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The inverse scattering problem for the 1-D Schriidinger equation d2$/dx2 + k21c, 
= mJ441, + Q(x) is studied. This equation is equivalent to the 1-D wave equation 
with speed l/ +- 1 - P(x) in a nonhomogeneous medium where Q(x) acts as a restoring force. 
When Q(x) is integrable with a finite first moment, P(x) < 1 and bounded below and 
satisfies two integrability conditions, P(x) is recovered uniquely when the scattering data and 
Q(x) are known. Some explicitly solved examples are provided. 

I. INTRODUCTION 

Consider the one-dimensional Schriidinger equation 

V(kx) + ~ww> =kzP(x)$(k,x) 
+ Q(xhW,x), (1.1) 

where XER is the space coordinate, k2eR is energy, Q(x) 
is a potential, and k2P(x) is the potential proportional to 
energy. Note that throughout the paper we use the prime 
to denote the derivative with respect to x. The physical 
solutions $11 from the left and $J~ from the right of ( 1.1) 
satisfy the boundary conditions 

i 

r(k)e’k”+o(l), 
*z(kx) = 

x+00, 

eikr+L(k)e-ik+o(l), x+ - 03, 

and 

e- 
jkr+R(k)eikx+o(l), x-+M), 

$r(kx) = T(k)emik” + o(l), x+ - co, 

where T is the transmission coefficient, and L and R are 
the reflection coefficients from the left and from the right, 
respectively. The scattering matrix S(k) is defined as 

T(k) R(k) 
S(k) = 

L(k) 1 T(k) * 

The Faddeev solutions from the right and from the left 
are given by 

ml(k,x) = [ l/T(k)]e-ikX$l(k,x) 

m,(kx) = [l/W) leih$r(kxA 
and they satisfy the boundary conditions 

(1.2) 

mz(k,x)=l +0(l), 

m;(k,x)=o(l), x-03, 

and 

m,(kx)=l +0(l), 

m;(k,x) =o( l), x+ - 00. 

Letting H(x) = ,/m and 

&kSidz H(z) 

Yz( kx) =‘x- , 

e - ikGdz H(z) 

Yr(kx) =x, 

we can write’ the physical solutions of ( 1.1) as 

qbr(k,x)=T(k)eikJ~[l-H]Yl(k,x)Zl(k,x), 

&(k,x) =T(k)eikro- m[’ -H]Yr(k,x)Zr(k,x), 

and from ( 1.2) we obtain 

mr(k,x)=[l/,/@i&ikJ:[l-H]ZI(k,x), (1.3) 
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m,(k,x)=[l/~]eik~-[‘-wZr(k,x). (1.4) 

The transformation U( f,x> = eik’$( k,x) from the fre- 
quency k domain into the time t domain changes ( 1.1) 
into the wave equation 

Let us use mfol (k,x) and mLol (k,x) to denote the Faddeev 
solutions of (1.8); i.e., let 

mj’](k,x)= [ l/To(k)]e-ikX$/ol(k,x) 

and 

&&&=Q(x)u, (1.5) 

where the scattering matrix for ( 1.8) is denoted by 
where c(x) = l/ dm is the wave speed and Q(x) 
is the restoring force. The equation in ( 1.5) describes the 
propagation of waves (e.g., sound, electromagnetic, or 

The scattering and inverse scattering problems for ( 1.8) 
are well understood”’ for QEL~ (R) . When we solve the 
inverse scattering problem, we will exploit the fact that 
for k=O the Faddeev solutions of ( 1.1) and ( 1.8) satisfy 

elastic waves) in nondispersive media where the wave 
speed and the restoring force depend on position. The 
direct scattering problem for ( 1.1) consists of finding the 
scattering matrix S(k) when P(x) and Q(x) are known, 
and it has been studied in Ref. 1. One inverse problem for 
(1.1) is to recover Q(x) when S(k), P(x), and the bound 
state energies and the normalization constants are known, 
and this has been studied also in Ref. 1. Another inverse 
problem is to recover P(x) when Q(x), S(k), and the 
bound state information are known, and this inverse 
problem will be studied elsewhere. In this paper we study 
a version of the second inverse problem, namely we re- 
cover P(x) when we know Q(x), the bound state infor- 
mation, one of the reflection coefficients, and the delay 
time caused by the nonhomogeneity when the signal trav- 
els from an arbitrary point to either of f a. Such a delay 
time can be specified by giving either A + or A _, where 

rq(O x) , =mjOl(O x) , , (1.9) 

m (O,x)=mLol(O,x). r r (1.10) 

The equality in ( 1.9) holds because each function there 
satisfies 

A,=* 
s 

*co 
dz[ 1 -H(z)]. (1.6) 

0 

with the boundary conditions v ( CO ) = 1 and q’( CO ) = 0. 
Similarly, each function in ( 1.10) satisfies ( 1.11) with 
the boundary conditions q( - CO) = 1 and q’( - 03 ) 
= 0, and thus ( 1.10) holds. 

The second inverse scattering problem for ( 1.1) is impor- 
tant because this problem is equivalent to the determina- 
tion of the wave speed c(x) when the scattering data and 
the restoring force are known, and this has many impor- 
tant applications in acoustic imaging, nondestructive 
evaluation, and various fields of geophysics such as seis- 
mology. 

As in Ref. 1 let us define 

This paper is organized as follows. In Sec. II we for- 
mulate the key Riemann-Hilbert problem arising in the 
inverse scattering problem, in Sec. III we give the solu- 
tion of the inverse scattering problem, and in Sec. IV we 
provide some explicit examples to illustrate the inversion 
method. 

II. RIEMANN-HILBERT PROBLEM 

3 H’(x)~ Q(x) 
G(x) = - 2HH”;$ + i H(x)T - - H(x) * (1.7) 

All the results given in this paper hold for real potentials 
satisfying the conditions P,Q,G%# (R), P(x) < 1 and is 
bounded below, where L:(R) is the class of Lebesgue 
integrable functions having a finite first moment. 

When P(x) ~0 in ( 1.1 ), we obtain the Schrodinger 
equation 

d2$[o](k,x)/dx2 + k2~[o](k,x)=Q(x)~[01(k,x). 
(1.8) 
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So(k) = 
To(k) R&l 

Lo(k) 1 T,(k) . 

$=Q(xh (1.11) 

Since k appears as # in ( 1.1 ), +!~l( - k,x) and 
$,( - k,x) are also solutions of ( 1.1) whenever 
$/(k,x) and t,bJk,x) are the physical solutions. The solu- 
tion vectors 

are related to each other’ as 

~4 - kx) =S( - k)‘qW,x), kER, 

where 

(2.1) 
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0 1 
4 =10 I 1 

and the superscript t denotes the matrix transpose. Let- 
&3 

ZlW,xx) Z(kx)= Z,(Q) , I 1 
where Z,( k,x) and Z,( k,x) are the functions defined in 
(1.3) and (1.4), respectively, we can write (2.1) as 

and thus from (2.2), we obtain 

Z( - k,x) =A(k,x)qZ(k,x), ka, (2.2) 

where we have defined 

A(b) 

1 

T(k)e”& -jqk)pk”+f;r’-w 
= ~L(/oe-2’~+IX_,11-f4 T( k)pk 1 

where 

Z!(k,x) = [l/T(k) I [Z,( - k,x) 

+ flk)Zr(k,x)e-2iky], (2.6) 

Z,(b) = [ l/dk) I [Z,( - kx) 

+ pWW,x)e2’kyl, (2.7) 

which enables us to express Z,( k,x) in Z,( k,x) and con- 
versely. Define 

~(x,z)=[$$]= Jy, Ee-“[Z(k,x) -i‘]. 

A= 
s 

- dz[l -H(z)]. (2.3) 
--m 

Note that A + + A _ = A, as seen from ( 1.6). When the 
scattering matrix S(k) is given, A can be obtained from 
T(k) because’ tikT(k) = 1 + 0( l/k) as k-+ f 00. In 
terms of y = Is, the so-called travel-time coordinate,6 
we can write the matrix A(k,x) as 

Since Z( k,x) has an analytic extension’ in k !w$ + for 
each x and Z(k,x) - ?=O( l/k) as k+ 00 in C , it fol- 
lows that B(x,z) =0 for z < 0 so that 

A(b) 

Z(k,x) = [ fi:[z;] =f+ J: dz eik”B(x,z). (2.8) 

Then, by taking the Fourier transform of (2.2) after writ- 
ing it in the form 

i 

T(k)esk -R(k)$iky+2ikA+ 

= 
- L(k)e - Ziky + 2ikA _ 

1 T(k)etik ’ 
(2.4) 

Z( - k,x) - ?= [A(k,x) - I]qZ(k,x) 

+ q[Z(k,x) - i”lt 

Let we obtain the identity 

1 
L 1 . II 

The following is known.’ The vector Z( k,x) is continu- 
ous in kc??-, has an analytic extension in k to C + for 
each x, and Z(k,x) - f=O( l/k) as k-+ CO in c+. Sim- 
ilarly, Z( - k,x) is continuous in kz, has an analytig 
extension in k to C - for each x, and Z( - k,x) - 1 
=0(1/k) as k-,m in c-. Furthermore, Z(k,x) is 
Holder continuous.7 Hence, when the matrix A(k,x) is 
known, solving (2.2) for Z(k,x) constitutes a Riemann- 
Hilbert problem. There are various methods to solve this 
Riemann-Hilbert problem and a solution by the March- 
enko method is given in Ref. 1. When there are bound 

m dk 
mv) = _ oD 2;; [A(b) - IlqZ(k,x)eik”, (2.9) 

where I is the unit matrix. If there are Jlr bound states 
with energies - &,..., - &-, the function T(k) is mer- 
omorphic in Cf with simple poles at k = i&,...,$?~with 
@j > 0 for j= l,..., JV; then for the unique solvability of 
(2.2), one needs to specify the normalization constants 

a,=e2s~Z~(i~~x)/Z,(i~~), j= l,..., Jy: (2.10) 

Once these normalization constants are specified, (2.2) 
can be solved uniquely.’ 

In the special case, when p(k) has a meromorphic 
extension to C + with finitely many simple poles at k 
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states, the normalization constant for each bound state 
must be specified in addition to the matrix A (k,x) . 

Defining T(k) = T(k)eiM, p(k) = R(k)p”+, and 
t’(k) =L(k)p”-, we can write (2.4) in the form 

r(k) A(ksc) = I 
- p(k)sky 

- flk)e- 2ikJ’ T(k) 1 
, J=R 

(2.5) 
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= iKl,..., iKMR with residues pl,...,pNR, respectively, by cal- 
culus of residues we get from (2.9) after using (2.10) 

“v 
Bl(x,z)=i C. e- ‘J”+ 2y’Tj Qj z,( ipJ+X) 

j=l 

NR 
- i 2 e-KJ~Z+2Y’pjZ,(iK~X), y>O, 

j=l 

so that 

Z&x)=1 - 5 e- 2SjYr. a. ZI( iI+ ) 
j=l J J k + ipj 

9 y>o, (2.11) 

where 7j denote the residues of r(k) at k = ifiF Analo- 
gously, in the special case when dk) has a meromorphic 
extension to C+ with finitely many simple poles at k 
= iill,...,iANL with residues &..,/NL, respectively, we get 
from (2.9) after using (2.10) 

“v 

B,(x,z)=i C e- SJXZ-S) 2 Z,(ifl$x) 

j=l ai 

-i J$ e-5(z-2y)~Z,(iAjX), y<O, 

so that 

7. Z (iJ3.x) 
Z,(k,x)=l - 2 ezBiYi, L +$, 

j=l J J 

y<o. (2.12) 

The unknowns Z,( iKpx) and Z,( iApx) are easily found by 
solving two systems of linear equations that are obtained 
from (2.12) at k = i& ,..., @M, iK1 ,..., iK,vR and from 

(2.12) at k = $3, ,..., ifix, iill ,..., iANL, respectively. From 
(2.6) and (2.7) one then finds Z,( k,x) for y <O and 
Z,( k,x) for y > 0, respectively. 

111. RECOVERY OF THE POTENTIAL 

Note that if P(x) vanishes on either half line, A * can 
be obtained from S(k). This is because, as seen from 
(2.3) and ( 1.6), if one of A, vanishes, the other must be 
equal to A, and A is known when S(k) is given. In par- 
ticular, when the nonhomogeneity P(x) does not extend 
to both of f 00, the information about A l is contained in 
the scattering matrix. 
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Once the Riemann-Hilbert problem (2.2) is solved,’ 
from (1.3) and (1.4), we have 

&(0,x) = ~rn~(O,X), (3.1) 

ZrW) = @ i&,(0,x). (3.2) 

Using (1.9) and (l.lO), from (3.1) and (3.2) we then 
obtain 

Z[(O,X) = JHIx)mjOl(O,x), (3.3) 

Z,(W) = $m~;olwx), (3.4) 

where miol (k,x) and mpJ( k,x) are the Faddeev solutions 
of (1.8). Note that as seen from (2.3), x enters A(k,x) 
only in the form y = .f$Y, and as a result the solution 
Z(k,x) of (2.2) contains x only through y. Thus, both 
Z[(O,x) and Z,(O,x) are functions of y only. Further- 
more, given Q(x), we can obtain m\O1(O,x> and 
mfP](O,x) and these two are functions of x only. There- 
fore, using dy/dx=H(x), we see that (3.3) and (3.4) are 
first-order separable ordinary differential equations, and 
thus we can write them in the separated form as 

dv dx 
Z~(0,x)2=mfc1(0,X)2 ’ (3.5) 

4 dx 
Z,(0,x>2=mp(0,X)2 * (3.6) 

Using the initial condition y =0 when x= 0, we can ob- 
tain y in terms of x by integrating either (3.5) or (3.6). 
Once y is obtained in terms of x, replacing it in Z,( 0,x) or 
in Z,(O,x) by its equivalent in terms of x, using 

H(x) = 
z,uk42 ww2 - 

mjo1(0,x)2-m~01(0,X)2 ’ 

we obtain H(x) in terms of x only. Then the potential 
P(x) can be obtained by using P(x) = 1 - Hi. 

In the absence of bound states, in order to obtain the 
potential P(x), it is sufficient to know either 
R ( k)pM + or L ( k)e2ikA - ; this is because the former 
quantity gives us Z&k,x) and the latter gives us 
Z,( k,x) by the Marchenko procedure;’ in order to solve 
the inverse problem studied here, it is sufficient to know 
either Z,( 0,x) or Z,( 0,x). 

In the special case Q(x) ~0, we have 

mjO~(Ox)=mlOl(O,X)=l , r f 

and hence, from (3.5) and (3.6) we obtain 
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Y I & Y 

I 

45 
X= 

0 wG-)z= 0 ~,uwZ * 
(3.7) 

The result in (3.7) was obtained before by using a differ- 
ent argument.3 Note that when Q(x) =0, ( 1.1) cannot 
have any bound state solutions.1’3 

IV. EXAMPLES 

In this section we present some examples to illustrate 
the method described in Sets. II and III. 

As a first example, consider the scattering matrix 

7-(k)emiM p( k)em2’& + 
qk)e-ziu- 7(k>e-iu , 1 (4.1) 

where we have 

T(k)=(k+i)/(k+2i) 

p(k) =v5 i/(k + 2i) 

Vsi k+i 
4k)=-- k+2ik-ii’ 

(4.2) 

(4.3) 

(4.4) 

The Riemann-Hilbert problem (2.2) can be solved ex- 
plicitly using (2.11) and (2.6) for y>O and (2.12) and 
(2.7) for y < 0. We obtain 

Z,(k,x) = 1, x>O 

p(k) Z,(kx)=&+me’lk”, x20 

Z,(k,x) = & ZA - kx) 

+ 4fk) - Z,( k,x)e- 2ikJ’, 
r(k) 

x<O 

2 
Z,W,x)=l +-&fle-2y- 1, x<o, 

where T(k), p(k), and dk) are the quantities 
given in (4.2), (4.3), and (4.4), respectively. Hence, 
Z,( 0,x) = 2 + ti for x>O and Z,(O,x) 
= ($3 + e2y)/(v3 - e2y) forx<O. 

Let us use the potential 

Q(x) =vWx) - e(x) [ 1 + ,pJ e”lz, 

where S(x) is the delta function and 0(x) is the Heavi- 
side function. The scattering matrix corresponding to this 
Q(x), with P(x) =0 is given by 
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-k+i/2 fli/2k+i/2- --- 
So(k) = 

k+i k + i k - i/2 
VW2 k + i/2 ’ -- 

I k-j-i k+i 

The Faddeev function with this potential is given by 

rntol (k,x) = 1, x<O, 

k+i 
m:olbkx)=~ 1 +& 1 +d/5 

I 

1 1 
V3 i/2 i 1 

-z=x- 1 k+i/21+G/S’ 

X)0. 

Thus, we have 

mjOl(O,x) = 1, x<o, 

t/38-1 
mlO1(w) = (2 + d/“J) fi d( + 1 , X)0. 

In this example, (3.6) becomes for x)0 

(4.5) 

Integrating (4.5) with the initial condition y=O when 
x=0, we obtain for x>O 

fi+1 IBe”+ -- y=x+2y3-1 2&L1’ 

and 

H(x)=(;z; ;)2, x>O. 

Note that A+ = - 2(v’ZT + 1). 
On the other hand, for x<O, (3.6) becomes 

(4.6) 

After using the initial condition y=O when x=0, we can 
solve (4.6) for x<O and obtain 

x=y+fl--33 
2vT! 

V3 + e2Y ’ 

NotethatA- = 1 - dandthusA= - 1 -3v’XInthe 
last equation y can be computed numerically in terms of 
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4 -3 -2 -1 0 1 2 

FIG. 1. Plot of H(x) for the 6rst example. 

x to any desired accuracy. In Fig. 1 we have the plot of 
H(x). In this example H(x) is continuous everywhere 
and 

43+1 2 
H(O)= d-1 . 

( 1 

Note that P(x) = 1 - Hi. 
As a second example, let us use 

- 8~3 eb 
Q(x) =m 9 

which corresponds to the reflectionless scattering matrix 

So(k) = [(k + i)/(k - i)]I. 

This corresponds to the Faddeev solutions 

rnI[‘] (k,x) =-& 
i 

F-V3 
k+ie2”-tv4 1 

1 
m!‘](k,x)=k+i k-ieh+ys 

I 

ek--V3 1 
with one bound state at k= i where the normalization 
constant is chosen in such a way that m~ol(i,x)/ 
miol (i,x) = G e - 2x. Consider the scattering matrix S(k) 
in (4.1), with 

T(k) = (k + &)/(k - ie) and p(k) =t!lk) =0 

with one bound state at k = ie, where E is a positive con- 
stant. Solving (2.2) using (2.11) and (2.12), we obtain 

ZDw) =j& 
I 

ezq-a 
k+iee2”+a 1 (4.7) 

Z,(b) =ke 

e2EY - a 

k--e- , 1 
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(4.8) 

where a is the normalization constant such that 
Z,( ie,x)/Z,( iqx) = ae - 2? We see from (4.7) and 
(4.8) that a cannot be negative; otherwise, the corre- 
sponding bound state solutions of ( 1.1) would not be 
square integrable. Thus, we have 

mjol(O,x) =ez”+ P-fl tanh(x-iln3) 

Z/(O,x)=z=tanh(ey -ilna). 

Hence, (3.5) becomes 

dy coth2(ey - f In a) =dx coth2(x - 4 In 3), (4.9) 

and thus 

z=H(x)=($$(s)t (4.10) 

The general solution of (4.9) is given by 

y-fcoth(ey--fIna) -&lna 

=x-coth(x-aln3) --$ln3+c. (4.11) 

Note that x0 = f In 3 is a singular point for the differential 
equation (4.9). In order to have H(x) > 0 and bounded 
above, we see that the numerator in (4.10) can vanish 
only when the denominator vanishes also. Thus, we must 
assume a > 1. A further analysis of (4.9) shows that all 
solutions as well as their derivatives have finite limits as 
x + x0 from either side, and we find that 

lim y(x) = (1/2e)ln a, 
x-x0 

lim y’(x) = lim H(x) = l/2, (4.12) 
x-x0 x-x0 

lim yR (x) = lim H’(x) =4c/2. 
x-x0 x-x0 

Note that the continuity of y(x) and y’(x) at x0 holds 
independently of the value of the constant c in (4.11). 
The condition y(O) =0 fixes the value of c as 
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FIG. 2. Plot of H(x) of the second example with a = 3, E = 2. 

with regard to the interval ( - CO, x0). Furthermore, 
y”(x) needs to be continuous at x0 because +‘(k, x) in 
( 1.1) contains y”, and hence in order for ( 1.1) to have a 
solution at x0, we need to have y” continuous at x0. 
Therefore, the constant c must have the same value on 
(x0, 03 > as on ( - 03, x0). The resulting equation for y(x) 
then becomes 

y--fcoth(ey-ilna) -icoth(ilna) 

=x--coth(x-iln3) -coth(iln3) (4.13) 

for x < x0 as well as for x > x0. It also follows that y(x) 
and consequently H(x) are analytic functions of x near 
x0. In Fig. 2 we have the plot of H(x) for a = 3 and 
E = 2. 

From (4.12) and (4.13) it is seen that for fixed x, as 
e-r CO, we have 

and 

lim y(x) =x + coth(i In 3 - x) - coth(a In 3), 
B-r00 

xa - 03,0)u(x~,co), 
where x1 = 4.7323... is the positive root of the equation 

x + coth($ In 3 -x) - coth(i In 3) = 0, 

which is obtained from (4.13) in the limit e--r 00. Conse- 
quently, 

l- 

6- 

s- 

J- 

3- 

2- 

1 

0 I 
-4 -2 0 2 4 6 

FIG. 3. Plot of H(x) of the second example with a = 3, e = 500. 
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lim H(x) =0, 0 <x <x1, 
c-c.2 

and 

lim H(x) =coth’(l In 3 -x), 4 
E-m 

xa - w,o)u(xl,oo)~ 

In Fig. 3 we have H(x) for a = 3 and E = 500, which 
illustrates the above facts for large E. 

At fixed x, we obtain 

lim y(x) =tanh2(i In a) [x + coth(f In 3 -x) 
E-+0 

and 

- coth(i In 3)], x<xo, 

Y(x)-(ilna+y)/e, x>x,, (4.14) 

where f In a + y is equal to the positive root ey of the 
equation 

ey-coth(ey-$lna) -coth(bIna) =0, 

which is obtained from (4.13) in the limit as e-0. We 
also have 

lim H(x) =tanh2(f In a)coth2($ In 3 -x), x <x0, 
E-.0 

lim H(x) =coth2(a In 3 - x)/coth2 y, x>x,. 
E-.0 

To illustrate the above results with small E, in Fig. 4 we 
give H(x) for a = 3 and E = 0.1. In this case the value of 
y in (4.14) is given by y = 2.46524... . 
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FIG. 4. Plot of H(x) of the second example with a = 3, e = 0.1. FIG. 5. Plot of H(x) of the third example. 

As a third example, let Q(X) ~0 and consider the 
scattering matrix S(k) given in (4.1) where 

(k + 2i) (k + 3i) 
T(k)= (k+i)(k+6i) ’ 

d-- 24ik 
P(k)‘(k + i)(k + 6i) ’ 

(4.15) 

(4.16) 

d- 24ik k + 2i k + 3i 
‘k)=(k + i)(k + 6i) km’ (4.17) 

The solution of the Riemann-Hilbert problem (2.2) us- 
ing (2.11) and (2.12) gives us 

Z,(k,x) = 1, x)0 

p(k) Z,(b) =& + 70 $‘ky, -00, 

where r(k) and p(k) are the quantities given in (4.15) 
and (4.16)) respectively. Thus, Z,( 0,x) = Z,(O,x) = 1 for 
x)0 and H(x) = 1 for x)0. In terms of y = /Edz H(z), 
when x<O, we obtain 

lOi/ $ey + eloY 
Z,(k,x)=l -- k + 2i A(Y) 

5i 
+k+3i 

&e6y + e’OY 
A(Y) ’ 

where 

A@)=1 +$e4J’-$e@‘-~eicY. 

Thus, for x<O we have 

-a8 -0.6 -Q4 -a2 0 

10 e6Y L e4Y 

Zr(O,x)=l +Th(y), 

and hence from (3.7), we obtain for y<O 

1 + (5/&)e4’- (5/&)e6z-~e’oz 

1 - (5/$)e4’+ (5/&)e6z-~e’oz 

.12 - I 
The last integral can be computed numerically to any 
desired accuracy. In this example H(x) = Z,(O,X)~ is 
continuous everywhere, and H’(x) is continuous every- 
where except at x =O; to be precise, we have H’( 0 + ) =0 
and H’(0 - ) = 8 &. Again we can recover P(x) using 
P(x) = 1 - H(x)‘. In Fig. 5 we have the graph of 
H(x) for this example. 
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