
Structure of matrices transforming Stokes parameters 
C. V. M. van der Mee and J. W. Hovenier 
Department of Physics and Astronomy, Free University, De Boelelaan 1081, 1081 HV Amsterdam, 
The Netherlands 

(Received 26 February 1992; accepted for publication 22 June 1992) 

The structure of matrices that represent a linear transformation of the Stokes parameters of a 
beam of light into the Stokes parameters of another beam of light is investigated by 
means of the so-called Stokes criterion. This holds that the degree of polarization of a beam 
of light can never be changed into a number larger than unity. Several general properties 
are derived for matrices satisfying the Stokes criterion. These are used to establish conditions 
for the elements of such matrices. Conditions that are either necessary, or sufficient or 
both are presented. General 4X4 matrices are treated and a number of special cases is worked 
out analytically. Several applications are pointed out. 

I. INTRODUCTION 

The intensity and the state of polarization of a (par- 
tially) polarized beam of light are completely determined 
by the four Stokes parameters I, Q, U, and V. The Stokes 
parameters form the components of a real four-vector 
I={r,Q,U,V), called the Stokes vector,’ which satisfies 
the Stokes criterion, i.e., we have 

Z>(e2+U2+ v*jl’*, 
so that the degree of polarization 

p= (e’+ u*+ V2)l’2/1<1. 

(1) 

(2) 

For an introduction of Stokes parameters we refer to 
Refs. 2-4. 

In physics one encounters a multitude of real 4~ 4 
matrices M that represent a linear transformation of (the 
Stokes parameters of) a beam of light into (the Stokes 
parameters of) another beam of light. In order that such 
a real 4X 4 matrix M be physically meaningful, it must 
therefore at least have the following property: For every 
vector I,= {lo,& U,, V,} satisfying the inequality 

4$4Qo*+ Uo*+ Vo*)“*, (3) 

the product vector 

r Ml1 Ml2 M13 M4M 
M21 M22 

I=M&,= 
M23 M24 Q. 

M31 M32 M33 M34 uo 
(4) 

M41 M42 J443 MM,, 
vo ., 

satisfies Eq. ( 1). If this holds we will say that M satisfies The present article may be viewed as part of a set of 
the Stokes criterion. Examples of physically meaningful studies on the structure of matrices relevant to polarized 
4 X 4 matrices M are (i) the Mueller matrices describing light scattering for arbitrary scattering angles. For the 
optical devices such as polarizers and retarders,5 (ii) ma- most common scattering matrices which pertain to cer- 
trices describing the reflection of radiation by smooth and tain types of assemblies of particles,3 some conditions (in- 

rough surfaces,6’7 and (iii) several matrices that are rel- 
evant to the single and multiple scattering of polarized 
radiation such as the scattering matrix, the phase matrix, 
the reflection and transmission matrices, and the matrices 
describing the internal radiation field in a plane-parallel 
atmosphere.273Va10 

The main purpose of this article is to derive condi- 
tions for a 4x4 matrix to satisfy the Stokes criterion. 
Conditions which are both necessary and sufficient, as 
well as separate necessary conditions and sufficient con- 
ditions, will be derived, for general 4 X4 matrices and 
also for so-called block-diagonal matrices. While the re- 
search leading to the present article was in progress, the 
authors obtained in 1991 a preprint by Konovalov.” In 
his work, considering cones in four-dimensional space, 
necessary and sufficient conditions are derived for general 
4x4 matrices in terms of the nonnegativity of a function 
of two angular variables. Konovalov” also gave necessary 
and sufficient conditions for certain special block- 
diagonal matrices. In another publication,‘* he only sup- 
plied conditions for such block-diagonal matrices. In the 
present article we seek a more transparent presentation 
and derivation of conditions for general 4X 4 matrices 
transforming Stokes parameters. In addition, we system- 
atically discuss the algebraic properties of general Stokes 
vectors and matrices satisfying the Stokes criterion and 
we work out a number of special cases. We also address 
the problem of the minimal structure of a matrix trans- 
forming Stokes parameters. Some conditions for general 
as well as special block-diagonal 4 X 4 scattering matrices 
to satisfy the Stokes criterion were obtained indepen- 
dently by Nagirner.13 His approach is based on relativis- 
tic notations. 
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equalities, in fact) were given by KugEer and Ribaric.14 
These as well as some other conditions returned in sub- 
sequent articles,4”5 as well as conditions (equalities and 
inequalities) for the scattering matrix of a single parti- 
cle. 15-r8 All these conditions were studied” by following 
the itinerary leading from the amplitude matrix through 
the scattering matrix of a single particle to the scattering 
matrix of an assembly of particles, and systemizing the 
relations valid at each stop. This resulted in a compre- 
hensive survey of conditions for a variety of scattering 
angles. The analysis was extended to the phase matrix 
occurring, for instance, as the integral kernel of the equa- 
tion of transfer of polarized light.*’ One surprising result 
of the work of Refs. 11 and 19 was the discovery of 4X4 
matrices that, although satisfying the Stokes criterion, 
cannot possibly arise as scattering matrices of assemblies 
of particles. Clearly, the necessary conditions for an ar- 
bitrary real 4X4 matrix to satisfy the Stokes criterion, 
which will be considered in this paper, only constitute the 
minimal structure of a matrix transforming Stokes pa- 
rameters into Stokes parameters. 

II. TWO BY TWO MATRICES 

Before treating the general 4X4 matrix M occurring 
in Eq. (4) we first consider conditions for a real 2 X 2 
matrix to satisfy (the analog of) the Stokes criterion. 
Such matrices occur when averaging the phase matrix, 
the reflection and transmission matrices or the matrices 
describing the internal radiation field in a plane-parallel 
atmosphere over azimuth, 4*10 since in that case the corre- 
sponding transformation of the Stokes vector 
{lo,Qo, Uo, V,} is decoupled into separate transformations 
of the vectors {lo,Qo} and {Uo,Vo}. First note that every 
two-vector I= {Z,Q} satisfying I> 1 Ql is a linear combi- 
nation of the vectors { l,l} and { 1, - 1) with nonnegative 
coefficients. More precisely, {l,Q>=~(I+Q){l,l}+~(l 
- Q) { 1, - 1). Hence, a real matrix M with entries M1 1, 
M12, M2!, and M,, satisfies the 2 X 2 version of the Stokes 
criterion if and only if both M{ l,l} and M{ l,- 1) are 
two-vectors I={I,Q} satisfying I> 1 Ql . To see this, note 
that for a linear combination of two beams with nonne- 
gative coefficients we have I> I Ql if the corresponding 
inequality holds for each one of the beams. As a result, M 
satisfies the 2X2 version of the Stokes criterion if and 
only if the inequalities 

M11+Mn#h+M22lt (5) 

MrM,22lM~,-Mzl (6) 

hold true.*’ These inequalities imply that M,, is nonneg- 
ative and it is not exceeded by the absolute value of any 
other element of M. 

The above treatment clarifies the complexity of our 
general problem. Giving necessary and sufficient condi- 

tions for a 3 X 3 or 4 x 4 matrix M to satisfy the Stokes 
criterion is not as straightforward as for a 2X2 matrix. 
The main reason is that the curvature of the boundary of 
the set of Stokes vectors in the three-vector and four- 
vector cases generally prevents one from reducing the 
problem to checking if each vector of a finite set of vec- 
tors satisfies the Stokes criterion. Instead, for a 4 X 4 ma- 
trix the problem is reduced to checking the images of the 
real vectors { l,q,u,u} satisfying 8 + u* + u* = 1 under the 
matrix M. This leads to a minimization problem for a 
quadratic polynomial defined on the unit spherical sur- 
face (see Sec. IV). 

Ill. GENERAL THEOREMS 

In this section a number of general theorems will be 
discussed for general Stokes vectors and matrices satisfy- 
ing the Stokes criterion. 

Let N be the set of Stokes vectors satisfying Eq. ( 1) . 
Then Y has the following algebraic properties: 

1. If I belongs to Y and the constant 00, then the 
vector cI={cI,cQ,cU,c y) belongs to N. 

2. If I1 =Cll,Q,,Ul,Vl> and 12=C12,Q2,U2, V21 below 
to N, then their sum vector I, + I2 = {II +12,Ql + Q2, U, 
+ U2, V1 + V,} belongs to 4. 

3. If both I and -1 belong to N, then I= Q= U= V 
=o. 

4. A vector I belongs to Y if and only if the inner 
product I.Ic=IIo+ QQ, + VU,+ VVo is nonnegative for 
all Iod. 

The first property is obvious and the second property 
follows directly from Schwartz’s inequality 

x (Q2*+ U,*+ V2*)“*. (7) 

The third property is immediate from Eq. ( 1). Indeed, if 
I and -1 belong to .Y, then I=0 and hence, via Eq. ( 1 ), 
I=Q= U= V=O. To prove the fourth property, note that 
if I, Iod, then Schwartz’s inequality (7) implies 

I~Io>IIo-(~+U2+V2)1’2(Qo2+Uo2+Vo2)”2~0. (8) 

Conversely, suppose I={I,Q,U, v) and II,>0 for every 
vector Iod, and put W= ( Qz + U* + V*) “*. Then, if W 
=O (i.e., if Q= U= V=O), II,)0 for any IO)0 and hence 
120, which implies that Id. On the other hand, if W 
>O, then on choosing &=(l,-Q/W,-U/W,-V/W) 
we find I) (Q + U*+ V*) “*, whence IEN. 

Matrices that satisfy the Stokes criterion have the 
following properties: 

1. If M satisfies the Stokes criterion and the constant 
c>O, then the scalar product CM satisfies the Stokes cri- 
terion. 
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2. If Ml and M2 satisfy the Stokes criterion, then 
their sum Ml +M, satisfies the Stokes criterion. 

3. If Ml and M2 satisfy the Stokes criterion, then 
their product MlM2 satisfies the Stokes criterion. 

4. If M satisfies the Stokes criterion, then its trans- 
pose G satisfies the Stokes criterion. 

The first two properties follow directly from the first two 
properties given for vectors in X’. The third property is 
immediate also. To prove the fourth property, let M sat- 
isfy the Stokes criterion and take Ir, 12d. Then MI, and 
I, belong to N and hence the inner product (MI,)*Ir)O. 
This inner product can also be written as I,*(M_Ir) and 
hence the nonnegativity of the inner product I*.( MI, ) for 
every 12& implies that &?II~G.N, as a result of the fourth 
property of vectors in .Y. But then the arbitrary choice of 
I, as a vector in 3 entails that fi satisfies the Stokes 
criterion, as claimed. 

Let us derive a few consequences of the Stokes crite- 
rion or, in other words, necessary conditions. Suppose M 
satisfies the Stokes criterion. Then, for j=2,3,4, this is 
also the case for the three 3X 3 submatrices of M ob- 
tained from M by removing its jth row and jth column, 
i.e., the matrices 

MI, Ml2 M14 

M21 M22 M24 , 
M41 M42 MM 

(9) I, MIZ M13 Iv 1 M21 M22 M23 

M31 M32 M33 

satisfy the corresponding 3 x 3 version of the Stokes cri- 
terion. To see this, one applies M to Stokes vectors I, 
= {lo,Qo, Uo, Vo} with Q,=O, U,=O, and V. =0, respec- 
tively. By the same token, the three submatrices 

satisfy the corresponding 2x2 version of the Stokes cri- 
terion. 

If we apply M to the Stokes vector { l,O,O,O), we get 

M1,>(Mz,*+M3,*+M4, ) - 2 l/2 (11) 

On the other hand, on applying && which also satisfies 
the Stokes criterion, we find 

2 l/2 W,XMn2+W3*+W4 1 . (12) 
4 4 

C C Mj/c2<4Ml12, 
From Eqs. ( 11) and ( 12) we obtain 

j=l k=l 

IWjI (MII, I Mjl I <MI I, j= 2,V. (13) 
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which generalizes a well-known relation for scattering 
matrices [cf. Ref. 15, Eq. ( 11); Ref. 20, Eq. ( 104)]. 

If we apply M to the Stokes vectors { 1, f l,O,O}, { 1,0, 
f l,O}, and {l,O,O, f l}, respectively, we get for j=2,3,4 

and therefore 

IMk, +Mk, 

k&l-Mk, 

where j,k=2,3,4. Adding Eqs. (15) and (16) we find 

From Eqs. (13) and (17) it is now clear that Ml1 is 
nonnegative and is not exceeded by the absolute value of 
any other element of M if M satisfies the Stokes criterion. 
If we write down Eqs. (14)-( 16) for the transpose ti of 
M, which also satisfies the Stokes criterion, we have 

2 l/2 t W4,*Wj) 1 , (14) 

Of,, +Mlj, (15) 

<Mll--Mlj, (16) 

(17) 
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-I- Of,4fMfi>*l “*, (18) 

and for j,k=2,3,4 

The last two equations can also be written as 

Squaring the six inequalities ( 14) (three& pairs) and 
adding the results yield 

4 4 4 4 

3M,,*+ C Ml;>3 C Mj,‘+ C C Mjk** (23) 
j=2 j=2 j=2 k=2 

Starting from Eq. ( 18) we get in a similar way 

3M11*+ ji2 Mjl*>3 ji2Mlt+ 2 5 Mjk2- (24) 
j=2 k=2 

Hence, adding Eqs. (23) and (24) we find after some 
algebra 

(25) 
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Finally, in view of the symmetry properties of many 
matrices transforming Stokes parameters,22Y23 we note 
that Properties 3 and 4 imply that if M satisfies the 
Stokes criterion so do PMP and AMA, where 
P=diag( l,l,- 1,l) and A=diag( 1,1,-1,-l). 

IV. CONDITIONS FOR GENERAL MATRICES 

In order to find necessary and sufficient conditions 

I 

for a general real 4 x 4 matrix to satisfy the Stokes crite- 

1 * 

rion, we first reduce the set of Stokes vectors I, to which 
the matrix is to be applied, to those pertaining to fully 

A --4 

polarized light. Note that for an arbitrary vector I,-, 
= {1&c, Uc, Vc} in .Yr and arbitrary real numbers q, u, 

---II 

and v such that q2 + u2 + v2 = 1 the identity 

(26) 

-v 

-I0 * -IO. .(Qo2+Uo2+Vo2)“2. *(Qo2+ u,2+ Vo2)“2. 
Qo Qo Qo Qo 
uo UO 

= = 
uo uo +; +; 

.vo. * .vo. * VII VII 

1 
a i4 +z 
V I I 

D(q,w) = (M11+qM12+UM13+vM*4)2 

- (M31+q~32+UM33+vM34)2 

Property 4 of Stokes vectors, to md. In view of these 
considerations, the matrix M satisfies the Stokes criterion 

-(M41+qM42+uM43+uM44)2. (31) 

In terms of the lightbeam with Stokes vector (28), 

if and only if 

D(q,u,v) =12( 1 -p2), where p is the degree of polariza- 
tion. Now note that Eq. (29) is equivalent to the require- 
ment that the inner product m*I>O, where m 

2 l/2 

={hf1~,bf~2,~13,hf14}, for every real vector I 

Mll>(M,22+M,32+&4 ) 

={1,Q,u,Vjwith1=(@+U2+V2)1’2.UsingEqs. (26) 

(32) 

and (27), the latter inequality is equivalent to m-I>0 for 
every vector IGY and hence, according to the above 

holds true, where 

AdO- [Qo2+ Uo2+ VO~]"~ 

and the vectors on the right-hand side of Eq. (26) are 
vectors {I,Q,U, Vj satisfying I= (@+ U2+ V2) 1’2, i.e., 
they are Stokes vectors with degree of polarization 1. 
Equation (26) expresses the well-known fact2 that an 
arbitrary beam of light can be decomposed in a fully 
polarized beam and an unpolarized beam, while the latter 
can be decomposed in two fully polarized beams. Hence, 
using Properties 1 and 2 of I [see Sec. III] we find that a 
4X4 matrix M satisfies the Stokes criterion if and only if 
the image of any real vector { l,q,u,v} with q2+u2+v2= 1 
under M is a vector in X. We may thus confine ourselves 
to incident beams that are fully polarized. Using Eq. (4) 

and 

(27) 
min w7,w)>O (33) 

g2+u2+2=1 

we now have 

Mi 

- ~~1l+q~12+~~13+~~14 

M2 I+ @fz + u”23 + v”24 

u = M31+qM32+~M33+~M34 

V . .Ma +qMa+uM43+v% 

This vector belongs to fl if and only if 

Mi,+qM,z+~M13+~Mt4>0 

and 

mqw) 20 

(28) 

are simultaneously fulfilled. Hence, to prove that M sat- 
isfies the Stokes criterion we may check Eq. (32), deter- 
mine the minimum of D(q,u,v) under the constraint 

g+u2+v2= 1, (34) 

and prove it to be nonnegative. By applying Schwartz’s 
inequality to Eq. (3 1) we find that a sufficient condition 
for M to satisfy the Stokes criterion is 

[Ml,-(M122+M132+M,;)1’2]2>2 2 5 Mii’. 
i=2 j=l 

(35) 

Replacing M by M it turns out that 

[M1,-(M212+M312+M412)1’212>2 ii, j$2M,’ 
(36) 

is another sufficient condition for M to satisfy the Stokes 
criterion. 

Let us simplify Eq. (3 1) . Defining 
(29) 

N,= MI~,j- M2iM2j- M3iM3j- M4iM4j (37) 

for l<ij(4, we have 

(30) 

for all real vectors {q,u,v} with q2+u2+v2= 1, where 

Nv=Nji=real, l<iJ<4, (38) 

and 
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where O<&rr and 0<~<27r, we may express Eq. (33) in 
the form 

+ 2VN,4 + 2quN23 + 2qvN24 + 2UvN34 . (39) 
min 

Writing (q,u,v) in spherical coordinates, 
D( sin 8 cos q,sin 6 sin q~cos 6) >O. (41) 

o<e<n;o<5D<2a 

q=sin 6 cos 9, u=sin 8 sin p, v=cos 19, (40) Using sin 8 = ( 1 - v2) 1’2, we find 

Consequently, the matrix M satisfies the Stokes criterion 
if and only if Eq. (32) holds and simultaneously the ex- 
pression in Eq. (42) is nonnegative for all - l<v< 1 and 
OqGT. 

For an arbitrary matrix M one may check numeri- 
cally whether Eq. (42) is nonnegative for all - 1 <v< 1 
and O(q~2r by means of a small computer program. We 
have done so by computing D(( 1 - v2) 1’2 cos cp, 
(l-r?)“2 sin p,v) in a number of cases for a sequence of 
(v,~) grids with decreasing mesh. In this way we readily 
found the minimum in six significant figures. In particu- 
lar, we checked the example of M given in the appendix 
of Ref. 11 and we corroborated its conclusion that his M 
does not satisfy the Stokes criterion. 

V. SPECIAL TYPES OF MATRICES 

In this section we derive necessary and sufficient con- 
ditions for certain special classes of matrices to satisfy the 
Stokes criterion. 

A. Scattering matrices of single particles 

The scattering matrix of a single particle satisfies the 
Stokes criterion in the form (33) in a rather obvious way. 
Indeed, for such scattering matrices we have the identities 
[cf. Ref. 19, Eqs. (147), (150), (152), (168), (155), 
(171), and (178)] 

N,,= -N22= -N33= -NM, 

N12=N13=N14=N23=N24=N34=0, 

so that in this case 

(43) 

(4) 

D(q,u,v) =N,,( 1-$-u2-v2) ~0, (45) 

where Ni, equals the squared absolute value of the deter- 
minant of the amplitude matrix.” Equation (45) ex- 

s presses the fact that a beam of fully polarized light always 

remains fully polarized after scattering by a single parti- 
cle. Equations (43)-(45) also hold for an assembly of 
particles that are either spherical or are maintaining the 
same orientation in space.” It is clear from the deriva- 
tions of Eqs. (43)-(45) that they hold for all interactions 
between an electromagnetic wave and a body that can be 
described by means of a 2X 2 matrix transforming the 
electric field components. Particularly, optical devices 
such as polarizers and retarders can be described by 4 x 4 
Mueller matrices or 2 x2 Jones matrices,5 so that Eqs. 
(43)-(45) hold for such Mueller matrices and their 
products. 

B. Diagonal matrices 

If M is purely diagonal, which occurs for the Mueller 
matrices of some optical devices5 and also for certain 
scattering and phase matrices,3”0 we have 

D(q,u,v)=M1,2-q2M222-u2M332-v2M442, (46) 

so that M satisfies the Stokes criterion if and only if 

MI,) IMtil (47) 

for j=2,3,4. This simple condition shows that in case M 
is nondiagonal it may be useful to seek a diagonalization. 

C. Vanishing rows and columns 

If the third and fourth row of M vanish, then Eqs. 
(29) and (3 1) show that the Stokes criterion holds for M 
if and only if 

M,,+qM,z+~Mn+vM,4> IM,,+qM22+~M23+uMstI 

(48) 
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for all vectors {q,u,v} with q2+u2+v2= 1. The latter in- 
equality is easily seen to be equivalent to the pair of ine- 
qualities 

2 l/2 +(MM*MN) 1 . (49) 

Hence, M satisfies the Stokes criterion if and only if Eq. 
(49) holds true. Similarly, if the third and fourth column 
of M vanish, then by considering the transpose of M one 
sees that M satisfies the Stokes criterion if and only if the 
pair of inequalities 

MI, *Mtz> [ Of21 *J422j2+ Wx fMd2 

2 l/2 + (MM *Ma) 1 (50) 

holds true. Analogous necessary and sufficient conditions 
may be formulated if, for instance, the second and the 
fourth row or the second and the third column of M 
vanish. 

D. Block-diagonal matrices 

Let us now derive necessary and sufficient conditions 
in order that the block-diagonal matrix 

(51) 

satisfies the Stokes criterion. Physical examples of matri- 
ces of this type are provided by light scattered in certain 
atmospheres or reflected by certain surfaces if the direc- 
tion of the incident light is perpendicular to the atmo- 
sphere or surface.” Another example of Eq. (5 1) is the 
reflection matrix of a surface or atmosphere if the mirror 
principle holds and the planes of incidence and reflection 
coincide [cf. Ref. 23, Eq. (3)]. We will exploit the block- 
diagonal structure of the matrix M in Eq. (5 1) and di- 
agonalizations. To do so, we define for any pair of real 
numbers (a,~) the matrix 

r cash ci sinh a 0 O 1 
R(a,y) = 

sinh a cash a 0 0 

0 0 (52) cos y -sin y * 

1 0 0 sin y cos y ] 

These matrices have the following algebraic properties: 
1. R(al,yl)R(a2,y2)=R(al+a2,yl+y2). 
2. R(O,O) is the identity matrix. 

3. R(a,y) is an invertible matrix and its inverse is 
given by R( -a, -7). Hence, the matrices R( a,y) form a 
group with respect to matrix multiplication. 

4. R(a,y) satisfies the Stokes criterion. Indeed, if I,, 
={Io,Qo,Uo, V,} belongs to N and I={l,Q,U, v) 
=R(a,y&, then I’-@-- U2- V2=Iz-Qo2- Uo2 
- Vo2 and I and IO have the same sign. 

Let us try to utilize the matrices R(a,y) and R(&S) for 
specific pairs (a,y) and (fl,S) to diagonalize M. Exploit- 
ing the block-diagonal structure of M, we diagonalize the 
2X2 matrix 

[a~ bll 

1~1 a21’ 

by pre- and postmultiplying it by the matrices 

cash a 

sinh a 

- sinh p 

cash p 1 ’ 

respectively, and the 2X2 matrix 

a3 b2 1 1 ~2 a4 

by pre- and postmultiplying it by the matrices 

1 

cos y -sin y I[ cos 6 sin S 

sin y cos y ’ 1 -sin6 cosS ’ 

(53) 

(54) 

(55) 

(56) 

respectively. The special case cl = b, and c2= - b2 to be 
considered in the next subsection showed us that it is 
necessary to replace M by the matrix XM, where B 
=diag( I,- l,l,- l), before implementing the diagonal- 
ization. We easily compute that 

1 Lll L12 0 01 
L22 0 0 

R(a,y)XMR(--P,--S) = “,” o L33 L34 , 

lo 0 J543 4 
(57) 

where &I, ~512, ~521, ~$2, L33, b4, L43, and LU are given 
in the Appendix. If we try to choose (a#) in such a way 
that L,,=L,, =0, we find the two equalities 

(bl=kccl)cosh(a+p)=*(al*a2>sinh(a*tP). (58) 

This is only possible if the inequalities 

Ib,+c, 

I&-c, 

J. Math. Phys., Vol. 33, No. IO, October 

WI +a2 2 

<al -a2 

I992 

(59) 

(60) 
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are satisfied with the equality sign occurring only if both 
sides of Eqs. (59) and (60) vanish, as follows by using 
the identities cosh2 (a f 0) - sinh2( a f fl) = 1. Note that 
if M satisfies the Stokes criterion, Eqs. (59) and (60) are 
fulfilled [See Eqs. (5) and (6)]. In fact, 

A3=fHa3-a4)2+ (b2+cd 1 2 l/2 

+f[ (a3+u412+ (bz-d21 1’2, (73) 

A4=f[ @3--a412+ (bz+cd 1 2 l/2 

al-a2 

cosh(a-p)=[(al-a2)2-(bl-cl)2]1’2’ (61) 

-(h--c,) 
sinh(a-P)= [(a,-a2)2-(bl-c1)2]‘~9 (62) 

cosh(a+P) = [ (q+n2)Y--;:+c,)2] l/39 (63) 

b,+c, 
sinh(a-tB)=[(a1+a2)2-(bl+c1)2]1’2* (64) 

In a similar fashion, L34=L43=0 leads to the pair of 
equalities 

(a3f~4)sin(yi~)=r(b2Tc2)cos(yf~). (65) 

As a result, 

-t[ (=3+=d2+ (bz-cd21 1’2. (74) 

Note that 

Al)lA2lt A3)IA.tI. (75) 

In the special case cl=bl and c2= -b2 the numbers A,, 
A2, A3, and A4 are the eigenvalues of BM, since in this 
case a=8 and y=S [cf. Eqs. (62) and (67)]. 

b2+c2 
Sin(y--S)=[(a3-a4)2+(b2+c2)2]1”’ 

a3+=4 

CoS(Y+S)=[(a3+a4)2+(b2-c2)2]1”29 

- (bz-cd 

(67) 

(68) 

Before continuing our discussion, we discuss the de- 
generate cases of the diagonalization. If both sides of Eq. 
(59) vanish and the inequality sign holds in Eq. (60), 
a +/3 is undetermined while a -/3 follows from Eqs. (61) 
and (62). Further, if both sides of Eq. (60) vanish and 
the inequality sign holds in Eq. (59), a-p is undeter- 
mined and at-0 follows from Eqs. (63) and (64). Fi- 
nally, if the two sides of both of Eqs. (59) and (60) 
vanish, a and p are both undetermined and Eq. (70) 
follows for all pairs (a,/?) with A, = A2 =O. In these three 
cases, Eq. (70) is obtained with A, and A2 as in Eqs. (7 1) 
and (72). If the equality sign occurs in at least one of 
Eqs. (59) and (60) while the left-hand and right-hand 
sides of these equations are nonzero, one cannot find a 
pair (a,fl) for which L,,=L,, =O; we will discuss this 
case shortly. As to the right lower block of M, if a3=a4 
and b2= -c2, y-S is undetermined, while y+S is unde- 
termined if a3 = -a4 and b, =c2. Nevertheless, Eq. (70) 
is still valid with A, and A, being the quantities defined in 
Eqs. (73) and (74), respectively. 

Sin(y+S)=[(a3+a4)2+(b2-c2)2]1/2’ (69) 

where all right-hand sides of Eqs. (66)-( 69) may also be 
multiplied by - 1, but this will not affect the final result. 
Substituting Eqs. (61)-( 64) and Eqs. (66)-( 69) into Eq. 
(57) and utilizing Eqs. (Al)-(A8) in the process, we 
find 

Next, observe that R(a,y)XMR( -p,-6) satisfies 
the Stokes criterion if and only if M does, because 
R(a,y), Z and R( -p, -6) and their inverse matrices 
satisfy the Stokes criterion. Since a diagonal 4 X 4 matrix 
satisfies the Stokes criterion precisely when its ( 1,l) ele- 
ment is nonnegative and is not exceeded by the absolute 
value of any other element [cf. Eq. (47)], we find that the 
block-diagonal matrix given by Eq. (5 1) satisfies the 
Stokes criterion if and only if Eqs. (59) and (60) as well 
as the following condition are fulfilled [cf. Eq. (75)]: 

1 (=3--ad2+ &t-cd21 1’2+ E (u3+ud2+ &-c2)21 1’2 

R(a,y)ZMR( -BP-& =diag(Al,A2,&,Ad, (70) 

where 

A,=f[(a,-c~~)~- (bl-cc1)2]“2 

+f[(al+a2)2-(bl+c1)21”2, (71) 

A,=+[ (a1-a2)2- (b1-c1)2] v2 

-t[(al+a,)2-(bl+c1)211’2, (72) 
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+ [ (a,+42- (b, +c,121 *‘2. (76) 

In giving necessary and sufficient conditions for a 
block-diagonal matrix to satisfy the Stokes criterion, we 
have hitherto refrained from discussing the situation in 
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which the equality sign occurs in one of Eqs. (59) and 
(60) with the two sides being nonzero. If Eq. (59) is true 
and al-a2= lb,-cil#O, Eqs. (59), (60), and (76) re- 
main true if b1 and cl are replaced by obl and ccl for 
some 0 < o < 1 sufficiently close to unity. Then the corre- 
sponding matrix M satisfies the Stokes criterion. Passing 
to the limit as (T--* 1, this is also the case for the original 
matrix M. The same approximation argument may be 
applied if al +a,= I b, +c, I #O, with as a result that Eqs. 
( 59)) (60)) and (76) are necessary and sufficient condi- 
tions for M to satisfy the Stokes criterion. 

We can now give an interesting corollary. From the 
third property of matrices satisfying the Stokes criterion 
[see Sec. III] and Eq. (47) it is clear that if a general real 
4x4 matrix M satisfies the Stokes criterion, this is also 
the case for the matrices f(l+A)M, iM(l+A), and f(M 
+AMA), where A=diag (l,l,- l,- 1) and 1 is the iden- 
tity matrix. Note that these three matrices have zero third 
and fourth rows, zero third and fourth columns, and the 
form of Eq. (5 I), respectively. Consequently, Eqs. (49) 
and (50) are necessary conditions for a general M to 
satisfy the Stokes criterion and the same thing is true for 
Eqs. (59), (60), and (76) if we take 

[:: ::I=[::: 2]~ 
[I: ::]=[t:: 2:]* 

(77) 

Similar conditions may be derived by replacing A with 
either one of the diagonal matrices diag ( 1, - 1, - 1,l) or 
diag( l,- 1,1,- 1). 

(78) 

E. Special block-diagonal matrices 

We now consider a matrix of the special block- 
diagonal form 

r al b, 0 0 1 
M= 

6, a2 0 0 

0 0 a3 b2 * (79) 

1 0 0 --b2 a41 
A matrix of this type occurs as the scattering matrix in 
various physical situations,3 such as 

1. scattering by an assembly of randomly oriented 
particles each of which has a plane of symmetry (e.g., 
homogeneous spheres, spheroids, or finite cylinders), 

2. scattering by an assembly having particles and 
their mirror particles in equal numbers and with random 
orientation, and 

3. Rayleigh scattering by optically inactive particles 
with or without depolarization effects. 

The phase matrices of these particles may also be of the 
type given by Eq. (79) [see Ref. 4, Eq. (88) with (pi =a2 
=?r/2]. Another physical example of Eq. (79) is the re- 
flection matrix of a surface or atmosphere obeying the 
reciprocity principle as well as the mirror principle, if the 
directions of the incident and reflected beams lie in the 
same plane as the normal and make the same angle with 
the normal [see, e.g., Ref. 23, Eqs. (2) and (3)]. Apply- 
ing the criterion embodied by Eqs. (59), (60), and (76) 
in the case cl = b, and c2= - b2, we find that the matrix 
M in Eq. (79) satisfies the Stokes criterion if and only if 
the conditions 

(80) 

<(al-a2)+{(al+a2)2-4b12}1’2 (81) 

are satisfied. In the cases of scattering matrices of assem- 
blies of spherical particles or reflection matrices of one- 
dimensionally rough surfaces’ we have al =a2 and a3 = a4, 
so that in this case the matrix M satisfies the Stokes cri- 
terion if and only if 

(a32+b12+b22)1’2<a 1 - (82) 

Consequently, we have obtained Eqs. (80) and (8 1) 
as a special case of Eqs. ( 59 ), (60), and (76) which hold 
for a general block-diagonal matrix. However, using Eqs. 
(29) and (3 1) directly one might try to derive the con- 
dition described by Eqs. (80) and (8 1) from the neces- 
sary and sufficient conditions 

lhl (=I (83) 

and, for all {q,u,v} with $+u2+v2= 1, 

D(q,u,v) = (=12-b12) +q2(b12--q2) 

+2qbl(al-a2)-2uvb2(a3-a4)>0. (84) 

By minimizing the right-hand side of Eq. (84), 
Konovalov” has obtained necessary and sufficient condi- 
tions for the matrix in Eq. (79) to satisfy the Stokes 
criterion, by working out Eqs. (83) and (84). His The- 
orem 3 is a seemingly different criterion for the matrix in 
Eq. (79) to satisfy the Stokes criterion. More precisely, 
putting e= / bItal--a21 I +a22-b12-d2 with d denoting 
the left-hand side of Eq. ( 8 1 ), his necessary and sufficient 
conditions consist of Eqs. (80) and (8 1) if e(0, and only 
Eq. (80) if e>0.24 However, from Eq. (80) we readily 
find 
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a12-a22 
l&h-+2) I<- 2 

a12-a22 
< 2 -+ (al-a21 [ [+]2-b,2)i’2, 

(85) 

and hence 

e+d2= (bl(al-a2) 1 +a22-b,2 

<(y?+[ pg2]24$‘2)2. (86) 

As a result, Theorem 3 of Ref. 11 is equivalent to Eqs. 
(80) and (81). 

In the special case of scattering matrices of assemblies 
of spherical particles, where al =a2 and a3 =ad, we must 
then haveD(q,u,v)=(1-~)(a12-a32-b12-~22)>0 for 
all real vectors {q,u,v} with $+ u2+v2= 1. Thus in this 
case the matrix M in Eq. (79) satisfies the Stokes crite- 
rion if and only if Eq. (82) is satisfied. 

VI. MINIMAL STRUCTURE 

In Sec. V we have considered the structure of matri- 
ces transforming Stokes parameters. This structure was 
expressed in a number of inequalities. It should be real- 
ized that in a particular situation more structure may 
exist. As an example we consider the scattering matrix of 
an assembly of particles. 

On the basis of the amplitude matrix it has been 
shown that a scattering matrix of the form (79) satisfies 
the following inequalities [see Ref. 15; Ref. 19, Eqs. 
(238)-(241)]: 

la2fh I <al*&, (87) 

la3--a.41 <al-a2, (88) 

(a3+a.d2+4b22<(al+a2)2-4b12. (89) 

Apparently, Eqs. (80) and (87) are equivalent, while Eq. 
(8 1) is immediate from Rqs. (88) and (89). These ine- 
qualities imply that not every matrix of the type (79) 
satisfying the Stokes criterion can occur as the scattering 
matrix of an assembly of particles. An example is ob- 
tained by choosing a matrix of the form (79) which sat- 
isfies Eqs. (80) and (8 1) but violates one of the inequal- 
ities (88) and (89). In fact, Hovenier et aLI [al=8, 
a2=6, b,=2,/& a3=4, a4=0 and b,=O] and Konov- 
alov” [a,=l, a,=0.8, b,=0.82, a,=0.19, a,=0.4, and 
b,=O] have given examples of scattering matrices satis- 
fying Fqs. (80)) (8 1 ), and (891, which violate Eq. (88). 
Choosing al=8, a,=6, b,=2J6, a3=a,=5.5, and b2=0 

3582 C. V. M. van der Mee and J. W. Hovenier: Matrices transforming Stokes parameters 

one gets an example of a scattering matrix which satisfies 
Eqs. (80)) (8 1), and (88) but violates Eq. (89). Hence, 
Eqs. (88) and (89) do not follow from the Stokes crite- 
rion. 

Generally, the scattering matrix, M, of an assembly 
of particles contains 16 different real elements. Even then 
six inequalities exist for its elements [see, e.g., Ref. 19, 
Eqs. (229)-(234); Ref. 15, Eqs. ( lOa)-( lOf)] which can 
be derived from the amplitude matrices. As shown by the 
above examples, not all of these six inequalities follow 
from the Stokes criterion. In fact, Eqs. (229) and (234) 
of Hovenier et al. I9 do not follow from the Stokes crite- 
rion, but Eqs. (230)-(233) o,f that paper do, as is easily 
verified by applying M and M to the Stokes vectors {l, 
f l,O,O}. Consequently, a physically meaningful matrix 
must satisfy the Stokes criterion, but if it does, one may 
need additional properties to let this matrix be a scatter- 
ing matrix. 

Summarizing, the minimal structure of a 4 X 4 matrix 
transforming Stokes parameters is given by the Stokes 
criterion. Additional structure is present if the transfor- 
mation expressed by the 4x4 matrix can also be de- 
scribed by means of a 2X2 matrix [see Eqs. (43)-(45), 
and Ref. 191 or by a sum of such 4 X 4 matrices [see, e.g., 
Eqs. (87)-(89)]. On top of all this, some elements may 
vanish or equal others in absolute value, as a result of 
symmetry.7m22-23 

VII. APPLICATIONS 

The methods and results of the present study have 
various applications. One group of applications concerns 
checks on numerical and experimental results. If a matrix 
transforming Stokes vectors, which has been obtained by 
experimental or numerical means, violates the Stokes cri- 
terion or one of its spinoffs, there are two possibilities. 
The first option is that the experimental or numerical 
results contain a gross error. The second option is that 
the results are inaccurate, especially if the matrix under 
consideration narrowly fails to satisfy the Stokes criterion 
or one of its corollaries. The usefulness of inequalities for 
checking purposes may be assessed from the work of 
Stammes25 and Kuik et al.26 These authors have checked 
if the elements of theoretically and experimentally deter- 
mined scattering matrices of several kinds of particles 
satisfy certain inequalities, as a safeguard against unreli- 
able results in the absence of reliable comparison data. 
Another group of applications pertains to the use of “ar- 
tificial” matrices in polarized light scattering studies,27 
and to interpolation and extrapolation of matrices ob- 
tained by experimental or numerical methods. When us- 
ing such matrices one runs the risk of producing negative 
intensities or degrees of polarization exceeding unity. 
This may be avoided by making such matrices satisfy the 
Stokes criterion as well as other conditions whenever 
available. 
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The Stokes criterion and its consequences may also 
be used to obtain interesting theoretical results. The great 
potential of this approach has already been demon- 
strated.28-31 In these papers inequalities for the elements 
of the scattering matrix were employed to derive inequal- 
ities for the coefficients obtained on expanding these ele- 
ments in a series involving generalized spherical func- 
tions. In these four publications the Stokes criterion 
played an important role in the derivations. Further, the 
Stokes criterion for the scattering matrix, phase matrix, 
and reflection matrix of the ground surface has been ex- 
ploited32.33 to give a mathematical proof of the unique 
solvability of the equation of transfer of polarized light in 
a homogeneous plane-parallel medium. The Stokes crite- 
rion was applied34 to prove the convergence of the itera- 
tive processes involving the adding method for homoge- 
neous plane-parallel atmospheres. The Stokes criterion 
also plays a role in proving the completeness of the eigen- 
functions of the equation of transfer of polarized light.35 

ACKNOWLEDGMENTS 

The authors are greatly indebted to V. L. Dolman, J. 
F. de Haan, H. C. Van de Hulst, and N. V. Konovalov 
for comments on a first draft of this paper, and to M. G. 
Kuz’mina for her assistance in obtaining Ref. 11. This 
work was supported by the Netherlands Organization for 
the Advancement of Research (NWO) through a visiting 
scholarship. 

APPENDIX A: THE QUANTITIES L,, 

The elements of the matrix on the right-hand side of 
Eq. (57) are given by 

LII =;(a,-az)cosh(a-fl) +i(al+a2)cosh(a+B) 

+i(b, -ci)sinh(a-fl) -~(bi+ci)sinh(a+~), 

(Al) 

L21=~(al-a2)sinh(a-~)+f(a1+a2)sinh(a+~) 

+f(bl-c,)cosh(a-p)-f(b,+cl)cosh(a+P), 

C-43) 
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(A4) 

+%&+cz)sin(y-6) -i(b2-c,)sin(y+&, (A5) 

L34= -i(a3-a4)sin(y-6) ++(a3+a4)sin(y+S) 

(A61 

&=i(a3-aa)sin(y-6) +f(a3+a4)sin(y+S) 

(A7) 

+f(b2+c2)sin(y-6) +i(bz-c2)sin(y+6). (A8) 

‘In this article we use the term “Stokes vector” for a four-vector 
{Z&V, v) as above, where Z(Z>O) may be an intensity, source func- 
tion or flux and Q/Z, U/Z, and V/Z describe the state of polarization. 
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