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A matrix Riemann—Hilbert problem associated with the one-dimensional Schro-
dinger equation is considered, and the existence and uniqueness of its solutions
are studied. The solution of this Riemann—Hilbert problem yields the solution of
the inverse scattering problem for a larger class of potentials than the usual
Faddeev class. Some examples of explicit solutions of the Riemann—Hilbert prob-
lem are given, and the connection with ambiguities in the inverse scattering
problem is established.

I. INTRODUCTION

Consider the Schrodinger equation

W (kx) + K2 (kx) = V(x)p(kx), (1.1)

where xeR is the space coordinate and k? is energy. Unless otherwise stated, we assume that
V(x) is a real-valued potential in L%, where LL={V| T2 (L [x| )| V(x)|dx< o}

There are two linearly independent solutions ¥; and 1, of Eq. (1.1), called the physical
solutions from the left and from the right, respectively, such that

T(k)e* +o(1), x—+ oo
'/’l(k»x):[eikx+L(k)e—ikx+o(1), X— — o0, (2
oy [TEHREIE0(1), x ot o 1.3
i ”‘)=[T(k)e~"""+o(1), X — co. o

Here T (k) is the transmission coefficient, and L(k) and R(k) are the reflection coefficients
from the left and from the right, respectively. The scattering matrix S(k) is defined as

T(k) R(k)

St = L(k) T(k)

For k<R the pairs {¢;(k,x),¥,(k,x)} and {¢,(—k,x),¥,(—k,x)} form linearly indepen-
dent sets of solutions of Eq. (1.1). Furthermore, ¢¥(—kx) = o,(k,x) and ¢,(—k,x)
= t,(k,x) when keR, where a bar denotes complex conjugation, and we have!

I/},.( k,x) ¢l( _k’x)
= s . 1.
[t/fz(k,x) S‘k’[¢,(—k,x) keR (1.4)
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2652 Aktosun, Klaus, and van der Mee: Riemann-Hilbert problem for 1-d Schrddinger equation

Define m(k,x)=[1/T(k)]le~"*y,(k,x) and m,(k,x)=[1/T(k)le**,(k,x). Then the
functions m;(k,x) and m,(k,x) satisfy the equations

my (kx)-++2ikm; (k,x) =V (x)m;(k,x), (1.5)
m, (kx) —2ikm, (k,x)=V(x)m,(k,x). (1.6)

Let J=[} ®,] and m(kx) = [""(k’x)]. Then we can write Eqs. (1.5) and (1.6) as a vector

m, (k,x
equation

m” (k,x) +2ikIm’ (kx)=V(x)m(k,x). (1.7)
Let q=[3 (]. Then Eq. (1.4) is equivalent to
m(—k,x)=G(kx)gm(k,x), keR, (1.8)
where

T(k) —R(k)e***

GUexX)=|_ | kye=  T(k)

It is known? that for potentials in L} the functions m,(k,x) and m,(k,x) are continuous in
k in R, can be extended analytically in & to C*, and m(k,x)—1and m,(k,x)—~1as k-« in
C*. Here C* denotes the upper-half complex plane and C* denotes its closure. Similarly, C~
and C~ denote the lower-half complex plane and its closure, respectively. Thus m(—k,x) can
be extended analytically in k£ to C~. Hence, when S(k) is given, solving Eq. (1.8) for m(k,x)
becomes a Riemann—Hilbert problem. Once Eq. (1.8) is solved, the potential can be obtained
from Eqgs. (1.5) or (1.6) using

my (kx)+2ikm;(kx) m; (kx)—2ikm](k,x)
ml( k,.x) - mr( k!-x)

V(ix)= (1.9)

Thus, solving the Riemann—Hilbert problem (1.8) amounts to solving the inverse scattering
problem for Eq. (1.1), namely, the recovery of the potential from the scattering data.
Associated with the scattering matrix S(k) we have the matrix

f T(k) —R(k)
JS(k)I= _Ly T0 | (1.10)
Consider the vector Riemann-Hilbert problem associated with JG(k,x)J
n(—kx)=JG(k,x)Iqn(k,x), keR, (1.11)

n,(k,x)
n,(k,x)

continuous in & in R\ {0}, can be extended analytically in & to C*, nik,x)—1and n,(k,x)—1
as k— o« in C*. The exact behavior of n(k,x) at k=0 depends on the scattering matrix S(k)
and will be specified below. It will be shown that there always exists a potential U whose
scattering matrix is JS(k)J, but U will “generically” be nonunique. The term “generic” will be
made precise below. In analogy to Eq. (1.7), n{k,x) obeys

where the solution vector n(k,x) = | ] is sought such that, for each fixed xR, n(k,x) is

n”(k,x)+2ikdn’' (kx)=U(x)n(kx). (1.12)
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Let ¢;(k,x) and ¢,(k,x) denote the physical solutions associated with the potential U; that is,
&(k,x)=T(k)e"™n,(k,x) and ¢,(k,x) =T(k)e""xn,(k,x). Then from Eqgs. (1.2), (1.3), and
(1.10) we see that

ok = St (L1
e *_R(k)e®+0(1), x—+oo
D= (kye=H po(1), xo—co. (1.14)
Define the 2 X2 matrix M(k,x) by3'4
M(k’x)=l[ml(k,x)+nz(k,x) my(k,x) —ni(kx) . (115)
2 {m(kx)—nkx) m(kx)+n(kx)
Let
f=[1] and é= _1 ] .
1 1
We then have
m(kx) =M(kx)1, (1.16)
n(kx)=JIM(k,x)é. (1.17)
We can combine Eqs. (1.8) and (1.11) into the matrix Riemann—Hilbert problem
M(—k,x)=G(kx)gM(k,x)q, keR, (1.18)

where M(k,x) is continuous for k€R\{0} and has an analytic extension in k to C*, and
M(k,x) -1, the identity matrix, as k- « in C* for each x. Note that Eq. (1.18) is a gener-
alization of the standard Riemann-Hilbert problem in the sense that we do not require M(k,x)
to be continuous at k=0. The behavior of M(k,x) at k=0 depends on that of T(k). In this
article we only consider transmission coefficients for which the following dichotomy holds: (i)
T (k)=ick+o0({k) as k—0 where c is a real nonzero constant, or (ii) T(k)- T'(0)40. For
Ve L} it is well-known that this dichotomy holds.>’ We will refer to case (1) as the generic case
and to case (ii) as the exceptional case. Then R(0)=L(0)=—1 in the generic case and
|R(0)|=]|L(0)| <1 in the exceptional case. We will use the terms “generic” and ‘“‘excep-
tional” also for the potentials U if the associated potential ¥ (x) has the corresponding prop-
erty. Note that in the generic case U¢ L} because at k=0 the reflection coefficients for U have
the “wrong” value + 1 instead of — 1. In the exceptional case Ue L! if and only if Ve L}.
The inverse scattering problem can be formulated as a matrix Riemann—-Hilbert problem in
the form of Eq. (1.18) or in related forms.!**%7 In this article we show that the solution of Eq.
(1.18) leads to the solutions of the inverse scattering problems for the scattering matrices S(k)
and JS(k)J and that the solutions of these two inverse problems satisfy Newton’s miracle
condition,! namely, the potentials obtained using the solutions from the left and from the right
are the same. The solution of the matrix Riemann—Hilbert problem (1.18) allows us to obtain
the solution of the inverse scattering problem for a larger class of potentials than the usual
Faddeev class? of potentials belonging to L!. Since the solution of Eq. (1.18) can be singular
at k=0 and since we merely require M(k,x) —I as k— o in C* and not M(k,x) —Ie L*(R),
we do not use a Fourier transform in k together with Marchenko integral equations. Instead,
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our approach relies on the Darboux transformation which allows us to relate the solutions of
Eq. (1.7) to those of Eq. (1.12). Then we obtain the solution of the matrix Riemann-Hilbert
problem (1.18) in terms of the solutions of the Schrodmger equation (1.1). The Darboux
transformation was used by Degasperis and Sabatier® in the absence of bound states and when
Ve L, with m>2 in order to construct a one-parameter family of potentials U and their wave
functions corresponding to the scattering matrix JS(k)J. Examples of such families were also
obtained by other methods.>”? One can ask whether the potentials obtained previously repre-
sent all possible solutions of the inverse scattering problem for the scattering matrix JS(k)J.
Here we show that the answer is in the affirmative, provided the associated solution of Eq.
(1.18) obeys certain restnctlons In the process we extend the analysis of Degasperis and
Sabatier to the case when Ve L! and also when bound states are present. As a further by-
product of our analysis we find that the bound state norming constants for a potential Ve L}
whose support is contained in a half line; i.e., V(x)=0 for x>a, or x<a,, are already
determined by the scattering matrix, and that in solving the inverse scattering problem for such
a potential the norming constants cannot be specified arbitrarily. This answers a question raised
by P. Sacks (private communication to T. Aktosun).

This article is organized as follows. In Sec. II, when Ve L}, we study the Darboux trans-
formation and the small k behavior of the solution M (k,x) of Eq. (1.18), and thus in particular
we analyze the behavior of the solutions of Eq. (1.12) at k=0. In Sec. III we characterize the
class of potentials to which U belongs whenever Ve L} and Eq. (1.1) has no bound states; in
Sec. IV we study the case when there are bound states and also show how bound states can be
added to and removed from the potential U. In Sec. V we analyze the Riemann-Hilbert
problem (1.18) and establish the connection of its solutions with the solutions of the Schré-
dinger equations (1.7) and (1.12); in Sec. VI this analysis is extended to include the bound
states. In Sec. VII the Wiener—Hopf factorization of G(k,x) is given in terms of the solution of
the Riemann-Hilbert problem (1.18). Finally, in Sec. VIII we give some examples of explicit
solutions of the Riemann-Hilbert problem (1.18) and the potentials obtained from those
solutions.

Il. DARBOUX TRANSFORMATION AND PROPERTIES OF M(k,x)

In this section we study the Darboux transformation relevant to the Riemann-Hilbert
problem (1.18) and also obtain some estimates on the solutions of the Schrddinger equations
(1.7) and (1.12) as k—0. It is known>'® that m,(k,x) and m,(k,x) satisfy

1

my(kx)=1+7— [e”’“y X 11V (p)m(kp)dy, (2.1)
1 X .

m(lox) =145 f [ 2R _ 11V (p)m, k) dy. (2.2)

Proposition 2.1: Let VeL! and k € C*. Set o, (x)== [£°(1+|y]) | V(»)|dy. With
constants C,, C,, C;, C, independent of k, we have

14+ max{—x,0} 1+ max{x,0}

(i) [mkx)—1|<Cio(x) TH K| ,Imr(k’x>-1|<cz"—(")"W’

(ii) Im,(kx)|<C3f [V(»)|dy, x>0, Imi(k,x)|<C4fx | V(y)|dy, x<0,

(iii) |mj(kx)|,|m/(kx)| -0 as k- in -C—"‘—:, uniformly in x.
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Proof: 1t suffices to consider m,(k,x) because the proof for m,(k,x) is similar. We use the
order symbols O and o in the limit as k— o0 in C* when the estimates are valid uniformly in
x. The proof of (i) is given in Ref. 10 (Lemma 1, p. 130). To prove (ii) note that by Eq. (2.1)

m} (kx) = — f FHO-IY () m ep)dy=T, () + Ty (o),
X

where

Lkx)=— f‘” SRV (3) [y (k) —1]dy, (2.3)

X

Lk =~ [T @02y ()a,
X
Using (i), for x>0 we get

o (x)

V() |dy,
P l () |dy

‘Il(kX)|<C1 1

|1 (kx) | < fw |V (»)|dy.

Hence (ii) follows. .

Using (i) in Eq. (2.3), it follows that 7, (k,x) =O(1/k) for x>0; hence in order to prove
(iii), it suffices to show that I,(k,x)=o0(1). Given any €>0, let VeCo be such that
v — V]|L| < ¢ thus Ve L'. Then

IZ(k:x) =13(k9x) +I4(k9x),

where

Iy(kx) = — fw FRO=D Y (y) — V(p)1dy,

X

I(kx)=— J‘m SR P (3)dy. (2.4)

X
Thus, for k € E“t, we have |I;(k,x) | <e. From Eq. (2.4) using integration by parts we obtain

Hky—x)

1

Lkx) =5 V() + f 7 »)dy,
and since VeCy, it follows that I,(k,x) =0(1/k) as k— «. Since €> 0 is arbitrary, assertion
(iii) follows. ]

Note that the decay in & of the integral I, above can be arbitrarily slow. For example, let
x=0 and V(y)=y [H(y) —H(y—1)] with 0<e<1 where H(y) is the Heaviside function.
Then VelL} and I,(k,0) ~ck*~! as k— o, where c,= — [§ > u~¢du. For this reason we
could not rely on the estimates for m; (k,x) stated in Ref. 10 [Lemma 1, (iii) and (iv), p. 130].

For k=0 the Schrodinger equation (1.1) reduces to

P (kx) =V (x)P(kx), (2.5)
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and Eqgs. (2.1) and (2.2) become

mOR=1+ [ G-V 0ImO»dD, (2.6)
mOx) =1+ | G-V OImONd, @7
respectively. Moreover,
mi©Ox)=— [~ VoIm(Oya, (2.8)
mi00)= [ VoIm (0. (29)

From Egs. (2.6)-(2.9), we obtain the relations

140(1), x>+ 210
mz(O,x)=l_clx+o(x)’ X — oo, (2.10)
, o(1/x), x-+o -
mz(O,x)={_CI+o(l), X —co, (2.11)
¢, x+o(x), x-+ o )12
mr(O,X)=tl+o(1)’ X — oo, (2.12)
, c,+o(l), x-+4+w )13
mr(osx)'—_ O(I/X), x—"—OO, ( . )
where
o= f‘” V(y)m0p)dy and c,— f“ V(y)m,(0,p)dy. (2.14)

Let [ figl=fg — f'g denote the Wronskian. In the absence of bound states m,(0,x) and
m,(0,x) are positive,s’10 and thus we obtain

[m;(0,x);m,(0,x)] =c;=c,»0. (2.15)
Hence, ¢;=c,=0 if and only if m;(0,x) and m,(0,x) are linearly dependent, and by Egs. (2.10)
and (2.12) it is seen that this happens if and only if m;(0,x) and m,(0,x) are bounded. If a
zero-energy solution of the Schrédinger equation is bounded but not in L2, it is called a half

bound state. It is known?!° that for Ve L{ a half bound state occurs if and only if V(x) is
exceptional, which follows from the Wronskian

2ik
[ Filkox)sfofox)] = —T—(’k—) (2.16)

J. Math. Phys., Vol. 34, No. 7, July 1993
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by letting k-0, where f;(k,x) is the Jost solution of Eq. (1.1) from the left and f,(k,x) is that
from the right..Recall1 that the Jost solutions of Eq. (1.1) satisfy lim,_, , e~ filkx)=1
and lim,_, _ e* f.(k,x)=1, and they are related to the solutions of Egs. (1.5) and (1.6) as

Filkx)=e®mkx) and f,(kx)=e"®m,(kx). (2.17)

In the generic case we define a family of solutions of Eq. (2.5) depending on a nonnegative
parameter a by

m;(0,x) +-am,(0,x), O<a<ow

x(x;a)= m(0%), a=oo. (2.18)

From Eqgs. (2.10), (2.12), and the fact that m,(0,x) and m,(0,x) are positive, it follows that
x(x;a) >0 and hence the set {¢|y=cy(-;a), ¢>0, 0<a< x} represents all positive solutions
of Eq. (2.5). Let

p(xsa) = '((J:;:)) (2.19)
Then from Eq. (2.5) it follows that p(x;a) obeys the Riccati equation
p'(x;a) +p(x;a)>=V(x). (2.20)
Now let (k,x) be an arbitrary solution of Eq. (1.1) and define
P(kxia) =1 (kx) — p(xa) Y(k,x). 221)
Then @ obeys the differential equation
@" (kx;a) +Ko(kxa) =U(xa)p(kxa), (2.22)
where
U(x;a) = —p’ (x;a) + p(x;0)>. (2.23)
From Egs. (2.20) and (2.23), we have
U(xa)=V(x)—2p'(x;a), (2.24)
U(x;a) =2p(x;a)2—V(x). (2.25)

We will refer to the transformation from the potential ¥'(x) to the potential U(x;a) by means
of Eq. (2.24) as a Darboux transformation; note that this was called the limit Darboux
transformation in Ref. 8. In the exceptional case instead of Egs. (2.18) and (2.19), we define
¥ (x)=m;(0,x) and p(x) = m;(0,x)/m;(0,x) because m;(0,x) and m,(0,x) are linearly de-
pendent and thus the parameter @ does not appear in Eqgs. (2.18) and (2.19); the Darboux
transform of ¥ (x), which is then unique, will be denoted by U(x).

Proposition 2.2: In the generic case, for p(x;a) defined in Eq. (2.19), we have

(i) if 0<a< o then p(x;a)=1/x4+0(1/x) as Xx— £ o,

(ii) if a=0 then

0 o(l/x), x—-+
p(x0)= 1/x+0(1/x), x—— o,
J. Math. Phys., Vol. 34, No. 7, July 1993
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(iii) if a=co then

1/x+0(1/x), x—-+ o0

plx;0)= o(1/%), Xor—co.

(iv) In the exceptional case, we have p(x)=0(1/x) as x— + w.

Proof: The results follow from Egs. (2.10)-(2.13) and the definitions of p(x;a) and
p(x). n

Applying the Darboux transformation to the Jost solutions f;(k,x) and f,(k,x) defined in
Eq. (2.17), we obtain

1
gilkx;a)=— [ fi(kx)—p(x;a) flkx)], (2.26)

1
grlkxa) = —o [ f1(kx) —p(x5a) f(kx) 1. (2.27)

Theorem 2.3: The functions g;(k,x;a) and g,(k,x;a) given by Egs. (2.26) and (2.27) are
the Jost solutions of the Schrédinger equation with the potential U(x;a); equivalently,
di(kx;a) =T (k)g(kx;a) and ¢,(kx;a) =T (k)g,(k,x;a) are the physical solutions of Eq.
(2.22) satisfying Eqgs. (1.13) and (1.14), and n/(k,x;a) =e‘ikxg,(k,x;a) and n,(kx;a)
= g,(k,x;a) are solutions of Eq. (1.12) with the potential U(x;a).

Proof: By straightforward verification using Proposition 2.2. ]

From Egs. (2.26) and (2.27) we obtain

1
ni(kx;a) =7 [mj(kx) +ikm(kx) — p(x;a)m(kx) ], (2.28)

1
n,(k,x;a)= —% [m,(kx)—ikm,(k,x)—p(x;a)ym,(kx)]. (2.29)

The next theorem gives the behavior of #n,(k,x;a) and n,(k,x;a) at k=0.
Theorem 2.4: Let n,(k,x;a) and n,(k,x;a) be the functions defined in Eqgs. (2.28) and
(2.29). In the generic case as k-0 in C™, for 0<a < « we have

ac,

ii_rg ikn,(k,x;a) = ~ i 0%) Tam (0x) (2.30)
lim ik, (k,330) = =5 :a L (2.31)
for a=0 we have
}(i_tg) n;(k,x;a) =m , (2.32)
}(iir(l) ikn,(k,x;a) = ”'m,(c(;,x) , (2.33)

and for a= « we have

J. Math. Phys., Vol. 34, No. 7, July 1993
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Cr

lim ikn (k,x;a) = — , 2.34
kl_I.I(l)l n(kx;a) (0% ( )
}:_I,I(l) n,(k,x;a):mx—), (2.35)
where ¢, is the constant defined in Eq. (2.14). In the exceptional case, we have
ilix(l) nl(k’x)=m and }(1_:}(1) n,(k,x)=m. (2.36)

Proof: The proof of Eq. (2.30) is obtained by letting k-0 in Eq. (2.28) and by using Eqgs.
(2.15), (2.18), and (2.19). Similarly Eq. (2.31) is obtained from Eq. (2.29). From Eq. (1.5)
we have

[m;(k,x)m}(0,x) —m(0,x)mj(k,x)]' =2ikm;](k,x)m,(0,x),

and by Proposition 2.1 (ii), m;(k,x) is absolutely integrable near x=+ «, and hence

m;(0,x)m; (k,x) —m(k,x)m;(0,x)=2ik fw m; (k,y)m)(0,p)dy. (2.37)

Using Lebesgue’s dominated convergence theorem, from Eq. (2.37) in the limit £—0, we
obtain

m,(O,x)m;(k,x)—~m1(k,x)m,'(0,x)=ik[1—m1(0,x)2]+o(k). (2.38)
Then from Egs. (2.37), (2.38), and the fact that p(x;0) = m;(0,x)/m;(0,x), we get Eq.
(2.32). The limits in Egs. (2.33) and (2.34) follow from Eqs. (2.15), (2.18), (2.28), and

(2.29). The proof of Eq. (2.35) is analogous to that of Eq. (2.32), where, instead of Eq.
(2.37), we use

m (0, )m (k) —m, (kox)m! (0x) =2ik f m! (k) m,(0,9)d.

The proof of the two equations in (2.36) is similar to that of Egs. (2.32) and (2.35), respec-

tively. |
Next we consider the zero-energy-solutions of the Schridinger equation with the potential
U(x;a).

Proposition 2.5: In the generic case, k=0 is a bound state for the potential U(x;a) if
0 <a < «, and a half bound state if =0 or a= 0. In the exceptional case, k=0 is always a half
bound state. Moreover, in either case there is a bounded zero-energy solution of the Schro-
dinger equation which can be chosen to be positive, and this is (apart from constant multiples)
the only positive solution.

Proof: It follows from Eqgs. (2.30), (2.32), and (2.34) that in the generic case

1
m(0,x) +am,(0,x)’ O<a< e
n(x;a) = ) (2.39)
m,(0,x)’ a= o,
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is a positive, bounded zero-energy solution of the Schrodinger equation with the potential
U(x;a); when 0<a< o, by Egs. (2.10) and (2.12) this solution is in L? and hence k=01is a
bound state. When a=0 or a= «, n(x;a) is bounded but not in L? and thus we have a half
bound state. A second, linearly independent solution is given by 7(x;a) =n(x;a)
X [7~2(y;a)dy. Using Egs. (2.10) and (2.12), for 0<a< w we have 7(x;a) = (ac,/3)x*
+o(x?) as x— + o and 7(x;a) = — (01/3)x2+o(x2) as x— — o0, for a=0 we have 7(x;a) =x
+0(x) as x— + oo and F(x;8) = — (¢x*/3) +o0(x?) as x— — o0, and for a= o we have 7(x;a)
=(c,x2/3)+o(x2) as x— + oo and 7(x;a) =x+o0(x) as x— — oo; thus no solution that is
linearly independent of 7(x;a) can be either bounded or positive. In the exceptional case, we
have n(x)=1/m;(0,x) which is bounded, but not in L?, and hence it is a half bound state.l

lli. CHARACTERIZATION OF POTENTIALS

In this section we characterize the potentials U(x;a) that arise as the Darboux transfor-
mation of some Ve L}; a similar characterization was given in Ref. 8 for the more restrictive
class when Ve Ll

First we note that the Darboux transformation given in Eqgs. (2.26) and (2.27) is invert-
ible. Differentiating Eq. (2.26) and using Eq. (1.1), we obtain

1
Si(kx) =7 [g] Ckyx;a) + p(x;a)g/(k.x;a) ], 3.1)

and similarly from Egs. (2.27) and (1.1), we obtain

1
fr(k,x) = _l_k [g;(k!x;a) +p(x;a)gr(k’x;a) ] (32)
Thus we have
1
m(k,x) =7 {nj(kx;a) +ikn(k,x;a) +p(xa)nlkxa)l, (3.3)
1
m,(kx)= —% [n(k,x;a) —ikn,(kx;a) + p(x;a)n(kx;a)]. (3.4)

We see that the inverse Darboux transform has the same form as the direct transform, but
that p(x;a) is replaced by —p(x;a). With 7n(x;a) given by Eq. (2.39) and w(x;a)
=n'(x;a)/n(x;a), we have w(x;a) = —p(x;a), and hence

V(x)=w(xa)’—o (xa). (3.5)

In Eq. (3.5) the right hand side is independent of the parameter a and thus ¥(x) is uniquely
determined by U(x;a). In other words, if we know that a given U(x;a) is the Darboux
transform of some Ve L}, then there is only one such ¥ and it is given by Eq. (3.5) in terms
of the zero-energy solution of the Schrédinger equation with the potential U.

Let WeLland € =0, 1 with j=1, 2. We define % to be the family of potentials U having
the form

2 2
U(x)=el;mH(x)+ez;2—_—{_—1H(—x)+W(x) (3.6)

and satisfying the following two conditions:
(i) the Schrddinger equation with the potential U has no negative-energy bound states,
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(ii) k=0 is either a bound state or a half bound state of the Schrédinger equation.
Proposition 3.1: Let Ue % . Then k=0 is a bound state of the Schrédinger equation if and
only if €;=¢,=1.
Proof: Suppose that Ue % with €;=¢,=1 and consider the interval x> 1. Recall that the
Schrodinger equation ¢”=(2/x?)¢ has the two linearly independent solution x~! and x%.
Define

2 2
Q(x)=U(x)——;z= -—;2(—xr_+—_1—)+ W(x), x>1, (3.7

and note that Qe L1(1, ). Considering Q(x) as a perturbation of the potential 2/x%, we can
use variation of parameters to construct a decaying solution #,(x) of the equation

¢"=U(x)¢$, x€R, (3.8)

such that

1 1 (e
ux) =213 f

To see that u;(x) is well-defined for x> 1, we define 4/ (x) =0 and

y_%
;—;}Q(y)uz(y)dy, x>1. (3.9)

1 1 o[y x2
O =43 [ [E-Fewur o, a=o2.., (3.10)

and set

ACHFD (o) =x|uf" TV (x) —uf™ (x)].

Then from Eq. (3.10), we obtain

1 [
A< [T y10m) 4P Gy,

and hence by iteration,

A("+1)(x)<

o ( I my’Q(y)‘dy)n-

Thus u,(x)=lim,_, _ 4™ (x) exists and we have

x| u(x) | <IN x5, (3.11)

It follows from Egs. (3.9) and (3.11) that u;(x)=1/x+0(1/x) as x—+ « and hence
uc L*(1,00). Any solution of Eq. (3.8) that is linearly independent of u,(x) grows like cx? as
Xx— + co With ¢540. Similarly, since ;=1 there is a unique solution #,(x) of Eq. (3.8) obeying
u,(x)=1/x+4-0(1/x) as x—» — o« and any other linearly independent solution grows quadrat-
ically as x— — 0. Assumption (ii) therefore implies that u;,(x) and u,(x) must be linearly
dependent. Hence u,(x) =0(1/x) as x— =+ o and so u;€ L*(R). Thus k=0 is a bound state.

Conversely, suppose that Ue % and k=0 is a bound state. If €,=0, then, since U(x)
=W(x) for x>0 by Eq. (3.8) and W(x)e L}, there are two linearly independent solutions of
Eq. (3.11) which are asymptotic to 1 and x as x— + o0, respectively. Hence no nontrivial linear

J. Math. Phys., Vol. 34, No. 7, July 1893
Downloaded 15 Aug 2002 to 129.74.199.113. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp



2662 Aktosun, Klaus, and van der Mee: Riemann-Hilbert problem for 1-d Schradinger equation

combination of these solutions can lie in L% contradicting the assumption that k=0 is a bound
state. Similarly, €,=0 is ruled out. Hence we must have €;=¢,=1. n

Theorem 3.2: We have the following:

(i) Assume Ve L} without bound states. If V is generic, then U(-;a)e% for every
ac[0,]. In fact, if 0<a< o then €,=€,=1, if a=0 then ¢;=0, €,=1, and if =« then
€1=1, €,=0. If Vis exceptional, then Uc % with €;=¢€,=0.

(ii) For every Ue %, there is a unique Ve L} without bound states such that U is related
to ¥V as in Eq. (2.24) for a unique value of a.

Proof: For x> 1, from Eqgs. (2.6), (2.7), and (2.14), we have

m(0,x) =1+s5,(x), ' (3.12)
m,(0,x) =cx+s,(x), (3.13)
where
si(x) = f” (P—x) V() mi(0p)dy, (3.14)
s(x)=1—x f ® VIm(0p)dy— f Y OImOp)dy. (3.15)

When 0<a < o0, our first goal is to show that p(x;a)z— 1/x%e L}(l,oo ), where p(x;a) is the
quantity in Eq. (2.19). Define

1
r(x)=p(x;a) e
From Egs. (2.18), (2.19), (3.12)—(3.15), we obtain

1 [xs;(x)—s;(x) +axs,(x)—as(x)—1

r(x)=ac,x2 T3500) , (3.16)
where
1
b(x) = +s’(’;)c;as’(x) . (3.17)

Note that 1+ b(x) is strictly positive and continuous on (1, ) because we have

m(0,x) +am,(0,x)
ac,x )

14+b(x)=

From Egs. (3.12) and (3.14) we have 5;(x) =0(1) as x— + oo . To estimate the second integral
in Eq. (3.15), with x> 1 and 0 <e <1, note that

7 v limonid= [ p1voilimonidr+ [ o701 Imiop .
(3.18)

Using |m,(0,y) | <Cy for y>1, we have
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[ostvortimeoniar<cs [ 5170 a. (3.19)

X

Since Ve L}, the last integral in Eq. (3.19) behaves like 0(1) as x— + « and hence from Egs.
(3.18) and (3.19) we see that

f; V)| |m(0p) |dp=0(x), x>+ . (3.20)
Using Eqgs. (2.12), (3.15), and
s <t+x [ 170 Im ) dy+ [ 1511V | 1m (00 |ay
+ [Tvo im0 a,
we obtain s5,(x) =o0(x) as x— 4+ «, and hence from Eq. (3.17) we have
b(x)=0(1), x>+ . (3.21)
From Eq. (3.14) we have
xsj(x)=—x f: V(y)m,(0,y)dy,
which implies
x50 1< [ 751V 1m0 |y,
xs;(x)=0(1), x— -+ oo. (3.22)
From Eq. (3.15) we have
(3.23)

x5, (x)—s ) ==1+ [ sV Im 0.

By Egs. (3.16), (3.21), (3.22), and (3.23) there is a constant C such that

, x>1.

1 1 =
rl<clgrz [ 7O Imo]8

Integration by parts yields

flw (x"‘" fx P 7)) | |m,(0) Idy)dx=

o0

i X
— [ v imionia
- 1

+ fl "1V (x) | |m,(0,x) | dx. (3.24)
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By Eq. (3.20) the first term on the right hand side of Eq. (3.24) vanishes at the upper limit.
Hence re L!'(1,). Since p(x;a)z—— 1/x2=[p(x;a) +{(1/x)]r(x) and p(x;a)=0(1/x) as
x— + w0, it follows that p(x;a)2—1/x?e L{(1,0 ). From Eq. (2.25), writing

1 1 1
20 xerr) — —_ —_
p (x;a) x—z]+2 o x7—+1] V(x)

2
Ux)=z7+?2

and using the fact that x 22+ 1) le L} (1,0 ), we see that, for x> 1, U(x;a) is of the form
(3.6) with €,=1. A similar analysis for x < —1 shows that €,=1.
For a=0, using m,;(0,x) —» 1 as x— + 0, from Eqs. (2.8) and (2.19) we obtain

2

p(x;0)2<C[ on V(yym(Oyp)dy|, x>1.

Then

fl ” xp(x;o)zdmc[ f l°° PV | | mi0p) |dy] jl” V) | |my(0) |dy],

and so p(-;0)2eL}(1,00); thus by Eq. (2.25), U(-;0)€Li(1,0) and hence €,=0. When
x < —1 we proceed as in the case 0 <a < « and find that U(x;0) is of the form Eq. (3.6) with
€,=1. When a= o the proof is analogous to that for a=0 and we find that ;=1 and €,=0.
In the exceptional case, from Egs. (2.25), (3.6), and Proposition 2.2 (iv), we see that Ue %
with €, =¢,=0. Thus the proof of (i) is complete.

Now let us prove (ii). Let Ue % be given and suppose that €;=¢,=1. Let #,(x) denote the
zero-energy solution given in Eq. (3.9). We have

1

uz(x)=;+h(x), (3.25)

where, for x> 1 we have

1 [ [y x?
h(x)=§ L ;—Y]Q(y)uz(y)dy- (3.26)
Let
ox) =) (3.27)
x Tuy(x)” ’

Since U does not support any negative-energy bound states, #,(x)5~0 (Theorem on p. 94 of
Ref. 8), and hence 0(x) in Eq. (3.27) is well-defined. Then, from Eq. (3.25) we have

11

21
6(x)=—;+ x“h'(x)+xh(x)

14+xh(x)

x
Using Eq. (3.26) we obtain
x%h' (x) 4+ xh(x) = —x° fw Q)y~ uy(y)dy.

Put
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1

Zh, h
() =000 L L [FH D 4

T2k (x) (3.28)

Note that from Eq. (3.11) we have u;(y) =0(1/y) as y— + «, and from Egs. (3.11) and
(3.26) we have h(x)=0(1/x) as x— + co; furthermore, from Eq. (3.25) we see that 1+ xA(x)
is continuous and bounded. Hence we get

i l<c [T 100 lan x> (3.29)

Thus re L' (1,00 ) because Qe L1(1,00). As a result, from Eq. (3.28) we have 6(x) =0(1/x)
as x— + oo, and thus using Eq. (3.29) and the fact that 8(x)2— (1/x?) =[0(x) — (1/x)]¢(x),
we conclude

1
6(x)2—;;eL}(1,oo). (3.30)

A similar analysis on (— c0,—1) shows that 8(x)>— (1/x*)e L}(— c0,—1). On (—1,1), 8(x)
is bounded. Thus using Eq. (3.7) and defining ¥ (x) =26(x)*>— U(x), we obtain Ve L}(R).
The potential ¥ has no bound states because U has no negative-energy bound states and the
transmission coefficients for U and ¥V are equal to each other. A comparison with Eq. (2.24)
and the explanation given following Eq. (3.5) show that there is a unique value of the param-
eter 0 <a < oo such that U is the Darboux transform of V. With appropriate modifications the
above proof also works when one or both of €; and €, are zero. If €;=0, €,=1 (€,=1, €,=0),
then one finds =0 (4= o) in accordance with (i). If €,=¢€,=0, then Ve L{ is exceptional

and the parameter a plays no role. |
Returning to the matrix M(k,x), assuming there are no bound states, we note that by Eq.
(1.15)

det M(k,x) =3[m(k,x)n,(kx) +m,(kx)n(kx)].

Hence from Eqgs. (2.16), (2.28), and (2.29) we obtain

det M(%,x) = (3.31)

1
T(k)'
Alternatively, this relation can also be deduced directly from Eq. (1.18). By taking the deter-

minant of both sides of Eq. (1.18) and using det G(k,x) =det S(k)=T(k)/T(—k), we ob-
tain

T(—k)det M(—k,x)=T(k)det M(k,x), keR. (3.32)

Since in the generic case T (k) =0(k) as k—0, in both the generic and exceptional cases, T'(k)
det M(k,x) is analytic in C*, continuous in C*, and converges to 1 as k— o in C*. In Eq.
(3.32) we have a scalar Riemann-Hilbert problem, where knowing T'(k) we seek det M{%,x).
By virtue of Eq. (3.32), T (k) det M(k,x) has an analytic continuation to C~. Therefore, by
Liouville’s theorem, we gglclude that T (k) det M(k,x)=1 on C, which gives Eq. (3.31). So
M(k,x) is invertible in C*\ {0} and we have that

M(k —I_T(k) m(kx)+n,(kx) n(kx)—m(kx)
( yx) - 2 nr(k,x)—mr(k,x) m[(kyx)+n1(k,x) .
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Since in the generic case T(k) vanishes linearly as k—0 and thus cancels the 1/k singularities
of n,(k,x) and n,(k,x), we see that in both the generic and exceptional cases M(k,x)_l is
continuous at k==0. When there are bound states T (k) is not analytic in C*, and Eq. (3.31)
is no longer valid.

In the absence of bound states the parameter g can be recovered from Eqs. (2.30) and

(2.31) via
mkxa) o oca< (3.33)
——— =g, a< o, .
o mKxsa) SaSee
or using Theorem 2.4 via
ic, a -—a O<a<
2y(xa) 1 —1 1 |7 @<
lim AM(k,x;a) =
k-0

y a=co,

ic, 1 —1
2¥(x;0) |0 O
where y(x;a) is the function defined in Eq. (2.18) and ¢, is the constant in Eq. (2.15). If
0<a< «, then k=0 is a bound state for the potential U(x;a). Moreover, the parameter a is
then related to the norming constant of the zero-energy solution 7(x;a) in Eq. (2.39). From

Eqgs. (2.15) and (2.39) we have n(x;a)2=—[l/ac,][m,(O,x)n(x;a)]', and thus using Egs.
(2.10) and (2.12) we obtain

1

m:(zcr. (3.34)

The next theorem summarizes the main results about the Riemann—-Hilbert problem (1.18)
obtained thus far.

Theorem 3.3: Suppose that ¥’ L} without bound states. In the generic case the Riemann—
Hilbert problem (1.18) has a one-parameter family of solutions M(k,x;a) such that m(k,x)
=M(k,x;a)1 is a solution of Eq. (1.7) with the potential ¥ (x) and n(k,x;a) =IM(k,x;a)é is
a solution of Eq. (1.12) with the potential U(x;a), where Ue % but U g} Moreover,
M(k,x;a) has a 1/k singularity at k=0 and M(k,x;a) is invertible for £k € C*\{0}. In the
exceptional case, the solution M(%,x) of Eq. (1.18) does not depend on the parameter a and
Ue L{; furthermore, M(k,x) is continuous at k=0 and invertible for £k € C*. In both the
generic and exceptional cases, M(k,x) —!is continuous at k=0.

IV. BOUND STATES

Now we turn to the case when the potential ¥ (x) supports .#” bound states with energies
— Bis — B’y where B>+ >B;>0. Then T'(k) has simple poles at k=i, (j=1,....4").

Pefine
N .
Sepy_ k'“’Bi) A Y
S(k)_(jl;ll vy J'S(k)J, (4.1)
or equivalently,
. & k—-iB-)
T(k)= T (k), 4.2
(%) (!’I=Il kg, ) T (4.2)
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. N k—lB)
_( 1} J
R(k)=(-1) (ILIl kv, ) K6 (4.3)
y £ k—iB-)
—_(_ 1\ J
Li=(-1) (,-1;[1 KT, L(k). (4.4)

The potential corresponding to S(k) will be denoted by V(x) and its Jost solutions by f 1(k,x)
and f,(k,x). The Schrodinger equation with the potential ¥ has no bound states since T(k)
has no poles in C*. Let

w -1
o= ( [ sitigy ) (4.5)
be the norming constant associated with the bound state —,B} of ¥, and let
2(—1)/-'g; Bi+B;\ . . ,
a=—-"— H AT B), =l (4.6)
Kj i%j Bi—B;

Note that T(zB) >0 for B> 0 because T(k) is nonzero and continuous in C*, T (iB) is real,
and T(k)—+1 as k— oo in C*. Thus, in particular T(zB )>0for j=1,....#". Hence, from Eq.
(4.6) it is seen that a;>0. It is known (Theorem 6, p. 176 of Ref. 10) that ¥ can be obtained
from ¥ inductively by defining

Vil (x)=P(x),

. . d?
viil(x)y=vti-1(x)—2 2 logvi(x), j=1..1, (4.7)
where

v;(x)=f177B; x) + o fL NGB x), =1t

and fV ](k,x) and f{,ﬂ(k,x) being the Jost solutions associated with the potential 12 ](x), and

FIOVB XY =F B x),  fONB;x) = F LB, %),

and VH(x) = V(x). Note that vj(x) >0 because —B§< —35—1 and hence (Ref. 10)
ﬂj‘”(iﬁj ,x) >0 and f“‘”(iBj ,x) > 0. It follows that V[j](x) is a potential having j bound
states with energies Bl, . Bf For more details and proofs we refer the reader to Ref. 10.

The bound states can also be added or removed one at a time by Newton’s method." Lu
Instead of obtaining ¥V from be adding a bound state one at a time, it is possible to go
directly from V to V as follows. Define

w;(x)= (= 17+ FiB; x) +a; f (i8; %), (4.8)
where a g is given in Eq. (4.6). Let Qfw,...,.w -, j‘",(k,x)] denote the determinant of the
(A +1) X (A"+1) matrix with entries

BY " tw(x), s=1l,. N

Q,. = S
e [ L vt

(4.9)
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. B 2w} (x), s=1,0cpt )
Qy;( ’x)=[(—l)j'1k2j_2f';(k,x), s= 1, (4.10)
Let Qfw;,...,w 4] be the principal minor of Q[wl,...,w/,f,f,(k,x)]. Then
. d*
V(x)=V(X)-—22;zlog Qlwy,..,w 4], (4.11)
./V‘ v
1 Q[wl ,...,w_/V‘,f[(k,X)]
x)=(—i" . , 4.12
Sikkx)=(-i) ( jI-—_Il k+lﬁj) Q0] (4.12)
N v,
1 Q[wl"-'aw/if’fr(k’x)]
Hkx) =" . : 4.13
v 1L | M oo
Similar relations hold for the potential U(x) if we define
Ul (x) = U(x), (4.14)
, ) a?
Ul (xy=Ul/"1(x)—2 22 losy(x), Jj= Lot (4.15)
where
yi(x) =g} 1B x) + gl TN iBy %), j=1,nH, (4.16)

with 0< ¢ < 0, UM(x) = U(x), g 1(k,x) and gl/l(k,x) are the Jost solutions associated
with the potential U(x), and gl (k,x) =g,(k,x) and g% (k,x) =g,(k,x) are the Jost solutions
associated with U(x). Note that y;(x) satisfies the Schrédinger equation

yi=1B+U"1(x)1y;, (4.17)

and that yj(x) > 0 since ggj_”(iBj ,X)>0 and g[,j"ll(iBj ,x) > 0. To see this, we first note that
any nontrivial solution of Eq. (4.17) can have at most one zero (Theorem 2.c of Ref. 12).
Suppose that g}/ ~1(i8 ;,X) has a zero at x=x,. Pick any x; <xg and let /#;(x) be a nontrivial
solution of Eq. (4.17) such that A,(x;)=0. Then Ah;(x) is linearly independent of
g{j_”(iBj ,X). Thus A,(x)540 for x5=x; and h;(x) = céP” 4+ 0(f) as x— + oo with ¢5-0. For
x> x, define hy(x)=h;(x) f;"hl(y)"zdy. Then A,(x) is a solution of Eq. (4.17) and A,(x)
= [1/2¢B]le™?* + o(e™P7*) as x—+ 0. Therefore g/ ~1(iB;,x)=(2cB;) hy(x). Since
hy(x9)5~0 and g{j ‘”(iB %) =0, we have a contradiction. Hence g&j ‘”(z’B ;,X) has no zeros
and so g{j_”(iﬁj ,x\)‘ > 0. Similarly one sees that g[,j‘ll(iBj ,»x)>0. In Eq. (4.14) Uis a Dar:
boux transform of ¥, where in the generic case the parameter a needed to uniquely specify U
has been fixed. Hence a will be suppressed in our notation.

Theorem 4.1: The potentials U{j](x) for j=0,..../" are of the form (3.6), and the values
of €, and €, are the same for all j. Moreover, k=0 is a bound state (half bound state) for
Ulti(x), j=1,.,4 if and only if k=01is a bound state (half bound state) for U(x).

Progf: From Theorem 3.2 we know that U is of the form (3.6). Let us use induction and
assume that Ul/~(x) is of the form (3.6) with €;=1. From Egs. (4.15) and (4.16) we have

. . y'~'(x) y’-(x) 2 . y'-(x) 2
ytil —plji-1 ol 7 J = [j-1] ] J . 4,
(x)=U (x) j( ) j( ) U (x) 233-{—2[ j( )] (4.18)
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We have

yi(x) [e PPy’
yi(x) e 7Prpi(x)

+B;. (4.19)

From the proof of Theorem 3.2 we know that the Schrddinger equation with the potential
Ul/=U(x) has a zero-energy solution uP —U(x) which is asymptotic to 1/x as x— + «0. Hence
there is an x, such that u}/~"(x) >0 for x> x,. In analogy to Eq. (3.27), let

(o=t )
®;(x)=——7——, X>Xo,
J ugl_ll(x) Y

and define

pj(x)=yi(x) —w;(x)y;(x), x>x. (4.20)

Then p j(x) is a “local” Darboux transform of y j(x) on the interval x, <x < oo. As seen from
Egs. (2.21), (2.22), (2.23), and (2.25), for x>x,, p;(x) satisfies the Schrédinger equation
P — Bzz// V;(x)1, where

V(x)=20,(x)*— UV~ (x) =0 ,;(x)*—a}(x) € L}(xq, ). (4.21)

Defining ?j(x) =0 when x <x;, we can extend p;(x) to all of R as a solution of the Schro-
dinger equation with the potential ¥;(x). Then we have

p;(x)=a,e Prml (1B, x) 4+ a,Prml I (iB; x),
where a, and a, are suitable constants and mi/1 and ML are the solutions of Egs. (1.5) and
(1.6) with the potential ¥;,. We have (Lemma 6, p. 156 of Ref. 10) that miV (iB; ,x),
[’]'(zﬁl,x) — 0as x— o0 and m[’]'(zﬁ ), ~[’]’(sz, ) € L (R). Therefore, we obtain
[e7B7p;(x)]' =0, X—+o, (4.22)
[e=87p;(x)]' e Li(R). (4.23)
From Egs. (4.17), (4.20), and (4.21), we obtain

[e=%; ()] +[0;(x) +B;1 [e7Piy;(x) ) =w,(x)%eFry;(x),

and hence
[e%79;(0] 00 (e 0]
e By (x) ~ 0;(x)+B; [w;(x)+B;1le ™ ;(x)]
Co(x)? ey(x)?
B, Bjlo,)1B,] 1) ¥ (428
where

S (0, 7101
7= [wj(x)+Bj][e—Bjxyj(x)].
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Since y;(x) >0, we can find 5>0 such that e~#*y i(x) > & for all x. This follows from Eq.
(4.16) and standard asymptotic results since, by Eq. (3.6), U{j””eLl, g[,j_ll(iBj ,x) >0 and
e‘Bixg[,f“‘](iBj,x) ~ lasx— —oo and gl,j“”(iBj,x) = ¢ 4 o(f%) as x> + oo for some
¢>0. Hence, by Egs. (4.22) and (4.23), we have g€ L}(xo,oo) and that g(x) -0 as x— + o0.
Using Eqgs. (4.24) in (4.19), we obtain

2
=203(x) +Bj+2z(x), (4.25)

[y}(x)
yi(x)

where the remainder ze L{ (xg,00). Substituting Eq. (4.25) in Eq. (4.18) and using Egs. (3.30)
and (3.6), it follows that on the interval x > x,, Ul/(x) is of the form (3.6) and that € =1
Thus €, does not change if we add a bound state. Next, returning to the beginning of the proof,
we assume that €, =0 for U/~ !(x), which means that U'/~!e L!(x,, ). Then, for x> x, the
proof is essentially the same as that in the L{ case (Theorem 2, p. 167 of Ref. 10). We find that
wjeL}(xo,oo) and a)j(x)—>0 as x— + co. Thus y;/yj € L}(xo,oo) and hence U“]eL}, and
€,=0. A similar analysis can be given on an interval x < x, where x; is sufficiently negative. It
follows that €, does not change even if we add a bound state. This proves the assertions
concerning the form of Ut/l(x). As for the behavior near k=0, we note that the Jost solutions
corresponding to Ul(x) are given by (Theorem 2, p. 167 of Ref. 10)

yix) .
.Vj'(x) gl thox)

g (kx) =

[g}"‘”’(k,x)— , (4.26)

k+iB;

, j , (x) ..
U1 () =t | gl i1 ey 257 111
&’ (kx) k1B [g, (k%) e)) g (k,x)

Suppose that the parameter a that specifies U satisfies 0<a < o0. By Theorem 3.2 and Propo-
sition 3.1 this means that €,=¢,=1 and that k=0 is a bound state for U. Then we claim that
the limits

lim ikg} /1 (k,x) =p{ 1 (x) and lim ikgl /) (k,x) =pl/) (x) (4.27)
k-0 k-0

exist, and that uyj](x) and ,uV](x) are nontrivial zero-energy solutions of Eq. (3.8) with
potential Ull(x). The relations (4.27) may also be differentiated. Moreover, yy](x) =-1/x
+0(1/x) as x— 4+ oo and ‘ugj](x) =1/x+0(1/x) as x—+ — . For j=0 this is clear from Egs.
(2.30) and (2.31). Note that y;(x)/yj(x) — B; as x— + o and hence the asymptotic
behavior of gi//(k,x) is determined by that of g/ _lf(k,x), and similarly for gl/l(k,x). Using
Wronskians, we find that [,ugjl(x);u[,j](x)]=—[,uP"l](x);p[,j“l](x)]. From Egs. (2.30) and
(2.31), we know that [;Lsol(x);yﬁol(x)]=0, and hence the induction gives us [,uV](x);,u[,j](x)
]==0 for all j=0,...,.4" and so ,uV](x) and ,uV](x) are linearly dependent. Therefore, k=0is a
bound state for U/1(x) if and only if it is a bound state for U. In a similar way, it can be shown
that if a=0 (a= w0 ) or in the exceptional case, then k=0 is a half bound state for Ut (x),
=0, A" m

The relations Eqgs. (3.33) and (3.34) can be generalized to the case with bound states.
Since ,uw (x) and ul/l(x) are linearly dependent we can set wh(x) =b j,uV](x). In the generic
case, from Egs. (2.30) and (2.31) we have by=a; then by induction we obtain b;= —b;_; and
hence

o omlkxa) | p )
lim

=lim =(—
k=0 n,(k,x;a) k-»O.uE‘/V](x)

1) a.
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Furthermore, if 0 <a < w, setting p;(x) = y;(x)/yj(x), from Egs. (4.26) and (4.27) we have

0 . 1 © , , , ,
f p ) dx = f =17 o) — p =) 1 [ =107 () — p e} 1 ) 1,
— 00 ] -0

and hence, by using integration by parts, this is equal to

1 @ . . ; .
7 | MY = pipd ) — g Y (0
Jj —®
L (R ST DR ' 2
——z | WA ut G — g
Jj —

— J'“’ u$ =1 (x)? dix.
Now ul(x) = —ac,m(x;a) by Egs. (2.30) and (2.31), and so, by Eq. (3.34)

1
T2 b )2 dx

ac,.

Later we will need the expressions corresponding to Egs. (4.8)-(4.13) for the potentials
U(x). In analogy with Eq. (4.5) we introduce the norming constants

-1

V= ( f_: 81(iB;x)? dx) :

and in analogy with Eq. (4.6) we define

2(—1)/-1g, ( ﬁ Bi+B;

vj ki Bi—B;

¢= )T(fﬁj), j=1lu AN (4.28)

Suppressing the parameter g, in analogy with Eq. (4.8) we then define

2;(x) = (= 1) 1§(iB; x) + £&,(iB; x). (4.29)
In Egs. (4.9) and (4.10) replacing }' 7 ]",, w, by &, &,, z,, respectively, we obtain

. d?
U(x)=U(x)—2Ezlog Q[zy,00024], (4.30)

A )Q[zl,...,zw,gl(k’x)]’ (4.31)

— — ; ‘M
gi(k,x)=(—1) (j=1 k+iB; Qz1502.47]

AN )Q[zl,...,z_,y,g",(k,x)]

—#
g (kx)=F ( H Qfz,....24]

: 4.32

Theorem 4.2: Suppose that the scattering matrix in the Riemann—Hilbert problem (1.18)
corresponds to a potential ¥ L} with .#" bound states. Then, in the exceptional case there is
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a (24")-parameter family of solutions of Eq. (1.18), the parameters being the norming con-
Stants Ky,...,k 3, Vi,V 4. In the generic case, there is a (24#7+ 1)-parameter family of solu-
tions of Eq. (1.18), where the additional parameter is a.

Proof: The scattering matrix in Eq. (1. 18) uniquely determines the potential V whose
scattering matrix S(k) is in Eq. (4.1). Then using the positive constants a; in Eq. (4.8) and
/ in Eq. (4.29) for j=1,....4", we construct the potentials ¥ (x) = V[*/V](x) as in Eq. (4.11)
and Ulx) = U”/](x) as in Eq. (4.30). In the generic case the additional parameter q is
already present in U%x). The corresponding Jost solutions given in Egs. (4.12), (4.13),
(4.31), and (4.32) then determine the solutions m(k,x) of Eq. (1.7) and n(k,x) of Eq. (1. 12)
Hence the solution of Eq. (1.18) is given as in Eq. (1.15).

We conclude this section with a remark about the determinant of M(k,x) when there are
bound states. From Eq. (3.32) we obtain

A A
H1 (K2 +B%) T (—k)det M(—k,x) =T (k)det M(k,x) _I[1 (R+B5).
j= =

By Liouville’s theorem, both sides must be equal to a polynomial of degree 24" in k, where the
leading term has coefficient 1 and the remaining terms have real coefficients depending on x.
Moreover, by Eq. (3.32) this polynomial is even. Thus we have

kZ/V+ e (x)kH
T(k)n 1(k2+32)

det M(k,x) =

Hence, det M{k,x) vanishes at the zeros of the numerator, at least .4~ of which must lie
in C*.

V. SOLUTION OF THE RIEMANN-HILBERT PROBLEM

Theorems 3.3 and 4.2 guarantee the existence of solutions of the Riemann—Hilbert problem
(1.18) when the underlying scattering matrix comes from a potential in L. This raises the
question whether the solutions found there constitute all solutions that can be associated with
a Schrodinger equation. A priori we do not want to restrict the potentials ¥'(x) and U(x) that
can possibly arise as a result of such a solution of Eq. (1.18), except, of course, for minimal
requirements which insure that the differential equations (1.7) and (1.12) along with the
transmission and reflection coefficients are well-defined. In particular we will not a priori
restrict the rate of decay of the potentials. Furthermore, we will require that M(k,x) =0(1/k)
as k—0, as it is the case for the solutions constructed in the previous section. If this condition
is weakened, the problem gets much more complicated and we will not consider it here. The
smoothness of M (k,x) in the variable x will not be specified at the outset, but of course we will
naturally have to make some assumptions if we want to associate M(k,x) with a Schrédinger
equation. From a practical point of view, since the solution of the Riemann-Hilbert problem
allows us to solve the inverse scattering problem by recovering ¥ (x) from m(k,x), it is of
interest to know whether the two components of m(k,x) automatically yield the same poten-
tial. The condition that according to Eq. (1.9) both components of m(k,x) must lead to the
same potential is known as Newton’s “miracle” condition.! A similar question can be asked
with regard to n(k,x) and U(x).

Theorem 5.1: Suppose that the matrix G(k,x) in Eq. (1.18) is associated with a potential
Ve L} with no bound states. Let M(k,x) be any solution of Eq. (1.18) such that

(i) M(k,x) is analytic in C* " and continuous in C*\{0} for each x,

(ii) M(k,x)—-T as k— o in C* for every x, and M(—k,x) = M(k,x) for keR,

(iii) M(k,x)=0(k"") as k—0 in C* for every x.
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We then have the following: .

(a) Let V(x) be generic. Then m(k,x)=M(k,x)1 satisfies Eq. (1.7) with V(x) as the
potential. Furthermore, there exists a potential U;(x) corresponding to #;(k,x) if and only if
there exists a potential U,(x) corresponding to #,(k,x) and then U,(x)=U(x)=U(x;a) for
some a€[0, o], where U(x;a) is a Darboux transform of V(x).

(b) Let V(x) be exceptional. Then there exists a potential V;(x) corresponding to m,(k,x)
if and only if there exists a potential ¥,(x) corresponding to m,(k,x) and then V) (x) =V (x)
=V (x). Furthermore, there exists a potential U,(x) corresponding to n;(k,x) if and only if
there exists a potential U,(x) corresponding to n,(k,x) and then U;(x)=U,(x)=U(x) is
unique. The associated solution M(k,x) of Eq. (1.18) is continuous at k=0.

Proof: (a) Let My(k,x;b) denote a particular solution of Eq. (1.18) as constructed in Sec.
ITI, that is, my(k,x):=My(k,x;b)1 obeys Eq. (1.7) and ny(k,x;b):=IM,(k,x;b)é obeys Eq.
(1.12) with the potential U(x;b) for some b&[0, «]. Consider b to be fixed. Then My(%,x;b)
provides us with a matrix factorization of G(k,x), namely,

G(k,x) =My(—k,x;b) [qM,(k,x;b) ~q], (5.1)

where the first factor has an analytic continuation to C~\{0} and the second factor (in
brackets) has an analytic extension to C*\ {0}. In the generic case, the factor My( — k,x;b) has
a 1/k singularity at k=0 while the second factor is continuous at k=0. In the exceptional case,
both factors are continuous at k=0. Let M(k,x) be an arbitrary solution of Eq. (1.18). Then
we can write Eq. (1.18) as

Mo (—k,x;b) ~'M(—k,x) =qMo(k,x;5) ~"M(k,x)q. (5.2)

Since My (&,x;b) ~!is continuous at k=0 by Theorem 3.3, both sides of (5.2) are of O(1/k) as
k—0. Hence, by a variant of Liouville’s theorem, both sides of Eq. (5.2) must be equal to
(i/k)A(x) +1 for some matrix A(x). By Eq. (5.2) and assumption (ii), we have that qA(x)q
= —A(x) and A(x) = A(x). Therefore, A(x) must be of the form

A(x) B(x)

A= By —d)|’

where 4(x) and B(x) are real functions. Thus, by Egs. (1.16), (1.17), and (5.2), we have

i£(x)
m(kax)=m0(k:x)_ k Jn()(k’x;b)’ (5-3)
where {(x)=A4(x)+ B(x) and
iT(x)
n(k,x;b) =no(k,x;b) ——— Imo(k,x), (5.4)

with 7(x) =A4(x) — B(x). First take V(x) to be generic. Then we conclude that {(x)=0 in
view of assumption (iii) and the fact that ny(k,x;b) has a 1/k singularity at k=0. Hence
m(k,x)=my(k,x) and the first part of assertion (a) is proved.

To prove the second part of (a), we let

Ulx) ©

U0="0% v

s
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and suppose that n(k,x)=JM(k,x)é is a solution of Eq. (1.12) with the matrix potential
U(x), namely,

n” (k,x;b) +2ikdn’ (k,x;b) =U(x)n(k,x;b). (5.5)

Since ny(k,x)—>1 as x—»+ o« and n,(kx)—1 as x— — o0, we must have that r(x) -0 as
x— +o0. Set Up(x)=U(x;b) and p,(x)=p(x;b), where p(x;b) is defined in Eq. (2.19).
Substituting Eq. (5.4) in Eq. (5.5) yields

i

k

i

i
' Imy—
0 k

i 2
Ubno—‘ic‘ T Jmo——

& TJVmo-f-ZT’mo:Uno—

TUImy. (5.6)

Using that my(k,x) -1 and no(k,x;b) —Task— + o0, from Eq. (5.6) we obtain
(Up+27)I=U. (5.7)

Hence Uyx) =U,(x) =Uy(x) +27'. Set U(x) =U;(x). From Egs. (2.28) and (2.29) we have

1
no—mo=71z J[my— pymyl, (5.8)

and from Proposition 2.1, we have
my(k,x) -0 and ni(kx;p) -0, k- +co. (5.9)
Using Eqs. (5.7), (5.8), and (5.9) in Eq. (5.6), we obtain
27 pp+ 1"+ TV =7[Up+27'].
By using Eq. (2.24) we get
27 pp+-1" = —271pp+27'T,
and hence by integration, we have
= —21py+7 +c, (5.10)

where ¢ denotes the integration constant. Since 70 as x— 4- s, we have 7/ -0 and thus ¢=0.
It then follows from Eq. (5.10) that p,(x) —7(x) satisfies the Riccati equation

(pp—7)' + (Pb_"')2=Pl':+P%= V.

Therefore p,—r must be of the form ¢’/y where ¥>0 is a solution of Eq. (2.5). In other
words, p,— 7= p, for some a with 0<a< «, and by using Eq. (5.7), U = U, + 2p;, — 2p,
=V — 2p, = U,. Part (a) is proved.

In the exceptional case we cannot immediately conclude from Eq. (5.3) that £(x) =0 since
ny(k,x;b) is continuous at k=0. Letting

Vix) O

V= 6 v

E

and substituting Eq. (5.3) in

m” (k,x) +2ikIm’ (k,x) =V (x)m(kx),
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and using an argument similar to that following Eq. (5.5), we obtain
(V+2£)I=V, (5.11)

&'=2%p+8+c, (5.12)

where c is the integration constant and p(x) = my,(0,x)/m;(0,x) with my,(k,x) being the
first component of the vector mgy(k,x). From Eq. (5.11) we obtain V;(x)=V,(x). As in the
case of Eq. (5.10), since £(x)—0 and p(x)—0 as Xx— =+ 0, we must have ¢=0. Then Eq.
(5.12) becomes a Bernoulli equation and apart from the trivial solution, its general solution is
given by

mq, (0,x)*

£x) = [amo (O dy’

(5.13)

where ¢ is an arbitrary constant. Since my;(0,x) approaches nonzero limits as x— =+ co, the
denominator in Eq. (5.13) has a zero. Hence {(x) =0 is the only acceptable solution of Eq.
(5.12) because otherwise m(k,x) given in Eq. (5.3) cannot be continuous in x. This proves the
assertion concerning m(k,x) of part (b). As for n(k,x), an argument similar to that used in the
generic case again shows that p,~—7=p, for some a. However, since p,=p, for any a in the
exceptional case, we have 7=0. Hence U(x) is uniquely given by U(x)=Uy(x). In the
exceptional case since 7(x) =£(x) =0, it follows from Egs. (5.3) and (5.5) that any solution
M(k,x) of Eq. (1.18) satisfying (i)—(iii) must be equal to My(k,x); hence in the exceptional
case (i)—(iii) imply that M(k,x) is continuous at k=0. Thus the proof is complete. |

Now we turn to the case when ¥ has ./ bound states with energies 8% < **- < —p}. In
analogy with Eq. (1.18), we introduce the Riemann-Hilbert problem

M(—k,x)=G(kx)gM(k,x)q, keR, (5.14)
where
. L . T (k) — R(k)ek
e Sidkx —iJkx __ . . .
G(k,x)=e""IS(k)Je =|_ f(k)e—2ks Fk) ],

with S(k), T(k), R(k), and L(k) as in Egs. (4.1)=(4.4). In (5.14) we look for M (k,x) which
is continuous in k for k€ R\ {0} and has an analytic extension in k to C* such that M (k,x) -1
as k— o in C* for each x.

Put
M(k’x)=l[’h1(k,x)+’il(k,x) Iﬁl(k,x)—'?(k,x) ’ (5.15)
2 | (kx) — R (kx) i, (kx) + 7, (kx)
so that
(kx) =M(kx) T, (5.16)
i (k,x) =IM (k,x)é. (5.17)

'I:hen m(k,x) and 7 (k,x) are solutions of Egs. (1.7) and (1.12) with the potentials I}(x) and
U(x), respectively. The parameter a will be suppressed. By Egs. (3.31) and (4.2), we have
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. . k+iB;
detM(k,x):v1 =(H —t@ ;,
T (k) j=t1 k—iB;) T(k)

and hence M(k,x) is invertible for k e ET\{O}. The solution of the Riemann-Hilbert problem
(5.14) provides us, as in Eq. (5.1), with a factorization of G(k,x), namely,

Gk,x) =M(—kx)[qM(kx)"'q], keR. (5.18)

In the generic case we can without loss of generality assume that 0 <a < «, since the only
purpose of introducing M(k,x) is to obtain a factorization of the form (5.18). Note that
G(k,x) and G(k,x) are related by

N .
k+iB; .
Gkx)=| Il -———B—’ JG(kx) 7. (5.19)
j=1 k—iB;
It is convenient to define
N(k,x) =F"M(k,x)I". (5.20)

Inserting Eq. (5.19) in Eq. (1.18) and using Eqs. (5.18) and (5.20), we obtain

VA N
( II (k—iBj))N(—k,x)“M(—k,x)=( I (k+iB,-))qN(k,x)“M(k,x)q, keR.

=1 =1
’ ! (5.21)
As in the case with no bound states, we impose the condition that
M(k,x)=0(1/k) as k-0 in CT. (5.22)

By Theorem 3.3, l\vd(k,x) —1 and thus N(k,x) —1 are continuous at k=0. Hence, as in the proof
of Theorem 5.1, using Liouville’s theorem we conclude that both sides of Eq. (5.21) must be
equal to a matrix function in k of the form

N 41 i J
P (kx)=k" |1+ ]Z,I (E) Ai(x) ] (5.23)
Thus, by Egs. (5.21) and (5.23) we obtain
™ A +1 i J

Since N(—k,x) = N(k,x) and M(—k,x) = M(k,x) for keR, from Egs. (5.21) and (5.23)
we conclude that the matrices A ;(x) are real and that A ;(x) =(— 1)/qA ;(x)q. In other words,
A ;(x) is of the form

A'- X )= B( ) [( ) , J ¢€ven, 5.25
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where Aj(x) and Bj(x) are real functions. Let yj(x)=(—1)j[Aj(x)+Bj(x)] and Gj(x)
=(—-—l)J[Aj(x)—Bj(x)]. Then, using Egs. (5.25) and (5.26) in Eq. (5.24) we obtain

N +1 )
i+ Z ( )y,(x)m] (5.27)

. K
m(k,x)=M(kx)1 =m N(4,x)

N +1

J
o4 _Z ( )G(x)er] (5.28)

n(ksx) =m(k)x)e=m JN(k,x)

Looking at Eq. (5.27) as k—0, using Eqs. (5.20) and (5.17), we see that

s -1
m(k,x) =i( I1 B,-) Y1 ()IF Ui (k,x) + O(1/k).
j=1
In the generic case, since 7i(k,x) has a 1/k singularity at k=0, Eq. (5.22) is violated unless

Y41(x)=0. | (5.29)

In the exceptional case, Eq. (5.22) is not violated even if we assume ¥ -, ,(x)5=0. However,
we will assume Eq. (5.29) also in the exceptional case due to the reason given following the
proof of Proposition 6.3. The situation is different with respect to 8 ,-,;(x); from Eq. (5.28)
we see that 6 ,-, 1(x) can be nonzero without violating Eq. (5.22).

Using Egs. (5.16), (5.17), (5.20), (5.27), (5.28), and (5.29), when .#" is even we have

j%e N2 g i\ A2 g i\ 21
m(k’X)=m[m(k’x)(l+j§1 (;) n,(x))+Jn(k,x) 121( ) n,»_l((:;l,)

k’V N/2 i 2j N2 i 2j+1
n(kx)= =B n(kx)(1+ 2 ( ) ezj(x))+Jn“z(k,x) > (—) 62,+1(x)],
1(k+iB;) j= =0 \k (5.3D)

and when .4 is odd we have
W12 [\
Akx)| 1+ X (—) Yzj(x))
=1 \k

(W =-1)/2 i 2j+1
+JIm(k,x) Z (z) 72j+1(x) ,
j=0

M) =17 % +1B))
j

(5.32)

|24 (A +1)72 2j
n(k,x)=m [m(k,x)(1+ jgl (7(‘) 62]-(.76))

(A =1)/2 2j+1
+Ii(kx) X (%) 6j1(x) |- (5.33)

=0

In Eq. (5.32) the first summation is zero when .#"=1. We now insert Egs. (5.30) and
(5.32) into Eq. (1.7) and insert Egs. (5.31) and (5.33) into Eq. (1.12). We also use Eqgs.
(2.28), (2.29), (3.3), and (3.4) to replace 7i(k,x) and 7’ (k,x) by their equivalents in terms of
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m(k,x) and n1’ (k,x) and apply Eq. (2.24) in subsequent calculations. Since 71(k,x) = f+o( 1)
and r’ (k,x) =0(1) as k— =+ o, we can then separate the terms of O(1/k") and o( 1/k") for
n>0. Hence we obtain for j>1 the following necessary and sufficient conditions for m(k,x) and
n(k,x) to be solutions of Eqs. (1.7) and (1.12), respectively. In Egs. (5.36), (5.37), (5.43),
and (5.44) the upper (lower) sign refers to A even (odd).

v V(x)—2y,(x), 4 even (5.34)
)= U(x)—2y|(x), A odd, '
(}(x)—29{(x), A even -

=1 35

vix) [V(x)—29{(x), A o0dd. (5.35)

=273+ 721+ 2Y1¥2j—1F2(¥2;-19) =0, (5.36)

—265;,1467,+2616,;F26;,5=0, (5.37)

Yo+ 20172 — 25 1+ [201¥2j 1+ V51— 2(¥2;1P)'1p=0, A even,  (5.38)

Y1+ 2172 m1—2Y3+ 2V, + 201722+ V32— 272, 2P 1 P=0, /VOdd’(S 39)

6y _1+2610,;_1—205;-+26,; 1’ + (2016, _»+63;_,—263;_1p1p=0, /VevenES4O)

6§’j+20{62j-—26§j+1+[20{02j_1+0§’j_1—2(02j_1ﬁ)’]ﬁ=0, A odd, (5.41)
where p=j%'/¥ in analogy with Eq. (2.19) and
¥(x)=m(0,x)+an,(0,x), (5.42)
in analogy with Eq. (2.18). Using Eq. (5.36), we can reduce Eqgs. (5.38) and (5.39) to
— 29341+ V5 2V 12 = 2Y2,;p =0, (5.43)
and using Eq. (5.37), we can reduce Eqgs. (5.40) and (5.41) to
—205;+67;_142610,;_1+2(6,;_1p)'=0. (5.44)
In Eqgs. (5.36), (5.37), (5.43), and (5.44) we can let j range from 1 to + o if we assume that
y;(x)=0 for j >.#" and 6;(x) =0 for j >._#"+1. Note that this convention is consistent with
Eq. (5.29). Since m(k,x), n{k,x)—1 as x— + 0, m,(k,x}, n(kx)—1 as x—— , and also

m}(k,x), nj(kx) — 0 as x—+ o and m,(k,x), n/(kx) — 0 as x—» — o, we see from Egs.
(5.30)—(5.33) that the following boundary conditions must be satisfied:

0 1(£0)=0, (5.45)

and for j=1,..../,,

0i(+o)=r;(+0)= 2 By B (5.46)
<---<ij

iy
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0)(—w)=y(—)=(~1)] 2 BB, (5.47)
<<y

y}(x),@}(x)—»O as X— =+ 0. (5.48)

From Egs. (2.30), (2.31), (5.31), and (5.33), we find that

() =i ik (yx) =— W0 0516, (x) (5.49)
x)=lim ikn,(k,x) = — —m,;(0,x x) |, .
129 o ! Hﬁlﬂj X’(x) ! N+ 1

o (=D efpx)
#r('x)=}cli% lknr(k,x):r[‘j/.’;lﬁj [_ Xv(x) +mr(0ax)6./lr+l(x) H (5'50)

where u,(x) and u,(x) are solutions of " =U(x)4), and ¥ is the quantity in Eq. (5.42). From
Eqgs. (2.15), (5.49), and (5.50) we obtain

e(—1)" X
[, ] DAV AL (600,141 — 04844 1— 61— 204017411 (5.51)
=1P;

The Wronskian in Eq. (5.51) is independent of x, and using Eqs. (5.45)—(5.48) we obtain

001 11— 040y 11— 8y 1—2P6.461r 41 =0, (5.52)

and thus u,(x) and u,(x) are linearly dependent. Letting

0.4-(x)
w =, 5.53
from Eq. (5.52) we obtain
w —2pw=1. (5.54)
For 0 <a < w0, ¥(x) grows linearly as x— + o0, and we can write the solution of Eq. (5.54) in
the form
- 2
w(x)=;z(x)2U o) dyrel, (5.55)
where ¢ is an arbitrary constant. Note that Eq. (5.52) is satisfied also when 6 ,-, | (x) vanishes
identically.
Proposition 5.2: v 4 1(x) = 6 4,,(x) = 0if and only if N{k,x) " 'M(k,x) is continuous
at k=0.

Proof: From Eq. (5.24) it is seen that the continuity of N(k,x) " 'M(k,x) at k=0 is
equivalent to the continuity of the matrix P ,-(k,x) in Eq. (5.23), which holds if and only if
A ;- 1(x) = 0. This is equivalent to ¥4, (x) = 6 4, ,(x) = 0. u

VI. FURTHER ANALYSIS WITH BOUND STATES

In this section we construct the solutions of the Riemann—Hilbert problem (1.18) by using
the norming constants for the bound states.

Proposition 6.1: For the solutions n(k,x) corresponding to the potential U(x) in Eq.
(4.30), we have that N(k,x) ~'M(k,x) is continuous at k=0 and hence 0y 1(x) =0.
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2680 Aktosun, Klaus, and van der Mee: Riemann-Hilbert problem for 1-d Schrédinger equation

Proof: By Proposition 5.2 it suffices to show that the solution M(k,x) of the Riemann—
Hilbert problem (1.18) associated with U(x) has the property that N(k,x)"lM(k,x) is con-
tinuous at k=0. Considering the (1,1) entry, from Eqs. (1.15), (3.31), (5.15), and (5.20) we
have

T(k)

[N(k,x)_lM(k,x)]11=——4—- (A (kx) + Az (kx) +A3(k,x) ], (6.1)

where
Ay=m,mFmm,, Ay=fmp+m nEfimaemn,, Ay=#.nFin,,

and the upper (lower) sign applies if .#” is even (odd). Clearly, the terms T (k)A,(k,x) and
T (k)A,(k,x) are continuous at k=0. If /" is even, in terms of g = ¢**n and § = Y% and
using Egs. (4.31) and (4.32), we obtain

N v e
L3 nn,=g g —( II ! ) (=H
7 ny=881—8i18= = k—{-lB] \Q[Zl,...,ZVV]

{gvrQ[zl’"':z./Vrgvl] —gvl‘Q[zlam’z.,Vygvr] }:

where z; is as in Eq. (4.29). Using Egs. (4.9) and (4.10), expanding the determinants
Qfzy,....2y &) and Q[z,,...,z ;- ,&,] by their last columns and using the fact that g,(k,x), §,(k,x),
and their derivatives are of O(1/k) near k=0, we obtain

‘Q'[zl 9-'-’Z.A/9gvl(k’x) ] =gvl(er) Dl (x) —§;(k,x) Dz(x) +O(k)’
where we have defined

z .7, z oz,
Di(x)= : : and D,(x)=

Bz - Bhaw Blzy - Blay

Similarly, as k—0 we obtain

Q[Zl9---’z/’gvr(k’x) ] =gvr(k:x)D1(x) ’—gv;(k,x)DZ(x) +0(k)’

and hence

As(k -—ﬁ ! (_i)WDZ(x)“k ¥ (kx) — 8, (k)& (k. Ok
3(kx) = o KT8, Olzzs] [8:(k,x) g, (kx) —&,(k,x)&] (kx)]+O(k).
As in Eq. (2.16), we have

2ik

(k)

gl(k,X)g';(k,X) _gvr(k:x)gv; (k,X) = [gvl(k;x);gvr(er) ] =

and hence Iv"(k)A3(k,x) in Eq. (6.1) is o(1) as k—0. The argument for .#” odd and for the
other entries of the matrix N(k,x) ~!M(k,x) is similar. Thus the proof is complete. ]

Theorem 6.2: The Egs. (5.36), (5.37), (5.43), and (5.44), with the boundary conditions
(5.45)-(5.48), have exactly one solution satisfying 64~ ;(x) = 0. The potentials ¥ and U
obtained from Eqs. (5.34) and (5.35), respectively, are of the form of the potentials V1 and
UVin Egs. (4.7) and (4.15).

J. Math. Phys., Vol. 34, No. 7, July 1993

Downloaded 15 Aug 2002 to 129.74.199.113. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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Proof: By Proposition 6.1, a solution satisfying 6 ,-, ,(x) = 0 exists. So it suffices to prove
the uniqueness. Then it follows that ¥ (x) and U(x) must be of the form (4.7) and (4.15) with
Jj= N, respectively. Define the ratios

fr(lBS!x)
fl(IBs,x)

cy= (6.2)

&:(iBs,x)

g iB) (63)

s=
which are related to the constants a, and # of Egs. (4.6) and (4.28), respectively, by

s
CS=L, (6.4)

o
(__1)./1/—5

d="—p

(6.5)

Note that Eq. (6.4) can be obtained by using Egs. (4.2), (4.6), and the relation (pp. 286-287

of Ref. 13)
e iy (6.6)
* e R \T ) )],y '

Similarly one can derive Eq. (6.5). Inserting Eqgs. (5.30)-(5.33) with 6 ,-,,(x) = 0 in Egs.
(6.2) and (6.3), for even ¥~ we obtain

,(iB,,x) [ 1 +z§" 2y (x)/BY] —n,<zﬂs,x)z“’”’2 Yaj1(x)/BY !

~2Bx
(B, x) [1+ 2777 v2;(x) /B + (1B )] E vay 1 (x) /BT

ce (6.7)

(B, x) [ 1+ 2727 0,,(x) /B — 11, (1B x) ZSL 557 041 (x) /B

—2Bx
d O e B (1477763, 0) /BT ] 7 7By ) S D706, G /BT

(6.8)

and for .4~ odd we obtain

7, (B, ) [1+ 250772 9y (%) /B2 1 — i (B, X) ZSL5 D7 241 (%) /B!

T TR B +z‘” D72 s VB T+ (B2 2 V7 ¥y 1 KV /BT
(6.9)
de-B5_ 7, (i85, %) [1+ 252707 0,,(x) /B2 1 — (1B, %) 2525707 0541 (x) /BH
T T B ) (142577 77 6, () /B + i (iBr) 2y D7 6y 1 (x) /BT
(6.10)

If we view the constants ¢;, s=1,...,.4 as given, then Egs. (6.7) and (6.9) each constitute a
system of .#~ equations for the .#” unknowns y;(x),...,¥ 4-(x). Similarly, if the constants d
s=1,..., 4 are given, then Eqs. (6.8) and (6.10) each constitute a system for the unknowns
0, (x),..., 84~ (x). Now let .#" be even and consider the system in Eq. (6.7). Define
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N7/2

_ Y2;(x)
us(x)_ jél ?j] ’
N2
_ Y2j-1(x)
vy(x) = jz.l T

Then from Eq. (6.7), we get

_ FiBs) [14 1) ] =&, (iB;.x)v(x)

@B 1+ w0 | 18 By = (6.11)

Therefore, by using Eqs. (2.26) and (2.27), we can convert Eq. (6.11) into the system

va
2 D, ;(x)y,(x)=hy(x),
j=

where
1
Ds,zj_l(X)=§7 [A;(x)—p{x)h(x)], (6.12)
1
Ds,2j(x)=—52'}‘ hy(x), (6.13)

with §(x) being the quantity defined before Eq. (5.42) and

ho(x) =c,f (1B %) — F (1B, ).
Let D(x) denote the matrix with entries given by Egs. (6.12) and (6.13). We want to show
that det D(x)=£0. Define the matrix E(x) with entries
Eyj_15(x)=—=DL 5 ,(x)=B7"+"h(x), (6.14)

Ep;o(x) =D 451 (x) =B 72 [h](x) — p(x) A (x)], (6.15)

where the superscript T denotes the matrix transpose. Then det D(x)=det E(x) by using
standard properties of determinants. We see that when we compute det E(x) the terms con-
taining J(x) can be dropped without changing the value of the determinant. Comparing the
entries of E(x) with those of the matrix Q in Egs. (4.9) and (4.10), we obtain

N
det E(x)=( II 3;/’”)0[111,...,;:/], (6.16)
j=1

where QlA,,...,h,] is the determinant defined following Eq. (4.8). We have (Ref. 10)
Qfw;,...,w 41> 0, and hence det D(x)=540. Similarly, again for even .4/, considering the system
(6.8), we let

A2 0,,(x) W 03 +1(x)

ATE 0T A e

Then, by using Eqgs. (3.1) and (3.2) we obtain

p:(-x) =
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N
2 Fy (0)6,(0)=r(x),
J=

where

1
Fsj;_1(x) =5 [ (x)+p(x)rs(x) ],

1
Fooi(x)= g5 ry(x),

r(x) =g.(iBs,x) —d; &1(iB;,x).

Proceeding as in Egs. (6.14)~(6.16) one obtains det F(x)0.

The proof when .4 is odd is similar to that when ./ is even. Thus, in both cases we find
that given the constants ¢, and d;, there are unique solutions {y,(x),...,7,(x)} and
{6,(x),...,8 ,-(x)}, respectively, of the systems (6.7)—(6.10). [ ]

We now consider the possibility that 8 ,-,,(x)50. Thus far, in the generic case, we have
only studied this problem in detail under the assumption that w(x) in Eq. (5.55) has no zeros.
From Egs. (2.39) and (3.34) it follows that the values of the integral [* _ ¥(») ~2dy lie in
[0,1/(ac,)]. Hence in order for w(x) not to vanish, ¢ in Eq. (5.55) must be in
(— ,—1/(ac,)]U[0,« ). Later we will comment on the case when w(x) has a zero. In order
to emphasize the dependence of ¥ on the parameter a, we will write x{(x;a) =y(x)=m;(0,x)
+am,(0,x). Define

E(x)=x(xa)

f ¥(a) “2dy+c|. (6.17)

Then £(x) and y(x;a) are two linearly independent solutions of z/z”=f7(x)1,1;. Using Egs.
(2.10), (2.12), (2.39), and (3.34) we obtain

1
£(x) = (;+ac)rh,(0,x) +o(x), xX—+

emy(0,x) +o(x), x— — .

Hen:e g(;f) 18 Of the form é('x) CX(.:C,b), "llele
b a l . (6'18)

Note that the value =0 corresponds to ¢=—1/(ac,) and the value b=« corresponds to
¢=0; note also that b can take any non-negative value except a. Letting

W)
P(X,b)—é.(x) ’
and using Egs. (5.55) and (6.17), we obtain
v 4 1
p(x;b)=p(x;a)+w—(x')'- (6.19)
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Proposition 6.3: Suppose that V(x) is generic and that {0,(x),...,0 -, ;(x)} is a solution of
Eqgs. (5.37) and (5.44) such that Eqgs. (5.53) holds w1th w(x)5-0 for all x. Then the potential
U(x) is of the form (4.30). The associated potential Uis equal to U (x;b) where b is given by
Eq. (6.18).

Proof: If A4 is even, define

62/() =0yy(x),  j=1ys o, (6.20)
~ OZI(X) N -/’/‘
92j+1(x)=92j+1(x)—w—(x—)-, J=0,-..,7—1, (6.21)

where Gy5(x)=1. If 4" is odd, define
- . —1
03 11(x)=0,;1(x), j=0,.., — (6.22)
~ sz_l(x) . N —1
92j(x)=92j(x)——m—, ]=1,...,_‘i‘—. (6.23)

Note that §  v+1(x) is not defined and that ] j(x) obeys the boundary conditions (5.46),
(5.47), and (5.48) since 1/w(x) —0 as x— + 0. For .4 even, let

NI E
n(k,xb)(1+ 21( ) 62,-(x))
j_

k./V
e TR
J

(N =2)72 2j+1
+Jﬁ1(k9x) 'ZQ (']E) 62j+1(x) ’ (6-24)
j=
and for .4 odd, let
(A —1)/2 2]~
kx;b) = - n(k, 1 =1 0,:(x
n(kx;b) —7——[17=1(k+13j) [m( X)( + IZ.I (k) 5 ))
(N —1)72 2j+1
+ 35 (k,x;b) 20 (E) 6j41() |- (6.25)
i=

In other words, n(k,x;b) is of the form (5.31) and (5. 32), respectively, where the parameter

of the Darboux transformation is b, 8;(x) is replaced by 6,(x) and 6 .-, ;(x) = 0. Let n(k,x)

denote the solution of Eq. (1.12) associated with the glven solution {6;(x),...,0 4, ;(x)} of

Eqgs. (5.37) and (5.44). By substituting Egs. (6.20)—(6.23) in Eqs. (6.24) and (6.25) and

using Eqs. (6.19), (2.28), and (2.29), one finds that n(k,x) =n(k,x;b). Hence the potential

U(x) has the stated properties. [ ]
If ce (—1/(ac,),0), then w(x) in Eq. (5.55) has exactly one zero x,, where

X0 v_2
X~ “a)dy+c=0.

A similar situation occurs in the exceptional case; since x(x)=n1,(0,x) approaches nonzero
constant limits as x— + oo, we replace Eq. (5.55) by
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w(x)=n'z,(o,x)2[ fo " (0p) -2 dy-te].

Thus w(x) has exactly one zero for any c. A similar situation arises if we consider Egs. (5.38)
and (35.39) in the exceptional case and do not restrict the solutions by imposing Eq. (5.29). We
will omit a detailed analysis of the case when w(x) has a zero; a special case has been worked
out in Ref. 14,

We will end this section with a simple observation that is easily obtained from Egs. (6.2),
(6.4), and (6.6). If we require that a potential Ve L{ has support contained in a half line; i.e.,
if ¥(x) =0 for x> a, or x <a,, then, as already mentioned in the Introduction, the bound state
norming constants for ¥(x) are determined by the scattering matrix corresponding to this
potential and cannot be chosen arbitrarily. Consequently, in solving the inverse scattering
problem for such potentials, contrary to the case of potentials whose support is not contained
in a half line, the norming constants need not be specified and in fact cannot be specified
arbitrarily. To see this, note that if ¥(x)=0 for x>a;, we have m;(k,x)=1 and m,(kx)
=1/T (k) +R (k)™ /T (k) for x>ay, and hence R(k) has a meromorphic extension to C*
such that the poles of R(k) and those of T (k) are the same; furthermore R(k)e*** 0 as
k— o in C* for x>a,. Thus at the bound state k=if;, from Eq. (6.2) it follows that

R(B,)
o= (=" =—, 6.26
’ T(i8,) (6:26)
Using Eqgs. (6.4) and (6.6) we then see that the norming constant for the bound state at k=if,
is uniquely determined by the scattering matrix. If the potential vanishes for x <a,, a similar
computation gives

(6.27)

and in this case L(k) has a meromorphic extension to C* with its poles identical to the poles
of T(k), and L(k)e~***-0 as k— o in C* for x<a,. Thus, potentials whose support is not
contained in a half line cannot have bound state norming constants chosen arbitrarily. Let

1 © ;
Bz(x,y)=g f [m(kx)—1]e=* dk,

1 ) .
B (xp) =5 f [m (k) —1]e= k.

2,10,13

In the Marchenko theory of inverse scattering, the potential ¥'(x) is obtained as

dB](X,O—l— ) 2 dBr(xa0+ )

Vix)=-2 dx dx

If a nontrivial reflection coefficient R(k).has a meromorphic extension to C* with poles
identical to the poles of T (k) and R(k)e*® -0 as k— o for x>a,, then from Eq. (3.13) of
Ref. 15 it follows that

N 5 ' R )
By(x,y)= z,l 28,1 (iB,) e~ 2B m, (i, x) cs—(—l)“Vf—E% , (6.28)
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and hence for such a reflection coefficient R(k), the potential ¥'(x) vanishes for x> a, if and
only if the norming constants are chosen as in Eq. (6.26). In a similar manner, we obtain that
if a nontrivial reflection coefficient L(k) has a meromorphic extension to C* with poles
identical to the poles of 7°(k) and L(k)e~¥** 0 as k— o in C* for x<4,, then the potential
V(x) vanishes for x <a, if and only if the norming constants are chosen as in Eq. (6.27).

Vii. WIENER-HOPF FACTORIZATION

By a Wiener-Hopf factorization of the matrix function G(k,x) we mean a factorization of
the form

G(kx)=G_(kx)D(K)G  (kx), keR, (7.1)

where

k—i\A~ k—i\m
D(k)=(;‘+—i) Q++(F—}-_i) Q_.

The matrix functions G.. (k,x) are continuous in k for k€R with continuous inverses and have
analytic extensions into C*. Moreover, G, (k,x) -1 as k— « in C*. The matrices Q. are
complementary rank-one projections. The numbers p, and p, are integers called “partial
indices,” and they are uniquely determined by G(k,x). If p;=p,=0 the factorization (7.1) is
called canonical, otherwise noncanonical. For more information on Wiener—Hopf factorization
of matrix functions, we refer the reader to Refs. 16 and 17. The following results are merely
stated here since they can be easily verified using the results of the previous sections. They can
be obtained by the method of Ref. 15. In Eqgs. (5.1) and (5.18) we used a factorization that is
not of the above form since the first factor there is not continuous at k=0 in the generic case.
Instead of the factorizations used in Eqgs. (5.1) and (5.18), one can also use the Wiener—Hopf
factorization given below.

In the exceptional case, when there are no bound states, G(k,x) has the canonical factor-
ization with

G—(k:x)=M(—k)x), G-{-(kax):qM(er)_lq: D(k)=I’

where M (k,x) is the solution of Eq. (1.18) constructed in Sec. III. In the exceptional case with
bound states, we have a noncanonical factorization with factors

G_(k —(ﬁ k_i)N k
— ’x)— j=1 k_iBj (”_ yx))
L k+iB; »
G+<k,x)=(j£11 pa, )qN(k,x) %
k+iv?
D(k>=(k—f;) L

Here the matrix N(k,x) is given by Eq. (5.20). The partial indices are p,=p,=—.4".
In the generic case, with or without bound states, we have a noncanonical factorization.
We state the factors separately for 4" even and .4 odd. For .4 even, we have
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k
G_(k,x;a)=(H — )N( k,x;a) Q++( )Q_] (7.2)
= J
& k+iB; k+i
G‘r+(k,x;a)=(j1;[1 k+11)[Q+ (k )Q_]qN(k,x;a)“q, (7.3)
k+iy\"* k—i
D(k)=(k ) Q++(m)Q_] (7.4)

and for .4 odd, we have

N i k
G_(kxa)= H —IB N(—k,x;a) ;]Q4+Q-|,
j=1 Jj
* k+iB\ [ (k+i
G, (kxa)= ( ,-1;[1 k+i’) [ (T)Q+ +Q_]qN(k,x;a)*‘q
k+i\"T tk—i
v~(£ (oo

where the projections Q.. , are given by

1 :4:1]

1
Q*:Z_[s:l 1

Hence, in the generic case with bound states the partial indices are

— N, N even
PIZ= 41, 4 odd,

— N +1, A4 even
pz:l——./l/, A odd.

In the generic case without bound states, we can use Egs. (7.2)—(7.4) with .#"=0.
The sum of the partial indices of G(k,x) is equal to

T (k)

. 1 ©
p1+ pa=ind det SUC):E arg det [S(k)]| fe=5 argm _w,

where “ind” stands for the index.'® Letting ® (k) =arg T'(k) and using the argument principle
and the continuity of T'(k)/T(—k), we have

—2A4 41, generic case

2
ind det S(k)=; [®(+°°)_®(0+)]=[—2./V, exceptional case,

which is equivalent to Levinson’s theorem."!!
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Viil. EXAMPLES

The following examples have been included in order to allow the reader to check the
various statements in the article. In Examples 1 and 3, we have chosen a scattering matrix that
does not come from a potential in L} in order to avoid lengthy formulas.

Example I: Let ¥V (x) =258(x). This is the generic case without bound states. The scattering
matrix is given by

k
T(k)= PawE R(k)=L(k)=

k+1'
Then
1, x>0
k’ = j : 8.1
= (—e ), x<0, &b
i .
147 (1—é¥*), x>0
m,(kx)= k ) (8.2)
1, x<0.
Hence
24 0
14a+2ax x>
p(x;a)= s
1+a—2x’ %<0,
and thus
l+kl—l—a+2ax x>0
n(k,x)= ; | e—ikx 5 (8.3)
z —2ikx
1+k(1+e )+[ k+P 2 ]1+a—2x’ x<0,
i 2ikx __i 1_1 ik 2a
1+k(l+e )+ k+P Pez 1+a+42ax’ x>0
n,(k,X) = i ) (8~4)
1+k1+ —x’ x<0.
The potentials U(x;a) are given by
U 25(x) +H 8a’ H 8 8.5
(x;a)=—28(x)+ (x)mz+ (—x)m. (8.5)
Example 2: Let
k+ip

T(ky=7—5, R(k)=L(k)=0,

k—iB’
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where B> 0. Since T(0)=—1, thlS is the exceptlonal case with one bound state. Then using
Egs. (4.2)-(4.4) we obtain T(k)=1, R(k)=L(k)=0, and thus V(x)=U(x)=0 and
m(k,x)=m/(kx)=n,k,x)=n,kx)=1. By solving Egs. (5.36), (5.37), (5.43), (5.44) with
Y2(x) =05(x) =0, we get

1—ce 2P 0 1—de= %>
?’(x)—B‘l—_l_—Cgrzzq;, (x)—ﬁm,

where y(x) =y,(x), 0(x)=0,(x), and c=c,, d=d, are the constants in Egs. (6.2) and (6.3),
respectively. Then

iB 2c 2iB  &¥x
D =1 g ey N =g

. . B 2d . . 2B &P
n(kx)= kTG dre n.(kx)= “krBdreR

and the potentials are given by

—8cpe?* —8dpe?*
Vo =teramy: VW=gromy

respectively.
Example 3: Consider the generic case with one bound state with

k
TRy=¢—> RK)=Lk)=7—

Then Tv'(k), ﬁ(k), and i(k) agree with the T'(k), R(k), and L(k) of Example 1. Thus
m(k,x) is given by Egs. (8.1) and (8.2), and #i(k,x) is given by Egs. (8.3) and (8.4). One

finds

24 (1—c)e % 2a 0
- (l—c)e® 1tat2ax’ *° g

v(x)= l—c—2¢ce™% 2 0 (8.6)
T—ct2ce ® 1ra—2x’ *<
24 (14d)e™% 2a 0

1 |2 =a5de ™ Trat2ax’ 2

0(x) | 14+d+2de 0
T+d—2de T Txa—2x’ *<U

with the same notation as in Example 2, and where a is the parameter of the Darboux
transform. Having obtained y(x) and 6(x), one can use them in Eqs. (5.32) and (5.33) and
thus obtain m(k,x) and n(k,x). The associated potentials can be found from Eqgs. (5.34) and
(5.35), where U(x a) is given by Eq. (8.5). From Egs. (5.35), (8.5), and (8.6) it can be seen
that the potential V(x) only depends on the constant ¢. When ¢=1, we obtain F(x)
= —26(x).
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