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ABSTRACT

Several classes of polar decompositions of real and complex matrices with respect
to a given indefinite scalar product are studied. Matrices that admit such polar
decompositions are described in various ways. In particular, a full description of all
polar decompositions of a given matrix up to the natural similarity between polar
decompositions is given. © Elsevier Science Inc., 1997

1. INTRODUCTION

Let F be either the field of real numbers R or the field of complex
numbers C. Fix a real symmetric (if F = R) or complex hermitian (if F = C)
invertible n X n matrix H. Consider the scalar product induced by H by the
formula [x, y] = (Hx, y), x, y € F". Here (-, ) stands for the standard
scalar product in F", i.e.,

(x, 9> = X x5,
j=1

where

X Y1

Xy Yo
1771 F".

xﬂ yﬂ

(Of course, 9=y if F =R.) The scalar product [+, -] is nondegenerate
([x,y] =0 for all y € F" implies x = 0), but is indefinite in general. In
other words, the real number [z, x] can be either positive, or negative, or
zero for various x € F" (unless H is definite). The vector x € F" is called
positive if [x, x] > 0, neutral if [x, x] = 0, and negative if [x, x] <O0.
Well-known concepts related to the scalar product [-, -] are defined in
obvious ways. Thus, given an n X n matrix A over F, the H-adjoint Al*] jg
defined by [Ax, y] =[x, A*ly] for all x,y € F". The formula A¥) =
H™'A*H is verified immediately (here and elsewhere we denote by A* the
conjugate transpose of A; then A* = AT if F = R). A matrix A is called
H-self-adjoint if A*!= A, or equivalent, if HA is hermitian. An n X n
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matrix U is called H-unitary if [Ux, Uyl =[x, y] for all x,y € F", or,
equivalently, U*HU = H. Observe that for every H-unitary matrix U we
have |det U| = 1; in particular, det U = +1if F = R.

In this paper we study decompositions of an n X n matrix X over F of
the form

X = UA, (1.1)

where U is H-unitary and A is H-self-adjoint (with or without additional
restrictions). By analogy with the standard polar decomposition X = UA,
where U is unitary and A is positive semidefinite, we call the decomposition
(1.1) an H-polar decomposition of X. More precisely, (1.1) should be termed
a right H-polar decomposition of X; however, the theory of left H-polar
decompositions X = AU is completely analogous to the theory of (1.1) in
view of the equality AU = UA’, where A’ = U'AU is H-self-adjoint if and
only if A is H-self-adjoint (and U is H-unitary).

Motivated by various applications and connections (some of them will be
mentioned below), as well as by intrinsic mathematical interest, we consider
the following classes of H-polar decompositions (1.1). Given nonnegative
integers p, g, the polar decomposition (1.1) will be called (H, p, g)-polar
decomposition if the number of positive (negative) eigenvalues, when counted
with multiplicities, of HA does not exceed p (¢).

In this paper we describe the matrices X that admit an (H, p, q)-polar
decomposition in various ways, prove that certain classes of matrices (for
example, nonsingular H-normal matrices) always admit an H-polar decompo-
sition, and study in detail equivalence of H-polar decompositions. These
problems turn out to be much more intricate than the familiar polar decom-
position with respect to a positive definite matrix H and with a positive
semidefinite A; a full and complete picture, for the case of definite H, can be
easily derived from well-known results (see Section 3). To illustrate that the
simplest indefinite H leads to nonexistence (for certain X) of H-polar
decompositions we give two examples:

ExXaMpPLE 1.1. Let

_ _[1 o _fo 1
T S R F)

Then X*I1X = diag(0, — 1), where diag(a, B) denotes the diagonal matrix
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with diagonal entries a and B. In order that X = UA for some H-unitary U
and some H-self-adjoint A, we must have

XX = (UA)*lvA = Alu*lya = A%

Since A commutes with A2 = XX, we have A = diag(0, + i) and hence
A*l = H71A*H = — A, This implies A¥l = A = — A which is impossible.

ExaMpLE 1.2 (Taken from [4]). Let

0 1 0 1
) w0 )

A simple calculation shows that

[*] — O 1
wox=[0 1]

There is no square root of the last matrix, in contrast with the previous
example. Thus, the matrix X allows no H-polar decomposition.

The following equivalence relation is naturally associated with the polar
decomposition (1.1). Let S be an invertible n X n matrix over F, and let
H, = S*HS. Then X = UA is an (H, p, q)-polar decomposition if and only if
Y = U, A, is an (H,, p, g)-polar decomposition of Y := S~'XS, where U, =
S7'US and A, = $7'AS. The equivalence relation H — S*HS, A - S™'AS,
where A is H-self-adjoint, will be called congruent similarity, and will be
used (mostly implicitly) throughout the paper. Observe that for a matrix X
the adjoint of Y = S™'XS with respect to the H|-inner product is given by
S™1X™*1S, where X! is the adjoint with respect to the H-inner product.

The theory of (H, n,0)-polar decompositions in case H is a positive
definite n X n matrix is well known and widely used for both F = R and
F = C (see, for instance, [11, 15]). Without loss of generality, we can assume
in this case H = I, i.e., consider the polar decompositions

X =UA, (1.2)

where U is unitary (U*U = UU* =) and A is positive semidefinite with
respect to { -, ). The polar decompositions (1.2) exist for every n X n
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matrix X; moreover, a description of all such decompositions is available.
There is a rich literature on this polar decomposition, which is a standard tool
in matrix theory, and its numerous applications. See, e.g., [2] and the
references therein for a perturbation theory of (H, n,0)-polar decomposi-
tions, where H is positive definite.

There is not much known about H-polar decompositions beyond the
well-understood situation described in the previous paragraph. We mention

the following:

(1) Potapov’s theory of H-nonexpansive operators (see (19, 20, 1]), where
an H-polar decomposition of a special type exists and is unique.

(2) Krein-Shmul'jan theory of plus operators (see [13, 14]), where an
H-polar decomposition does not always exist and need not be unique.

(3) Study of real structures of simply connected complex semisimple Lie
groups (see, e.g., [18]).

(4) Applications in linear optics (see, e.g., [16, 17]). The H-nonexpansive
operators, plus operators of a special type, and applications in linear optics
(using H-polar decompositions) will be studied in detail in a subsequent
paper [3].

(5) Define two matrices X and Y to be H-unitarily equivalent if X =
UYV for some H-unitary matrices U and V. The theory of H-unitary
equivalence (which can be interpreted as an indefinite scalar product space
analogue of the singular value decomposition) leads naturally to (H, w(H),
v(H ))-polar decompositions, where w(H) [v(H)] is the number of positive
[negative] eigenvalues of H. This theory (for F = C) was developed in [4]; in
particular, a complete characterization of matrices X that admit an
(H, w(H), v(H))-polar decomposition X = UA was given in [4]. H-self-ad-
joint matrices A with the property that #(HA) < w(H), v(HA) < v(H)
are called H-consistent in [4]; they represent one way to generalize the
concept of positive semidefinite matrices to indefinite scalar product spaces
(another way is to consider the class of H-self-adjoint matrices A for which
HA is positive semidefinite).

(6) In [5] and [12] a related problem was studied, namely, given a
complex n X n matrix X and a (possibly indefinite) symmetric bilinear form,
when is it possible to decompose X as X = UA, where U is orthogonal and
A is symmetric? Necessary and sufficient conditions are given in [12]. The
general approach in [12] is much the same as the one we take in Section 4
below. Example 1.1 shows that the natural analogue of the theorem in [12]
does not hold for our problem, although there are remarkable similarities.

We describe briefly the contents of the paper. There are eight sections
(including the introduction). Section 2 contains the well-known canonical
forms for pairs of (real or complex) matrices (A, H), where H = H* is
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invertible and HA = A*H, as well as several results (in particular, concerning
H-consistent matrices) that are derived from these forms. In Section 3 we
summarize the main results on polar decompositions in finite dimensional
spaces with a definite scalar product; these results are easily obtained from
well-known material and therefore are presented without proofs. In the
subsequent sections we state and prove the main results of this paper. Section
4 is devoted to various characterizations of the class of matrices that admit an
H-polar decomposition. The particular case of H-normal matrices is studied
in Section 5. Section 6 contains a more detailed analysis of the set of possible
pairs (p, g) such that an (H, p, g)-polar decomposition exists. Finally, in
Section 7 a complete description of the equivalence of H-polar decomposi-
tions is given (two_H-polar decompositions X = UA and X = UA are said to
be equivalent if A = W'AW for some H-unitary W), which is illustrated
by an example in the final Section 8.

The following notation will be used. The number of positive [negative,
zero] eigenvalues of a hermitian matrix A is denoted by w(A) [v(A), 8(A)].
The symbol F" (where F = R or F = C) stands for the vector space of
n-dimensional columns over F. We denote by F™*" the vector space of
m X n matrices over F. The standard matrices are J,(A) (the k X k upper
triangular Jordan block with A € C on the main diagonal), and

A w1 0
- A 0 1 0
0 0 A u 10
0 0 —u A 0 1
J(A tip) =
1 0
0 0 1
0 0 A N
0 0 —u A

(the k X k real Jordan block with eigenvalues A + iu; here A, p are real and
p > 0; k is necessarily even). Although we define two different J;’s here, it
will always be clear from the context which one is meant. I, is the m X m
identity matrix, and Q,, = [8;,; »4]";—, is the m X m matrix with 1's on
the southwest-northeast diagonal and zeros elsewhere. The block diagonal
matrix with matrices Z,, ..., Z; on the main diagonal is denoted Z, & - ® Z;
or diag(Z,, ..., Z;). The set of eigenvalues (including nonreal eigenvalues for
real matrices) of a matrix X is denoted o(X). AT stands for the transpose of
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a matrix A. The symbol .# ®.# denotes the direct sum of the subspaces .#
and .#. For a subspace .# of C" equipped with the possibly indefinite scalar
product [+, - ], we denote by .#1+1 the space {y|[x, y] = 0 for all x €4}

2. CANONICAL FORMS

We start with the canonical forms of H-self-adjoint matrices under the
congruent similarity.

THEOREM 2.1.  Let H be an invertible hermitian n X n matrix (over F),
and let A € F**" be H-self-adjoint. Then there exists an invertible S over F
such that S™'AS and S*HS have the form

57148 = J (M) ® - ® J (A,)

& [Jio, (Aaet) @ Ji, (Rae)] @ = @ [Ji(3) @ 11, (3 )]
(2.1)

if F=C, where Aj,..., A, are real and A,.,,,..., Ag are nonreal with
positive imaginary parts;

STIAS = [, (A1) @ - @ [ (A,)
® Jok, (Aar1 £ igiy) ® - e]zk,(’\s ting) (22)
if F =R, where A, ..., Ag are real and p,, ,, ..., wy are positive; and
S*HS = €0k ® D EQ ©Qy DO Qst (2.3)

for both cases (F = R or F = C), where €,,...,€, are +1. For a given
pair (A, H), where A is H-self-adjoint, the canonical form (2.1), (2.2), (2.3)
is unique up to permutation of orthogonal components in (2.3) and the same
simultaneous permutation of the corresponding blocks in (2.1) or (2.2), as the
case may be.

Theorem 2.1 is well known and goes back to Weierstrass and Kronecker.

A complete proof of this theorem can be found in many sources; see, e.g., [9,
21).
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The signs €; in (2.3) form the sign characteristic of the pair (A, H).
Thus, the sign characteristic consists of signs +1 or —1 attached to every
partial multiplicity (= size of a Jordan block in the Jordan form) of A
corresponding to a real eigenvalue. We denote by odd(A; €) [even(A; €)] the
number of odd [even] partial multiplicities of an H-self-adjoint matrix A that
correspond to a real eigenvalue A of A and have the sign € attached to them.
We also define odd(A; €) = even(A; €) = 0 if A is not an eigenvalue of A.
(We omit the dependence on A and H in this notation.)

Using the canonical forms, we can identify the numbers of positive and
negative eigenvalues of HA as follows:

THEOREM 2.2. Let F = C or F = R. Let A be H-self-adjoint. Then

1
m(HA) = —2-(n + T odd(Aie) — ¥ odd(A;e) —2even(0;—1)),

eA>0 €A<0

(2.4)

v( HA) =%(n + Y, odd(A;€) — Y odd(A;e) — 2evén(0; 1))

er<0 €A20

(2.5)

Here n is the common size of A and of H.

Proof. Assume F = C (if F =R, the proof is essentially the same).
Without loss of generality we assume that A and H are given by the
right-hand sides of (2.1) and (2.3), respectively. Introduce the matrices

[0 - 0 )q

; A1
K.AN=|: .-~ .- .- 0] aec

0 A

(A 1 0 0]
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of size m X m. Observe that for nonreal eigenvalues A

_ 0
QZk[]k()‘j) 911:()‘]')] = [Kk()t-) 0

therefore
T(Qu[Ji (D) @ L(W)]) = »(Qui[ k(M) @ L(ND)]) =K. (26)

Also, for real eigenvalues A,

€Q - Jx(A) = eKi(A),

and therefore

3k if A # Oand k is even,

3(k + esignA) if A # Oand k is odd,
T(€Qr - Ji(A)) = { 3(k — 1) if A=0andk is odd,

+k if A=0,kiseven,and e =1,

3(k —2) if A=0,kiseven,and e = ~1.

(2.7)

Similarly,

1k if A# 0and k is even,

3(k —esignA) if A=#0andk isodd,
v(€Qy Ji(A) = { 3(k = 1) if A=0andk is odd,

3(k—2) if A=0,kiseven,and e=1,

1k if A=0,kiseven,and e= —1.

(2.8)

Combining (2.6) and (2.7), we easily derive (2.4). The formula (2.5) is
derived similarly from (2.6) and (2.8). [
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COROLLARY 2.3. Let A be H-self-adjoint. Then w(HA) < w(H) if and
only if

Y odd(A;1) — Y odd(A; —1) + even(0; —1) >0,  (2.9)

A<0 A<O

and v(HA) < v(H) if and only if

Z odd(A; —1) — Z odd(A;1) + even(0;1) > 0. (2.10)

A<0 A<0
In particular, A is H-consistent if and only if both (2.9) and (2.10) hold.

Recall that A is called H-consistent if A is H-self-adjoint and w(HA) <
w(H), v(HA) < v(H). These inequalities are equivalent to the existence of
solutions X of the equation X*!X = A (see [4]). The fact that H-consistency
of A is equivalent to (2.9) and (2.10) was proved in [4, inequalities (2.6)].

Proof. Again, we assume that the pair (A, H) is in the canonical form
(2.1), (2.3) (taking F = C; the same proofs works for F = R). Clearly

7"'(Q;o) = V(Q,,) =1ip if p is even,
and
"(EQP)= V(EQp)*'e:%(P'F&) if pisoddand e = +1.

Thus,
w(H) = %(n + Y odd(A;1) — Yodd(A; —1)), (2.11)

v(H) = %(n + Yodd(A; —1) — Yodd(A; 1)), (2.12)

where the summation is over all real eigenvalues A of A. Comparing the
formulas (2.4) and (2.11), one can easily see that the inequality 7(AH) <
w(H) is equivalent to (2.9). Similarly [comparing (2.5) and (2.12)], one proves
that ¥(AH) < v(H) is equivalent to (2.10). [
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3. THE CASE OF DEFINITE SCALAR PRODUCT

When H is positive definite or negative definite, the (H, p, q)—polar
decompositions can be easily obtained from the standard results on polar
decompositions (see [15] and [11]). We state the results without proof for the
case when H is positive definite; the results for negative definite H are
obtained by replacing H by —H.

We denote by Gr(#) the set of all subspaces of the subspace .# C F".

THEOREM 3.1. Let F = C or F =R, and let H be a positive definite
hermitian n X n matrix over F. Then

(i) A matrix X € F**" admits an (H, p, q)-polar decomposition if and
only if

rank X <p +gq. (3.1)

(i) In case (3.1) holds, all (H, p, g)-polar decompositions X = UA of X
are described as follows. Let Ay, ..., A, be all the distinct positive eigenvalues
of X¥™IX, and let (X, H) be defined as

g(X, H) = Gr(Ker( X*1X — A, T)) X - X Gr(Ker( X™*1X — A, I)).

The matrix A is parametrized by the set £(X, H, p, q) of all elements
(A#,,..., #) € Z(X, H) such that

,
Zdimvlj<p,
j=1

]Z:,Idim{[Ker(X[*]X - ,\j[)] n_,j[i]} <q.

For any choice of (A, ..., #,) € E(X, H; p, q) the corresponding matrix
A=A*=A(#,, ..., #,) is defined by the properties that Ax = ‘/XJ_ x for
x €M, Ax = — \[Ax for x € [Kerl X™IX — A, D] N4}, and Ax = 0 for
x € Ker X)X, For every possible choice of A, the matrix U is determined up
to the free parameter isometry V : Ker A = Ker X — Ker X'*1.
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Observe that the condition (3.1) implies
Y dim Ker( X™X — A I) <p +q,
j=1

and therefore the set £(X, H; p, q) is nonempty.

4, EXISTENCE OF POLAR DECOMPOSITIONS

We give here several criteria for the existence of an (H, p, g)-polar
decomposition X = UA. Recall that two matrices X and Y are called
H-unitarily equivalent if X = VYW for some H-unitary V and W.

THEOREM 4.1. Let X be an n X n matrix over F. Then the following
statements are equivalent:

(@) X admits an (H, p, g)-polar decomposition.

(b) X is H-unitarily equivalent to an H-self-adjoint matrix B such that
w(HB) < p, v(HB) < g.

(c) There exist an H-unitary V and an H-self-adjoint B such that XV = B
and w(HB) < p, v(HB) < gq.

(d) There exists an H-unitary V and an H-self-adjoint B such that
VX = B and w(HB) < p, v(HB) < q.

(e) X™IX = A? for some H-self-adjoint matrix A such that w(HA) < p,
v(HA) < q, and Ker A = Ker X.

Moreover, in that case, for any A as in (e) there is an H-unitary U such that
X = UA.

Proof. The implications (a) = (b), (a) = (d), (c) = (b), and (d) = (b)
are immediately clear.

To see that (a) implies (c), let X = UA be an (H, p, g)-polar decomposi-
tion. Then XU™! = UAU™! = A" with w(HA') < p, v(HA) <gq.

Next, we show that (b) implies (a). If X = VBW where V and W are
H-unitary and B is H-self-adjoint with w7(HB) < p, v(HB) < g, then X =
(VWXW™'AW) is an (H, p, q)-polar decomposition. Thus we have shown
the equivalence of (a)—(d).

It is also immediately seen that (a) implies (e). It remains to show that ()
implies (a). This follows from Lemma 4.1 in [4]; although that lemma was
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stated and proved in [4] for the case F = C only, its statement and proof are
valid for F = R as well. [

In particular, a necessary condition for the existence of an (H, p, g)-polar
decomposition of X is that X™*!X has square roots. The existence of square
roots of complex matrices is characterized in [6]; for real matrices this was
done in [7].

A criterion for the existence of an (H, w(H), v(H ))-polar decomposition
was given in [4] (for the case F = C). In the real case the criterion is exactly
the same. Moreover, the following statement is true.

LEMMA 4.2. Let H be a redl invertible symmetric matrix, and let X be
any real matrix of the same size. Then X allows an H-polar decomposition

X=UA, (4.1)
over R if and only if it allows an H-polar decomposition
X =UA, (4.2)

over C. Moreover, there exist decompositions (4.1) and (4.2) such that

m(HA,) = w(HA,), v(HA,) = v(HA,). (4.3)

Proof. Since X and H are real, so is A2 = X*1X. Due to Lemma 4.1 in
[4], it suffices to prove that there exists real H-self-adjoint matrix A, such
that A2 = A% and Ker A, = Ker A,. Due to Theorem 2.1, for some real
nonsingular matrix S we have A2 = §7'JS, H = $*QS, where ] and Q are
canonical matrices that appear in the right sides of (2.2) and (2.3). We will
construct a real Q-self-adjoint matrix L such that L* = J. We will build L
blockwise, in correspondence with the block structure of J. For the blocks of
J with real nonnegative eigenvalues the corresponding blocks of L are
presented in [4]: they are exactly the same as in the complex case. Solutions
for the two remaining cases—when the canonical form of A? contains blocks
with eigenvalue A = y + i§ with y, § € R, § # 0, and when the canonical
form of A2 contains pairs of blocks (J,(—pu?) @ [;(—p®), Q, ® (—Q)),
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p > O—are given here. The blocks of L are given by the following formulas,
where the matrices are block Toeplitz:

Ky (v +i6)
J(«FiB) pifo(atiB) poJo((a£iB)’) - poifo((aziB)*77)
_ 0 J(aFiB)  pfa(atiB) o poJo((atiB)*TY)
0 0 0 " (e FiB)
(4.4)

where
a,BER, (a—iB)2=‘y+i8,

(2m - 3)!
(2m)!Ix(a®+ B?)

2m—1~>

— —1_ =(_l)m+l
pl 2(a2+32)’ Pm

(the notation p!! stands for the product of all integers from 1 to p having the
same parity as p has); and

J(—1) @ Ji(—1) = (TMT™")’,

where

Jo(eF /DY p [ (eX /DY p [ (eEH@/DY g (et @k-Iica 2y
0 Jo(eTT/DY p Jp(eHT/RY gy Jy(eXCHTI/D)

0 0 0 ]Z(exi(ﬂ’ﬂ))

2m — 3)!!
_ 1 _(_ m+l(_
PL= 3 pm—( l) (zm)”
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and T = [¢, ’ ,.2"}=1 is the 2k X 2k matrix with the following elements:

1 1 1
Loi1 =t = ok terr21-1 = 2 bevrot =~ ok

the remaining entries of T are all zero.

Notice that (4.5) gives a solution for the second case with u = 1, but it is
obvious that the pair (J,(—u?) @ J,(—u?), O, ® (=Q)), u >0, is Q; &
(—Qp)-unitarily similar to the pair (p?[,(=1) & p*[,(=1), Q, & (—Q),
m >0,

We now have A2 = A%, where A, =V !LV. The matrix A, is real
H-self-adjoint, and, since the nilpotent parts of A? are exactly the same over
C and over R, we have Ker A, = Ker A,. It is also obvious from the proof
that the matrices A, and A, are H-unitarily similar, which implies (4.3).
Indeed, A, = UT'A_U for some (complex) H-unitary matrix U. We have

HA, = HU'A,U = UXHUU'A,U = U*HA_U. n

We now give a criterion for existence of an H-polar decomposition, for
both the real and the complex case. For the proof of this theorem we need
the following lemma.

LEMMA 4.3. Let H = H* be an invertible n X n matrix, and let X be an
n X n matrix. Let S be an invertible n X n matrix such that

STIX™IXS = diag(Z,),_,,  S*HS = diag(H,),_,.

with a(Z,) N cr(Zj) = Jfor i # j. Then there exists an H-self-adjoint matrix
A such that XX = A? if and only if for each i there exists an H-self-adjoint
matrix A, such that Z, = A%

Proof. Suppose for each i there exists an H-self-adjoint A; such that
Z, = A% Put A = Sdiag(A,)?_, S™!. Then A is H-self-adjoint, and A® =
S diag(Z,)7_, S~ . ] )

Conversely, suppose X *1x = A2, Let A = S™!AS. Since A commutes
with A’ = diag(Z,,...,Z,) and by hypothesis Z,,...,Z, have pairwise
disjoint spectra, A has the form A = diag(A,, ..., A,). Then clearly, for
every i €{1,...,v}, Z, = A%, and A, is Hself-adjoint, because A is
H-self-adjoint. [ ]
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For use in a subsequent paper [3] we observe that Lemma 4.3 also holds
with H-self-adjoint replaced by H-nonnegative, and H-self-adjoint replace by
H;-nonnegative (a matrix A is called H-nonnegative if HA is positive
semidefinite hermitian).

THEOREM 4.4. An n X n matrix X admits an H-polar decomposition if
and only if all the conditions (i), (ii), and (iii) below are satisfied.

(i) For each negative eigenvalue A of X™*1X the part of the canonical
form of (X™IX, H) corresponding to A can be presented in the form

(diag( A;)i- 1, diag( Hi):n=1), (4.6)

where, fori=1,...,m,

A = ]k,(A) 0 H = Qki 0
Lo W N R

(i) The part of the canonical form of (XX, H) corresponding to the
zero eigenvalue can be presented in the form

(diag( Bi):lo»diag(Hi):lo), (4.7)

where By =0y ., Hy=1, ® —I,, po + no =k, and for each i =1,
..., m the pair (B,, H,) is of one of the following two forms:

N PAC R S .
S Y A% N %) L

or

[ o .
Tlo k@)

Or, O
0 Ox-1f

with £, = +1, and k; > 1.
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(iii) Assume that (ii) holds, and denote the corresponding basis in
Ker (X™*1X)" in which this is achieved by

1,
{ei,j}im:gj;l’

where 1, = k,, and l, is the order of B, for i > 0. Then there is a choice of
basis {e; j}e";o;l';l such that (i) holds and

Ker X = span{e“ + ei,ki+l|li =2k;,i= l,...,m}
@span{e; ||, = 2k, — 1,i =1,...,m} @ span{e, | Jkil

Before proving the theorem, we find it useful to make the following
remarks. Firstly, observe that the representation in the form (4.7), if it exists,
need not be unique. For example, let

XIx =]3(O) ® J5(0) ® J,(0) @ J,(0),
H=0Q;® (-0 @0, @ (—0Q2).

Then one can form the representation (4.7) in the following two ways:

B, = J5(0) @ J5(0), B, =Jx(0) & Jx(0).
H=Q;@(-Q;)., Hy=0,9(-0s),
and
B, = J5(0) ® J(0). B, =J5(0) @ J(0).
H =038 0,, Hy = (—Q5) ® (—Q2)-

For the existence of an H-polar decomposition of X, condition (iii) above
should be satisfied for at least one representation (4.7). As it turns out, for
any given X having an H-polar decomposition, condition (iii) is satisfied for
exactly one representation (4.7) up to a permutation of blocks (b;, H,), i > 1.
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Secondly, it is easily seen that condition (i) can be stated in more

geometric terms as follows:

(iii’) The part of the canonical form of (X*!X, H) corresponding to the
zero eigenvalue can be represented in the form (4.7) with respect to the
decomposition

F"=F,®0F, ® - ®F (4.8)

m

such that

(a) we have

F, C Ker X;

(b) for all i > 1 such that the dimension of F, is odd (i.e., such that B; is of
odd size), say dim F, = 2k, — 1, we have

F, N Ker X = F, N Im (X%*1x)"™

(which is a one-dimensional space);

(c) for all i > 1 such that the dimension of F, is even, say dim F, = 2k;, we
have

F, N KerX = span{(X[*]X)k'—1x|
]y ki 2 ] *lyy ki1
(X™IX)™" "z & Ker( X™X), (CH(X™IX) x,x>=0}.

Proof. We prove the theorem under the assumption that F = C; the
real case then follows from Lemma 4.2. Clearly, one can apply Lemma 4.3 to
reduce the proof to the cases when X*!X has either only one real eigenvalue
or a pair of complex conjugate eigenvalues (with any allowed Jordan struc-

ture). Then condition (i) can be seen to be necessary as follows: if the pair
(A, H) has a block of the form

]k(ai) 0
([ 0 ]k(—ai)]’Q”‘)
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in the canonical form of (A, H), then (A2, H) has in its canonical form a

block of the form
]k(‘“2) 0
([ 0 ]k(_a2)]Q2k).

Take as a new basis f; = (1/V2Xe, + ¢,,) for i=1,....k, g, =01/
V2 Xe, —e,,,) for i =1,..., k. Then f},..., fi and gy, ..., g are Jordan
chains of A% and (Hf\, f;> = 1, (Hg,, g = — L.

Conditions (ii) and (iii) can be seen to be necessary as follows: if (A, H)
has a block (J,,, £Q,), then (A2, H) has a block of the form (J2, £Q,). If n is
even, say n = 2k, take as a new basis f; = (1/ V2 Xey_, +e5),i=1,..., k
and g, = (1/V2Xey_, —eg),i=1,....,k. Then f,.... fy and gy, ..., &
are Jordan chains of A%, (Hf), f;) = &, and (Hg,, gx) = —¢&. So then we
have the first case. If n is odd and larger than one, say n = 2k —1,n>1,
take as a basis €,, €5, ..., €y4_1, €3, €4 -+, €3k _o. Then e, €3, ..., ey, and
€y, €4, ..., € are Jordan chains of A% and (He,, ey _,> = (Hey, e
= g. So then we are in the second case. If n = 1, we get _]n2 = (, so then we
obtain blocks as in B,

To prove sufficiency, we may assume that o (X*!1X) ={A}, AER, or
o(X®1X) = {A, A} with A & R. The second case is easy. Without loss of
generality we may assume

m1J; 0 "
X[*]X= [} 0 _ 1, H = ®Pw
i=1 i

where J, is a Jordan block with eigenvalue A. Then there is an upper
triangular Toeplitz matrix Z; such that Z? = J,. We can take

m[Z, 0
A= _ |
Blo z

i3

Then A% = X™*!X, and A is H-self-adjoint. So by Theorem 4.1 X admits an
H-polar decomposition.



110 YURI BOLSHAKOV ET AL.

Now suppose that o (X *1x) = {A} with A > 0. Then, again, without loss
of generality,

Yy

SkP-

it

I

m
X®x=@], H=
i=1 i=1
where g, = +1, ], is a Jordan block with eigenvalue A, and P, is an
k, X k, matrix w1th I’s on the southwest-northeast diagonal and zeros else-
where. There is an upper triangular Toeplitz matrix Z; such that Z? = J, . It
follows that P Z, = Z}P; (as Z, is an upper tnangular Toeplitz matnx) and
if we take A = 69'" \Z; we have HA = A*H and A? = X™¥1X. So X admits
an H-polar decomposmon
Next, assume o(X™*!X) = {A} with A <0. By condition (i) we may
assume

Jx,

XX =
[ 0 J I

There is an invertible matrix S such that
m
STIX™IXS = X®IX,  S*HS = @ Py,
i=1

Now take an upper triangular matrix Z, such that Z? = J, , with o(Z) =

{VA}, and let
Z, 0
110 Z|
Then HA = A*H and A% = X*IX.

It remains to consider the case o(X™'X) ={0}. Let us assume
(X™X, H) is in the form (4.7) with respect to some basis {e; J 0} , for
which (iii) holds. For each block (B;, H,), i = 0,..., m, we shall produce an
H-self-adjoint matrix A; such that A? = B,. and Ker A, =KerXn
span{e,.,j}jl":l. For the block (B, Hy) this is trivial: take A, = B, = 0 ;.
Thus we have only to consider the blocks (B;, H,) with i > 1. First consider
such a block of odd order. Let S be a matrix with the vectors

»
I
b s

i

€15 € k,+15€ 256 k42575 €i k,~1> € 2k, - 15 €k,
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as its columns, in that order. Then
ST'B.S = Jur,_1(0)°,  S*H,S = &Py _,.
Let A, = SJ5; _(0)S™'. Then A} = B, and
Ker A, = span{e; |} = Ker X N span{e,._j}]l.":l.

Next, consider a block B; of even size. Let S be the matrix with the following
vectors as its columns:

1 1 1
_(ei,l + ei,k‘.+1)> _(ei,l - ei,ki+l)’ —=(es t+ ei,k,-+2)’
V2 V2 V2

e koo T (s ). T (e, m)- (49)
It is assumed that the vectors (4.9) appear in S in the same order. Then
S7'B,S = 5 (0)°,  S*H,S = Py
Let A, = §];;(0)S™". Then A? =B, and
Ker A; = span{e, | + ¢, ; ,,} = Ker X N span{ei,j};.;l,
as desired. This proves the theorem. [ ]

Observe that conditions (i), (ii) are necessary and sufficient for the
existence of an H-self-adjoint matrix A such that A* = X*)X. Compare also
with [22]. The condition (iii) follows from the equality Ker X = Ker A.

Observe also that in the last part of the proof we have chosen A such that
the signs in the sign characteristic of (A, H) corresponding to even blocks
are all + 1. This might have been done differently; if we replace the matrix S
defined by the vectors in (4.9) with the one defined by the vectors

1 1 1
—Jé‘:(ei‘l + ei,k,+l)’ 7‘2:(_‘3.',1 + ei,ki+l)’ Té-’(ee,z + ei,ki+2)’

1 1 1
E(_eij + ei.ki+2)’ cee \/_§-(ei’k‘ + ei,Zk,v)’ —‘/2=(_ei,k,v + ei,zk,.)’
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then again S™'B;S = [, (0)* but S*H,S = —P,, . We may then take A, =
8] (0)S™!, and again A} =B, and Ker A, = Ker X N span{e,.,j}j';l. The
sign of the pair (A;, H;) is now —1.

These observations raise the question of to what extent the canonical form
of A is determined by X in case X allows an H-polar decomposition. This is
answered for the case when X™*!X is nilpotent by the following two proposi-
tions (Proposition 4.5 does not require that X *1X be nilpotent).

PROPOSITION 4.5 (F = C or F=R). Suppose X allows an H-polar
decomposition X = UA. Then Ker X = Ker A, and for all j we have

Ker AY = Ker(X[*]X)j, Ker A¥*! = Ker X(X{*]X)j.

For the proof, observe that

(X[*]X)k - AZk, X( X[*]X)k = UA2k+1,

and use the invertibility of U.

As a consequence, if X™*!X is nilpotent and X allows an H-polar
decomposition X = UA, then X completely determines the sizes of the
Jordan blocks corresponding to the zero eigenvalue of A.

Before studying the signs in the sign characteristic of such an A, we
introduce the following notation. We denote by », [m] the number of
negative [positive] squares of H on Ker X(X ¥1X ). Also, denote by A;” [A"]
the number of blocks in the canonical form of (A, H) with size 2i + 1 and
sign —1 [sign +1]. Note that the result of the previous proposition allows
one to compute A, + A" directly from X, as this is the number of blocks of
size 2i + 1 in the Jordan form of A.

PROPOSITION 4.6 (F =C or F=R). Suppose X allows an H-polar
decomposition X = UA. Assume moreover that X™1X is nilpotent. Then
vo=2Ay, W= A, and v, — m, = Ei_o(A7 = A7). Thus, A and A are
completely fixed by X. Moreover, A] (A) is the number of negative
(positive) squares of H(X™1X)' on Ker X(X™IX)'.

Proof. The proposition easily follows from considering the canonical
form of (A, H), keeping in mind that (XX = A% [
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Another criterion for the existence of H-polar decompositions will be
obtained by appealing to one of the main results in [4]. First, we need the
following lemma.

LEMMA 4.7, If an n X n matrix X has an H-polar decomposition, then it
has also an (H, w(H), v(H ))-polar decomposition.

Proof. Let X = UA be an H-polar decomposition of X. The matrix A is
H-self-adjoint and has the canonical form described by Theorem 2.1. Without
loss of generality we may assume that the blocks in the canonical form with
negative eigenvalues come first. Let m be the sum of the algebraic multiplici-
ties of all the negative eigenvalues of A, and set E = diag(—1I,,, I,_,,). Then
E commutes with H. Put V = UE and B = EA; then X = VB is an H-polar
decomposition of X. Since B has no negative eigenvalues, Corollary 2.3
implies that B is H-consistent. |

At this point it is relevant to restate the main result of Chapter 5 in [4].
We will state it in a slightly different form and use a slightly different
notation.

PROPOSITION 4.8.  Let D be an H-self-adjoint matrix whose Jordan form
has p, nilpotent k X k blocks with € = 1 and n; nilpotent k X k blocks with
€ = —1 (and possibly some blocks with nonzero eigenvalues). Here k =
L2,...,n, and p; = 0 or n; = 0 if no corresponding block appears in the
canonical form of D. Further let V be a subspace of Ker D.

Then there exist a canonical basis for the pair (D, H) (i.e., in this basis
the pair (D, H) has the canonical form as in Theorem 2.1) and uniquely
defined nonnegative integers I, I;, and I} such that

V = span |J {fllk’flzka'-"fl,l{‘k»gllk’ 12ks - gl,z;,k,fl,zgﬂ,k
k

+g1,l,§+1,k7f1,lk*+2,k + gl‘l;+2,k""’f1,l,j’+l;?.k + gl,l;+l}3,k}-

Here

U {fa,B,k’ga,y,k}’

o, B,y k

a=1,2,....k, B=12,....p., v=12....n,
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is the subbasis of the basis above that corresponds to the nilpotent blocks of
D:

Dfa,ﬁ,k =fa—1,[3,k’ Dga,y,k = Ba-1.y.k} fO,B,k =8o0.v.k = 0;

the vectors f correspond to the blocks with € =1, and the vectors g
correspond to the blocks with € = —1.

Notice that the meaning of the subscript k in I}, I;, and I{ here is
different from that in [4]. Proposition 4.8 is valid in the real case as well as in
the complex case.

We outline an algorithm for finding I}/, I, and I}.

Let D be a nilpotent H-self-adjoint n X n matrix, where H is a nonsin-
gular hermitian matrix.

(1) Let V be a subspace in Ker D, and let
in the notation of Proposition 4.8. Write

M={p, ..., K},

where s is the cardinality of M, and where p; > py > -+ > p.
(2) Define the subspaces V,,V,,...,V, of F" (where F =R or F = C) as
follows:

V, =V NIm DL,
Further, define the subspaces W, W,,..., W, of F" as follows:

W, = {x e C"|D#-1"lx e V]
(Some authors write the latter definition as W, = D™ #-i+1V,))

(3) Define the integers r,r,,...,7, as r; =dimV, —dimV,,; here
dimV,, , =0.

(4) Define, on each subspace W, (i = 1,2,...,s), the scalar product (not
necessarily nondegenerate [, - ]; as

[x.y] = [D“‘_'“-lx’ y]’

where [x, y] = (Hx, y) is the original indefinite scalar product on F".
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(5) For i = 1,2,..., s define the following integers:
l:s—in: ﬂ-([.’.]")’ ll:s—i+l= V([.’.]i)’ ll(‘)w.'ﬂ =T —l‘+_l'_’

where 7(-) and v(-) denote the numbers of positive and negative squares
of a scalar product.

(6) If an arbitrary H-self-adjoint n X n matrix A is given, and if V is a
subspace of Ker A, then we define l;.’ l;i, and 13, corresponding to the

matrix A as l:i, l;i, and lﬁ.- computed as above for the nilpotent matrix

D, the restriction of A to the subspace Ker A"

To illustrate Proposition 4.8 and the algorithm just given, we present the
following example.

ExaMPLE 4.1. Let n = 42, and the nilpotent 42 X 42 matrix B be in
the upper Jordan form with

Ps =4, n, =3, Ps =3, ny, =2, pr=n =2
sothat M =1{4,2,1}, s =3, u; =4, o =2, g = 1.

Denote vectors of the canonical basis of the pair (B, H) [i.e., the basis in

which (B, H) has the form (2.1), (2.3), or (2.1), (2.2)] by

{a11, 851,03, 841,815, 899,839, 843,817, Bg7, A37, Ay7,
bll’b21’blz’b22""=bls’b257011’612»013’cl4}’
and assume that, in each dimension, the blocks with € = 1 precede the
blocks with € = —1.

Let V = span{ay,, ayy + a5, @y, @17, by, brg, byg + byg, €11, €1 + €15k
We have

V=V, V, = span{au, aj, + a5, a5, @17, b1y, by by; + b14}’
V= Span{all’ a5 t a5, Gy, ‘117}’ W, =V,
W, = Span{ala’ blB’ Cly, Gg1, Ggg T Ggs, Ggg, oy, by, by, by + boy:

a=12,....7,8=1,2,...,5v=1,2,3,4},
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W, = span{aka > blﬁ’ Cly> Q41> Qg9 t Q45, Qyg, Qg7 ¢
k=1,231=12a=12,....7; 8=1,2,...,5; y = 1,2,3,4}.
Thus,
rn=9-7=2, ro=7—4=3, ry = 4.

Next, we have [c)), ¢,,]; = 1, and for the remaining basis vectors in W,
the scalar products [, - ], vanish. Thus,

If=1, I;=0, 1=2-1-0=1.

Similarly, we have [by,, by, ], = [by,, by, ], = 1, and for the remaining basis
vectors in W, the scalar products [+, - ], vanish. Thus,

If=2, I;=0, 18=3-2-0=1.

Finally, [a,), a, ]; = 1, [ay, ai); = [a47, a47); = — 1, and for the remaining
basis vectors in W, the scalar products [, - ]; vanish. Therefore,

Ij=1, ;=2 1°=4-1-2-=1.
We now return to the H-polar decompositions.

THEOREM 4.9 (F = Cor F = R). A matrix X allows an H-polar decom-
position if and only if the following two conditions are satisfied:

@) pe(A) = n(A) for each A <0 and each k, where p,(A) (n,(N) is
the number of Jordan blocks of size k with eigenvalue A and € = 1 (e = —1)
in the canonical form of (X™*)X, H);

(i) for the subspace Ker X of Ker(X'*1X) the equalities

R+ =p, BR+1L+1,=n (4.10)
hold, where the symbols are defined as in Proposition 4.8 with D = X*1X,

If (i) and (ii) hold, then in fact X = UA is an H-polar decomposition for some
H-self-adjoint A with Ker A = Ker X.
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For the case F = C and for the (H, w(H ), »(H ))-polar decompositions,
Theorem 4.9 is a reformulation of Theorem 8.2 in [4). In view of Theorem 4.2
and Lemma 4.7 this result extends to the real case and general H-polar
decomposition. It is not difficult to see directly that Theorem 4.9 is equiva-
lent to Theorem 4.4; we prefer, however, to have an independent proof of the
latter theorem (as given above) rather than deduce it from Theorem 4.9.

We conclude this section with a remark concerning the existence of
H-polar decomposition of matrices Y that satisfy the equation ylrly = xtxlx,
where X*1X is a nilpotent n X n matrix. Let

d*=m(H) - #(HX™®'X), d = v(H) - v(HX*X),

d = min(d*,d").

In view of Theorem 2.2 we have
d*= szkﬂ + anh d~= Zn2k+1 + zpzk-
k k k k

From the results of Chapter 4 in [4], it follows that for any I-dimensional
subspace V C Ker( X'*1X), where

dim Ker( X*1X) — d <1 < dim Ker( X*X),

there exists an n X n matrix Y such that Y*!Y = X®*!X and KerY = V;
furthermore, there exists a one-to-one correspondence between the set of
H-unitarily nonequivalent matrices' ¥ with Y*}Y = X*}X and the set of all

solutions in nonnegative integers of the following system of inequalities (for
If, I, and I9):

Yoo+ L —d< E(lf"'lﬁ’ R) < Yoo+ L,
k k k k k (4.11)

L+ 1 <py, i+ 1) <ng.

On the other hand, according to Theorem 4.9, a matrix Y with yirly = xi*Ix
allows an H-polar decomposition if and only if the nonnegative integer

! Recall that two matrices Y, and Y, are called H-unitarily equivalent if Y, = UV,W for
some H-unitary matrices U and W.
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invariants I, I;’, and I of Ker Y satisfy the system of equations (4.10). In
general, the set of nonnegative integer solutions of the systems (4.10) is a
small subset of the set of nonnegative integer solutions of the system (4.11).
Thus, in general, only a few classes of H-unitarily equivalent matrices Y with
Yy = X*IX allow an H-polar decomposition. Example 7.3 in [4] (which
we will not reproduce here) illustrates this phenomenon: only 3 out of 18
classes allow an H-polar decomposition.

5. H-NORMAL MATRICES

As a first application of the results of the preceding section, here we study
.polar decompositions of H-normal matrices. The results of this section apply
to both the real and the complex cases.

THEOREM 5.1.  Any nonsingular H-normal n X n matrix X (i.e., X*1X
= XX™1) allows an H-polar decomposition.

Proof. Since X is nonsingular, it has a square root which is a polynomial
of X, ie., there exists a polynomial f(¢) such that [f(X)]* = X (see, for
instance, [8, Chapter 5]). Then X™! = [f(X*)]?, where f(¢) is the polyno-
mial whose coefficients are the complex conjugates of the corresponding
coefficients of the polynomial f(t). Let A = f(X)f(X™)). it is easy to check
that A is H-self-adjoint and that A* = X *1X, Since X is nonsingular, this
equality implies [by Theorem 4.1(e)] that X admits an H-polar decomposi-
tion and that A is the H-self-adjoint factor in such a decomposition. »

In view of this result, an obvious question arises concerning the existence
of H-polar decomposition of singular H-normal matrices. It is still an open
question whether an arbitrary H-normal matrix allows an H-polar decomposi-
tion.

However, if H has only one negative eigenvalue (and n ~ 1 positive
eigenvalues), the answer is affirmative.

THEOREM 5.2.  Assume that H has only one negative eigenvalue. Then
every H-normal matrix X admits an H-polar decomposition.

Proof. By Theorem 5.1 we may assume that X is singular, and by
Lemma 4.2, we can (and do) consider the complex case only.
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In view of the description of all indecomposable H -normal matrices (for
the case when H has only one negative eigenvalue) given in Theorem 6.1 of
[10), we need only to consider the following six cases:

M X =10l H=[-1}

_fo o _fo 1 _
@ x-|} A],H [1 O]uq&o),
_[o = _[o 1 -1
® x| 0],H [1 0](|z| 1
(0 1 r [0 0 1]
4 X=10 0 z|, H=]0 1 0/, where r is real and |z| =1,
[0 0 0O 1 0 o]
z#+ 1; )
0 1 ir 0 0 1}
G)X=10 0 1|.H=|0 1 0] isreal;
(0 0 0 1 0 O]
[0 cosa sina O 0 0 0 1
10 o 0 1 _|0o 1 0 0
©® X = 0 0 0 O’H 0 0 1 0
[0 0 0 0 1 0 0 0
w
(O<a<—).
2

In each of these cases we indicate an H-self-adjoint matrix A such that
A? = X)X and Ker A = Ker X [in view of Theorem 4.1(e), this guarantees
the existence of an H-polar decomposition of X]. Case (1): A = 0. Cases 2

and (3):
_ (0 1
A [o 0]’
Cases (4) and (5):
0 1 O
A=10 0 1]
0 0 O
Case (6):
0 cosa sina O
A= 0 0 0 Cf)S al| -
0 0 0 sin a
0 0 0 0



120 YURI BOLSHAKOV ET AL.

6. DESCRIPTION OF ALL POSSIBLE p AND q IN
(H, p, ¢)-POLAR DECOMPOSITIONS

Recall that an H-polar decomposition
X=UA

is called an (H, p, q)-polar decomposition if w(HA) < p, v(HA) < g (here
p and g are nonnegative integers fixed in advance). In this section we
describe, for a given X, all possible p and g for which an (H, p, ¢)-polar
decomposition exists.

We start with the simple observation that an H-polar decomposition of X
with w(HA) = p and v(HA) = q exists if and only if there exists an H-polar
decomposition of X with m(HA) = q and v(HA) = p. The proof follows
immediately from the fact that X = (-UX—A) is an (H, ¢, p)-polar decom-
position whenever X = UA is an (H, p, g)-polar decomposition.

The main result here will be formulated in terms of H-polar decomposi-
tions X = UA where the number of positive (negative) eigenvalues of HA is
exactly p (q); it applies to both the real and complex case.

THEOREM 6.1.  Let a matrix X allows an H-polar decomposition, and let
p and q be nonnegative integers. Then an H-polar decomposition X = UA
with w(HA) = p and v(HA) = g exists if and only if the following two
conditions are both satisfied:

p+qg=rank X and |p —gql<a. (6.1)

The nonnegative integer a here is determined by the canonical form (as in
Theorem 2.1) of the pair (X™*1X, H), as follows. Let N(2k) be the number of
2k X 2k blocks (J,(0) ® JH,(0), Q; & (—Q,)), and let M be the number of
blocks (J,( n), + Q) with u > 0 and odd size k; then

a =M= Y N(2k).
k

The proof of Theorem 6.1 will be given at the end of Section 7.
We indicate an immediate corollary of this result.

COROLLARY 6.2. Let S, = {i(rank X + a), 3(rank X — a)} and S, =
{3(rank X — a), 3(rank X + @)} be two points in the {p, q} plane, where a is
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defined as in Theorem 6.1. Then an H-polar decomposition of X with
w(HA) = p and v(HA) = q exists if and only if the point {p, q} belongs to
the closed line segment having the endpoints S, and S,.

7. EQUIVALENCE OF POLAR DECOMPOSITIONS

The H-unitary equivalence of matrices leads naturally to an equivalence
relation among H-polar decompositions We say that two H-polar decompo-
sitions X =UA and X = UA of the same matrix X are equivalent if
A = W'AW for some H-unitary W (i.e., A and A are H-unitarily similar).
The following proposition explains (among other things) the precise relation
between the matrices U and U in two equivalent H-polar decompositions.

PROPOSITION 7.1. Let
X=UA (7.1)

be an H-polar decomposition, and let V and W be H-unitary matrices. Put
A =W 'AW and U = VUW. Then UA = VXW, and so

X = UA (7.2)

is an H-polar decomposition of X if and only if X = VXW. In this case W
commutes with X™*'X, and w(HA) = w(HA), v(HA) = v(HA), i.e., if (1.1)
is an (H, p, q)-polar decomposition, then also the equivalent deoomposztwn
(7.2) is an (H, p, q)-polar decomposition.

Conversely, if (7.1) and (7.2) are equivalent H-polar decompositions,
then there are H-unitary matrices V and W such that A = W 'AW, U =
VUW, and X = VXW.

Proof. The relation UA VXW implies the first part of the conclusion.
Furthermore, if X = UA, then

XX = AXIGHIGA = A2 = W IA2W = WX IXW,

So, W commutes with X™1X. As (7.1) and (7.2) are equivalent H-polar
decompositions in this case, we can apply Theorem 2.2 to see that w(HA) =
w(HA), v(HA) = v(HA).
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To prove the converse, note that an H-unitary W_such that A =WlAW
exists by definition. Put V= UW™'U~). Then U= VUW and VXW =
VUAW = UW ™AW = UA = X. [ ]

From the first part, one may conjecture that two H-polar decompositions
X = UA and X = UA with 7(HA) = w(HA), v(HA) = v(HA), are equiva-
lent. This, however, is not true, even for positive definite H, as follows from
Section 3.

In this section we describe the equivalence of H-polar decompositions in
terms of a representative in each equivalence class, as well as compute the
number of equivalence classes (it will turn out that the number of equiva-
lence classes is always finite, possibly zero).

In case the scalar product is definite, all classes of nonequivalent H-polar
decompositions can be listed using Theorem 3.1 (we use here the notation
introduced in Theorem 3.1):

THEOREM 7.2. Let F = C or F =R, and let H be an n X n positive
definite hermitian matrix over F. Assume that the matrix X € F**" admits
an (H, p, q)-polar decomposition. Let A,,..., A, be dll the distinct positive
eigenvalues of X™X, with the geometric (or what is the same in this
situation, algebraic) multiplicities m,, ..., m_, respectively. Then for (A,

M), W, H)eEZ(X H, p,q) the matrices A(A,...,.#,) and
AW, ..., N,) are H-unitarily similar if and only if

dim .#, = dim.#, i=1...,r.

Consequently, the equivalence classes of (H, p, q)-polar decompositions of X
are in one-to-one correspondence with the r-tuples of nonnegative integers
(s, ..., s,) such that

Zsigp’ Z(mi—si)<q

=] i=

-
—

and

Let A, Ay,..., A, # 0 (t =7 — 1 in case 0 is an eigenvalue ofX[*]X;
otherwise t = r). The number of classes of nonequivalent polar decomposi-
tions of X is (m; + m, + 1) -~ (m, + D).
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For indefinite scalar products the picture is considerably more compli-
cated. To describe the equivalence relation of H-polar decompositions for the
case of indefinite H, we develop presently a formalized approach leading to a
complete description of this equivalence in terms of fixed length strings of
signs +1 and —1 subject to certain restrictions.

Let A be an H-self-adjoint matrix, and let S™'AS, S*HS be given by
(2.1), (2.3), respectively (assuming F = C). We assume, furthermore, that the
blocks in (2.1) are arranged so that:

@ A ==X =0,and k]. isoddforj=1,...,r;
G) A,y = =A,=0,and kjisevenforj=r+1....p;
(iii) AjisrealandAj¢0forj=p+l ..... a;
(iv) Aysys---, A, have nonzero real parts and nonzero imaginary parts;

(V) Agi1,---, Ag are purely imaginary.

[The cases when one or more of the assumptions (i)-(v) do not hold are not
excluded; the interpretation of these cases here and in Lemma 7.5 below is
obvious.]

Let A denote the set of all ordered sequences @ = {8, ,,..., 8¢, .1,
..., &} of length ¢ — r + & — p consisting of +1’s and —1’s, each se-
quence being divided into two parts {8, ,,..., 8.}, and {{,,,..., L.} as
shown in the notation for w, and subject to the following conditions:

G=-1 = kj is even and §; = 1. (7.3)

Observe that the implications in (7.3) are one-way; thus it is possible for
@ € A to have {; = 1 when &, = 1 and/or k; is even.

Introduce the following equivalence relation on A: we say that o ~ o',
where @ ={8,,),.... 88,41, LYEA, o ={8,1,....8;: 1.,
£} € A, if the following conditions (vi)—(ix) below are satisfied. To state
these conditions, we consider subsets () of the set of indices {r + 1,...,q}

having the following property:
allk; (j € ) areequal and A, = £A, forall j,j, € Q. (%)

A subset O C {r + 1,..., g} with the property (*) will be called a *-subset.
We shall need only maximal *-subsets, i.e., *-subsets which are not properly
contained in any other *-subset of {r + 1,..., g}.
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(vi) For every maximal *-subset Q of {a +1,..., g} we have the
equality

Y S signRe A, = y &/ signRe A;, (74)
jea jeq

where Re z stands for the real part of z € C, and where signx = 1if x >0
and sign x = —1if x < 0.

(vii) For every maximal *-subset & C {p + 1,..., a} such that k; (e
1) is an even integer we have the three equalities (here and elsewhere #Y
denotes the cardinality of a finite set Y)

#{ic0]844>0. 86=1} = #{j <0

8¢A >0, 8 =1},  (7.5)
#{j€0]8,44,<0, 8= — 1} = #{j € Q|8/LA, <0, 8¢, = — 1), (7.6)
#{jeﬂ[&}.gj)\jw} = #{j € Q|8;¢), > 0}. (7.7)

[Observe that (7.7) is equivalent to the equality obtained from (7.7) by
reversing the two inequality signs simultaneously.]

(viii) For every maximal *-subset Q C {p + 1,..., @) such that k; (e
1) is an odd integer we have the two equalities

#{j € Q|8A¢, < 0} = #{j € Q|§\¢; <0}, (78)
#{j € |82, <0} = #{j € Q|5 < 0}. (7.9)

[Observe that (7.8) and (7.9) imply two other equalities obtained by reversing
the inequality signs in (7.8) and (7.9); alternatively, one could replace (7.8)
and (7.9) with those two other equalities, without changing the equivalence
relation.]

(ix) For every maximal *-subset Q C {r + 1,..., p} such that kj (e
(1) is an even integer we have

Y 8¢ = Y €.

jEQ jeQ



POLAR DECOMPOSITIONS 125

Forevery = (8, \,..., 88,1 1,.--,4,) €A, let
= 5{J:(0) @ - @ J,(0) ® 5., (0) @ - ® 5,], (0)
8,0 Ji (Lyi1hper) @ = @ 8,1, (LA,
®8.1[Ji, (A1) @ S, (Rarr)] @ - @ 8,11 (2) @ Ji (A, )]
o1 (A1) @i (3,1)] @
®[Ji,(Aa) @ 1, (R)] )5 (7.10)

Clearly, A

» 15 H-self-adjoint.

THEOREM 7.3 (F = C). Let X = UA be an H-polar decomposition. Then
any other H-polar decomposztzon of X is equivalent to one of X = U;A,
(j=1,..., p), where w,,..., w, are representatives of the equivalence classes
of the equivalence relation ~ on A, and U,,..., U, are suitable H-unitary
matrices. Moreover, the polar decomposztzons defmed by the pairs (U, A, ),

-, (U,, A, ) are not equivalent pairwise.

Exactly the same result holds for F = R, the only difference being that
the blocks J,(A,) @ J! (3,) in (7.10) are replaced by the real blocks J ulpy =
iv;), where p, and v, are the real and imaginary parts of A respechvely

The following corollary of Theorem 7.3 is immediate.

COROLLARY 74 (F = C or F = R). Let X = UA be an H-polar decom-
position. Then any other H-polar decomposition of X is equivalent to X = UA
if and only if o(A) lies on the imaginary axis and the partial multiplicities (if
any) corresponding to the zero eigenvalue of A are all odd.

The proof of Theorem 7.3 requires some preparation. We prove the
theorem, as well as Lemmas 7.5 and 7.6 below, for the complex case only, the
proof in the real case being virtually the same.
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LEMMA 7.5. If A and B are nilpotent matrices such that A*> = B* and
Ker A = Ker B, then

Ker AP = Ker B?, p=12,.... (7.11)
In particular, A and B are similar.

Proof. Clearly (7.11) holds for p = 1 and p even. Let p = 2q + 1 be
odd, p > 1. Then

Ker B29*! = Ker( BA%9).

Using the equality Ker B2? = Ker A%, one can easily verify that Ker( BA*?)
= Ker A?7*', and the proof is complete. a

Recall that the matrices X and Y are called H-unitary similar if
X = W™ 1YW for some H-unitary W.

LEMMA 7.6 (F = C). Let A be an H-self-adjoint matrix, and let A and
A, (for @ € A) be introduced as above. Then:

(i) Every H-self-adjoint matrix B such that B> = A® and Ker A = Ker B
is H-unitarily similar to A, for a suitable w € A.

(i) A, and A, are H-unitarily similar if and only if @ ~ @', where ~
is the equivalence relation (introduced above) on A.

Note that in view of either Proposition 7.1 or Theorem 4.1 (e), the results
of Theorem 7.3 follow directly from Lemma 7.6. We now proceed with the
proof of Lemma 7.6.

Proof of Lemma 7.6.  In the proof we assume that A and H are given by
(2.1) and (2.3), respectively, arranged as in (i)—(v) (in other words, the matrix
S there is assumed to be the identity matrix).

We consider several cases separately.

(a) Assume A is nilpotent (so p = @ = B). Let B be an H-self-adjoint
matrix such that B2 = A% and Ker A = Ker B. By Lemma 7.5, A and B are
similar. So the canonical form (Theorem 2.1) for the pair (B, H) gives

B=S'AS,, H=S'H,S,






