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ABSTRACT. A review is given of conditions on an arbitrary real 4�4matrix to transform the four-vector of Stokes
parameters of an input beam linearly into that of an output beam. A distinction is made between pure Mueller
matrices, weighted sums of pure Mueller matrices, and matrices satisfying the Stokes criterion. Special attention

is given to polarized light transfer in planetary atmospheres.

1. INTRODUCTION

In this article we are concerned with transfer of polarized light, excluding nonlinear effects and interference
phenomena. Within this context, a light beam can be described by the real column vector I = fI;Q; U; V g
of Stokes parameters (Refs. 1-3). These vectors satisfy the inequality I � (Q2 + U2 + V 2)1=2, because the

intensity I � 0 and the degree of polarization p = (Q2 + U2 + V 2)1=2=I satisfies 0 � p � 1. Adding beams of
light pertains to adding their respective Stokes parameters. An optical process (e.g. single scattering, refraction,
reflection, absorption, but also multiple scattering) can be described by a real 4 � 4 matrix M transforming the
four-vector of Stokes parameters of an input beam of polarized light into the four-vector of Stokes parameters of the
corresponding output beam. Mathematically, Mmust satisfy the so-called Stokes criterion, i.e. it must transform
real four-vectors I0 = fI0; Q0; U0; V0g satisfying I0 � (Q2

0+U2
0 +V 2

0 )
1=2 into real four-vectors I = fI;Q; U; V g

of the same type. In general, however, there are other conditions on matrices relevant to polarized light transfer.
This has been the subject of many papers [See e.g. Ref. 4]. The main goal of this paper is to give a succinct review

of such conditions.

2. PURE MUELLER MATRICES

The elementary process of transforming the electric vector E0 of a monochromatic beam of light into the
electric vectorE of the outgoing monochromatic beam is linear and is described by the complex 2�2 Jones matrix
J: E = JE0. When converting the electric vectors to Stokes vectors, we find I = MI0 where M is a so-called

pure Mueller matrix. In fact,
M = MJ = A(J
 J)A�1; (1)

where A is a fixed unitary matrix, J denotes the complex conjugate of J, and
 denotes the tensor product of two
2 � 2 matrices (Refs. 5-6; cf. Ref. 2 for expressions not involving matrices). Thus a real 4 � 4 matrix MJ is
obtained from a complex 2� 2 matrix J. Taking account of an arbitrary phase in the electric vectors, one expects
9 independent relations between the elements ofMJ.

There are various ways to characterize pure Mueller matrices. Firstly, the 37 quadratic relations between
their elements may be arranged in a number of pictograms allowing one to reproduce them by heart (Refs. 7-9).
Secondly, it may be shown that a pure Mueller matrixM that is invertible, obeys the relations

fMGM = c2G; detM = c > 0; [M]11 > 0: (2)

Here a tilde denotes the transpose of a matrix and G = diag (1;�1;�1;�1). Conversely, it can be proven that a
real invertible matrix M is a pure Mueller matrix if Eq. (2) is satisfied (Ref. 10). It turns out that such a matrix
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M can be obtained from a Jones matrix J whose determinant is 4
p
c in absolute value and that all Jones matrices

pertaining to M have the form ei�J for some phase factor ei�. A third way to characterize pure Mueller matrices
will be mentioned at the end of the next section.

Pure Mueller matrices are characteristic of optical systems which can be described by a linear transformation
of the electric vector when the input beam is strictly monochromatic. They occur for scattering by a single particle

(Ref. 2) and for various optical devices (Ref. 11, 4).

3. WEIGHTED SUMS OF PURE MUELLER MATRICES

We now consider matricesM that are averages of pure Mueller matrices. These matrices, which we shall call
weighted sums of pure Mueller matrices, have the form

M =
NX
r=1

crMJr ; (3)

where c1; � � � ; cN are nonnegative constants andMJr is the pure Mueller matrix corresponding to the Jones matrix
Jr.

When M is a weighted sum of pure Mueller matrices, one readily derives the six elementary inequalities

(Refs. 7, 12)

([M]11 � [M]22)
2 � ([M]12 � [M]21)

2 + ([M]33 � [M]44)
2 + ([M]34 � [M]43)

2; (4)

([M]11 � [M]12)
2 � ([M]21 � [M]22)

2 + ([M]31 � [M]32)
2 + ([M]41 � [M]42)

2; (5)

([M]11 � [M]21)
2 � ([M]12 � [M]22)

2 + ([M]13 � [M]23)
2 + ([M]14 � [M]24)

2; (6)

as well as the “trace" inequality

TrM = [M]11 + [M]22 + [M]33+ [M]44 � 0; (7)

which follows from Eq. (4). Equations (5) and (6) are easily derived from the Stokes criterion only, but there exist
matrices M satisfying the Stokes criterion for which Eqs. (4) and (7) are not valid [Examples are given in the next
section].

A full proof algorithm for determining if a real 4�4 matrix is a weighted sum of pure Mueller matrices is due
to Cloude (Refs. 13-14). Writing the Jones matrix as a linear combination of the Pauli matrices �r, r = 0; 1; 2; 3,

J =
3X

r=0

kr�r =

�
k0 + k1 k2 � ik3
k2 + ik3 k0 � k1

�
; (8)

one finds

[MJ]r+1;s+1 =
3X

t=0

3X
u=0

1

2
Tr(�r�t�s�u)[T]t;u; (9)

where [T]t;u = ktku. Generalizing the linear transformation (9) to arbitrary real 4 � 4 matrices, one obtains a
one-to-one correspondence between the real 4 � 4 matrices M and the hermitian matrices T. It turns out that M
is a weighted sum of pure Mueller matrices if and only if its so-called coherency matrix T has only nonnegative
eigenvalues. IfM is a weighted sum of pure Mueller matrices or a limit of such a sum, we can use an orthonormal

basis of eigenvectors ofT to obtain the so-called target decomposition of M as a weighted sum of at most four pure
Mueller matrices: M =

P3

r=0 crMJr . Moreover, M is a pure Mueller matrix if and only if T has exactly one
positive and three zero eigenvalues. Matrices unitarily equivalent to the coherency matrix (apart from a factor

p
2)

are obtained if one writes the Jones matrix as a linear combination of the four 2� 2 matrices having one element 1
and three zero elements (cf. Refs. 15-16).
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4. MATRICES SATISFYING THE STOKES CRITERION

A pure Mueller matrix always satisfies the Stokes criterion (Ref. 7) and the same thing is true for a weighted
sum of pure Mueller matrices. Conversely, a real 4 � 4 matrix that satisfies the Stokes criterion is not always a
pure Mueller matrix or a weighted sum of pure Mueller matrices. Examples of this are diag (1;�1;�1;�1) and
diag (1; 1; 1;�1), as may be readily verified. Consequently, it is not surprising that conditions have been derived
(Refs. 10, 17-19) for real 4� 4 matrices which are solely based on their property of satisfying the Stokes criterion.

It has been shown, for instance, that in such a case an eigenvalue test can be conducted which is based on the
eigenvalues of the matrixGfMGM (Ref. 10).

5. LIGHT SCATTERING BY PARTICLES AND SURFACES

The considerations above are quite general. In practice, one may first try to use the physical context of a
problem to establish whether one deals with a pure Mueller matrix or with a weighted sum of pure Mueller matrices.

If no firm conclusion can be drawn, one can at least use the conditions valid for a matrix satisfying the Stokes
criterion.

As an illustration we first consider the single scattering of light by a gas containing many independently
scattering particles each of which is characterized by a pure Mueller matrix (Ref. 2, Sec. 4.22; also Ref. 20,
Sec. 8.8). The differences between the phases of the waves scattered by the individual particles in a non-forward

direction at a distance from the scattering location large in comparison to wavelength are randomly distributed and
change rapidly during one experiment, so that the interference phenomena expressed by the addition of the electric
vectors are not noticed in practice. Consequently, when considering the single scattering of an input beam by an
infinitesimal volume element of independently scattering particles, one must add the Stokes vectors of the output
beams produced upon scattering by the constituent particles to find the output beam produced upon scattering by
the volume element. As a result, the volume element is a linear optical system described by a weighted sum of
pure Mueller matrices.

Secondly, when a plane monochromatic wave is reflected by a randomly rough surface, the detector receives
reflected light from various points at the surface whose phases are approximatedly distributed at random. Conse-
quently, one may add the Stokes parameters of the light beams arriving from the individual surface elements to find
the Stokes vector describing the light received by the detector. The resulting reflection matrix then is a weighted
sum of pure Mueller matrices.

Our third illustration is provided by the problem of multiple scattering of polarized light in a planetary
atmosphere containing gases and many independently scattering particles which is bounded below by a reflecting
surface (Ref. 21). This may be reduced to a large number of single scattering problems. Let us partition
the atmosphere-surface system into small volume and surface elements with each such element acting as an
independent single scatterer and having a so-called scattering matrixF = F(!in; !out) depending on the direction
!in of the input beam and the direction !out of the output beam. Then the multiple scattering problem is essentially

a bookkeeping problem where one keeps track of the input and output beams for each constituent part and the
linear relation between the two. When taking account of all constituent parts and light paths, the Stokes vector of
the light present at a certain location in a certain direction depends linearly on the Stokes vectors of all of the input
beams through a polarization matrix that is a weighted sum of the Mueller matrices of the constituent volume and
surface elements and therefore is a weighted sum of pure Mueller matrices.

The above reasoning implies that many matrices appearing in studies of multiple scattering in planetary
atmospheres (Refs. 1, 3, 21-22), such as reflection and transmission matrices, matrices describing the internal
radiation field and Green’s function matrices, are weighted sums of pure Mueller matrices.
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