent term on the right-hand side in order to combine it with another
term later. From (3.51) we obtain

clη − dl

clx − dl
= H+
H0,+

+ 2H+
H0,+

x[xϕ(x)− ηϕ(η)]

clx − dl
+O

(
1

x2

)
x → −∞. (3.52)

Differentiating (3.43) and using (3.13) we get

η′(x) = H0,+
H+

fl(0, η)2

fl(0, x)2
= H0,+

H+

(clη − dl)
2

(clx − dl)2

[1 − εl(η)/(clη − dl)]2

[1 − εl(x)/(clx − dl)]2
. (3.53)

Expanding the right-hand side of (3.53) with the help of (3.51) and (3.52), we find

η′(x) = H+
H0,+

+ 2H+
cl H0,+

[
2xϕ(x)+ εl(x)

x
−

(
2ηϕ(η)+ εl(η)

η

)]
+O

(
1

x2

)
x → −∞. (3.54)

From (3.54) we see that

lim
x→−∞ η

′(x) = H+
H0,+

(3.55)

and hence the steps leading to (3.46) have been justified. Moreover, comparing (3.46) and
(3.55) we obtain

H0,−H0,+ = H−H+. (3.56)

By (3.54) and (3.56), in order to verify (3.47) it suffices to show that

I (x) := 2xϕ(x)+ εl(x)

x
∈ L1(R−).

Using (3.10), (3.49), and integration by parts we obtain

I (x) = x

∫ x

−∞
ds

1

s2

∫ s

−∞
dz Q(z)fl(0, z).

Hence

|I (x)| 6
∫ x

−∞
dz |Q(z)||fl(0, z)|

and thus after another integration by parts, we obtain∫ 0

−∞
dx |I (x)| 6

∫ 0

−∞
dz |z||Q(z)||fl(0, z)| < ∞.

This proves (H3). Property (H1) is clear from (3.45). The verification of (H4) and of
R(k) = R0(k) is done as in the exceptional case. �
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We remark that, in addition to (3.42), we have from (2.3) and (2.19)

L(k) = e−2ik(A−A0)L0(k).

Moreover, in the exceptional case, using (3.31) we get

Tl(k) = eik(A0−A)T0,l(k) Tr(k) = eik(A0−A)T0,r(k)

and in the generic case, using (3.56), we have

Tl(k) = H0,+
H+

eik(A0−A)T0,l(k) Tr(k) = H+
H0,+

eik(A0−A)T0,r(k).

Hence unlike theorem 3.2, the scattering matricesS(k) are not the same for all potentials
H(x) resulting from the solution of (3.38).

The following example illustrates the caseG1(−∞) = 0, in which caseH+ needs to
be specified as part of the scattering data in order to obtainH(x) uniquely.

Example 3.4. In order to avoid lengthy formulae we assume thatQ(x) = δ(x−1), whereδ
denotes the Dirac delta function. ThisQ(x) does not satisfy (H5), but it can be approximated
by Q(x) that do, without affecting the conclusions of the example. For the reflection
coefficient we take

R(k) = 1 + ik

−1 + 3ik
e−4ik. (3.57)

Such reflection coefficients were considered in [AKV95] (example 6.2, withµ = 1/3,
ξ = 1/3 andβ = −4), where we solved (3.16). We have

X̃1(0, y) =


0 y > 2

(y − 2)(y − 1)

3 − y
y < 2

fl(0, x) =
{

1 x > 1

2 − x x < 1

−iḟl,1(0, x) =
{
x x > 1

1 x < 1.

Therefore

G1(x) =

x x > 1

1

2 − x
x < 1.

Thus we are in the generic case withG1(−∞) = 0 and we also havew0 = 0. From (3.39)
we obtainA+ = H+/2 if H+ > 4 andA+ = 3 − (4/H+) if H+ < 4. Solving (3.38) we
obtain

(i) if H+ > 2:

H(x) =



H+ x > 1

H+
(2 − x)2

4 −H+
2

< x < 1

2

H+
x <

4 −H+
2
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(ii) if 0 < H+ < 2:

H(x) =



H+ x >
2

H+
2

H+x2
1< x <

2

H+
2

H+
x < 1

(iii) if H+ = 2:

H(x) =
{

2 x > 1

1 x < 1.

The functionsH(x) all have the same reflection coefficient given by (3.57), independently
of the value ofH+. Note that the product of limx→−∞H(x) andH+ does not depend on
H+ (cf (3.56)).

4. An algorithm to recover discontinuities

In this section we first show how certain characteristic quantities associated with the
discontinuities ofH(x) can be recovered knowing only the leading asymptotic behaviour
of ρ(k) for largek. Among these quantities are the numberN of discontinuities, the values
yj , and the ratiosqj given by (2.14). Later in the section we will study the recovery of
these quantities when the largek-asymptotics ofR(k) is used instead of the asymptotics of
ρ(k). The algorithm described here can be applied to the (reduced) reflection coefficient
associated with (1.1) satisfying (H1)–(H5), and it is not restricted to sectionally constant
H(x). We will see that, in the special case whenH(x) is sectionally constant, our algorithm
recoversH(x) exactly.

According to (2.31) the leading term ofρ(k) ask → ∞ is given by

ρas(k) = −b(k)
a(k)

and from (2.26)–(2.28) we see thatρas(k) is completely determined byN , yj , andqj for
j = 1, . . . , N . In particular,Q(x) has no influence onρas(k). In order to recover the
locationsx1, . . . , xN of the discontinuities, further information aboutH(x) is required. For
example, ifH(x) is known to be piecewise constant, givenρas(k) and eitherH+ or H−,
the pointsx1, . . . , xN can be determined uniquely; hence in this special case,H(x) itself
is recovered uniquely by our algorithm. As we will see in section 5, whenρ(k) = ρas(k),
the productH(x)fl(0, x)2 is a piecewise constant function; in that case our algorithm also
yieldsH(x) in terms ofρ(k) and eitherH+ or H−.

We first observe that|a(k)|2 = 1/(1 − |ρas(k)|2) and that one can constructa(k) from
|a(k)| as described in [AKV94]. Henceb(k) = −ρas(k)a(k) is also known. Therefore, we
may assume thata(k) and b(k) are known separately. Note that in an applicationρas(k)

might not initially be available as the ratio−b(k)/a(k) with given functionsa(k) andb(k).
However, as indicated in theorem 2.4,ρas(k) is almost periodic, and hence from a given
ρ(k) we can always findρas(k) in the form

ρas(k) =
∞∑

n=−∞
ρne

ikηn
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with
∑∞

n=−∞ |ρn| < ∞, ηn ∈ R, and

ρn = lim
L→+∞

1

2L

∫ L

−L
dk ρ(k)e−ikηn .

Note thatρn are real because of the symmetryρas(−k) = ρas(k) for k ∈ R. For later
reference we list the expressions fora(k) andb(k) whenN = 1, 2, 3, 4.

If N = 1:

a(k) = α1 e2iky1b(k) = β1. (4.1)

If N = 2:

a(k) = α1α2 + β1β2e2ik(y2−y1) (4.2)

e2iky2b(k) = α1β2 + β1α2e2ik(y2−y1). (4.3)

If N = 3:

a(k) = α1α2α3 + β1β2α3e2ik(y2−y1) + α1β2β3e2ik(y3−y2) + β1α2β3e2ik(y3−y1) (4.4)

e2iky3b(k) = α1α2β3 + β1β2β3e2ik(y2−y1) + α1β2α3e2ik(y3−y2) + β1α2α3e2ik(y3−y1). (4.5)

If N = 4:

a(k) = α1α2α3α4 + β1β2α3α4e2ik(y2−y1) + α1β2β3α4e2ik(y3−y2) + β1α2β3α4e2ik(y3−y1)

+α1α2β3β4e2ik(y4−y3) + α1β2α3β4e2ik(y4−y2) + β1α2α3β4e2ik(y4−y1)

+β1β2β3β4e2ik(y4−y3+y2−y1) (4.6)

e2iky4b(k) = α1α2α3β4 + β1β2α3β4e2ik(y2−y1) + α1β2β3β4e2ik(y3−y2) + β1α2β3β4e2ik(y3−y1)

+α1α2β3α4e2ik(y4−y3) + α1β2α3α4e2ik(y4−y2) + β1α2α3α4e2ik(y4−y1)

+β1β2β3α4e2ik(y4−y3+y2−y1). (4.7)

The expressions fora(k) and b(k) whenN is arbitrary can be obtained from (2.28);
the expression fora(k) was also given in [Gr91]. In the following we will make certain
statements about the general form ofa(k) and b(k). These can all be easily proved by
induction onN noting the fact that in view of (2.28) adding a discontinuity on the right
corresponds to a multiplication from the right by a known matrix. For example, we note
that a(k) andb(k) are exponential polynomials having at most 2N−1 non-zero terms. Note
also that for a givenN , e2ikyN b(k) is obtained froma(k) and vice versaby interchanging
αN andβN . We write

k) = a0 +
∑
n

ane
2ikλn (4.8)

b(k) =
∑
n

bne
2ikξn

wherea0 > 0 andan, bn are non-zero real constants. It is evident from (4.1)–(4.7) and can
also be proved by induction onN that λn > 0, and that theξn are of the formλn − yN .

Next we list the steps of the algorithm allowing us to recoverN , yj , andqj from ρas(k).
Recall thata(k) andb(k) are known whenρas(k) is given.

(1) From b(k), we obtainyN as yN = − minn ξn. Note that the coefficient of that
exponential term isα1α2 · · ·αN−1βN .

(2) The constant term ina(k) is equal toα1α2 · · ·αN−1αN .
(3) From the ratio of the coefficients in steps (1) and (2) above, we obtainβN/αN and

hence

qN = 1 + βN/αN

1 − βN/αN
.



Discontinuities in non-homogeneous media 19

(4) We construct the matrixE(k, xN) defined in (2.27) by usingyN andqN .
(5) From (2.27), we obtain the matrixE(k, xN)−1 and then define[

a[N−1](k) b[N−1](k)

b[N−1](−k) a[N−1](−k)
]

:=
[
a(k) b(k)

b(−k) a(−k)
]
E(k, xN)

−1.

Note thata[N−1](k), when not constant, has again the form (4.8) witha0 > 0 andan, bn
non-zero real constants, but with fewer terms.

(6) We replacea(k) andb(k) by a[N−1](k) andb[N−1](k), respectively, and repeat steps
(1)–(5). This results in functionsa[N−2](k) and b[N−2](k). We repeat the procedure until
the matrix in step (5) no longer contains any exponential terms on the diagonal, i.e. until
we arrive at the matrixE(k, x1). From it we findy1 andq1.

Note that it is possible to determiney1 right after step (1) of the algorithm as follows.
From (4.8) we obtainyN − y1 as yN − y1 = maxn λn; note that there is a unique term
for which this maximum occurs and that the coefficient in front of this exponential term
is β1α2 · · ·αN−1βN ; hence, having obtainedyN from step (1), we also havey1. This
determination ofy1 can help us to check the correctness of the computations sincey1 is
also determined as explained in step (6). There are also ways to speed up the algorithm if
further information onH(x) is available. For example, ifQ(x) = 0,H+ is given, andH(x)
is known to be piecewise constant, then theorem 5.1 implies thatρ(k) = ρas(k). We can
therefore useρ(0) = −b(0)/a(0) in (2.7) with γ = 1 to determineH− = H(x1 − 0). Then
we can use the fact that under a reflectionx → −x the functiona(k) remains invariant,
whereas the functionb(k) changes to−b(−k). Using this property, we can determineq1

at the same time we determineqN . Then, we can carry out the algorithm by working from
both ends. As we will see in section 5, wheneverρ(k) = ρas(k), our algorithm gives us
H(x) in terms ofρ(k) andH+.

In the following example we illustrate the above algorithm (without the improvements
mentioned in the previous paragraph). AssumingH(x) is piecewise constant andH+ is
given, we also determine the valuesx1, . . . , xN .

Example 4.1. Assumea(k) = f1(k)/1008
√

2 andb(k) = e−76ikf2(k)/1008
√

2, where

f1(k) = 1625+ 130e6ik − 50e42ik + 25e44ik − 25e48ik + 2e50ik − 130e86ik − 65e92ik

f2(k) = 325+ 26e6ik − 10e42ik + 125e44ik − 5e48ik + 10e50ik − 650e86ik − 325e92ik.

From the term 325e−76ik/1008
√

2 in b(k), we see that

−2yN = −76 α1 · · ·αN−1βN = 325

1008
√

2

and from the constant term ina(k) we obtain

α1 · · ·αN−1αN = 1625

1008
√

2
.

HenceyN = 38 andβN/αN = 325/1625 = 1/5, and soqN = 3/2. Next we construct

E(k, xN) =
[

αN βNe−2ikyN

βNe2ikyN αN

]
by using (2.26) withn = N and obtainαN = 5

2
√

6
,

βN = 1
2
√

6
, and thus

E(k, xN) = 1

2
√

6

[
5 e−76ik

e76ik 5

]
.
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Then we form the matrix

[
a(k) b(k)

b(−k) a(−k)
]
E(k, xN)

−1 and execute step (6). We obtain

yN−1 = 16 andqN−1 = 7/6. A further repetition givesyN−2 = −5 andqN−2 = 3/7. We
also obtain

N−3∏
n=1

E(k, xn) = 1√
24

[
5 −e16ik

−e−16ik 5

]
.

Since there are no exponential terms on the diagonal, this must be the matrixE(k, x1).
HenceN = 4, y1 = −8, andq1 = 2/3.

If we further assume thatH+ = 4 and thatH(x) is piecewise constant, using
H(x4 + 0) = H+ = 4 and q4 = 2/3, we obtainH(x4 − 0) = H(x3 + 0) = 6; then
using q3 = 7/6 we obtainH(x3 − 0) = H(x2 + 0) = 7; from q2 = 3/7 we have
H(x2 − 0) = H(x1 + 0) = 3; finally, usingq1 = 2/3 we obtainH(x1 − 0) = H− = 2.
Hence we have

H(x) =



2 y < −8

3 −8< y < −5

7 −5< y < 16

6 16< y < 38

4 y > 38.

Finally, by usingyj = ∫ xj
0 ds H(s), we obtainx1 = −12/7, x2 = −5/7, x3 = 16/7, and

x4 = 125/21.
Let us also note that in the special case whenH(x) is piecewise constant, it is possible,

under certain restrictions, to recoverH(x) by using an algorithm described in Ware and
Aki [WA69], which is known as the Goupillaud solution. However, that algorithm is only
applicable whenH(x) is piecewise constant and each interval in whichH(x) is constant can
be divided into a number of subintervals such that the travel times through these subintervals
are the same. Because of the latter restriction, the Goupillaud method is unable to exactly
recover a piecewise constantH(x) even in simple cases. For example, whenH(x) = 2 for
x ∈ (0, 1) andH(x) = 3 for x ∈ (1, 1 + π), it is impossible to subdivide these intervals
into a finite number of subintervals for which the travel times are the same, since we cannot
find integersp, q such that 2/p = 3π/q. In our opinion, the Goupillaud solution is more
suitable as an approximate inversion method for a continuous non-homogeneous medium
modeled by a layered medium with a suitably chosen number of layers. By contrast, the
method described in this paper can be used in the special case of piecewise constantH(x)

without such limitations.
An algorithm for findingN , qj , and the differencesTj := yj+1−yj for j = 1, . . . , N−1

from |a(k)| alone was given in [Gr90, Gr91]. Below we will only refer to [Gr91], where a
more detailed account was given. In [Gr91] there is the additional restriction thatTi/Tj has
to be irrational wheneveri 6= j ; this restriction implies that the exponents of the 2N−1 terms
in a(k) are all different. Without this restriction some of the terms ina(k) or b(k) may have
the same exponential factors and hence the number of distinct terms ina(k) or b(k) may be
less than 2N−1, in which case the algorithm of [Gr91] cannot lead to a uniqueH(x). Since
the coefficients of the exponential terms inb(k) may be positive as well as negative, it is
possible that sometimes the number of terms ina(k) may be different from that inb(k). In
general, one cannot even obtainN from |a(k)| andH+ alone (or even froma(k) andH+
alone). Our algorithm described in this section does not have such restrictions; furthermore,
it only involves simple algebraic matrix operations and hence it is easy to implement.
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In the following example we show that one cannot even determineN from a(k) and
H+ alone.

Example 4.2. Let

a1(k) = 45

16
√

6
− 5

16
√

6
e24ik b1(k) = 15

16
√

6
e−24ik − 1

2
√

6
e−12ik − 15

16
√

6
.

Assuming thatH(x) = H1(x) is piecewise constant andH+ = 3/2, our algorithm gives us

H1(x) =


1 x < 0

2 0< x < 3

3 3< x < 5
3
2 x > 5.

We haveα1 = 3
2
√

2
, α2 = 5

2
√

6
, α3 = 3

2
√

2
, β1 = − 1

2
√

2
, β2 = − 1

2
√

6
, andβ3 = 1

2
√

2
. Note

that in this exampleN = 3, y1 = 0, y2 = 6, andy3 = 12. Also,β1β2α3 = −α1β2β3, and
thus the second and third terms on the right-hand side of (4.4) cancel. Now let

a2(k) = a1(k) b2(k) = −4 − √
241

16
√

6
e−24ik + −4 + √

241

16
√

6
.

Assuming again thatH(x) = H2(x) is piecewise constant andH+ = 3/2, our algorithm
gives us

H2(x) =


1 x < 0

25− √
241

16
= 0.5922. . . 0< x < 1

2(25+ √
241) = 20.2620. . .

3

2
x > 1

2(25+ √
241).

Note that nowN = 2, but thata(k) is the same forH1(x) andH2(x).
Finally, we discuss the modifications needed in our algorithm whenRas(k) is known

instead ofρas(k). By Ras(k) we mean the almost periodic part ofR(k) given by (cf (2.3))

Ras(k) = ρas(k)e
−2ikA+ . (4.9)

In order to deal with the factor e−2ikA+ , we consider for a moment the shifted functions
Q(x; κ) = Q(x + κ) andH(x; κ) = H(x + κ). It follows that the corresponding potential
V (y; κ) in (2.11) satisfiesV (·; κ) = V (· + y(κ)). Therefore, proposition 2.3 implies that

ρ(k; κ) = exp

[
2ik

∫ κ

0
ds H(s)

]
ρ(k)

and thus

ρas(k; κ) = exp

[
2ik

∫ κ

0
ds H(s)

]
ρas(k). (4.10)

Now chooseκ0 such that∫ κ0

0
ds H(s) = −A+. (4.11)

Then we see from (4.9)–(4.11) thatρas(k; κ0) = Ras(k). Hence we can use the algorithm
with Ras(k) because it can be viewed as the reduced reflection coefficient associated with
Q(x; κ0) andH(x; κ0). Note that the parametersqj andN are invariant under the shift,
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and so are the differencesyj − yi . The valuesxκ0,j andyκ0,j , whereH(x; κ0) andV (y; κ0)

have discontinuities, are given by

xκ0,j = xj − κ0 yκ0,j = yj −
∫ κ0

0
ds H(s).

Thus it is the values ofN , qj , andyκ0,j that we obtain as a result of applying the algorithm
to Ras(k). Of course, ifρ(k), Q(x), andH+ are known, thenA+ is also known (cf (3.19)
and (3.39)), and henceκ0 can be determined from (4.11).

If H(x) is known to be piecewise constant, then givenRas(k) andH+, our algorithm
allows us to determineH(x; κ0), including the pointsxκ0,1, . . . , xκ0,N . Furthermore, we
can findκ0 by using (2.4), (4.11), and the fact thatH(x) = H(x − κ0; κ0). This leads
to the equationκ0 = −Aκ0,+/H+, whereAκ0,+ is given by (2.4) in terms ofH(x; κ0).
Consequently, we can completely determine a piecewise constantH(x) from Ras(k) and
H+.

5. Inversion for almost periodic reflection coefficients

In this section, when there are no bound states, we characterize those functionsH(x) that
satisfy (H1)–(H4) and whose scattering coefficients are almost periodic functions ofk. We
first determine the functionsH(x) for which

ρ(k) = ρas(k) = −b(k)
a(k)

. (5.1)

By theorem 2.4, if (5.1) holds, thenρas ∈ APW due to theorem 2.4. Conversely, ifρ ∈ APW ,
thenρ+b/a ∈ APW . Then theo(1)-term in (2.31) must be identically zero and (5.1) follows.
In other words,ρ(k) = ρas(k) if and only if ρ ∈ APW . Next note that whenρ(k) = ρas(k),
by using (2.29) and the unitarity of the matrixσ(k), we have 1/|τ(k)| = |a(k)|. Hence
τ(0) 6= 0, and we are automatically in the exceptional case. Usingτ(−k) = τ(k) and
a(−k) = a(k) for k ∈ R, we obtain

τ(k)a(k) = 1

τ(−k)a(−k) k ∈ R. (5.2)

Note thata(k) and 1/τ(k) are analytic inC+, and in the absence of bound statesτ(k) is
analytic in C+. Thus, in the absence of bound states, using (2.30), (5.2), and Liouville’s
theorem, we conclude that

τ(k) = 1

a(k)
. (5.3)

Furthermore, by using (2.5), (2.29), (5.1), and (5.3) we see that

`(k) = `as(k) = b(k)

a(k)
= −ρ(k)a(k)

a(k)
∈ APW .

A close inspection of the origins of theo(1)-terms in (2.30) and (2.31) suggests that the
conditionV (y) = 0 for y ∈ R \ {y1, . . . , yN } will be part of any necessary and sufficient
conditions for (5.1) to be valid. So it is natural to investigate this in more detail. IfVj,j+1(y)

given in (2.20) vanishes, then we havegl,j,j+1(k, y) = eiky and gr,j,j+1(k, y) = e−iky in
(2.22), and therefore

0n−1,n(k, xn − 0)

=
[ 1√

H(xn−0)
eikyn 1√

H(xn−0)
e−ikyn

ik
√
H(xn − 0)eikyn − H ′(xn−0)

2H(xn−0)3/2 eikyn −ik
√
H(xn − 0)e−ikyn − H ′(xn−0)

2H(xn−0)3/2 e−ikyn

]
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0n,n+1(k, xn + 0)

=
[ 1√

H(xn+0)
eikyn 1√

H(xn+0)
e−ikyn

ik
√
H(xn + 0)eikyn − H ′(xn+0)

2H(xn+0)3/2 eikyn −ik
√
H(xn + 0)e−ikyn − H ′(xn+0)

2H(xn+0)3/2 e−ikyn

]
.

Hence

0n−1,n(k, xn − 0)−10n,n+1(k, xn + 0) = E(k, xn)+ νn

2ik
B(k, xn) (5.4)

whereE(k, xn) is the matrix defined in (2.27),νn is given by (2.15), and

B(k, xn) =
[

1 e−2ikyn

−e2ikyn −1

]
.

Note thatνn = 0 if and only if H ′(x)/H(x) is continuous atxn. Hence ifH ′(x)/H(x)
is continuous at eachxn, then by (2.25) and (5.4), we haveτ(k) = 1/a(k) and ρ(k) =
−b(k)/a(k). So Vn,n+1(y) = 0 for n = 0, . . . , N and the continuity ofH ′(x)/H(x) are
sufficient for (5.1) to hold. Now we ask what functionsH(x) lead toVn,n+1(y) = 0, or
equivalently

H ′′(x)
2H(x)3

− 3

4

H ′(x)2

H(x)4
+ Q(x)

H(x)2
= 0 x ∈ (xn, xn+1) n = 0, . . . , N. (5.5)

SubstitutingH(x) = c/h(x)2 in (5.5) we obtain

h′′(x) = Q(x)h(x) (5.6)

that is, h(x) can be any zero-energy solution of (1.1). Since we allowH(x) to be
discontinuous, we are looking for different solutions on each interval(xj , xj+1). Forx > xN
we must chooseh(x) proportional tofl(0, x); this is becausefr(0, x) is a constant multiple
of fl(0, x) and there are no other linearly independent solutions of (5.6) that remain bounded
asx → +∞. Hence, in order to haveH(x) approaching a positive limit asx → +∞, we
need to choose

H(x) = H+
fl(0, x)2

x > xN.

Let us now impose the condition thatH ′(x)/H(x) be continuous at eachxn. Beginning
with xN , sinceH ′(x)/H(x) = −2f ′

l (0, x)/fl(0, x), we see that the logarithmic derivative
of fl(0, x) has to be continuous atxN . Therefore, on(xN−1, xN), the solutionH(x) of (5.5)
must be a constant multiple of 1/fl(0, x)2. Arguing similarly on every interval(xn, xn+1)

we obtain recursively

H(x) = hn,n+1

fl(0, x)2
x ∈ (xn, xn+1) n = 0, 1, . . . , N (5.7)

wherehN,N+1 = H+ and

hn−1,n = H(xn − 0)

H(xn + 0)
hn,n+1 = qnhn,n+1 n = 1, . . . , N. (5.8)

So we have constructed a class of functionsH(x) for which (5.1) holds. Note that the
algorithm described in section 4 can be used to obtainhn,n+1 in terms ofH+ andρas(k).
The next theorem shows that anyH(x) satisfying (H1)–(H4) and for whichρ(k) = ρas(k)

must be given by (5.7).

Theorem 5.1. In the absence of bound states, for a givenQ(x), consider allH(x) satisfying
(H1)–(H4). Then,ρ(k) = ρas(k) if and onlyH(x) is of the form (5.7).
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Proof. If H(x) is of the form (5.7), then from (2.11)–(2.15) we see thatνn = 0 for
n = 1, . . . , N , andV (y) = 0 everywhere except atyn. Hence (5.1) follows from (2.25) and
(5.4). Conversely, suppose (5.1) holds. Fromρas(k) by means of the algorithm in section 4
we can determine the parametersN , yj , andqj of H(x) for j = 1, . . . , N . Then we use
H+ and the parametersqj in (5.8) to construct a functionH(x) that is of the form (5.7).
We then know the form of the functionH(x) on each interval(yn, yn+1) and all we need
to do is find the pointsx1, . . . , xN that correspond toy1, . . . , yN , respectively. IfN = 1
andy1 = 0, thenx1 = 0. If N = 1 andy1 6= 0, then we can proceed as in the caseN > 2.
If N > 2, then at leastN − 1 of the pointsy1, · · · , yN must be non-zero. If at least one of
these is positive, we can pick the smallest of them, sayyp. Thenxp is uniquely determined
by

yp

hp−1,p
=

∫ xp

0

dz

fl(0, z)2
(5.9)

and we recursively determinexp+1, . . . , xN using

yp+1 − yp

hp,p+1
=

∫ xp+1

xp

dz

fl(0, z)2
.

Similarly, we can determinexp−1, xp−2, . . . , x1. If all yj are non-positive, then we pick
the one with smallest absolute value that is non-zero (eitheryN or yN−1) and find the
correspondingxj by using the appropriate integral of the form (5.9). We know that for the
resulting functionH(x), (5.1) is satisfied, becauseV (y) = 0 for y ∈ R \ {y1, . . . , yN } and
H ′(x)/H(x) is continuous. By construction, thisH(x) is uniquely determined byQ(x),
ρ(k), andH+. Hence, by theorem 3.1, it is the only possibleH(x) for which (5.1) holds.�

We remark that we can prove an analogue of theorem 5.1 whenρ(k) = ρas(k) is replaced
by R(k) = Ras(k), by arguing as in the proof of theorem 5.1 using (2.3) and (4.10).
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