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The one-dimensional Schriidinger equation with a potential k2 V( X) proportional to energy is 
studied. This equation is equivalent to the wave equation with variable speed. When 
V(X) < 1, is bounded below, and satisfies two integrability conditions, the scattering matrix is 
obtained and its asymptotics for small and large energies are established. The inverse 
scattering problem of recovering V(X) when the scattering matrix is known is also solved. By 
proving that all the solutions of a key Riemann-Hilbert problem have the same 
asymptotics for large energy, it is shown that the potential obtained is unique. 

1. INTRODUCTION 

Consider the one-dimensional Schriidinger equation 

Y’(b) + k?&W =~Wh,Nk,x), (1.1) 
where XER is the space coordinate, k%R is energy, and the 
potential @V(X) is proportional to energy. Note that 
throughout the paper we use the prime to denote the de- 
rivative with respect to x. For convenience we will call 
V(x) the potential; V(x) is assumed to decrease to zero as 
0(1/x) as x--r * CO. The Fourier transformation from the 
frequency k domain into the time t domain changes ( 1.1) 
into the wave equation 

i a2u 

where c(x) = l/ dm is the wave speed. The equa- 
tion in ( 1.2) describes the propagation of waves (e.g., 
sound, electromagnetic, or elastic waves) in nondispersive 
media where the wave speed depends on position. The di- 
rect scattering problem for ( 1.1) consists of finding the 
scattering matrix when the potential is known; the inverse 
scattering problem is to recover the potential V(x) when 
the scattering matrix is known. The inverse scattering 
problem for ( 1.1) is important because this problem is 
equivalent to the determination of the wave speed c(x) 
from the scattering data, and this has many important ap- 
plications in acoustic imaging, nondestructive evaluation, 
and various fields of geophysics such as seismology. 

One can define the travel-time coordinate’ 

Y= s x &dm 
0 

and the new wavefunction 

Wv) = [ 1 - V(x) l”4W,x), (1.3) 
and transform ( 1.1) into the regular Schrodinger equation 
given by 

2 + ~4=QW4* (1.4) 

where the new potential Q(v) is related to the potential of 
(1.1) as 

5 ?qxy 1 v”(x) 
ecy)= -iiT [l- v(x)]5-4 [l- V(x)]” (1.5) 

Ware and Aki2 proposed to solve the inverse scattering 
problem for ( 1.1) using the travel-time coordinate. In our 
analysis we use the spatial coordinate rather than the 
travel-time coordinate; this is because the solution of the 
inverse scattering problem using the travel-time coordinate 
is not achieved unless the potential V(x) of ( 1.1) is ob- 
tained from Q(p) by inverting ( 1.5). However, the recov- 
ery of V(X) from Q(r) presupposes the knowledge of 
V(X); hence, switching to the travel-time coordinate does 
not solve the inverse scattering problem. A method based 
on the iterative technique of Jost and Kohn3 was proposed 
by Razavy4; this method uses the spatial coordinate, but it 
is more suited to find the potential approximately. In this 
method the potential is expressed as an infinite series; how- 
ever, even the second term in the series is fairly compli- 
cated and no convergence is assured. 

The Schrbdinger equation ( 1.1) has no bound state 
solutions for potentials considered in this paper.5P6 In this 
respect the direct and inverse scattering problems for ( 1.1) 
are simpler than the corresponding problems for the regu- 
lar Schriidinger equation #’ + tie, = V(x)cp. However, 
the regular Schrijdinger equation is an eigenvalue problem 
for the Hamiltonian operator - d2/dx2 -t V(x), whereas 
( 1.1) is not an eigenvalue problem and hence the tech- 
niques from the spectral theory of self-adjoint operators are 
not directly applicable to ( 1.1) . Another important differ- 
ence between ( 1 + 1) and the regular Schriidinger equation is 
the following. In the regular Schrodinger equation the as- 
ymptotics of the solutions as k+ * 00 are easy to obtain 
because one can interchange the limits as k- ZJZ 00 and 
x-+ f 00, whereas these limits cannot be interchanged in 
( 1.1). In the regular Schriidinger equation, the solutions 
with the appropriate asymptotics as k+ f of and the so- 
lutions with the appropriate asymptotics as x-r * CO are 
related to each other in a simple manner, whereas for ( 1.1) 
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this is not apparent. Informally speaking, when k-+ f 00, 
in the regular Schrbdinger equation the term proportional 
to V(x) can be neglected compared to the other terms, 
whereas in ( 1.1) we cannot neglect that term. These are 
some of the main reasons why the direct and inverse scat- 
tering problems for ( 1.1) are more difficult. Here in this 
paper we overcome these difficulties by explicitly comput- 
ing the asymptotics of the scattering solutions of ( 1.1) as 
k-+ f CO and by establishing some analyticity properties of 
these solutions when k is extended to complex values. 

The assumption V(x) < 1 guarantees that the wave 
speed c(x) = I/d- has meaning. The results 
given in this paper, with the exception of those in Sets. 
IV-IX, hold for bounded potentials satisfying the condi- 
tions V(x) < 1, V&(R), and GEL:(R) for some c~(O,l], 
where 

1 V” (xl 5 r(X)2 
G(x)=;l [l- v(x)]3n+E [l- V(x)]sn’ (1*6) 

In Sets. VI-IX we further assume that V(x)>O, and in 
Sec. X we generalize the results of Sets. IV-IX to the case 
where V(x) is no longer assumed non-negative. Through- 
out the paper we use the notation H(x) = Jm. 
Note that whenever VEL’ (R), we have 1 - HEL’ (R) 
because 11-H] = IVl/(l+H)<jVI. In thebeginning 
of each section we specify the sufficient conditions on the 
potential for which the results there hold. Note that 
throughout the paper, Lj (R) denotes the space of measur- 
able functions f(v) such that the Lebesgue integral 

s m Ml+ lYl)‘lfWl 
-00 

is finite and L”(R) denotes the space such that 

c c0 44 f(v) In 
J-m 

is finite. 
This paper is organized as follows. In Sec. II we define 

the scattering solutions of ( 1.1)) study their properties and 
establish their asymptotics for small k. In Sec. III we study 
the properties of the scattering matrix and establish its 
asymptotics for small k. In Sec. IV we solve two important 
integral equations (4.13) and (4.14)) obtain the analyticity 
properties of their solutions, relate these solutions to the 
scattering solutions of ( 1.1 ), and study the large k asymp- 
totics of the scattering solutions of ( 1.1). In Sec. V we 
establish the large k asymptotics of the scattering matrix. 
In Sec. VI we formulate a key Riemann-Hilbert problem 
whose solution will lead to the recovery of the potential if 
it is already known that O< V(x) < 1. In Sec. VII we estab- 
lish the existence of the canonical Wiener-Hopf factoriza- 
tion of the matrix appearing in the Riemann-Hilbert prob- 
lem. In Sec. VIII we give the general solution of the 
Riemann-Hilbert problem and show how a unique poten- 
tial can be recovered from that solution. Through a March- 
enko procedure, in Sec. IX we obtain the canonical factors 
of the matrix that appears in the Riemann-Hilbert prob- 
lem. Finally, in Sec. X we generalize the method of recov- 
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ery of the potential to the case 
assumed to be non-negative. 

II. SCATTERING SOLUTIONS 

where V(x) is no longer 

In this section we study the properties of the scattering 
solutions of ( 1.1) and establish their asymptotics for small 
k. The sufficient assumption on the potential in this section 
is V&(R) for some c~(O,l]. In fact, we use V&&(R) 
only in Proposition 2.2; otherwise Vd’(R) is sufficient. 

The physical solutions r/I from the left and $, from the 
right satisfy 

T@kik”+dl), x+ co, 
eikx +L(k)emikx + o( l), x+ - ~0, (2.1) 

hW)= ;(k)e-ih+o(l) 
I 

-jkX+R(k)eikx+o(l), x-co, 
(2.2) 

r , x-P-00. 

Here, Tl and T, are the transmission coefficients from the 
left and from the right, respectively, and L and R are the 
reflection coefficients from the left and from the right, re- 
spectively. The scattering matrix S(k) is defined as 

(2.3) 

We will establish the properties of S( k) in Sets. III and V. 
The physical solutions r,$ and +, satisfy the Lippmann- 
Schwinger equation 

(2.4) 

The Jost solutions of ( 1.1) , f 1 from the left and f r from 
the right, are defined as 

1 
frW) = TItkl 1Ctkkx) 

1 
fAk,x) =TrckJ +W,x). 

(2.5) 

They satisfy the integral equations 

f,(k,x) =eikr - k 
s O” 4~ sin W --Y) V(y)fOGy), x 

s 
x f,(k,x) =eMikx + k dv sin k(x -VI V(y)fAk,y), 
-co 

and the boundary conditions 

fAk,x) 

(eih+dl), x+cO, = 1 
me 

ikr + L(k) -eeib+o(l), X+ - co, 
T/(k) 

(2.6) 
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f,W,x) 

i& e-ikx+ R(k) 
me 

-1-o(1), x-00, 

[e-ih+O(l), 

Let us also define 

x-* - 00. 
(2.7) 

1 
w(b) = Tt(k) - e - ih$t( k,x) 

1 
m,W) = T,(k) e’k”ti,(k,x). 

(2.8) 

Then from ( 1.1) and (2.8 ) it is seen that m t and m, satisfy 
the equations 

m;(k,x) + 2ikmj(k,x) =tiV(x)mt(k,x), (2.9) 

m:‘(k,x) - 2ikm:(k,x)=k2V(x)m,(k,x). (2.10) 

We will call ml and m, the Faddeev solutions from the left 
and right, respectively; they satisfy the integral equations 

m,(k,x) = 1 - g 
s 

ao dy[ 1 - e2ik(Y-Xx)] V(y)ml(k,y), 
x 

(2.11) 

m,(k,x) = I - g 
s 

* dy[ 1 - gikcX-Y)] V(y)m,(k,y), 
-co 

(2.12) 

and the boundary conditions 

mt(k,x)=l +0(l) and m;(k,x)=o(l), x-.to, 

m,(k,x)=l +o(l) and ml(k,x)=o(l), x--r - CO. 

Next we show that the Faddeev solutions defined in 
(2.8) can be extended analytically in k to the upper half 
complex plane C + if VEL’ (R). We will use the notation 
C- for the lower half complex plane and F to denote 
C’UR. 

Theorem 2.1: When V&‘(R), the Faddeev solutions 
mt(k,x) and m,(k,x) are analytic in k for k&+ and con- 
tinuous in k for kez. 

Proofi From (2.11) we have mt( k,x) = Xj&n/k,x) 
where no( k,x) = 1 and 

nj( k,x) = - ;. 
s 

m &[ 1 _ @(Y - Xl] 
x 

x V(yhj- l(ky), j>l. 
Using 1 1 _ e2ik(Y -x) 1 < 2 when y>x and kcF, we 
obtain 

1 ni(k,x) 1 <w 
[I 

m 1 j 
Jl 

dy 1 V(y) 1 I x 
so that 
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I mt(k,x) 1 <=p( lk[ j-W ~YI V(Y) I) 
x 

<exp lkl ( j-“, dvl V(Y)I), /kc+. (2.13) 

Furthermore, each nj( k,x) is analytic in k for k& + and 
continuous in k for k&Z , + and thus by the Weierstrass 
theorem, mt(k,x), being the limit of a uniformly conver- 
gent sequence of analytic functions in compact subsets in 
C + , is analytic in k for k&I! + and continuous in k for 
kcz. From (2.12) we obtain in a similar way 

ImAk,x) I @v( lkl sx -m 
dyl v(y) 1) 

<exp [k} ( J_“, dyl V(Y) I) 9 kET, (2.14) 

and that m,(x) is analytic in k for k&I! + and continuous 
in k for k&Y. q 

We remark, however, that (2.13) should not be inter- 
preted as an indication that ml(k,x) may be unbounded as 
k-,&a. The Lippmann-Schwinger equation given in 
(2.11) is not suitable to study the large k asymptotics of 
m&k,x). We will study these asymptotics in Sec. IV and 
show that ml(k,x) remains bounded as k+ f CO under the 
assumption G&‘(R), where G(x) is the function defined 
in ( 1.6). Note that when V(x) < 1, the only possible solu- 
tions of ( 1.1) are oscillatory in nature when krsR; hence, 
we should expect $t( k,x) and m&k,x) to remain bounded 
for all keR even when k-t i co. We remark that whenever 
we write k-+ f CO, it is understood that the limit is taken 
through t.he real values of k. The remarks made above 
concerning the boundedness of m((k,x) as k-, i CO also 
apply to m,(k,x>. 

Note that from the analysis leading to (2.13) and 
(2.14), it follows that for each k$!?, both ml( k,’ ) and 
m,( k; ) are bounded continuous functions of x for XER. 

From (2.21) and (2.12), we obtain 

m;(k,x) = - # 
s 

O” dy e2’k(Y-X)V(y)ml(k,y), 
x 

’ mL(k,x) =k’ dy t?i’lX-Y)V(y)m,( k,y). 
--m 

Hence, using m,( k,x) = I;j”,$j( k,X) and the properties of 
ml(k,x) obtained above, we have 

bf(kx) I (14 [exp( lkl 1 dgf v(l) 1) - I] 

<lkl [ev(lkl s:, 4~VOI)--l], 
keF, (2.15) 

and similarly 
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<Ikl [exp( I 

kE?? (2.16) 

Thus, if VEL,’ (R), the functions mi (k,x) and rn: (k,x) are 
analytic in k& + + and continuous in k&I! for each XER. 

From (2.11) and (2.12) it is seen that as k-+0 in 
c+ 

m/( k,x) = 1 - ; 
I 

m dy[ 1 - e2ik(y-Xx)] V(y) 
x 

+ OW), (2.17) 

m,(k,x) = 1 - ; s 

x 
dy[ 1 - e2ik(X-yy)] V(y) 

--m 

+ O(Je, (2.18) 
f and from (2.15) and (2.16), as k-0 in C , 

m;(k,x) =O(kz) and mi(k,x) =O(#). 

Proposition 2.2: If VG~:( R) for some oz(O,l], then for 
k,,k2& + , the quantities 

w(hx) - wUW) m,&x) - m,hx) 
lb -+I= and lb-W 

are bounded in absolute value by ( 1 + ] x ( )“Ci (a,K), 
where 
C,(a,K) =max{2’ -aK’ -a,25a’2Kj 

Xexp K ( Jm dz[l+(l+ Izl)allY(z)l) 
--co 

X 
s 

- dY(l + IYI )“I V(Y) I9 (2.19) 

with K = max{ji,],]k2]). 
Proo$ We will give the proof for 

A(W2;x) = 
mAkl,x) - mbhx) 

Ik -41” 
only; the proof for 

m,hx) - m&x) 
Ih -&I= 

is similar. Letting 

A(k;x,y)= -; [l -$‘k”‘--x)]V(y), 

from (2.11) we obtain 

A(k,,kz;x) = I * dv 
A (k,;-w) - A (kz;x,y) 

Ik,--k21a w(hy) x 
+ s m dyA(kz;x,y)A(kl,kz;y). x 

(2.20) 

We have 

IA (kl;x,y) - A (kz;x,y) / 
Ikl -hIa 

([lb -bI 1-a+2a’21k21(y- 

~2l-=K’-~[l +23”‘2-1P( lyl 
<21-Cl&-“[I +25&2-1Ka( IyI’ 

<max{2l -“K’ -a,25a’2a 

XYI I V(Y) I 

+ 1x1 Yl I W) I 

“+ lXl”)llUY)I 

x(1+ IxlY(l+ lYl>“l~CY>I. 

Using (2.13) and ]A(k*;x,y) ] Q KI V(y) I, from (2.20) we 
obtain 

I MW2;x) I 
I m C,(a,K)(l+ IxI)=“~ +K Ml+ IYIYIUY)I x 

I AbW,;v) I 
XCIWW1 + lyl>“’ 

(2.21) 

Solving (2.2 1) iteratively the proof is completed. n 

III. SCATTERING MATRIX 

In this section we study the properties of the scattering 
matrix S(k) and establish its asymptotics as k-0. In this 
section the sufficient assumption is V&E&(R) for some 
a~( O,l]. In fact, Vd;i( R) is used only in Propositions 3.1 
and 3.2; otherwise, VG~‘(R) is sufficient. 

From (2.1), (2.2), and (2.4) we obtain the expres- 
sions for the transmission coefficients 

Tl(k)=l +; ; dye-ikyWMhkyL (3.1) 
co 

dy eikYW)tCl,(ky), (3.2) 

and the reflection coefficients 

L(k)=; 1 
I 

dy eikYV(y)&(k,y), (3.3) 
co 

R(k) =; s 
m 

dy e-ik”V(y)+,(k,y). (3.4) 
-cc 

Using the derivative of (2.4) with respect to x, we 
obtain 

I 
ikTI(k)eik” + o( l), 

+i(k,X)= ikei& 
x--* co, 

- ikL(k)eeikX + o( l), x-r - co, 

~:(k,x) = - h&i~)l--i~~~fl~ + o(l), 
I 

x+ 03, 
- t x+ - co, 

which are exactly the expressions obtained by differentiat- 
ing (2.1) and (2.2) termwise. 

Let [fig] = fg’ - f’g denote the Wronskian off and 
g. It can be shown that the Wronskian of any two solutions 
of ( 1.1) is independent of x. Hence, as x-+ f to, from 
[+A - k,x);+,(k,x)] we obtain 

T[(k)T/( -k) +L(k)L( - k)=l, keR. (3.5) 
From the Wronskian [$,( - k,x);&(k,x)] we obtain 
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T,(k)T,( -k) +R(k)R( -k)=l, keR, (3.6) 

and from the Wronskian [&(k,x);$?( - k,x)] we find 

Tl(k)R( -k) +L(k)T,( - k)=O, keR. (3.7) 

Since k appears as ik in (2.11) and (2.12)) it follows 
that 

mf( - k,x) =m&k,x) and 
(3.8) 

m,( - k,x) =m,(k,x), kcR, 

where the bar denotes complex conjugation. Hence, from 
(3.5), (3.6), and (3.7), it is seen that the scattering matrix 
S(k) defined in (2.3) is unitary and that we have 

S( - k)‘=So”=S(k) - ‘, kcR, (3.9) 

where S(k)’ denotes the transpose and S(k) - i the inverse 
of the matrix S(k). As a consequence, the transmission 
and reflection coefficients cannot exceed 1 in absolute value 
for keR. 

Using (2.1) and (2.2), we obtain 

[q$(k,x);&(k,x)] = - 2ikTj(k) = - 2ikT,(k). 

Therefore, the transmission coefficients from the right and 
left coincide, and this common value will be denoted by 
T(k): 

T(k) = T[(k) = T,.(k). (3.10) 

Let us now study the asymptotics of S(k) as k-0. 
Using (2.8), from (3.1) and (3.2) we have 

1 km 
1 - T(~)=z;’ s _ m 4v WhW) 

k w 
=z -m s dy Vyh,(ky), 

and from (3.3) and (3.4) we have 

(3.11) 

(3.12) 
L(k) k 00 
T(k)=Fi --m s dy e2ikyUy)m~(k,y), 

R(k) k 
T(k)=% --oo s 

m 
dye- 2ikyQ)m,(k,y). (3.13) 

Notice that using (2.13) in (3.11), (3.12), and (3.13), 
from the Weierstrass theorem we conclude that L(k) and 
R(k) are continuous for keR. 

Using (2.17) and (2.18), from (3.11), (3.12), and 
(3.13) we obtain as k-0 

T(k)=l+; m 
s 

dy V(y) + O(k% kc-“, (3.14) 
--Cc 

L(k)=; j-‘_” dy e2jbV(y) -t- O(p), kcR, (3.15) 
co 
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k m 
W-2;. --m s 

dy e - 2’kV(y) f CJ(kz), kfR. (3.16) 

Using (2.9) and (2. lo), we obtain the Wronskian 

~m,(k,x)m(k,x) I= - 2ikm,(k,x)mi(k,x) 

+ 2ik/T(k). (3.17) 

In Set, II, we have shown that m/(k,x), m,(k,x), 
rni (k,x), and m:( k,x) are continuous in k for k&J -7 and 
analytic in k for k&+. Thus l/T(k) is continuous in 
+ C and analytic in C + . It is known5~6 that l/T(k) has no 
zeros in C+ . Writing (3.17) as 

2ik 
T(k)=2ikm~(k,x)m,(kYx) + [m,fk,x);mi(k,x)] ’ 

and using (3.14)) we see that T(k) is continuous in C + , is 
analytic in C+ , and has no zeros in C + . Moreover, be- 
cause of the unitarity of S(k) and T( k)#O for keR, the 
reflection coefficients R(k) and L(k) cannot take the value 
1 in absolute value when k&t. We will study the asymp- 
totics of S(k) as k + i 00 in Sec. V. 

Proposition 3. I: If VELA( R) for some cr~(O,l], then 
I T(h) - T(Ml/lh - k,l a is uniformly bounded for 
kl#kz in any compact subset of c+. 

Pro@ Let Y = max{ I T(k,) I, 1 T(k2) I}. Using X and 
A(k,,k,;x) defined in Proposition 2.2, from (3.11) we ob- 
tain 

I T(h) - W,) I 
lb -bl” 

<y2 l1/T(h) - WWd l 
lb -hIa 

(2-‘/k, - k211-Y2 
s 

O” &I UY) I I w(kl,y) l --m 

s m +2-‘~k21Y2 &I UY) l l Nk&,;v) 1 -CO 
(‘Y’*max 2-aK1-aexp I ( f” W’d, K 

L \ J-CO ./ 

2 - ‘KC1 (a,K) m &Cl+ lulYlUy)(, 
-CO 

where Cl(a,K) is the quantity in (2.19). 
Proposition 3.2: If V&A(R) for some c&0,1], 

IL(h) -Lb%) f 
lh -hIa 

and IRG,) -R(b) I 
lh -&I” 

q 
then 

are uniformly bounded for kI#k2 in any compact subset of 
R. 

Proof: In view of Proposition 3.1, T(k)#O, and the 
continuity of T(k), it is sufficient to consider the functions 
L(k)/T(k) and R(k)/T(k). We will give the proof only 
for L(k)/T(k). Using K and A(kl,k2;x) defined in Prop- 
osition 2.2, from (3.12) we have 
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IUk,)/T(k,) - L(k,)/T(k,) 1 
lb -kal” 

I 

m 
< 

-m d~[2-aK’-a+2”‘2+‘K~~~“1~~(y)I exp(K s”, dzlY(z)l) +2-‘K s”, dyIV(y)IIA(kl,k2~)I 

< max{2’ + “2K,2 - aK’ - “} exp K I ( [" dzl v(z) 1) + 2 - ‘KWM) 1 f” Ml + IYI >“I nY> If 
1 \ J--m I I/ 

where Cl(a,K) is the quantity in (2.19). 
J J--m 

n 

IV. LARGE k ASYMPTOTIC% OF THE SCATTERING 
SOLUTIONS 

In this section, the sufficient conditions are 
Vd+‘(R), V(x) < 1, 1 -&L.‘(R), and G&L(R) for 

some a~(O,l], where G(x) is the quantity defined in (1.6) 
and H(x) = ,/m; we also assume that V(X) is 
bounded below and hence supti H(x) < CO. The condi- 
tion GEL&(R) is needed only in Proposition 4.1; otherwise, 
G&L’(R) is sufficient. First, using techniques similar to 
those used in Ref. 7, we show the existence of two linearly 
independent solutions of the Schrijdinger equation ( 1.1) 
and establish their large k asymptotics. Then, we relate 
these solutions to the scattering solutions $Q and $J, of ( 1.1) 
and establish the large k asymptotics of $I and +!I~. 

Assume a solution of ( 1.1) of the form 

$(k,x) =,i@(x) jzo q= Y(k,x)Z(k,x), 

where Y(k,x) = uO(x)eiks(X) and 

(4.1) 

Z( k,x) = & j$o y. 

The functions p(x) and at(x) are to be determined; sub- 
stituting (4.1) into ( l.l), we obtain 

k2( - fY2 + 1 - V)ac + k[iP”q, -I- 2iP’a; 

+ ( -B’* + 1 - V>uJ + jzo i [jS"uj+ 1 

+ 2iB’uj+ 1 + a; + ( - 8’2 + 1 - V)uj+2]=o. 
Thus we have 

P’(x) = *H(x), 

2ifl’u; + @“uo=O, 

2@‘uj’+ , + ip?zj+, + upo, j>o. 

(4.2) 

(4.3) 

From (4.2) it is seen that there are two linearly indepen- 
dent solutions corresponding to p = H and /3’ = - H, re- 
spectively. Substituting these values into (4.3), we obtain 
a0 = H - “2 apart from a multiplicative constant. Hence, we 
obtain two functions for Y(k,x) which we will call 

Y,(k,x)=exp(ik l dtH(t))(m)-’ (4.4) 

Y,(k,x) =exp( - ik [ dt H(t))( m)-‘. (4.5) 

In general, the series in (4.1) does not converge, and 
hence it is not very useful. Therefore, in order to compute 
Z( k,x), instead of using the series given in (4.1)) we pro- 
ceed as follows. Once Y(k,x) is known, substituting 
1c, = YZ into the Schrodinger equation ( 1.1 ), we obtain 

Yz”+2y’z’+[y”+#(1-V)Y]z=o. 

Multiplying the above equation by Y and rearranging 
terms, we have 

( Y2Z>’ + Y2[ Y”/Y + kz( 1 - V>]Z=O. (4.6) 

Note that from (4.4) and (4.5) we have in terms of the 
function G(x) defined in (1.6) 

%+kz(l-Y)=- 
t 2 

:gg+; (1”:)I 

=G(x)H(x), (4.7) 

which is independent of k. Integrating (4.6) with the 
boundary condition Z’( k,x,) = 0, we obtain 

Y2(k,x>Z’(k,x> = - 
s 

x dt Y2(k,t)G(t)H(t)Z(k,t), 
x0 

or equivalently 

Z’(k,x)= - 
s 

x dt 
x0 

cf::l)) G(t)H(r)Z(k,t). (4.8) 
, 

Integrating (4.8) with the boundary condition Z( k,xo) 
= 1 and changing the order of integration in the resulting 
equation, we obtain 

Z(k,x) = l- c x dt mF(k;x,t)Z(k,t), (4.9) 

where 

J% 

L?‘(k;x,t) =G(t)H(t) s x @ Y2bW Y2(k,C> * (4.10) 
t 

Using (4.4) and (4.5) in (4.10), we obtain 

.A?[( k;x,t) = z [ 1 -exp(lik JI d&H(g))], (4.11) 
and 
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2’,( k;x,t) = - G(t)/2ik 

X[l-exp( -2ik 1 dgH(<))]. (4.12) 

From (4.9) choosing x0 = i CO, we obtain two indepen- 
dent solutions denoted by Z/ and Z,, respectively, satisfy- 
ing 

Z,(k,x) = 1 -I- s O” dt ~Ak;w)Zj(k,t), (4.13) 
x 

J 

X 

Z,(k,x) = 1 - dt ~,(k;x,W,(k,t), (4.14) 
-co 

such that Z/ (k, CO ) = 0 and Z,(k, CO ) = 1. Similarly 
Zi(k,- CO) =OandZ,(k,- o~)=l. Weseefrom (4.11) 

G(t) 

and (4.12) that 

I-&(k;X,f)]<(l/]k]) 

l-KUV,t)]b(l/]k() G(t) 

and 
(4.15) 

, 

for k& + in their domains of integration given in (4.13) 
and (4.14). 

By iterating (4.13) and (4.14) and using (4,15), we 
obtain 

IZdk,x) 1 <exp( & SW dtl G(t) I) x 

(4.16) 

lZ,(kx) 1 <exp & 
( J 

1 m dtl G(f) 1 

<exp -j$ 
( J 

I_ dflG(t)I) , kEF\(o}. 

Hence, by the Weierstrass theorem, when m’(R), for 
each x both Z,( k,x) and Z,( k,x) have continuous exten- 

+ sions in k to C \ (0) which are analytic on C + . Further- 
more, Z&k,x) = 1 + 0( l/k) and Z,(k,x) = 1 + 0( l/k) as 
k-+coinC . + 

From (4.8) we obtain for kEF\{O}, 

IZ;(k,x) 1 

< J co dtH(x) lG(f) 1 (Z,(k,t) 1 <sup H(x) 
X XGR 

““p(i j-1 d6/‘=)l) (j-1, drlG(t)I) , co 

(Z:(k,x) 1 

< 
J 

’ dtH(x) I G(t) I I&&W 1 <sup H(x) 
-co JER 

Xew(k I_“, @WG)l) ( JIrn 4W) I) . 

Hence, if GfL’( R), both Zi(k,x) and Z;( k,x) have con- 
f tinuous extensions to k&! \{O) which are analytic on 

C!+, and Zi(k,x) = O(1) and Z:(k,x) = O(1) as k+w 
inC . $ 

Next we will show that the physical solutions $1 and 
qP are related to Z, and Z, in a simple manner. From (4.1 f 
we know that Yl( k,x)Zl( k,x) is a solution of ( 1.1)) and we 
have 

Yl(k,x)Z,(k,x) =exp zkx (’ -ikJo* [I-H]) 

-l-o(l), x+03. 

Thus the Jost solution from the left defined in (2.5) is 
given by 

O” fi( k,x I= exp ( J ik 
0 

[ 1 - HI) Ydk,xP@,x). (4.17) 

In the same way we obtain 

Y,(k,x)Z,(k,x) =exp 
( 

- ikx - ik Jo P--HI) -co 
+0(l), x-, - 00, 

and hence the Jost solution from the right is given by 

’ f ,( k,x) = exp ( J ik -m [ 1 - HI) Y,(k,x)Z,(k,x). 
(4.18) 

Thus from (2.5) it is seen that the physical solutions of 
(1.1) are given by 

&(k,x) = T(k) exp(ik c [ 1 - HI) YAk,xPt(k,xI, 

( J ’ $,(k,x) = T(k) exp ik --m C 1 - HI) Yr(k,xWk,xh 

and from (2.8) we obtain 

ml(k,x) =,&exp(ik J: [ 1 - Hl)Z,(kx), (4.19) 

m,(b) =& exp( ik Jr 5. [ I- ~l)Z,(k,x), 
(4.20) 

and hence, as k-* cg we obtain 

ml( k,x) = 
exp(ik.f,” [ 1 - HI ) 

jH(x) 
[l +0(1/k)], k& 

(4.21) 

m,(k,x) = exp(ikfx;-&-H1) [l +0(1/k)], kc& 
. 

(4.22) 

Since ml( k,x) and m,( k,x) are continuous at k = 0 when 
@L’(R), from (4.19) and (4.20), it follows that 
Zl(k,x) and Z,(k,x) are also continuous at k = 0. 
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Proposition 4. I: If G%:(R) for some a~( 0, l] and 
V(x) is bounded below, then for all k,#k~~~\{O}, the 
quantities 

Zz(k,,x) - z&x) 
lb -hIa 

and Zbhx) - Z,uw) 
Ik -&la 

are bounded in absolute value by ( 1 + Ix I )“Cs( a,~), 
where 
CJ(a,K) =max{23 -aK- ’ --,23 - **K- l sup H(6)“) &R 

dt[l+ (1-t Itl>“llGWl 

m X dt(l + Itl>“lWl (4.23) 
--co 

Andy = min{lkll,lkz(} > 0. 
Prooj We will only give the proof for Z,(k,x). Put 

S(k,,kz;x) = 
ZzUw) - z,Uw) 

lkr-21” ’ 
Then from (4.13) we have 

E(kl,kZ;x) = JXm dt 
-2’Akl;xA - ~z(kz;x,t) 

lh -W ZzW) 

+ s m dt ~((kZ;x,t)Zl(k,,k2;t). (4.24) 
x 

Using (4.11) and (4.15), we obtain 

I ~r(W,O - ~Akz;x,t) 1 
lh -W 

<2’-a~-11G(t)I’-a 
-V’z(k,;x,t) - Yz(kz;x,t) a 

Ik -+I 
<2~9G(t))[K-~~+2~‘~K-- 

x(lxI + Itl)“suPm)al 
ca 

<c,(W) [G(r) I(1 + Ixl)a(l + ItI)“, 

where 

CZ((T,K) = max{24 - 2aK - l- a,24 - “2K - l sup H( .y}. 
w 

Then, using (4.15) and (4.16), from (4.24) we obtain 

I&(kl,h;x) 1 G(m) -p(i I”, 4G(t) I) 

dr(l + Itl>alGWl 

and through iteration, we obtain E( kl,kZ;x) I < C3(a,~) 
x(1 + 1x1)“. n 

V. LARGE k ASYMPTOTICS OF THE SCATTERING 
MATRIX 

In this section we obtain the large k asymptotics of the 
scattering matrix. It is sufficient to assume GM’(R) and 
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V(X) is bounded below for the results to hold in this sec- 
tion, except in Propositions 5.1 and 5.2 where we further 
assume G@..Li(R) for some ae(O,l]. 

From (4.17) and (4.18) we obtain 

mfd k,x) exp rk (* J-1 [I--HI) 

=A( 1 + & j-; dt G(t)Z,(k,t)) 

dt G(WXk,t) 

Xexp 2ikt - 2ik j-i P-HI) 

and 

~fAk,x) exp lk (* I^ D-HI) -03 

(5.1) 

ai+++& j-:, df(i(W@,O) 
dt G(t)Z,(kt) 

m 

X exp -2ikt+2ik I,’ [l-H]), 

and hence, using (2.6) and (2.7) we have 

(5.2) 

* [l-H] 
--m 

x[ 1 +& s”, dtGWz,(kr)~ , (5.3) 

m [l-H] 
--m 

x[ 1 +A I”“, dWW,(kt)] 9 
L(k) -= - 
T(k) Jy, V-HI) 

s m 
X 

dt G(r)Zz(kt) 
-co 2ik 

J; [l--HI), (5.4) 

R(k) -= - 
T(k) exp Ik (* I” [l-H]-ikJom [l-H]) 

--co 

s 
G(WWv) 

X m dt 
-co 2ik 

X exp 
( 

-2ikt+2ik Ji [l-H]). (5.5) 

From (5.3), (5.4), and (5.5), as Ikl + QO we obtain 
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T(k) =exp - ik 
( s 

m 
-co [l-HI) 

+-s I”, dtG(t) + Wkzf ] , kec+, 
1 

(5.6) 

L(k)= - [exp( -2ik SE, [I -HI)] & 

X 
s 

O” dt G(t) exp 2ikt 
--m 

( -2ik c [I-H]) 

+ U( l/h?) , keR, (5.7) 

R(k)= - [exp( -2ik Jam [I -HI)] 

& ; 
s 

dtG(t) 
cc 

xexp( -2ikt+2ik Ji [l-H]) 

+ U( I/@) , kER. * (5.8) 

Proposition 5. I: Let K = min{ 1 kl 1, I kz I} and 

A,(k)=T(k) exp zk (* Jm W-HI). --co 

If G%.;(R) for some ac(O,l] and V(x) is bounded below, 
then IAdkl) - AoW I/lk - kz / o is uniformly 
bounded for kl#kzEF\{O) with K>S > 0. 

Proof Let E ( kl,k2;x) be as in the proof of Proposition 
4.1 and let A,(k) = l/A,(k). Then from (5.3), we have 

s 03 Al(k)=1 + dz G(z)Zz(k,z) 
--m 2ik ’ 

Thus 

A,(kl) - A,(k,) l/k, - I/k2 m 
Ik, - k,la =2i[kl _ k2,a s _ o. dzG(zlZz(ki~z) 

dz G(z)E(kl,kl;z), 

and hence using (4.16) and Proposition 4.1, we obtain 

tAi(kt) -A1(k2) I 

PI - hIa 
exp(K- ‘.I+“_ ,dfl G(t) 1) = 

< 2aK1+a --m dzIG(z)I 

c3(W) * 
-I---- 2K I 

d-(1 + 1.4 )alGW I, 

where C3(a,K) is the iuantity in (4.23). Since I T(k) 1 is 
bounded away from zero and 

lAo(h) - Ao(kd I 
I& -&la 

‘lr(h:r(k,)l 
IAl -Al(kz) I 

lk,-k,la ’ 
the left-hand side of the last expression is bounded for 
kl#kz with rc)S>O. R 

Proposition 5.2: Let K = min{ I k, I,/ k,[} and let 
F(k) denote either L(k) exp(2ik.f. b) [l -4) or R(k) 
Xexp(2ik.Q [1 -El). If C&JR) for some aE(O,1] and 
Y(x) isboundedbelow, thenF(k,) --F(k,)I/Ik,-k21a 
is uniformly bounded for k&k,&\{O} with K)S > 0. Prooj? Let 

J;(k) 
A,(k)= -mexp 

+ ik Jo V--HI). 

As seen from (5.4), ii have 

Al(k)=& cm s -03 
dzG(z)Z,(k,z) exp(2ik 1 H) . 

Hence using E(kl,kz;x) defined in the proof of Proposition 
4.1, we have 

A,(k,) - Az(k2) l/k, - I/k1 00 
lb --&In =2ilk,-kkZla -a s 

dz G(z)Zl(kl,z) exp( 2ikl s,’ H) + & JI, dz G(z)Z,(k2,z) 

so that 

x[exp(Zfk, s,’ H) --eq(% Ji H)] +& s:, dz G(z)E(kl,k2;z) exp(2ikl Ji II) , 

)4(h) - 443 I 
Ik,-k21a (2-nK-1-aexP dtjG(t)I) j- d.(W)/ --m 

2a’2KsUPH(6)aexp f 
(S 

a m dtIG(t)( j-2-%-‘C3(a,K) dz(l + Izl la/G(z) I, -01) --CO 
where C, (a,K) is the quantity in (4.23). This estimate and Proposition 5.1 imply the statement of the proposition. R 
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VI. RIEMANN-HILBERT PROBLEM 

In this section the sufficient conditions for the results 
to hold are O< V(x) <: 1, V&(R) and G&%;(R) for some 
a~(O,l]. We will show that we can recover V(x) from its 
scattering matrix uniquely. The condition V(x) 20 insures 
us that ml(k,x) and m,(k,x) remain bounded as k+ CO in 
c+. In order to formulate the inverse scattering problem 
as a Riemann-Hilbert problem, in this section we assume 
that Y(x)>O. However, in Sec. X, we will generalize our 
results so that Y(x))0 is no longer needed. 

Let us denote by H$ (R;Cn) the Hilbert space of all 
vector functions f:R + C!” which are analytic on C!” and 
satisfy 

SUP s 
m dkllf(k=W&t< co. 

b>O -00 

Then the Hardy spaces H% (R,C”) are closed complemen- 
tary, mutually orthogonal subspaces of the Hilbert space 
L2(R,C”) of square integrable vector functions f:R 
4 C!“. We write II, for the orthogonal projections of 
L*(R,C”) onto H$ (R,C”) and abbreviate H: (R;C’) by 
H: (RI. 

Since k appears as ti in ( 1.1 ), +!Q( - k,x) and 
qr( - k,x) are also solutions of ( 1.1) whenever t,b[(k,x) 
and $,( k,x) are the physical solutions. Using (2.1) and 
(2.2) as well as (3.9) and (3. lo), the solution vectors 

are found to be related to each other as 

$C - k,x) =S( - k)‘qW,x), kER, (6.1) 

where q = d i]. Letting 

m(b) = 
ml(kx) 

I I 
m (k x) 

r Y  

and using (2.8) and (3.9), we can write (6.1) as 

m( - k,x)=A(k)qm(k,x), kER, (6.2) 

where we have defined 

A(k)= T(k) - R(k)e=‘& 
- L(k)e-2ikx T(k) I 

in such a way that the x dependence is suppressed. 
The large k-asymptotics of m ( * k,x), as seen from 

(4.21) and (4.22), make it unsuitable to solve (6.2) as it is 
stated. However, the transformation k H - l/k changes 

(6.2) into a Riemann-Hilbert problem that can be solved. 
Under this transformation C -t- and RU { CO } are mapped 
onto themselves in a one-to-one manner. Let us use a su- 
perscript tilde to denote the transformed function under 
the map k++ - l/k; i.e., let us use the notation 
F(k) = F( - l/k) throughout the paper. The transforma- 
tion k H - l/k changes (6.2) into 

tZ( -k,x)=I\.(k)qtZ(k,x), keR. (6.3) 
Let C = [i]. From Sec. II it is known that tFz(k,x) is 

continuous in k4 + \{O}, has an Enalytic extension in k to 
C+ for each x, and G(k,x) - l=O( l/k) as k-t co in 
c+, which is seen from (2.17) and (2.18). If we assume 
O<V(x) < 1, from (4.21) and (4.22) we see that iii(k,x) 
also remains bounded as k -+ 0 in c+. Similarly, 6 ( - k,x) 
is continuous in k&Z + \{O}, has an azalytic extension in k 
to C- for each x, and fi( - k,x) - 1 = 0( l/k) as k+ CO 
in C-. Hence, when the scattering matrix is known, solv- 
ing (6.3) for &( - k,x) and r?i( k,x) constitutes a 
Riemann-Hilbert problem in which we seek solutions sat- 
isfyingm( - k,x) = fi(k,x). 

Letting F(k) = [x(k) - I]? and defining 

n+(k)=q[G(k,x) - ?] 

n-(k)=fi( - k,x) - t 
(6.4) 

we can write (6.3) as 

n-(k)=;i(k)n+(k) +F(k), kdt, (6.5) 

where PZ,EH% (R;C2> and F&“(R;C”); we will seek solu- 
tions of (6.5) satisfying 

n+( -k)=n+(k) and n-(-k)=n-(k), kER 
(6.6) 

n,( - k)=qn,(k), keR. (6.7) 

Here we use the notation I = [A 3. The Riemann-Hilbert 
problem stated in (6.5) differs from a conventional 
Riemann-Hilbert problemgt9 because the matrix x(k) has 
a discontinuity of almost periodic type”‘” at k = 0. In 
order to solve (6.5)) we will apply a matrix analog of the 
methods of Refs. 10 and 11. Using these methods we will 
show that (6.5), although not a Fredholm problem, is a 
problem that has solutions for every nonhomogeneous 
term Fti2(R;C2) and that the corresponding homoge- 
neous problem has infinitely many linearly independent 
solutions. In spite of these non-Fredholm characteristics, 
we will show that the large k asymptotics of different so- 
lutions of (6.5) are the same and as a consequence of this 
fact all solutions lead to the same potential. 

Let us now study the matrix ;i( k). Let A 
= .f”_ ,[l - H]; note that A)0 if we assume that 
O( V(x) < 1. Define the matrix M(k) as 
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iA/k - %ix/k &&+e-“/k~(+ -L-;;;~;;~2k/k -‘( - ‘lkje- 1 

T( - l/k)e-“‘k 1  ’ 
,F ^. 

From the properties of the scattering matrix S(k), it fol- 
Iows that x(k) is unitary. W e  also have 

G-k)=(k) and F( - k)=F(k), kcR, 

i(k)-‘=qK( - k)q and 

i(k)-%(k)= -qF( -k), keR. 
Note that as k-0, from (3.14), (3.15), and (3.16) we 

have 

T(k)=1 + O(k), kd!+, 

R(k) =0(k), kcR, 

L(k) =0(k), keR, 

and as lk[ -‘co, from (5.6), (5.7), and (5.8) we have 

T(k)egk= 1  -I- 0( l/k) , k&+ , 

R(k)esk=O( l/k) , kcR f 

L(k)etik=O( l/k) keR. , 
Thus we haveM(k) = I + O( l/k) ask-, f CO, and M(k) 
is continuous on  the real axis including the continuity at 
k = 0. In fact, as k-+0 in R, we have M(k) = I +- O(k). 
Since ;i( k) is unitary, it follows from (6.8) that M(k) is a  
unitary matrix. 

Proposition 6.2: Let F(k) = T( - l/k)e - tl’k. If 
V,6?&’ (R), then F(k) - 1  belongs to the Hardy space 
H=+ (RI. 

Proofi Using (3.14), (5.6), and the continuity of T(k) 
+ in C which has been established in Sec. III, we obtain for 

kEF 

I c2> lkl <I, 

IF(k) - II< ct 
I pq’ IkOlf 

where c1 and c2 are some positive constants. Thus, for b  > 0  
we obtain 

s 
O3 dk( F(kfib) - 112 
-02 

< 
I 
2~: JZ% + (2c@) arcsin b, 0  < bg  1, 
7&b, bl, 

and, hence, using @ /sin 6  < 6/5 for &[O,l], we obtain 

m  dkl F(k+ib) I 12c: 
- 11  2<max 2~‘: + s ,7rcf . 

-m 
Thus, ?  (k) - 1eH2+ (R). As a  consequence,  letting 

s 

m 
U(Y) =  

dk &, - 
--m Ge  [~(k)--11, (6.9) 

we obtain u(y) = 0  for y> 0. q 

VII. W IENER-HOPF FACTORIZATION 

The sufficient assumptions in this section are the same 
as those in Sec. VI. In this section we show that the matrix 
M(k) given in (6.8) has a  unique canonical W iener-Hopf 
factorization. 

By the W iener-Hopf factorization of a  continuous 
n  x n  matrix function M(k) with M( i CO ) = I, where 1  is 
the identity matrix, we mean a  representation of M(k) in 
the form 

M(k)=M- (k)D(k)M+ (k), kER, 
-T 

(7.1) 

where M ,(k) are continuous on  C and analytic on  
C”, n/r,(k) are boundedly invertible for all kcs-7, 
II&f* (k) - Ill -+ 0  as k- 00  in 5, and 

D(k)=Po + j$, 
is the diagonal factor. Here PI,...,Pn are mutually disjoint 
one-dimensional projections, and PO = I - X&,Pi The  
pl,...,pn are nonzero integers depending only on  M(k) and 
are called the partial indices of M( k). If the partial indices 
are all zero and hence D(k) =I, the factorization (7.1) is 
called canonical. 

The  Mob ius transformation k t--$ = (k - i) /( k + i) 
maps R U { CO} onto the unit circle T  of the complex plane, 
C + onto the interior of the unit disk, and C - onto the 
exterior of the unit disk. It is known’2 that M(k) has a  
W iener-Hopf factorization if &-&f(i( 1  + c)/( 1  - 6)) is 
Holder continuous; i.e., if there exists a  constant &(O, l] 
such that 

for all <1,c20T for some constant c:The constant ,B is called 
the exponent.  The  next theorem is about the W iener-Hopf 
factorization of the 2X2 matrix M(k) defined in (6.8). 

Theorem 7.1: If v@&(R) for some a~(O,l], then 
M(k) defined in (6.8) has a  W iener-Hopf factorization. 

Pro& To  prove the existence of the W iener-Hopf fac- 
torization of M( k), it is sufficient to prove that for @ET, the 
matrix M(i( 1  + {)/( 1  - 6)) is Holder continuous of ex- 
ponent  /!I for some @(O, 11. From Propositions 3‘1, 3.2, 5.1, 
and 5.2, because T(k) is continuous and never vanishes for 
kcR, it follows that, if V,Wi(R), IIWk + 6) 
- M(k) Il<cS” for some constant c and for all 6  > 0. W e  

have 

Ii5  -t21=*~&. 

Thus 
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IPW (1 + 41)/t 1 - 61)) - MC ( 1 + &I/( 1 - &))I1 
IS1 - 5*T 

J”(kl) - M(k2)II (k2 + 1)/3/2#2 + 1)/3/2 
2% - k21B 1 2 (7.2) 

We need to show that the quantity in (7.2) is uniformly 
bounded for some &(O,l]. Letting kt = k and S = I kl 
- k2 I, it is enough to show that 

@(k 6) =II”(k + ‘) - M(k)II (p + 1)p/2 , 2w 

is uniformly bounded for a suitable @(O, 11. Due to the 
uniform boundedness of M( k) on the extended real axis, it 
is enough to give the proof for 6 < 1. For every &O,l] we 
have 

O(k,S)<IIM(k + S) -AI(k) -EceP”-@2-s 
x(k2+ 1)‘s’2[(k+S)2+ 1]8’2 (7.3) 

and also 

@(k,S)<cF82-B(ti + 1)p’2[ (k + S)2 + 1]‘s’2. (7.4) 

Hence, if I k I <I, assuming a>fi)O, from (7.4) we obtain 
O(k,S) ( ~2-B2fi’~50’~. If Ikl>l, from (7.3) we obtain 

O(k,G)<[IIM(k+S) -111 + IIM(k) -III]l-E~‘S”E-- 
x2-O( 10)8’21k128 

+ s~plk~w~~M(k + 6) - III’--1, 

and since the matrix M(k) is continuous and 
M(k) = I + O( l/k) as k+ * CO, the suprema in the last 
expression are finite numbers if 1 - e)2fl. Thus if 
1 - E>~B and aC#, or equivalently if 0 <P<a/(2a + 1 >, 
0 (k,S) is uniformly bounded. In case t2 = 1, we have 

IIMjC 1 + W( 1 - 0) - Ml 1 II 
I(- v 

IIWk) - Ill 
= 1 (k - i)/(k + i) - 1 ID 

(IF + lP’2 
= 

28 IIWk) - III 

and since M(k) is continuous and M(k) = I + 0( l/k) as 
k + f M , the last expression is uniformly bounded for all 
P<l. n 

The next theorem shows that the partial indices of 
M(k) are both zero, and hence M(k) has a unique canon- 
ical factorization M(k) = M- (k)M+ (k). 

Theorem 7.2: If V&L(R) and G&(R) for some 
ae(O,l], then M(k) defined in (6.8) has a unique canon- 
ical Wiener-Hopf factorization. 

Procj Let 

be the scattering matrix for the Schriidinger equation given 
in ( 1.4). Then from the asymptotics of ( 1.3) as y-t f CB , 
we obtain 

e(k) =L(k) exp 2lk ( * p [I-m), 
--m 

Let J = [A -3. Then 

I 
T(k) 

Jdk)J= _ flk) 
-p(k) 

I T(k) ’ 

Let 

y=,+; (I” --m [l--~l-JW [I-HI). 
0 

From (6.8) we obtain i@(k) = Jay(k) J, where 

p(k)e2iky 1 T(k) ’ 

It is known’3>14 from the inverse scattering theory for the 
Schriidinger equation ( 1.4) that or(k) is the scattering 
matrix for the Schrijdinger equation ( 1.4) that corre- 
sponds to the potential shifted by y. Due to the fact that 
T(k) never vanishes and there are no bound states, the 
vector Riemann-Hilbert problems for the matrices ay(k) 
and Ja,( k) J have unique solutions that can be obtained by 
the Marchenko procedure. *%16 As a result the matrix 
Jur( k) J has a canonical Wiener-Hopf factorization, and 
its Wiener-Hopf factors can be obtained as follows. “*is Let 
[$“,‘,I be the solution of the vector Riemann-Hilbert prob- 
lem with matrix Jar(k) J, and let $$‘,I be the solution of 
the vector Riemann-Hilbert problem with matrix a,(k). 
Then upon forming the matrix 

1 al+Bl 
U(k)=s a,-fip, 1 

al-4 1 ar+Pr ' 

we obtain the unique solution of the matrix Riemann- 
Hilbert problem 

U( - k) =&(k)qU(k)q, kgR, 

which leads to the-unique_canonical Wiener-Hopf factor- 
ization M(k) = M- (k)M+ (k), where 

Me(k)=U( -k) and &?+(k)=qU(k)-‘q. 

Since M(0) = I and M(k) = &( - l/k), the matrix 
M(k) has also a canonical factorization with factors 
U( l/k) U(0) - ’ and qU(0) U( - l/k) - ‘q, respective1y.a 
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VIII. RECOVERY OF THE POTENTIAL 

In this section we solve the key Riemann-Hilbert prob- 
lem (6.3), using the canonical factorization of the matrix 
M(k) given in (6.8) This is done by solving (6.5) and 
restricting its general solution so that (6.6) and (6.7) are 
satisfied. The sufficient assumptions in this section are the 
same as those in Sec. VI. 

Proposition 8. I: Suppose 

;i;(k)=e”‘%- (k)M, (k), kER, 

where A > 0, M* (k) are continuous on C* and analytic on 
C’, satisfy M, ( 03 ) = I, and are boundedly invertible on 
c”. Then for every Fd2(R;C2) the Riemann-Hilbert 
problem (6.5) has at least one solution and the general 
solution is given by 

n+(k)= -e -“‘k~+(k)-l[n+{M_‘F)](k) 

++f+W-* dte-if’k77(t), (8.1) 

+&f- (k) 
I 

A dtei(A-t)‘kq(t), (8.2) 
0 

where +E2( (0,A ) ;C2) is arbitrary and II, are the orthog- 
onal projection operators onto H: ( R;C2). 

proof: One can directly verify that (8.1) and (8.2) 
represent a solution of (6.5) for every Fd2(R;C2) and 
every qd2((0,A);C2). To prove that (8.1) and (8.2) rep- 
resent all solutions of (6.5), we will compute the general 
solution of the corresponding homogeneous Riemann- 
Hilbert problem 

n- “l(k) = x(k)+](k), kcR. (8.3) 

Letting 

n!f](k)=M, (k) -‘p?](k), 

n[“l (k) = M- (k)p!! (k), 

we can write (8.3) as 

p[z](k) =ei4’kp[t1(k), kcR, (8.5) 

where p$]oH$ ( RC2). Now note that ( Q.!) (k) 
= (i/k)f( - l/k) defines a unitary operator on L2(R;C2) 
which maps HZ, (R;C2) onto themselves and is its own 
inverse. Letting r[$] = @ptl, from (8.5) we obtain 

r[z](k)=e - ikAr[il (k), kER, (8.6) 

where +!&H”, ( R;C2). Thus there exist 
~7 + EL2( (0, to );C!*) and v _ d2(( - ,,0);C2) such that 

&z’(k) = 

and 

s 

0 

r?‘(k) = dt etk*q _ (t), 
--m 

and using these integral representations in (8.6), we obtain 
rlt (f) = 0 for t>A, v-(t) = 0 for t< -A, and 

q-(t)) =q+(t+A). Defining q(f) Ef q+(t) 
= v-(t - A) forOct<A,wehave 

- A  

p[f](k) =$ 
s 

dt e-“/$(t) o 

and 

p[ol(k) =! k “_ 
s 

dteviNk~(t+A) 
A 

i A =- k 
I 

o dtei(A-‘)‘ky(t), 

and using (8.4), we obtain the complementary solutions 
given in (8.1) and (8.2). n 

M( - k) =qM( Using - k) - ‘q=M(k), we obtain 
M*( - k) =&f*(k) and 

M,(k) -‘=qM,( -k)q. (8.7) 

Next, using F(k) = [x( k) - I]?, we obtain 

M-(k)-lF(k)=[e”‘k- l]M,(k)?+ [M+(k) --I]? 

+ [I-M-(k)+ 

Since M _ (k) - ‘and M 
M- (k) -‘F(k) 

(k) are bounded,,$ follows that 
and ‘[etiik - l]M+ (k)l beiong to 

L2 (R;C2). Thusg(k)=[M,(k) -M-(k)-‘IL belongs 
to L’(R;@). Hence, [II +g](k) =[M+ (k) - I]l,,belongs 
toH2+(R;C2) and [n_g~(k)=EI--M(k)-‘ll belong2 
to H? (R;C?). This conclusion may also be drawn if 1 
were an arbitrary two-vector. Hence, there exists a real 
2 x 2 matrix function IM2( (0, 00 ) ;C2 X C’), such that 

I-(t) = I ~w$e-ikf~[M, (q) -I]. (8.8) 

Writing 

% IMZ ‘PI (k) 

we get 

~[~+QK+3l(k)= s 
om dte’kcI’(t+A)c 

A 
= 

s 
dt e-“‘I?(A - t)? 

0 

_r[K(+I]i 

+$e-‘XR - l]?, 

Hence, 
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(8.9) 

i A 
=- 

s k o 
dteitjkr(A -t)?- [M- (k)-‘-I]? 

+ [eL(‘k - l]t (8.10) 

Among all the solutions of (6.5) we are interested in 
those satisfying (6.6) and (6.7). In Proposition 8.1 we 
have obtained the general solution of (6.5) in terms of the 
canonical factors of M(k). The next theorem shows how 
to obtain the general solution of (6.2) by restricting the 
solutions of (6.5) given in (8.1) and (8.2) to those satis- 
fying (6.6) and (6.7). 

Theorem 8.2: Suppose 

x(k)=e”‘kM- (k)M+ (k), keR, 

where A > 0, M, (k) are continuous on C* and analytic on 
C*, satisfy iU, ( 00 ) = I, and are boundedly invertible on 
??. Then the general solution m(k,x) of (6.2) is given by 

dt eikfql? ( t) y 

+ ik w(t) I) -@(A-t) ’ (811) 

where &‘(O,A A) is an arbitrary real function and I is the 
matrix defined in (8.8) 

Prooj Using (8.9) and (8.10) in (8.1) and (8.2), we 
obtain the general solution of (6.5). If we choose 71 in 
(8.1) to be real, (6.6) is satisfied. In order to satisfy (6.7), 
it is sufficient to replace n * (k) by i[n * (k) + qn F ( - k)]. 
Thus the general solution m (k,x) of (6.2) is given by 

(8.12) 

Finally, putting w(t) =vt (A - t) - r]*(t), where 
q1 (t) and q2(t) are the first and second components of the 
vector v(t), and using (8.7) in (8.12) we obtain (8.11).m 

Since o appearing in the general solution (8.11) be- 
longs to L*(OJ ) and A is finite, it follows that 
WEL.’ (04 ) . Hence, the Riemann-Lebesgue lemma implies 
that 

s 

A 

s 

A 
lim dt e”‘w ( t) = lim dt eiktw(A - t) =O. 

k-&too 0 k-.&co 0 (8.13) 

Once (6.2) is solved, from (4.19) and (4.20) we have 
immediately 

lim 
- i In ml( k,x) 

k 
= 411 -fWl, (8.14) 

k-+*m 

lim 
- i In m,( k,x) x 

1. = c 431 -fW1 . (8.15) 
k-.+m K J-CO 

Hence, the potential V(X) can be obtained from (8.14) or 
( 8.15) through differentiation. 

Although the Riemann-Hilbert problem (6.3) has in- 
finitely many solutions, we will now show that all solutions 
of (6.3) lead to the same potential V(x), and hence the 
inverse scattering problem for ( 1.1) has a unique solution. 
If we denote by m( k,x),,O and m(k,x), the solutions 
( 8.11) with w = 0 and real arbitrary WEL*( 0+4 ), respec- 
tively, then from (8.13) it follows that 

iInm&k,x), -ilnml(k,x)o=O 
- k - k 

= lim 2 In mkkx), =o, 
k-.&m mdk,x)o=o 

and similarly for m,( k,x), so that all solutions of (6.3) 
lead to the same potential V(x) through the use of (8.14) 
and (8.15). Hence, the solution of the inverse scattering 
problem obtained by this method is unique. 

IX. WIENER-HOPF FACTORS OF M(k) VIA THE 
MARCHENKO METHOD 

In this section we use the Marchenko procedure in 
order to obtain the canonical Wiener-Hopf factors 
M, (k) and M-(k) of the matrix M(k) given in (6.8). 
The sufficient assumptions in this section are the same as 
those stated in the beginning of Sec. VI. 

Consider the two vector Riemann-Hilbert problems 

n( - k)=M(k)qn(k), keR, (9.1) 

p( - k)=JM(k)Jqp(k), kER, (9.2) 

where the vectors n(k) and p(k) have anilytic extensions 
in k to C+ for each x, and n(k) - 1 =0(1/k) and 
p(k) - 7=0(1/k) as k-*co in??. 

Below we will solve (9.1) and (9.2) by the Marchenko 
method. From (9.1) we obtain 

n( - k) - f = [M(k) - I]qn(k) + q[n(k) - 71, 
(9.3) 

and using the Fourier transformation, we transform (9.3) 
into 

B(y)= ST, geiky[M(k) - I]q[n(k) - ?] 

s 
m + dk iky -oo Ge [M(k) --II 7 +qW -Y>, (9.4) 

where we have defined 

B(Y)= s”, $e-*Y[n(k) _ f]. 
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If n(k) - 1 belongs to the Hardy space H$ (R;C*), 
then B(y) = @I for y < 0. Let 

I 

and let us define 

(9.5) Bi(y)= I”, g [nl(k) - l]eqikJ’, 

B,(y)= J”, g[n,(k) - l]emikJ’, (9.6) 

J 
O” 

i?(Y) = dk iky --m 27l.e [M(k)-II, 

00 dk 
gl(y) = - 

J 
_ oD G R ( - l/k) e - *ix/k- ot/keiky, 

J 
m dk 

g,(y) = - _ m G L ( - l/k) e*klk- g/keikY, 

where we have again suppressed the x dependence. Then 
from (9.4) we derive the 2 X 1 system of integral equations 

B(y)=&) i- +qB( -y) + J - dzg(y+z) 
--CO 

x qB(zL %R. (9.7) 
Note that 

&T(Y) ?= &(Y) I 1 g(y) + f4Y) i‘, r 
where u(y) is the quantity defined in (6.9). From Propo- 
sition 6.1 it follows that u(y) = 0 for y > 0, and hence 
(9.7) uncouples into the two scalar Marchenko equations 

WY) =gr(Y) -I- J co dzg~(y+z)B&z), y>O, (9.8) o 

B,(y) =g,(y) + Jm dzg,(y i-z)B,(z), y>o. (9.9) 
0 

On the other hand, if we replace y by - y in (9.7) and 
restrict the resulting identity to y > 0, we obtain the cou- 
pled system of equations 

4(Y) +gA -Y) -I- u( -Y) + J 
= dzgr( - y + z)&(z) 

0 

+ J 
Y 

d.u( -y++z)B~(z)=O, y>O, (9.10) 
0 

B,(Y) +gA -Y) -I- u( -Y) + J dzg,( -Y -tz)B/(z) o 

Y 
+ J 

dzu( -y+z)B,(z)=O, y>O. (9.11) 
0 

Let us write (9.8) and (9.9) in operator form as 

B=g + ?fB. (9.12) 
We then have the following result concerning the solvabil- 
ity of the Marchenko integral equations (9.8) and (9.9). 

Theorem 9.1: Suppose V(X) satisfies 1 - HEL’ (R), 
O(V(x) < 1, and w*(R), where G is the quantity de- 
fined in ( 1.6). Then the operator 3 in (9.12) defined on 
L’(0, OD ) is self-adjoint and its operator norm satisfies 
ilZGJI[ < 1. Thus the Marchenko integral equations (9.8) 
and (9.9) are uniquely solvable. 

Proofi Note that the reflection coefficients R(k) and 
L(k) are strictly less than 1 in absolute value, are contin- 
uous for kER, and are of O( l/k) as k-, f 00. Thus, 
supkEERIR(k) [ = supkERfL(k) 1 < 1. Let (.;) denote the 
usual inner product on L2(R). Then for B&*(R) such 
that B(y) = 0 for y<O we have 

(YB,iBB)=& (hh&<; [suplh(k)l12(B^,B^) 
k& 

= I$W I l*@,BA 

where h ( k) denotes R( - l/k)e-*aik-s’k or 
u - l/k)ezixFk - i4’k. Hence, the operator zorm of .Y is 
bounded above by sup&& j/z(k) 1. Here B denotes the 
L*-Fourier transform of B. Thus, 11 Y II< 1, where II* 11 de- 
notes the operator norm on L*( 0,03 ) . Hence, the integral 
equation ( 9.12) is uniquely solvable for &L2 (0,~ ) and its 
solution can be obtained by iteration. 

Prom (3.8) and (3.9) it follows that g(y) is real, and 
from (9.8) and (9.9) it is seen that 9 has a symmetric 
kernel. Hence, %’ is self-adjoint. I 

Once B[(y) and B,(y) are obtained from the March- 
enko equations (9.8) and (9.9)) they lead to a sohrtion of 
the Riemann-Hilbert problem (9.1) if and only if they also 
satisfy the ancillary equations (9.10) and (9.11) . If this is, 
indeed, the case, then by using the inverse Fourier trans- 
form on (9.5) and (9.6), we obtain n&k) and n,(k). The 
Riemann-Hilbert problem (9.2) can be solved the same 
way, In fact, since the only difference between (9.1) and. 
(9.2) is the sign of the off-diagonal entries of the matrix 
coefficient, (9.2) is uniquely solvable if and only if (9.1) is 
uniquely solvable. 

From 

the solution of the vector Riemann-Hilbert problem (9.1)) 
and 

n(k) dk)= p,(k) , 1 1 
the solution of (9.2), we obtain the matrix 

1 4fPr 
N(k)=2 n -p I 

ni--pl 
n +p 1 ’ r P P r 

which is the unique solution of the matrix Riemann- 
Hilbert problem’7~1s 

N( - k) =M(k)qN(k)q, keR. 
Thus we obtain the canonical Wiener-Hopf factorization 
M(k) = M- (k}M+ (k) with the Wiener-Hopf factors 

M... (k)=N( -k) and M, (k)=qiV(k) -‘q. 
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X. GENERALIZATION WHEN V(x) HAS MIXED SIGN ACKNOWLEDGMENTS 

In this section we generalize the results of Sets. VI-IX 
to the case where V(x) is no longer assumed non-negative. 
The sufficient assumptions in this section are the same as 
those stated in the beginning of Sec. IV. 

Let q(x) = .I?,[1 - H], and let A = JZ,[l 
- H] as before. Then A - a(x) = I,“[1 - HJ. As seen 

from (4.19) and (4.20), if V(x) assumes negative values, 
then p(x) or A - p(x) may be negative, and as a result, 
ml( k,x) or m,( k,x) may blow up exponentially as k+ 00 in 
C + so that fi (k,x) may no longer belong to H?+ ( R;C2). 
We will now solve (6.2) in such a case. 

The authors are indebted to Roger Newton for his 
help. The research leading to this article was supported in 
part by the National Science Foundation under Grants 
DMS 8823102 and DMS 906268, and by the Mathematical 
Physics Group of the Italian National Research Council 
(C.N.R.-G.N.F.M.). 

Since 1 -&L.‘(R), p( - 03)=0, and q( + CO)=A, 
q(x) is continuous and thus uniformly bounded on the 
extended real axis. Let A be a constant such that 
A<infB{q(x), A -q(x)}. Define u(k,x)=e-ium(k,x). 
Then, from the properties of m (k,x), it follows that F( k,x) 
is continuous in kcF\{O}, has an analytic extension in k 
to C+ for each x, and i$k,x) - ?=O( l/k) as k-* CO in 
??. Furthermore, for each XER, we have i?(k,x) - 7~ 
H2+ (R;C*). Let us write (6.2) in the form 

u( - k,x) =e?%-“%(k)qu(k,x), kcR, 
or equivalently, after the transformation la-t - l/k, 

F( - k,x)=e-2iA’ke”‘kM(k)qU(k,x), kER. (10.1) 

Since A - 2;1)0, the Riemann-Hilbert problem ( 10.1) can 
be solved in exactly the same way as we solved (6.3) in 
earlier sections under the assumption A)O. In fact the so- 
lution of ( 10.1) is obtained from the solution of (6.3) if we 
replace A in the solution of (6.3) by A - 2A. Hence, the 
solution method for the inverse problem of recovering 
V(x) presented earlier in this paper is easily extended to 
the case V(x) < 1 where V(x) is no longer non-negative. 
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