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We study the n-dimensional Schrodinger equation, n 2 2, with a nonspherically sym
metric potential in the class of Agmon's short range potentials without any positive energy 
bound states. We give sufficient conditions that guarantee the existence of a Wiener-Hopf 
factorization of the corresponding scattering operator. We show that the potential can 
be recovered from the scattering operator by solving a related Riemann-Hilbert problem 
utilizing the Wiener-Hopf factors of the scattering operator. We also study the properties 
of the scattering operator and show that it is a trace class perturbation of the identity 
when the potential is also integrable. 

1. INTRODUCTION 
In this article we study the inverse scattering problem for the n-D Schrodinger equation 

where n 2 2, '\7; is the Laplacian, x E Rn is the spatial coordinate, 8 E sn-l is a unit 
vector in R n, and k 2 E R is energy. The potential V (x) is assumed to decrease to zero 
sufficiently fast as Ixl --- 00, but need not be spherically symmetric. Then, as Ixl -> 00, 

the wave function ¢(k,x,O) behaves as 

oJ'(k x 0) = eik6 .:z: + ie-ti(n-l) _e_' -.4.(k ~ 8) + 0 __ 
ikl:z:1 ( 1 ) 

'I' , , I I!!..::..! ' I I' I I!!..::..! x' X IX , 

where A(k,8,8') is the scattering amplitude. The scattering operator S(k,O,8') is then 
defined as 

n-l 

S(k,8,8') = 8(8 - 8') + i (2~) -, A.(k,8,8'), 

where 8 is the Dirac delta distribution on sn-l. The scattering operator acts on L2 (sn-l ), 

the Hilbert space of square-integrable complex-valued functions with respect to the surface 
Lebesgue measure on sn-l. Then, in operator notation, the above equation becomes 

( k ) n;' 
S(k) = 1+ i 211" A(k). 
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Here I denotes the identity operator. S(k) is known to be unitary and to satisfy 

(1.1) S( -k) = QS(k)-lQ, 

where Q is the signature operator on L2( sn-l) defined by (Q f)( 0) = f( -0). 
The inverse scattering problem consists of retrieving the potential V(x) from the 

scattering matrix S( k). For one-dimensional and radial Schrodinger equations the inverse 
scattering problem is fairly well understood [CS89j. In higher dimensions the methods 
available to solve the inverse scattering problem have not yet led to a complete and sat
isfactory solution. These methods include the Newton-Marchenko method [Ne80, Ne8t, 
Ne82j, the generalized Gel'fand-Levitan method [Ne74, Ne80, Ne8t, Ne82j, the 8-
method [NA84, BC85, BC86, NH87]' the generalized Jost-Kohn method [Pr69, Pr76, 
Pr80, Pr82], a method based on the Green's function of Faddeev [Fa65, Fa74, Ne85j, 
and the generalized Muskhelishvili-Vekua method [AV89bj. A comprehensive review of 
the methods and related open problems in 3-D inverse scattering prior to 1989 can be 
found in Newton's forthcoming book [Ne89bj and in Chapter XIV of [CS89j. 

The basic idea behind the Newton-Marchenko, Gel'fand-Levitan, and Muskhelishvili
Vekua methods is to formulate the inverse scattering problem as a Riemann-Hilbert bound
ary value problem and to use the Fourier transform to obtain a vector-valued integral 
equation on the half-line (the Newton-Marchenko method), or to use the solution of the 
Riemann-Hilbert problem in the kernel of an integral equation (the generalized Gel'fand
Levitan method), or to transform the Riemann-Hilbert problem into a Fredholm integral 
equation with a weakly singular kernel (the generalized Muskhelishvili-Vekua method). 
The key Riemann-Hilbert problem in n-D inverse scattering theory is given by (3.3), where 
the operator G( k) is the x-dependent unitary transform of the scattering operator defined 
by 

(1.2) G(k) = U",(k)QS(k)QU,,(k)-l, 

where (U,,(k)f)(8) = e- ik9 ." f(8). Note that we suppress the x-dependence of G(k). The 
spectra of the three integral operators mentioned above are closely related to the partial 
indices of G( k). Hence, the study of the Wiener-Hopf factorization of G( k) not only leads 
to a direct solution of the Riemann-Hilbert problem (3.3) but also helps us to study the 
solvability of the integral equations in these three inversion methods. 

This paper is organized as follows. In Section 2 we establish the Holder continuity of 
the scattering operator by using the limiting absorption principle for the free Hamiltonian 
[Ag75, Ku80j and using the estimates given by Weder [We90j. In Section 3 using 
the Holder continuity of the scattering operator and the results by Gohberg and Leiterer 
[GL73], we prove the existence of the Wiener-Hopf factorization for G(k). In this section 
we also study the properties of the partial indices of G( k), solve the Riemann-Hilbert 
problem (3.3) in terms of the Wiener-Hopf factors of G( k), and show that the potential 
of the n-dimensional Schrodinger equation can be recovered from the scattering operator. 
Hence, the results in this paper generalize those in [AV89aj from 3-D to n-D. Note also 
that the generalized Muskhelishvili-Vekua method in 3-D given in [AV89bj is now seen to 
be valid also for n-D because the Holder continuity of G( k) is basically all that is needed 
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in that method. In Section 4 we prove that the scattering operator S( k) is a trace class 
perturbation of the identity and evaluate the trace of S(k) - I as k ---+ ±oo. 

Throughout we will use the following notation. C is the complex plane, C± = {= E 
C: ±Im= > O}, R+ = (0,00), Roo = RU{±oo}, T = {z E C: Izl = I}, T+ = {z E C: 
!=I < I}, T- = {z E C : 1=1 > I} U {oo} and n± = C± U R+. The closure of a set Pin 
the Riemann sphere Coo = C U {oo} will be denoted by P. 

The domain, kernel, range, and spectrum of a linear operator T will be denoted by 
1J(T), N(T), R(T), and (j(T), respectively. C(X; Y) will denote the set of bounded linear 
operators from the Banach space X into the Banach space Y, while C(X) will stand for 
C(X;X). The adjoint of T on a Hilbert space will be denoted by Tt. 

ufO will denote the Fourier transform of u E L2(Rn); i.e., 

'(1:) l' 1 1 -i€·x ( )d u <, = 1m (. )n/2 e u x x, 
N-oo 271" lxl:SN 

and hence :iu!lz = Ilu112, where Ii . :Iz is the norm in L2(Rn). We will use L;(Rn) to 
denote the Hilbert space of all complex measurable functions u( x) on R n such that (1 + 
x 2)S/2u(x) E L2(Rn), endowed with the norm 

( 1.3) 

By C3'"(Rn ) we will denote the linear space of all COO-functions on Rn of compact 
support. Then HO(Rn) will denote the Sobolev space of order ex, which is the completion 
of C3'" (R n) in the norm 

By H~(R n) we denote the weighted Sobolev space of order (ex, s), which is defined as 

with norm II U ilH:'(Rn) = III 1 -:.-lxl 2 )s(2 u( x )1!Ha( Rn). Note that we have H~(R n) = L;(R n), 
H!{'(Rn) = HO(Rn), and Hg(Rn) = U(Rn). 

For any Banac h space X, Borel set :J in Coo, and I E (0,1], we will denote by C(:J; X) 
the Banach space of all bounded and continuous functions 1/' : :J ~ X endowed with the 
norm 

!!~'llc(.J;X) = sup i1jJ(t)!lx. 
tEJ 

and by 'H-,(:J; X) the Banach space of all uniformly Holder continuous functions ~, : :J - X 
endowed with the norm 

~'II1t,(.J;X) = sup 111l'(t)llx + sup 
tE.J t#sE.J 

111l'it) -l/'>(s )!Ix 
It - sl'" 

Here the continuity pertains to the strong topology of X. If X is a Banach algebra, so 
are C(:J; X) and 'H..,(:J; X). For I E (0,1), the closed subspace of 'H..,(:J; X) consisting of 
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those'lj; : .J -+ X such that 11~·(t) - '1/'(8) II x = o(lt - 811') as t -. 8, will be denoted by 
ll~(.J;X). Note also that we will use the norm 11·11 without a subscript in order to denote 
the operator norm in C(L2(sn-1)). 
Acknowledgement. The research leading to this article was supported in part by the 
National Science Foundation under grant No. DMS 8823102. 

2. ESTIMATES ON THE SCATTERING OPERATOR 
In this section, starting with the representation given in (2.3), we prove that the 

scattering operator S(k) and its unitary transform G(k) defined in (1.2) are both Holder 
continuous. 

For 0 ~ 0, a real function V(x) E L;oc(Rn) is said to belong to the class Ba if, for 
some 8 > !, the multiplication by (1 + IxI2)SV(x) represents a bounded linear operator 
from Ha(Rn) into L2(Rn). (Our definition of Ba differs from the one used in [We90] in 
that we require Y(x) to be locally L2). For such potentials, the multiplication by Y(x) 
represents a bounded operator from H~t(Rn) into L;(Rn) for all t E (~,8] with 8 as in 
the definition of Ba. It follows from results in Chapter 6 of [Sc71] th~t V(x) E Ba if 
.3f > 0,/1 E (0,20) such that 

If V(x) E Bo; i.e., if.3c > 0,8> ! such that 

then V(x) E Ba for every 0 ~ O. 
A real function ll( x) E L;oc(R n) is said to be short range or to belong to the class 

SR [Ag75] if for some 8 > ! the multiplication by (1 + !xI2)SV(x) represents a compact 
operator from H2(Rn) into L2(Rn). Since H2(Rn) is compactly imbedded in any of the 
spaces Ha(Rn) for 0::; 0 < 2, we have 

Ba C SR, 0::; 0 < 2. 

Now let K2 denote the set of all real functions V(x) E L;oc(Rn) such that the multiplication 
by V(x) represents a compact operator from H2(Rn) into L2(Rn) [We90]. Then SR C K2 
and hence 

Ba C SR C K 2 , 0::; 0 < 2. 

Let Ho = -V'; be the free Hamiltonian with domain D(Ho) = H2(Rn). Then Ho is 
a selfadjoint operator on L2(Rn) with absolutely continuous spectrum [0,00]. Define 

(2.1) R~(.A) = lim(Ho - =)-1, A E R+, = E C±. 
Z-A 
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According to the limiting absorption principle, the limit in (2.1) exists in the uniform 
operator topology of C(L;(Rn); H~s(Rn)) for s > ~ [Ag75, Ku80j. R;(>,) can be 
extended to C± by defining 

(2.2) 

Then from (2.1) and (2.2) it follows that R;(z) is a bounded linear operator from L;(Rn) 
into H~s(Rn), which is continuous (in operator norm) in z E D±, bounded and analytic 
for z E C±. 

If V(x) E SR, then the Hamiltonian H = Ho + V(x), whose domain is D(H) = 
D(Ho) = H 2 (Rn), is selfadjoint and bounded below with essential spectrum [0,00), while 
its negative eigenvalues have finite multiplicity and can only accumulate at zero. Moreover 
[Ag75, Ku80j, the set, i7+(H), of positive eigenvalues of H consists only of eigenvalues of 
finite multiplicity, which can only accumulate at zero and at infinity. Apart from that, H 
may have a bound state or half-bound state at zero energy. If V(x) = O( Jh) as x ~ 00, 

the set i7+(H) is empty [Ka59J. As in (2.1) we define 

R±(A) = lim(H - z)-I, A E R+ \ i7+(H), :; E C±. 
Z~), 

The operator R±(>\) exists in the norm topology of C(L;(Rn); H~s(Rn)) for all s > * 
and it can be extended to C±, by defining R±(:;) = (H - :;)-1 for:; E C±. Then R±(z) 
becomes a continuous (in operator norm) function on D±\i7+(H) and analytic for z E C±. 

If V(x) E K 2 • then V(x)R;(z) is compact on L;(Rn) for all:; ED± and s > t, while 
[1+ V(x )R;(z)] and [1+ R;(z)V(x)1 are invertible on L;(Rn) and H=-s(Rn), respectively, 
for all z E D± \ i7+(H) and satisfy the identity [Ag75, Ku80j 

The scattering matrix may then be represented in the form [Ku80j 

(2.3) 

where 

(2.4) 

We will use the multiplicative representation (2.3) in order to prove the Holder con
tinuity of S( k), but we first need a few propositions concerning the Holder continuity of 
the individual factors appearing in (2.3). 
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PROPOSITION 2.1. Let S > t. Then, for every compact subset.J o/Roo \ {O}, ut(k) 
is a uniformly Holder continuous function /rom.J into C(L2(sn-l); L:.(Rn» 0/ exponent 
I where 0 < I < S - t· 
Proof: It is known ([Ag75], Lemma 5.2; [We90], Lemma 2.4) that ut(k) belongs to 
C(L2(sn-l);L:.(Rn» for all S > t and k E R \ {O}; i.e., for all 9 E L2(sn-l) 

(2.5) 

More details on Ck .• are given in Appendix A. For s > ~ we have 

II d~ (ut(k)g) 11=-. ::; t Ilu t (k)(9jg)II=-(S_1) ::; nC~"-lllglli'(sn-'l' 
j=1 

so that for kl i- k2 E R \ {O} 

where CJ .• = sUPkEJ Ck ••• So, if s > ~, ut(k) belongs to 1t1(.J; C(L2(sn-I); L:.(Rn))) 
with its norm bounded above by (1 + .fii)C J .• -I' Now note that, by Holder's inequality, 
for SJ,S2 > 0 and E E (0,1) 

(2.6) 11/11-. ::; Ilfll~.,llfll:~~ 

whenever S = ESI + (1 - dS2. Thus, for SI > ~, S2 > !, E E (0,1) and S = ESI + (1 - E)S2' 

using (2.6) we obtain 
II[ut(kd - U t (k2)]gll_. ::; 

::; (2CJ .s ,llgllu(s.-,»)I-<((1 + vn)CJ .• ,-tligIIU(sn-,)lk1 - k21)< = 

= 21-«1 + vn)«CJ .• ,)1-«CJ .•• -tl<lk1 - k21<llgIIL'(S'-'), 

so that ut(k) belongs to 1t~(.J;C(L2(sn-I); L:.(Rn»). In fact, its Holder norm of expo
nent € is bounded above by CJ .• + 21-<(1 + .fii)«CJ .• ,)l-«CJ .• ,-tl<, which is in turn 
bounded above by 

(2.7) 

Here we have used (2.6) and the inequality 1 + 21-«1 + .fii)< ::; 2 + JTi .• 

PROPOSITION 2.2. Let S > t and Q: ;::: O. Then, for ellery compact subset .J 0/ Roo \ 
{O}, ut(k) is a uniformly Holder continuous/unction/rom.J into C(L2(sn-I);H~.(Rn» 
0/ exponent 'Y where 0 < 'Y < s - ~. 
Proof: Clearly, • 

(2.8) 
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so that for 8 > t 

Repeated application of the above process leads to the estimate 

for Q = 0,2,4,6, ... and hence, by interpolation, this inequality remains valid for all Q ~ 0. 
We may now repeat the proof of Proposition 2.1 using (2.8) instead of (2 .. 5). The result 

is the Holder continuity of at (k) from .J into C( L2 (sn-l); H~s( R n)) with its Holder norm 
bounded above by 

(2 + yin) (D..:T,sj-< (D..:T,s2-Il', 

where D ..:T,s = sup kE..:T (1 + k 2 ),"/4G\,s and 8 = t81 + (1 - t)82 for some 81 > t, 82 > ~ and 
tE(O,l) .• 

PROPOSITION 2.3. Let 8 > ~. Then, for every compact subset .J of R= \ {O}, ark) 
is a uniformly Holder continuous function from .J into C(L;(Rn); L2(sn-1)) of exponent 
7 where 7 E (0,8 - n 
Proof: By duality from Proposition 2.1. The Holder norm again is bounded by the 
quantity in (2.7) .• 

PROPOSITION 2.4. Let 8 > t. Then, for every compact subset .J of Roo \ {O}, 
R;j(k2) is a uniformly Holder continuous function from .J into C(L;(Rn); H:'s(Rn)) of 
exponent 7 where 7 E (0, s - ~). 
Proof: According to [Ag75], Eq. (4.7), 

where C PV stands for Cauchy's principal value, <P j,g is defined as 

1 1 ~ - 1 <pj,g(k) = -Ikl dB f(B)g(B) = :- < a(k)f,a(k)g >£2(sn-l) 
2 Iklsn-1 2 

and f,g E L;(Rn). According to Proposition 2.3, <Pj,g is a Holder continuous complex 
function on .J of exponent 7 E (0, s - ~) and the Holder norm is bounded by 

where M-y is a constant independent of f and g. Then (2.9) implies that < R~( k 2 )f, 9 > 
is a Holder continuous complex function on .J of exponent 7 E (0, s - ~) with its Holder 
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norm bounded above by N'I,Jllfil.llgll. for some constant N-y,:! not depending on f and 
g. Thus we obtain 

which completes the proof. •. 

PROPOSITION 2.5. Let V( x) E Ba for some a E [0,2), and let s > ~ be the constant 
such that multiplication by (1 + IxI 2)·V(x) is a bounded linear operator from Ha(Rn) into 
L2 (R n). Then the scattering operator S( k) is a uniformly Holder continuous function from 
R \ [CT+(H)1/2 U {O}l into £(L2(sn-l)) satisfying 

(2.10) 

for all 0 < b < ~. Here CT+(H)1/2 = {.:: E R: .::2 E CT+(H)} and C8 is a constant. 
Proof: According to (2.3) and Propositions 2.1-2.4, we have the following commutative 
diagram of bounded linear operators for all nonzero k such that k 2 rt CT+(H): 

5(k)-1 ~I 
L2(sn-l) L2( sn-l) 

2( 21'1")n - 1 

L2(sn-l) ---+ 

0" ( k) 1 r O'(k) 

(I+R;(k 2 )V)-1 v 
H':.(Rn) H':.(Rn) ---+ L;(Rn) 

Then, for each compact subset .:J of R \ [CT + ( H) 1 /2 U {O}], every operator in t he diagram is 
uniformly Holder continuous in k as a function from.:J into £(.1'; Y) where X and Yare the 
spaces at the beginning and the end of the corresponding arrow, respectively. Hence, S( k) 
is a uniformly Holder continuous function from any such .J into £( L2 (sn-l)). Moreover, 
the Holder index 'Y may be chosen to satisfy 0 < 'Y < s - ~. 

Using the estimate (A.4) in Appendix A we obtain, for some constant C\, 

which implies (2.10) on all compact subsets .:J of Roo \ [CT+(H)1/2 U {O}l .• 

Suppose l/(x) E K2 and [I + l/(x)Rt(k2)] has a limit in the operator norm of L;(Rn) 
as k - O. Then this limit is a compact perturbation of the identity. We denote it by 
1+ V(x)Rt(O). We call k = 0 an exceptional point [Ne89b, We90] if [I + V(x)Rt(O)] 
is not boundedly invertible on L;(Rn). In that case there exists 0 i- 'P E L;(Rn) such 
that 'P = - v' Rt(O)'P' 
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The estimates obtained so far must be refined in order to deal with the case k -+ O. 
This will lead us to the additional assumption that s > ~ - ~ in the definition of B",. First 
of all, for all s > ~ - ~, k E R \ {O} and g E L2(sn-l), we have 

as a result of (AA). As in the proof of Proposition 2.1, we obtain for s > ~ - ~ 

Here Dn .• and D~,. are constants which do not depend on k. Then through interpolation it 

follows that, for s > ~ - ~, the operator ki< n-2) u t (k) is a uniformly Holder continuous func
tion from [-1,1] into .c(L2( sn-l); L:',(Rn)) of exponent 'Y where 0 < 'Y < s - ~ +~. Next, 
converting the integral on the right-hand side of (2.9) to a CPV-integral on all of R we ob
tain the Holder continuity of Rij(k2) as a function from [-1,1] into .c(L:.(Rn); H:',(Rn)) 
of exponent 'Y where 0 < , < s - ~ + ~. Thus. in the absence of an exceptional point at 
k = 0, using (2.3) we conclude that S(k) is uniformly Holder continuous from any compact 
subset of [-1,1] \ U+(H)I/2 into .c(L2(sn-l)) of exponent, where 0 < , < s - ~ +~. We 
then readily obtain the following result. 

THEOREM 2.6. Let V(x) E B", for some 0: E (0,2). and let s > ~ -.! be the constant 
such that multiplication by (1 + Ix 12 )'V( x) is a bounded linear operato"r fr~m H"'(R n) into 
L2(Rn). Suppose u+(H) = 0 while k = 0 is not an eueptional point. Then S(k) is a 
uniformly Holder continuous function from R into .c( L2( sn-l)) satisfying (2.10) for all 
0< c5 < !. 

In order to prove the existence of a Wiener-Hopf factorization of S(k), we transform 
Theorem 2.6 to the unit circle T. Let us define 

(2.11) 

Throughout - will denote the Mobius transform of a function on the r!alline to the unit 
circle, according to the rule (2.11). The next theorem shows that S(O is also Holder 
continuous. 

THEOREM 2.7. Let V( x) E B", for some 0: E (0,2). and let s > ~ - ~ be the constant 
such that multiplication by (1 + IxI2)'V(x) is a bounded linear operator from H"'(Rn) into 
L2(Rn). Suppose u+(H) = 0 while k = 0 is not an exceptional point. Then 5(e) IS a 
uniformly Holder continuous function from T into .c(L2(sn-l)) satisfying 5(1) = I. The 
Holder exponent can be any ( satisfying 0 < ( < minH, 1 - (s _ ! + ~ )-1}. 
Proof: From Proposition 2.5 we have 
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for every El E (0,min{I,8 - ~ + l}), and _ n 

for every E2 E (0,1). Here Ml and A12 are constants independent of k. Now put 

where ( E (0,1) is to be determined later. Then for ~ = ~+: and ry = ~!~~: we have 

115(0 - 5(ry)11 = 2-('x(k 8) 
I~ - ryl( , , 

so that the theorem follows if we can prove the boundedness of ,x( k, 8). 
Indeed, for Ikl::; 1::; 8 we have 'x(k,8)::; 2(/2(.582)</28-<IIS(k+8)-S(k)ll::; 2·10(/2. 

For max(lkl,8)::; 1 we have 'x(k,8)::; 2<!2.5(/28<1-(iVl1 . For 1::; Ikl ::; 8 we get 'x(k,8)::; 
(2k2)<!2(.5k2)<!222\12(1 + Ikl)-2(1-<2), since 8-< ::; 1. Finally, for 8 ::; 1 ::; iki we have for 
o < ( ::; El 

'x(k,8) < (2k2)<!2(5k2)<!2Al<!<1 [ 2M2 ]l-ft 
- 1 (1 + ikl)2(1-<2) 

Hence, to have 'x(k,8) bounded we must choose ° < (::; El(l- E2)/(1 + El - E2)' Taking 
the maximum over E2 E (0,1) with ° < El < min{l,s - ~ + *}, we get (E (O,minH,I
(8 _! + ~)-l}) .• 

3. WIENER-HOPF FACTORIZATION OF THE SCATTERING OPERATOR 
The incoming and outgoing scattering solutions If;(k,x,O) and ~'(-k,x,O) of the n-D 

Schrodinger equation are related to each other, as in the 3-D case [Ne80], as 

~'(k,x,O) = r dO'S(k,-O,O')v,(-k,x,O'), 
}sn-l 

where x E Rn, k E Rand 0 E sn-l. Defining 

(3.1 ) f(k,x,B) = e-lk8·:r;~'(k,x,B), 

we obtain the Riemann-Hilbert problem 

f( k, x, B) = r dB' e -ik8·x S( k, -B, B')e -ik8'·x f( -k, X, B'), 
}sn-l 

where f(k,x,B) = 1 + O( Th) as Ikl ----> 00 from C+ U R. In the absence of bound states, 

f(k,x,O) has an analytic continuation in k to C+. Using G(k) given in (1.2) and defining 
the sectionally analytic functions 

(3.2) X±(k, x, B) = f(±k, x, ±B) - 1, 
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we obtain the vector Riemann-Hilbert problem 

(3.3) 

on L2(sn-I), where 1(8) == 1 and the x-dependence has been suppressed. In general, 
f( k, x, 8) is meromorphic on C+ with simple poles at k = i-y where _-y2 are the bound state 
energies. It is possible to remove these simple poles from the Riemann-Hilbert problem by 
a reduction method [Ne82] and to obtain a Riemann-Hilbert problem of the form (3.3) 
where X±(k) are continuous on C± U R, are analytic on C±, and vanish as k -+ 00 from 
C± U R. For n = 3, we refer the reader to [Ne89b, AV89a] for details. Note that once 
(3.3) is solved, the solution of the Schrodinger equation can be obtained using (3.2) and 
(3.1 ). 

We will solve the Riemann-Hilbert problem (3.3) by using the Wiener-Hopf factors 
[Go64] of the operator function of G(k). By a (left) Wiener-Hopf factorization of an 
operator function G: Roo -+ C(L2(sn-I)), we mean a representation of G(k) in the form 

(3.4) 

with 
m k-i P, 

D( k) = Po + 1: (k + ) Pj , 

J=l 

where 
1. G + (k) is continuous on C+ U R in the operator norm of C( L2 (sn-l )) and is boundedly 
invertible there. Similarly, G_(k) is continuous on C- U R in the operator norm and is 
boundedly invertible there. 
2. G+(k) is analytic on C+ and G_(k) is analytic on C-. 
3. G+(±oo) = G_(±oo) = I. 
The projections PI,'" , Pm are finite in number, are mutually disjoint, have rank one, and 
Po = 1- 2:7=1 Pj. The (left) partial indices PI,'" ,Pm are nonzero integers. In the 
absence of partial indices, we have D( k) = I, in which case the Wiener-Hopf factorization 
is called (left) canonical. The partial indices of G( k) depend neither on the choice of 
the factors G+(k) and G_(k) nor on the choice of the projections PI,'" ,Pm' If the 
factorization is (left) canonical, the factors G+(k) and G_(k) are unique as a result of 
Liouville's theorem. 

In the same way we define a right Wiener-Hopf factorization, right partial indices, 
and a right canonical factorization by interchanging the roles of G + (k) and G _ (k) in (3.4). 
The right indices may be different, both in number and in value, from the left indices, but 
the sum of the left indices coincides with the sum of the right indices. This sum is called 
the sum index of G(k). 

By using the Mobius transformation defined in (2.11), we can define the left and 
right Wiener-Hopf factorizations of operator functions on T. The left and right partial 
indices are invariant under this Mobius transformation. For details, we refer the reader to 
[AV89a]. 
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REMARK 3.1. The scattering operator S(k) is unitary, and hence from (1.2) it follows 
that G(k) is also unitary. As a consequence [AV89a], the sets of left and right partial 
indices of G(k) coincide. Moreover, the projections and factors appearing in the right and 
left Wiener-Hopf factorizations of G( k) are related by 

Here the quantities with A pertain to the right Wiener-Hopf factorization of G( k). 

THEOREM 3.2. Let V(x) E B", for some Q E (0,2), and let s > ~ - ~ be the constant 
such that multiplication by (1 + IxI 2)SV(x) is a bounded linear operator from H"'(Rn) into 
L2(Rn). Suppose IT+(H) = 0 while k = ° is not an exceptional point. Then the operator 
function G( k) defined by (1.2) has right and left Wiener·Hopf factorizations. The sets of 
left and right indices coincide, and the sum index is independent of the choice of x ERn. 
Proof: According to Theorem 6.1 (or 6.2) of [GL13]' it is sufficient to show the following: 
1. G( k) is boundedly invertible for every k E Roo. 
2. G(k) is a compact perturbation of the identity for every k E Roo. 

3. 0(0 E 'It,,,(Tj £(L2(sn-l))) for some Q E (0,1), where 0(0 is the Mobius transform 
of G(k), as defined in (2.11). 
Under these conditions there exists a left Wiener-Hopf factorization of O( 0 with respect 
to T which is given by 

where 
m 

DW = Po + 2:: e'Pj , 

j=l 

0+(0 E 'It,,,(T+j £(L2(sn-I))) and is invertible there, O-W E 'It,,,(T-; £(L2(sn-l ))) 

and is invertible there, 0+(0 and O_(~) are analytic on T+ and on T-, respectively. 
The inverse of the Mobius transformation given by (2.11) then yields a left Wiener-Hopf 
factorization for G( k) of the type (3.4) where the Mobius transformed factors G + (0 and 
0_ (~) as well as their inverses are Holder continuous of exponent Q in operator norm 
on T+ and T-, respectively. These properties are easily seen to extend to G( k) for all 
x ERn, since the operator function U x (k) appearing in (1.2) is continuously differentiable 
with respect to k and the norm of G( k) - I does not depend on x. As mentioned in Remark 
3.1, the coincidence of the sets of left and right indices of G( k) for every x ERn is a direct 
consequence of the unitarity of this operator function. The x-independence of the sum 
index is due to the fact that O( 0 depends continuously on x in 'It,,,( T; £( L 2 (sn -I))) [ef. 
[GL13]' Section 71 .• 

The Riemann-Hilbert problem (3.3) can be solved in terms of the Wiener-Hopf factors 
of G(k) as in the case of 3-D [AV89a] to obtain 
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and 

provided Pj i = 0 whenever Pj < O. Here 1rj is a fixed nonzero vector in the range of Pj and 
¢j(k) is an arbitrary polynomial of degree less than Pj. Using the Schrodinger equation 
the potential is obtained as 

F(x) = [\7; + 2ikB· \7x]X+(k) 
l+X+(k) 

provided the right-hand side is independent of Band k; as in the case of 3-D [AV89a], 
this 0- and k-independence is equivalent to the "miracle" condition of Newton [Ne89b]. 

From (1.1) and (1.2), we obtain 

G( -k) = QG(k)-1Q. 

It can be shown that the factors G+(k) and G_(k) in (3.4) can be chosen in such a way 
that 

For details we refer the reader to Remark 4.3 of [AV89a]. 
In the special case where S(k) is a meromorphic function on C with only finitely many 

poles and zeros, we can obtain additional information on the partial indices of G( k). If 
(J" _ (H) = 0 and k = 0 is not an exceptional point, these poles and zeros are nonreal. Using 
that limk~±= IIS(k) - III = 0, we may represent G(k) in the form [BGK79] 

(3 .. 5 ) G(k) = Ex(k) [I + Gx(kI - Ax)-1 Bx] Fx(k), 

where Ex(k), Ex(k)-1, Fx(k) and Fx(k)-1 are entire operator functions satisfying the 
identities limk~±oo IIE,,(k) - III = 0 and limk~±oo IlFx(k) - III = 0 and Ax, Bx and Gx 
are bounded linear operators. In that case 

where .4; = Ax - BxGx. One may choose Ax, Bx, and Gx in such a way that Ax acts 
on a finite-dimensional space X, and Bx and Gx act between L2( sn-1) and X, and that 
the spectra of Ax and A; coincide with the sets of poles and zeros of S( k), respectively. 
Moreover, the representation (3 .. 5) may be chosen in such a way that it is minimal [i.e., 
n~o N(GxA~) = {O} and 2::;::'0 R(A~Bx) = X] and there exists a signature operator 
J [i.e., J = Jt = J-1] such that AX coincides with (-A) and iA is J-selfadjoint. Since 
a zero of S(k) is a pole of S(k)-1, the poles of G(k) in C+ correspond exactly with the 
(negative) bound states and hence these poles ~re simple and located on the imaginary 
ax1S. 
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THEOREM 3.3. Let V(x) E Ba for some 0: E (0,2), and let s > ~ - ~ be the constant 
such that multiplication by (1 + IxI 2 )SV(x) is a bounded linear operator from H"'(Rn) into 
L2(Rn). Suppose <T+(H) = 0 while k = 0 is not an exceptional point. Finally, assume 
S( k) extends to a meromorphic operator function on the entire complex plane with only 
finitely many poles and zeros. Then the partial indices of G( k) are nonnegative. 
Proof: Let us construct the representation (3.5) with the properties mentioned above and 
let us suppress the x-dependence. If T is a bounded linear operator without real spectrum 
and r ± is a simple, positively oriented rectifiable Jordan contour in C± enclosing the 
spectrum of T in C±, we write M±(T) for the ranges of the complementary bounded 
projections 2~i fr± dz (zI - T)-l. Then, according to the main result of [BGK86]' the 

sum of the positive (resp. negative) indices pj of G( k) satisfies 

L Ipjl = dim[M'f'(.4) nM±(AX)J. 
±p, >0 

Here we have used the fact that the sets of left and right partial indices of G( k) coincide. 
If 1. denotes the orthogonal complement with respect to the indefinite scalar product 
[".J =< J.,. >, then 

L [pjl = dim{.\.1'f'(A.) n M'f'(.4)-'-}, 
±p,>O 

which is the J-neutral part of j\.1'f'(A); i.e., the subspace of those vectors u of J\.1=F(A) such 
that [u, uJ = O. Now let iK1,'" ,iKq be the different positive imaginary eigenvalues of A. 
Then in terms of a J -orthogonal direct sum we have 

q 00 

M+(A) = E9 E9 N(A - iKj)l. 
j=l l=l 

Since there are no generalized eigenvectors associated with these eigenvalues, we obtain 

q 

M+(.4) = EB N(A - iK J ). 

j=l 

Hence, 
q 

M+(A) n M+(A)1. = EB {N(A - iKj) n R( -A + iKj)} = {O}, 
j=l 

the last equality being clear from the absence of generalized eigenvectors. Thus, the sum 
of the negative indices is zero, and hence there are no negative indices, as claimed .• 

Even if S( k) does not have the analyticity properties of Theorem 3.3, it is possible to 
obtain expressions for the sum of the positive indices and the sum of the negative indices 
of G(k). Let X be one of the Banach spaces 1i')'(T; L2(sn-1)) where 0 < 'Y < 1, and 
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let X± be the subspaces of X consisting of those F E X which extend to a function in 
1i-y(T± U T; L2( sn-l )) that are analytic on T± and, in the case of X-, satisfy F( 00) = o. 
Then X+ Ell X- = X ([Mu46], extended to the vector-valued case). Then (cf. [AV89b]) 

(3.6) L Pj = dim { G[X-] n X+ } , - L Pj = dim { X- n G[X+] } . 
p,>o P, <0 

Indeed, if f+ E G[X-] nx+, then f+ = Gf- for some f- E X-. Representing G(k) as in 
(3.4), we obtain 

[p, + t, <', P; 1 iL ()f - () ~ G+«)-' f +«). 

Premultiplication by Po gives PoG-Wf-(O = PoG+W-1 f+W; both sides vanish, be
cause they belong to X+ n X-. Similarly, we get e' PjG-Wf-(O = Pj G+W- 1 f+(O. 
For Pj < 0 both sides vanish. For Pj > 0, however, Liouville's theorem implies that the 
two sides equal a scalar polynomial rpj(~) of degree at most (pj -1) multiplied by Pj. But 
then, by adding the contributions of Po and the various Pjl 

f+(O = G+(O L rpj(~)Pj 
P, >0 

and hence the first identity in (3.6) follows. The second identity in (3.6) can be proven by 
employing a right Wiener-Hopf factorization of G( k) and using the fact that the left and 
right indices of G( k) coincide. 

4. TRACE CLASS PROPERTIES OF THE SCATTERING OPERATOR 
In this section we will prove that S(k) is a trace class operator on L2(sn-l) and study 

its effect on its Wiener-Hopf factorization. 

THEOREM 4.1. Let V(x) E B", for some a E (0,1), and let s > 1 be the constant 
such that multiplication by (1 + Ix 12 )8V( x) is a bounded linear operator from H"'(R n) into 
L2(Rn). Suppose 0 =F k rt (J'+(H)I/2 and V(x) E Ll(Rn). Then S(k) - I is a trace class 
operator on L2(sn-l) and 

( 4.1) 

where < V > = fR" dx V( x) and En is the surface area of sn-l. 
Proof: Observe that V[H~t(Rn)] c L;(Rn) for all t E [O,s], and put V l / 2 = 1V11/2sgn(V). 
Note that 

where al + a2 = 2a and tl + t2 = 2t. Hence, since V(x) E B", C B 2"" we have 
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Furthermore, 

Since ts > 1, the following diagram consists of bounded linear operators: 

1V1 ' /2 1 irnbeddin R;i( k2) v'/2 
H"(Rn) ~ HI:(Rn) g, LL(Rn) --------> H~~(k2) ~ H"(Rn). 

2 2 

Then 0 i- k ~ u+(H)t implies that [I + V1/2 Rt(k 2 )1V11/2] is boundedly invertible on 
H"(Rn) and the following diagram is commutative: 

H~~(Rn) 

vl/21 

H"(Rn) 

H~~(Rn) 

1 V'/2 

H"(Rn) 

Here we have used that a E [0,11 so that V(x) E B 2" E SR. Also, defining 

we have the commutative diagram 

where 

H"(Rn) 

1V1 ' /21 

LL(Rn) 
2 

S(k)-I 

a( k) 

A swift comparison with the diagram in the proof of Proposition 2.5 yields that 

S(k) = 1 + u(k)lVi 1 /2T(k), S(k) = 1 + T(k)u(k)WI 1 / 2, 

for bounded operators u(k)1V1 1/ 2 : HQ(Rn) ~ L2(sn-l) and T(k) : L2(sn-l) ~ HQ(Rn). 
As a result, the nonzero spectra of S( k) - 1 and S( k) - 1 coincide. Since S( k) - 1 is also 
a normal compact operator, the nonzero spectra of S(k) - 1 and S(k) - 1 consist of the 
same discrete set of eigenvalues without associated generalized eigenvectors. Even the 
multiplicities of the nonzero eigenvalues coincide. Hence, it suffices to prove that 
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is a trace class operator on HQ(Rn). This will immediately imply that 

is a trace class operator on HQ(Rn). The approximation numbers {sn(S(k) - I)};::"=l [i.e. 
the non-increasing sequence of eigenvalues of {[S( k) - I] f[S( k) - In t (d. [GK65])] form a 
sequence in fl. As a result, the eigenvalues {An(k)};::"=l of S(k) - I [or of S(k) - I] satisfy 

00 00 00 

n=l n=l n=l 

However, due to the unitarity of S(k) the operator S(k) - I does not have a Volterra part 
and hence the trace norm of S( k) - I satisfies 

00 

IIS(k) - Ills, = l: IAn(k)l:::; 11[1 + V l / 2 Rt(k2)1V11/2rlllll~(k)115, < +00, 
n=l 

which proves S( k) - I to be a trace class operator on L2( sn-l). 
Note that the kernel of the integral operator ~(k) is given by 

~(k; x,y) = r dB eiko'(x-Y)IV(x)V(y)lt. 
}sn-l 

Now let us first consider the case a = 0 with V(x) E Bo. Then ~(k) is a positive self-adjoint 
operator on L2(Rn), the space that takes the place of HD:(Rn). Thus, if V(x) E Ll(Rn) 
and V (x) is continuous on R n, ~(k) is a trace-class operator and 

tr(sgn(V)~(k)) = r dxsgn(l/(x))~(k;x,x) = ~n r dx V(x), JRn JRn 
where ~n is the surface area of sn-l. If V(x) E Ll(Rn) and V(x) is not necessarily 
continuous on R n, we put for every h > 0 

where \-!n is the volume of the unit sphere in Rn. Then IlVhlll :::; 11V111, limh~o IlVh - VIII = 
o and Vh is a bounded continuous function on R n. If the original V( x) E Bo and s > 1 is the 
constant such that multiplication by (1 + IxI2)'V(x) is a bounded operator from L~5(Rn), 
the space that stands for H':"s(Rn) if a = 0, into L;(Rn), then IV(x)! :::; C(1 + !xI 2 )-5 for 

some constant C. Using the estimates ~~I~I: :::; 1 + Ixl 2 :::; 1 + h2 :::; (h + 1)2 if Ixl :::; hand 

1+lxl2 <: 1 + Ixl 2 < l+(h+l)' If I'xl '2 h, we obtain 
1+IYI' - - 2 

Iv ( I -< C (h + 1)25 1 d 
h x) - . '. 2 5 n y 

(1 -r Ixl) Vnh Ix-YI:Sh 

C(h+1)25 

(1+lxI 2 )5' 
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so that Vh(x) belongs to Bo if V(x) does. However, then S(k) - 1 with V(x) replaced by 
Vh(x) is trace class with a trace norm which is 0(1) as h ----> O. Hence, S(k) - 1 is trace 
class for the original V(x) and the trace of S(k) - 1 with the original V(x) is obtained 
from the trace of S(k) - I with V(x) replaced by Vh(x) by taking h ---> O. On the other 
hand, since tr(sgn(V)I:(k)) = I: n < V > for continuous V(x), this must also be the case 
for discontinuous V E Ll(Rn). From the special form of S(k) -I, the fact that its trace is 
the sum of its eigenvalues and its eigenvalues coincide with those of S( k) - I, we eventually 
get (4.1), where we have also used that [I + ~n/2 Rri (k 2) 1V1 1/ 2]-1 approaches 1 in the norm 
as k ---> ±oo. 

Next, consider arbitrary 0: E [0,1), but V(x) E Bo. Then a simple compactness 
argument yields that S( k) - 1 has the same eigenvalues with the same multiplicities, and 
hence the same trace, as an operator on either L2(Rn) or HO:(Rn). Thus (4.1) is immediate. 
More generally, if V (x) E Bo: rl L 1 (R n) for some 0: E [0, 1), we can always approximate it by 
potentials in BonLl(Rn) in the Ll-norm. Then the expression for the trace of sgn(V)I:(k) 
will extend to these more general potentials and hence (4.1) will apply to them .• 

For V (x) E Bo we simply have the diagram of bounded operators 

F~ IV1 1 !2 

L~.(Rn) -~ L2(Rn) -----+ L;(Rn) 

with O"(k): L;(Rn) ~ L2(sn-l), O"t(k): L2(sn-l) ---> L~.(Rn) and Rt(P) : L;(Rn)---> 
L~.(Rn) bounded. Hence, in that case Theorem 4.1 is valid if the constant s satisfies 

1 
s > 2' 

If, in addition to the hypotheses of Theorem 4.1, zero is not an exceptional point, the 
trace norm of S( k) - I is easily seen to be O( k n - 2 ) as k ---> 0, due to the boundedness of 
[I + Rri(k2)]-1 on a neighborhood of k = O. Hence, in that case 5(0) - I is a trace class 
operator on L2(sn-l) if n 2: 3. For n = 2 and zero not an exceptional point, s > 1 implies 
that 0"(0) and O"t(O) are bounded operators between suitable spaces Icf. (A.3)]. Hence, we 
may then repeat the entire proof of Theorem 4.1 and prove that 5(0) - I is trace class on 
L 2 (sn-l) if n = 2 and if zero is not an exceptional point. Summarizing, if zero is not an 
exceptional point, 5(0) - I is trace class on L2(sn-l) if V(x) E Bo: for some 0: E [0,1) and 
s :> 1 is the constant such that multi plication by (1 + I X 12 ). V (x) is a bounded operator 
from H':.(Rn) into L;(Rn). 

APPENDIX A: NORM ESTIMATES FOR O"t(k) 
From (2.4) we have (o-t(k)g)(x) = (O"t(l)g)(kx). Letting y = kx and using the identity 

I+!yI 2 (1 1) f (24) b' k2+iY12 S max 'k2' rom . we 0 tam 

(.4.1 ) 

where the norm II . 11-. is the norm defined in (1.3). From the paragraph following the 
proof of Theorem 4.1, we have O"t(l) E £(L2(sn-l); L;(Rn)) for s > t. Hence, from (A.l) 
and the definition of Ck ,. given in (2 .. 5), it follows that 

(A.2) Ck,8 S C\,8 max(lkI 8 - in , Ikl- in). 
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Note also that from (1.3) and (2.4) we obtain, for 8 > ~n, 

where ~n is the surface area of sn-1. Hence, a comparison with (2.5) shows that 

(A.3) C < ~ dr 2 100 r n - 1 ! 

k,s_ n[o (1+1'2).1, 

It is possible to improve the estimates in (A.2) and (A.3) as follows. Using (2.6) we 
obtain 

Ck,s ::; Cmax(ikl«s'-t n ), Ikl- tnf ) 

for some constant C if 8 = f81 + (l - f)S2 with € E [0,1], 81 > ~ and 82 > ~n, which 
restricts € to : __ 2t < f ::; 1. Maximizing - ~ nf and minimizing f( 81 - ~ n) under these 
constraints we get 

(A.4) 
(k ----> ±?O) 

(k ----> 0,1f6 > 0), 

which for k ~ ±oo corresponds with [We90]. 
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