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SOLUTION OF THE INVERSE SCATTERING PROBLEM
FOR THE THREE-DIMENSIONAL SCHRODINGER EQUATION

USING A FREDHOLM INTEGRAL EQUATION*

TUNCAY AKTOSUN AND CORNELIS VAN DER MEE$

Abstract. It is shown that the inverse scattering problem for the three-dimensional SchrSdinger
equation with a potential having no spherical symmetry can be solved using a Fredholm integral
equation. The integral operator studied here is shown to be compact and self-adjoint with its spectrum
in [-1, 1]. The relationship between solutions of this Fredholm equation and of a related Riemann-
Hilbert problem is also clarified, and it is shown that the Fredholm integral equation is uniquely
solvable if and only if the Riemann-Hilbert problem is uniquely solvable.
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1. Introduction. Consider the SchrSdinger equation in three dimensions

(1.1) x, + x, x,

where A is the Laplacian, k2 E R is energy, x E R3 is the space coordinate, and 0 S2

is a unit vector in R3. We assume that the potential V(x) is real and decreases to
zero sufficiently fast as Ixl c. However, we do not assume any spherical symmetry
on the potential. As Ixl , the wavefunction (k,x,,O) satisfies

+ A k,-,O +o

where A(k,O,O’) is the scattering amplitude. The scattering operator S(k, 0,0’) is
then defined by

S(k, , ’) ( ’) k----A
2ri

(k,O,O’)

where 5 is the Dirac delta distribution on S2. In operator notation (1.3) is written as

S(k) I- k---A
:.i

where the operators are all defined on L2($2), the Hilbert space of complex valued
square integrable functions on the unit sphere S2 in R3 with the usual inner product.

In this article we study the inverse scattering problem, which consists of recover-
ing V(x) when S(k) is known. Since the main source of information about molecular,
atomic, and subatomic particles consists of collision experiments, solving the inverse
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scattering problem is equivalent to determining the forces among particles from scat-
tering data.

For one-dimensional and radial SchrSdinger equations, the inverse scattering prob-
lem is fairly well understood (at least for certain classes of potentials) [1]. In higher
dimensions, however, the situation is quite different. The solution methods developed
in higher dimensions include the Newton-Marchenko method [2]-[4], the generalized
Gel’fand-Levitan method [2]-[5], the 0 method [6]-[9], a method that only relies on
backward scattering data [10]-[13], a method that uses the Green’s function of Fad-
deev [14]-[16], and the Wiener-Hopf factorization method [17]. There are still many
open problems in multidimensional inverse scattering, and the methods developed are
still far from being complete. Newton’s recent book [18] gives a comprehensive review
of the methods and related open problems in three-dimensional inverse scattering prior
to 1989.

The main idea behind both the Newton-Marchenko and generalized Gel’fand-
Levitan methods is to formulate the inverse scattering problem as a Riemann-Hilbert
boundary value problem, to transform this Riemann-Hilbert problem into a nonho-
mogeneous integral equation where the kernel contains the Fourier transform of the
scattering data, and to obtain the potential from the solution of the resulting integral
equation. In this paper we give the solution of the three-dimensional inverse scattering
problem by generalizing a method by Muskhelishvili and Vekua [19], [20] developed to
solve Riemann-Hilbert problems with several unknown functions. In the radial case,
Newton and Jost used this method to construct potentials from an n x n scattering
matrix for a system of n ordinary differential equations [21]. Here we generalize the
Muskhelishvili-Vekua method (and hence the Newton-Jost method) to solve an opera-
tor Riemann-Hilbert problem and thus to obtain the solution of the inverse scattering
problem for the three-dimensional SchrSdinger equation. In this method, the kernel
of the key integral equation is an n x n matrix valued function whereas in our case
we deal with an integral equation whose kernel is an operator valued function. In the
Newton-Jost method the inverse scattering problem pertains to a system of n ordi-
nary differential equations with an n x n scattering matrix; however, in this paper,
we deal with the inverse scattering problem for a partial differential equation where
the kernel of the key integral equation is an operator valued function. Contrary to
the three-dimensional Newton-Marchenko and generalized Gel’fand-Levitan inversion
methods, we do not use any Fourier transform in our solution of the inverse scattering
problem.

The present paper is organized as follows. In 2 we identify the class of potentials
for which all of the results in this paper are valid, and we state the key Riemann-
Hilbert problem which helps to solve the inverse scattering problem for the three-
dimensional SchrSdinger equation. In 3, using the Riemann-Hilbert problem, we
obtain our fundamental Fredholm integral equation (3.10). In 4, we show that the
Fredholm integral operator of (3.10) is compact and self-adjoint and its spectrum is
confined to [-i, i]. In 5, we study the relationship between solutions of our Fredholm
integral equation and of the Riemann-Hilbert problem and relate the unique solvability
of the Fredholm equation to that of the Riemann-Hilbert problem. In 6, utilizing the
solution of the fundamental Fredholm integral equation, we give the solution of the
inverse scattering problem for the three-dimensional SchrSdinger equation. Finally in
7, the conclusion is given.

2. Riemann-Hilbert problem. We first identify the class of potentials for
which all of the results in this paper are valid. Except for the third condition given in
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the following definition, these conditions are standard assumptions on the potential
[18]. These conditions were instrumental in proving the Hhlder continuity of the
scattering operator and the existence of a Wiener-Hopf factorization of the scattering
operator [17].

DEFINITION 2.1. A potential V(x) is said to belong to the Newton class if V(x)
is real valued and measurable and satisfies

1. a, b > 0 such that

(2.1) dx IV(x)l Ixl / lyl / a R
ix_y

<_b, rye

2. c > 0, s > 1/2 such that

c
(2.2) IV(x)l < ( / ixl=),

Vx e m,

3. 3a > 0 and some/3 E (0, 1] such that

(2.3) /I3 dx IxllY()l <

4. k 0 is not an exceptional point [22]. This condition is satisfied if at zero
energy there are neither bound states nor half bound states.

In the Schrhdinger equation (1.1), k appears as k2 and hence O(-k,x, 0) is a
solution whenever (k,x, t) is. These two solutions are related to each other as [2]

(2.4) (k, x, ) [ dO’ S(k, -, 0’)(-k, x, 0’).

Define

(2.) f(k,x, 0) e-ikO’xO(k,x,
If the potential satisfies (2.1) and if there are no bound states, for fixed x and , the
function f(k,x, O) has an analytic extension in k to the upper half complex plane C+
and f(k,x, 0) 1 + O() as ]k] there [2]. Similarly f(-k,x, O) has an analytic
extension in k to the lower half complex plane C-. Hence, using (2.4), we obtain the
Riemann-Hilbert problem

(2.6) f(k,x,O) f dO’ e-ike’S(k,-O,O’)e-ie"xf(-k,x,O’), k e R.

Let us define

(2.7) G(k,x,O,O’) e-k’S(k,-O,-O’)eik’’,

(2.8) x+/-() y(+/-k, , +/-0) 1,

where f(k,x,O) is as in (2.5). Then we can write (2.6) in vector form as

(2.9) X+(k) G(k)X_(k)+ [G(k)- I]i, k e R,

where G(k) is the operator on L2(S2) with its kernel given in (2.7), I is the identity
operator on this space, and i is the function on L2(S2) defined as i(0) 1, V0 E
S2. Note that, since x enters (2.9) only as a parameter, we have suppressed the x-
dependence of all the operators and vectors in (2.9).

If there are bound states, the extension of f(k,x, O) in k to C+ becomes mero-
morphic with simple poles on the imaginary axis. A pole at k in corresponds to
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a bound state of the Hamiltonian with energy _2. It is possible to remove these
simple poles from the Riemann-Hilbert problem by a reduction method [4]. Assume
there is a bound state corresponding to a pole at k i. Using a suitable orthogonal
projection B, we form the rational function

k+iII(k) I- B + k- i
B

and define the corresponding reduced quantities

Gred(k) II(k)-lG(k)H(k)

+ I]i

(2.11) xr_ed(k) II(k)X-(k)+ [II(k)- I]i.
As a result, x_ed(k) does not have a pole at k i and xLed(k) does not have a pole
at k -i. If there is more than one bound state, this procedure must be repeated
to remove the finitely many poles corresponding to the bound states; the details can
be found in [4]. This eventually leads to the reduced Riemann-Hilbert problem

(2.12) yred(/g) Gred(k)xr_ed(k)+ [Ored(k)_ I]i k e R.

Once the reduced Riemann-Hilbert problem (2.12) is solved, the solution of the orig-
inal Riemann-Hilbert problem (2.9) can easily be obtained using (2.10) and (2.11).
Hence, in the following sections, without any loss of generality, we will obtain the solu-
tion of the Riemann-Hilbert problem assuming that X+ (k) and X_ (k) have analytic
extensions to C+ and C-, respectively, and vanish in the norm of L2(S2) as k +
from that half plane.

3. Fredholm integral equation. In this section we show that the Riemann-
Hilbert problem posed in (2.9) leads to a Fredholm integral equation, which will be
the key equation to solve the inverse scattering problem.

From the Cauchy integral formula we have

(3.1) x+(t)X+(k) _1CPV dt
rn t-k

(3.2) X_(k) __1CPV telr j_

where CPV denotes the Cauchy principal value.
adding the result to (3.1), we obtain

(a.a) x+() + G(k)X_(k) 1CPV

Operating on (3.2) by G(k) and

dt
t k

[X+(t) a(k)X_(t)].

2X+(k)+[I-G(k)]i
dt ([I G(l)a(t)-*lX+(t) + a(k)[I- a(t)-]i).t- k

Define the integral operator K whose kernel is given by

(3.5)
1 I- G(k)G(t) -1K(k, t)

2ri t k
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Then we can write (3.4) as

(3.6) X+(k) CPV dt K(k, t)X+(t) H(k),

where H(k) is given by

H(k) [G(k) I + dt K(k, t)]i.

If the potential V(x) belongs to the Newton class defined in 2, the operator
G(k)-1 is HSlder continuous [17]. Hence the integral in (3.6) is no longer singular
and we can drop CPV in front of this integral. Thus, we obtain the regular Fredholm
integral equation of the second kind

X+(k) dt K(k, t)X+(t) H(k).

The MSbius transformation k --. (k- i)/(k + i) maps the extended real axis
onto the unit circle T, the upper half complex plane C+ onto the unit disk T+, and
the lower half complex plane C- onto the exterior of the unit disk T- where oc is
considered to be a point of T-. Let () S(k) under this transformation, and let
us adopt this notation and use the tilde to denote the MSbius transformed quantity
for other functions and operator valued functions throughout the paper.

Let k (k i)/(k + i) and t --, r (t i)/(t + i) under this MSbius
transformation. Defining

(3.9) L() /() +-----=H(k),k
1- 2i

we can transform (3.7) into

(3.10) Y() dr/K(, r/)Y(r/) L(),

where the kernel of the integral operator K is given by

1 I (()((r/)-i(3.11) /(’ r/)
2ri r/-

Comparing (3.11) with (3.5) we see that/ is the MSbius transformed operator for K.

4. Properties of the integral operator. In this section we show that the
integral operator K in (3.10) is compact and self-adjoint and its spectrum lies in

For a (0, 1] let (T; L2($2)) be the Banach space of HSlder continuous func-
tions W T L2($2); i.e., the Banach space of all (strongly) continuous functions
W" T L(S2) which are bounded with respect to the norm

IW]] mxW() + u IW()- W()I]

and

(3.8) +
1-( 2i
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Here and in the following I1" II without any subscript denotes the operator norm on
L2($2). Let (:(T; L2($2)) denote the Banach space of (strongly) continuous functions
W" W L2(S2) with norm IIWII maxeT IIW()II. Finally, for 1 < p _< let
Lp(T; L2($2)) denote the Banach space of all strongly measurable functions W T
L2(S2) such that IIW(’)II belongs to Lp(T)[23].

Let F be the singular integral operator on L2(S2) defined by

(4.1) (rf)() I’CPVTr, fT dr/ r/_(f(r/---)-)
Then, from (3.10) and (3.11) it is seen that we can write/ as

/ 1/2(F
where ( and (-1 are operators of multiplication by the respective functions. The
space L2(T;L2(S2)) is a Hilbert space which allows the decomposition into the or-
thogonal closed subspaces $+(T;L2(S2)) and $_(T;L2(S2)). Here $+(T;L2(S2)) is
the subspace of all L2-functions which allow for an analytic continuation to T+, while
$_(T; L2($2)) is the subspace of L2-functions which allow for an analytic continuation
to T- that vanishes at infinity. If f() is an L2-function defined on the unit circle T,
then using its Fourier series, we have the decomposition

’----(X) --0

as a sum of elements in $_(T; L2($2)) and t+(T; L2($2)), and this decomposition is
orthogonal. If we denote the two summations in the above decomposition as f_ and
f+, respectively, we obtain

(4.3) F$ f+ $_.

Thus, F is self-adjoint and has unit norm on L2(T;L2(S2)). More generally, F is a
bounded linear operator on $(T; L2($2)), where $ represents Lp with 1 < p < c or

7-/. with 0 < "y < 1. This result can be derived from the boundedness of F on the
spaces $(T) of scalar functions (Theorems I2.1 and I6.1 of [24]) and the density of the
linear subspace {.=1 qaj(.)hj’n e N, qj e $(T), hje L2($2)} in $(T; L2($2)) [23].

For potentials identified in Definition 2.1, we will prove the following three propo-
sitions.

PROPOSITION 4.1. Let V(x) belong to the Newton class. Then the Fredholm
integral operator ff[ in (3.10) is compact on LP(T;L2(S2)) for 1 < p < oc, on

C(T; L2($2)), and on 7-/7(T; L2($2)) for 0 < / < #. Here # =//2(1 +/3) for s > 1
in (2.2) and # fi/(1 s)/(/- s + ) for 1/2 < s < 1 in (2.2), where fle (0, 1] is the
constant in (2.3) [17].

Proof. Define the integral operator M acting on L2(S2) as

1 fT ((r/) ()(4.4) (MZ)() dr/
r/_

Z(r/).

Then (/Y)() (M-Y)(). Due to the fact that the scattering operator S(k) is
unitary, the operator ()- is bounded with norm I1(-111 1. Hence, to prove that
/ is compact, it is sufficient to prove that M is compact, and we will prove this by
showing that M can be approximated by a sequence of finite rank operators.
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It is known [17] that G()- I is a compact operator on L2(S2) depending contin-
uously on E T. Hence it can be approximated by a sequence of finite rank operators
{Gn() I},__ given by

(n()- I E JAj,

where {Aj}=_o is a sequence of mutually orthogonal finite rank operators on L2($2).
We then obtain

n j-1d,(r/) G() EE (t?_t_l t-j-t-1)Aj.(4.5)
7- = ,=0

Using (4.5) in (4.4) we obtain a sequence of operators {Mn}n__ given by

(4.6) )1 t t- Y(r#).(MnY)() E Aj &Trfi--
Hence, for each n, Mn is a finite rank operator. We will complete the proof of our
proposition by showing that M, converges to M as n oc in the function spaces
Lp(T; L2($2)), C(T; L2($2)), and 7-/(T; L2($2)).

(F F) and Mn 1/2(Fn nF).From (4.2) and (4.4), it is seen that M
Hence, using the boundedness of F on $(T;L2(S2)), where $ is equal to Lp with
1 < p < oc or equal to 7-/ with 0 < - < #, we have in the operator norm on
$(W; L2($2))

for some constant c > 0. Thus, Mn M in the norm of Lp(T; L2($2)) for 1 < p < oc
and in the norm of 7-/,(T; L2($2)) for 0 < " < #.

It remains to prove the convergence of Mn to M as n oc in the operator norm
on $(W; L2($2)). where $ is n1, L, or C. First, from (4.4) we obtain

(4.7)

where

In (2 2 cos t)(1-*)l
is a constant independent of E T. Then, from (4.7) it follows that Mn -+ M in
the operator norm on LI(T;Lg(S2)) and on L(T;L2(S2)). Next, as a result of
the dominated convergence theorem for Bochner integrals (Theorem II.3 of [23]), if

-+ 0 in T, then for every Y L(T;Lg(S2)), [(M- Mn)Y]() converges to
[(M- Mn)Y](0) in the norm of L2($2). Therefore, M and Mn map L(T; L9($2))
into (7(T; L2($2)). Hence, we obtain from (4.7) that the convergence of Mn to M also
holds in the operator norm on

If is a nonzero eigenvalue of K, then, by the compactness of K on $(T; L2($2)),
there exists some integer N > 1 such that the kernel of (K- AI)’ coincides with
the kernel of (/- I)N if n > N. The finite dimension of this subspace is called
the algebraic multiplicity of ,. The dimension of the kernel of K- ,I is called the
geometric multiplicity of

As a result of the compactness of/, we have the following result.
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COROLLARY 4.2. Let V(x) belong to the Newton class. Then the nonzero eigen-
values of as well as their (algebraic) multiplicities do not depend on the choice of the
function space on which they are defined. As a result, the eigenvectors and generalized
eigenvectors ofI corresponding to its nonzero eigenvalues belong to each of the spaces
((T; L2($2)), Lp(T; L2($2)) for 1 <_ p

_
x), and 7-/(T; L2($2)) for 0 < / < #, where

# is the constant specified in Proposition 4.1.

Proof. Note that for 0 < _< ’ and 1 _< p _< q < c we have

7-l C 7-l Cd. C L C Lq C LP.

Consider any of the four pairs of spaces {L, np}, {Lq, Lp}, {C, Lp}, and {7-/, C}. In
each pair, let t; denote the first space and t;2 denote the second space for functions
in L2($2). For example, for the first pair, we let t L(T;L2(S2)) and t2
Lp(T; L2($2)). Then for all the pairs, t; is continuously and densely imbedded in 2.
Since K is compact in t; and in 2, for each nonzero complex number A and natural
number n, the closure in 2 of the image of g’ under (/- AI)n coincides with the
image of 2 under (/- I)n. As a result, the complements of the ranges of (/- .I)n
in both t and in 2 have the same finite dimension. Since (K- .I)n is a Fredholm
operator of index 0, its kernels in t; and t;2 also have the same finite dimension.
As a consequence, the dimensions of the (generalized) eigenspaces for each nonzero
eigenvalue of/ are the same in d(W; L2($2)), in Lp(T; L2($2)) for 1 <_ p <_ oc, and in
?-/(T; L2($2)) for 0 < ’ < #, where it is the constant specified in Proposition 4.1.

PROPOSITION 4.3. Let the potential V(x) belong to the Newton class. Then
is self-adjoint on L2(T;L2(S2)). As a result, all eigenvalues of [( are real and their
algebraic and geometric multiplicities coincide.

Proof. Due to the unitarity of the scattering operator S(k), the operators ( and
(- are unitary. Because of (4.3), the singular integral operator F is self-adjoint.
Thus, from (4.2) it follows that K is self-adjoint on L2(T; L2($2)). E]

PROPOSITION 4.4. Let the potential V(x) belong to the Newton class. Then the
norm of R in L2(T; L2($2)) is bounded above by 1, and all eigenvalues of [( belong
to [-1, 1].

Proof. From (4.3) it is seen that the singular integral operator F has unit norm
on L2(T; L2(’2)). Due to their unitarity, the multiplication operators ( and (- each
have unit norm. Thus, as seen from (4.2),/ has at most unit norm on L2(T; L2($2)).
Furthermore, by Proposition 4.3, / is self-adjoint and hence its spectrum is real.
Thus, the spectrum of K lies in [-1, 1], and by Corollary 4.2, the spectrum does not
depend on the function space used.

If :t=1 are not eigenvalues of/, the Fredholm integral equation (3.10) has a unique
solution which can be obtained by iteration. Since we have shown in Corollary 4.2
that the spectral radius of/ does not depend on the function space used, the iteration
converges in the norm of any of the spaces mentioned in Proposition 4.1.

5. Relationship between solutions of the Fredholm integral equation
and of the Riemann-Hilbert problem. In this section we study the relation-
ship between solutions of the Fredholm integral equation (3.10) and solutions of the
Riemann-Hilbert problem on $(T;L2(S2)), where $ is either Lp with 1 < p <
or with 0 < / < #, # being the constant specified in Proposition 4.1. We also
investigate the relationship between the partial indices of G() [17] and the existence
and uniqueness of the solution of (3.10).
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Using F() (1/(1 ))[(() -I]i, we can transform (2.9) into the Riemann-
Hilbert problem on the unit circle T to obtain

(5.1) Y+(() G(()Y_(() + F((), E T.

Let us write (3.10) as

(5.2) (I-k)Y=L.
Note that the nonhomogeneous terms in (5.1) and in (5.2) are related to each other
by

(5.3) L 1/2((I + F)&-F.
We will relate the solutions of (5.1) with F E (T; L2($2)) and Y+ e +(T; L2($2))
to the solutions of (5.2) with L, Y e $(W; L2($2)).

As mentioned prior to Proposition 4.1, the singular integral operator F defined
in (4.1) is bounded on $(T; L2($2)). Then 1/2(I + F) and 1/2(I F) are complementary
bounded projections onto the subspace $+(W; L2($2)) of all functions in $(W; L2($2))
with an analytic continuation to T+ and onto the subspace $_(T; L2($2)) of all func-
tions in (T; L2($2)) with an analytic continuation to T- vanishing at infinity.

THEOREM 5.1. Let F (T;L2(S2)). If Y+ is a solution of (5.1) in +(T;
L2($2)), then Y Y+ is a solution of (5.2). Conversely, if Y is a solution of (5.2)
and Y +(W; L2($2)), then Y+, where Y+ Y and Y_ G-I(Y- F), is a solution
of (5.1) with Y+

Proof. Let Y+ $+/-(T;L2(S2)) be a solution of (5.1). Then using (4.2), (5.3),
and (I + F)Y: 0, we have

(I-/)Y+ 1/2(I- F)Y+ + 1/2((I + r)(-lY+
1/2((I + F)(Y_ + -F) 1/2((I + F)&-F L.

Conversely, let Y 6 +(T;L2(S2)) be a solution of (5.2). Clearly Y+ Y and
Y_ (-(Y- F) satisfy (5.1), provided Y_ 6 _(T; L2($2)). This follows from

(I + r)Y_ (&- + r&-)y- (I + r)&-F 2&-L- (I + r)&-F 0,

where we have used (4.2) and (5.3). [3

From (4.2) and F2 I it is immediate that k2 and F commute. Hence,/2 maps
+(T; L2($2))into +(T; L2($2))and _(W; L2($2))into _(T; L2($2)). Thus, using
the compactness of k2, we can decompose the kernel and range of I- k as
(5.4)
Ran(I- k2) {Ran(I- k2) N +(T; L2($2))} {Ran(I- k2) N _(T; L2(’2))}

and

ger(I- k2) {ger(I- k2) $_(T; L2($2))} @ {Ker(I- k2) N $_(T; L2($2))}.
PROPOSITION 5.2. Let F $(T; L2($2)). Then there exists at least one solution

of (5.2) if and only if there exists at least one solution of the equation

(5.5) (I- k)Z (I +/)L.
Moreover, if it exists, it is possible to choose the solution Z of (5.5) in $+(T; L2($2)),
but this solution may not satisfy (5.2).

Proof. If Y is a solution of (5.2) in $(T; L2($2)), then clearly it is also a solution
of (5.5). To prove the converse, let us first take $ L2. The solution of (5.5) exists
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provided (I +/)L is orthogonal to Ker(I-/2). Let Zo be such that (I-/2)Z0 0.
Writing Zo Z1 +Z2 where/Z1 Z and/Z2 -Z2, and using the self-adjointness
of K, we obtain

((I + R)L, Z2) (L, (I + R)Z2) 0

and
((I +/)L, Z) (L, (I +/)Z) 2(5, Z).

Hence, (I +/)L is orthogonal to Ker(I-/2) if and only if L is orthogonal to Ker(I-
/). Thus, a solution of (5.5) exists if and only if a solution of (5.2) exists.

Furthermore, from (4.2) and (5.3) we obtain

1
(I + K)L (I + r)d(I + r)&-F c +(T; 52($2)).

Then, since N := 1/4(I + F)((I + F)(-1 has a closed range in each (T;L2(S2)),
the image of L2(T; L2($2)) under N is the closure in L2(T; L2($2)) of the image of
(T; L2($2)) under N. Similarly, the image of L2(T; L2($2)) under I+K is the closure
in L2(T; L2($2)) of the image of (T; L2($2)) under I / g. Hence, if

N[L2(T; L2($2))] C (I +/)[L2(T; L2($2))]

as proven above, we also have

N[(T; L2($2))] C (I +/)[:(T; L2($2))]

for : Lp with 2 < p < oc or g" 7-/ with 0 < /< #. The same conclusion may be
drawn if g" Lp with 1 < p < 2, but this time we use the fact that L2(T; L(S2)) is
continuously and densely imbedded in g’(T; L2($2)).

Finally, from (5.5) it is seen that a solution of (5.5) exists provided (I +/)L
Ran(I-/2). Then using (5.4) and the invertibility of (I-/7f2) on Ran(I-/2), it
appears the solution of (5.5) can be chosen in Ran(I-/2)

The number of linearly independent solutions of the homogeneous Riemann-
Hilbert problem

(5.6) Y+() (()Y_(), T

is the sum of the positive partial indices of G(). Let (pj } denote the set of partial
indices of ((). These partial indices arise in the Wiener-Hopf factorization of (()

A special case of Theorem 5.1 with L 0 concludes that any solution Y+ of (5.6)
corresponds to a solution of the homogeneous Fredholm integral equation (I-K)Y 0
in ’+ (T; 52 (S2)). As a result,

(5.7) Z PJ dim(Ker(I-/) :+(T; L2($2))).
p0

To obtain an expression for the sum of the negative indices, we consider the
homogeneous Riemann-Hilbert problem which is adjoint to (5.6)

e T

where Z+ E :+(T;L2(S2)). Then the number of linearly independent solutions of
(5.8) is the sum of the positive partial indices of G()-. Due to the unitarity of G(),
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these indices coincide with the negatives of the negative partial indices of G() [17].
Using (4.2) and (5.8) we have

(I +/)Z_ (I + 1/2r 1/2(F(-I)Z_ 1/2(Z_ (FZ+) 0.

Conversely, if Z_ 6 -(T;L2(S2)) and (I + K)Z_ 0, then G-1Z_ G-1Z_-

(-1(I +/)Z_ -Z_ 1/2(-(I + r)Z_ 1/2(I- r)(-Z_ 1/2(I + r)(-Z_ e
E+(T; L2($2)). As a result, we find the expression

(5.9) E PJ dim{Ker(I + k)N E_(T; L2($2))}.
p <o

The norm of/ in L2(T; L2($2)), i.e., its spectral radius, can be expressed in terms of
the gap between certain subspaces [25], [26] For Hilbert spaces the gap between two
closed subspaces A/[1 and JY[2 equals lIP1 P211 where P1 and P2 are the orthogonal
projections onto A/[1 and J2, respectively. Now notice that F+ 1/2(I 4-F) are the
orthogonal projections of $(W; L2($2)) onto $+(T; L2($2)) and A+ 1/2((I 4- F)-1

are the orthogonal projections of $(T;L2(S2)) onto ([$+(T;L2(S2))]. In terms of
these projections, from (4.2) we obtain

(5.10) / F+ A+ and -/ F_ A_.

Hence, for E L2 we have II/11 gap (+/-(w; L2($2)), ([E+(T; L2($2))]).
Using the projections F+ and A+, we will now derive more convenient expressions

for the sums of the positive and negative partial indices of (() than (5.7) and (5.9).
Observe from (5.10) that

(5.11) I-/ F_ + A+ and I +/ F+ + A_.

Then we easily find from (5.7)

(5.12) E PJ dim{E+(T; L2($2)) F ([E_(T; L2($2))]},
pj >o

while we obtain from (5.9)

E pJ dim{g_(T; L2($2)) F ([E+(T; L2($2))]}.
pj <o

We can now prove the following.
THEOREM 5.3. The following statements are equivalent:
(1) 4-1 are not eigenvalues of the Fredholm integral operator g of (5.2).
(2) The Riemann-Hilbert problem (5.1) has a unique solution Y+/- E E+/-(T; L2($2))

.for every F E E(T; L2($2)).
(3) There exists a right canonical Wiener-Hopf factorization

() +()_(), e T,

o/ () h=() and :()- on o (T;(L())) a,d h an nc
continuation to T+/-, where "y is the constant specified in Proposition 4.1.

(4) There exists a left canonical Wiener-Hopf factorization
() _()+(), e T,

of () where +/-() and +/-()-1 belong to 7-/.(T; (L2($2))) and have an analytic
continuation to T+/-.
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(5) The operator function (), or equivalently the operator function G(k) given
in (2.7), has no partial indices [17].

(6) The three-dimensional Jost operator [5] exists and is unique [17].
Proof. The equivalence of (2)-(6), as well as the existence of the left and right

Wiener-Hopf factorizations of G(), has been proven in [17]. First, let us show that
(1) implies (2). Note that from (5.11) we have

(I -/()[+ (T; L(S))] C [$+(T; L(S))].
Since I- K is boundedly invertible in the absence of eigenvalues :t:1, it must act as a
boundedly invertible operator from $+(T; L2($2)) onto G[$+(T; L2($2))]. As a result,
the unique solution of (5.2) with right-hand side (5.3) belongs to $+(T;L2(S2)) for
every F E g’(T; L2($2)). Then by Theorem 5.1, we can conclude that (1) implies (2).

To complete the proof of our theorem, it suffices to prove that (3) and (4) together
imply (1). Indeed, let (3) and (4) be true. The canonical Wiener-Hopf factorization
of (() exists only when all the partial indices are zero. Thus, from (5.11) and (5.12)
we obtain

(5.14) t;+(T; L2(S2)) N ([$=(L2($2))] {0}.

Hence, if Y e Ker(I -/), then using (5.11) one obtains

r_Y -A+Y e $_(T; L2($2)) N ([+(T; L2($2))].

and hence, by virtue of (5.14),
Y e $+(T; L2($2)) ([_ (T; L2($2))],

which proves that Ker(I-/) {0}. Hence =t=l are not eigenvalues of/, and our
proof is complete.

The following corollary gives a sufficient condition on the scattering operator so
that the Fredholm integral equation (3.10) is uniquely solvable.

COROLLARY 5.4. The Fredholm integral equation (3.10) and the Riemann-
Hilbert problem (2.9) are uniquely solvable when the scattering operator satisfies
su  ea Ill <

1(I ()F 1/2(F(-I(I (). Since F ( andProof. From (4.2) we have K
(-1 have unit norms, we then obtain II/11 <_ IlI-(ll. However, we have IlI-(()ll-
IlI- e(k)ll IIS(k) Ill. Thus, if supket IIS(k) Ill < 1, we have II/11 < 1, and by
Theorem 5.3 both the Riemann-Hilbert problem and the Fredholm integral equation
are uniquely solvable.

6. Solution of the inverse problem. Once the Riemann-Hilbert problem
posed in (2.9) is solved by solving the Fredholm integral equation (3.10), we obtain
f(k,x, ) given in (3.2) using (3.8) and (2.8). From the SchrSdinger equation (1.1) we
then obtain the potential as

(6.1) V(x) (A + 2ikO. V)X+(k,x, O)
+ x+(k,x,o)

Note that the right-hand side of this equation contains 0 and k whereas these two vari-
ables are absent from the left-hand side. Hence the solution of the Riemann-Hilbert
problem will lead to a potential only if the right-hand side of (6.1) is independent of
0 and k. Below we show that if the so-called miracle condition [2] occurs and the
Riemann-Hilbert problem has a unique solution, then the right-hand side of (6.1) is
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independent of and k and becomes equal to a potential function of x. In the absence
of bound states the proof has been given in [17], and here we give the proof when the
bound states are present.

From (2.10) we have

(6.2) X+(k) ra(k) + [II(k)- I]i + [II(k)- I]X_ed(k)
where we have again suppressed the x-dependence of X+ (k) Xred

+ (k), and H(k). Defin-
ing

1 /5 dkX+(k) e(6.3) r/(, x, O)
__c

oa(, , ol exa(-,
1 fa(, , o e [n( I] -,

we can take the ourier transform of (6.2) o obtain

(6.4) y(a, x, 0) red(, X, 0) + a(, X, 0)i + da( , X, 0) red(, X, 0).

Note that X+(k) O(}) as k and is analytic in C+; H(k)- I O(})
as k and is analytic in C-. As a result, red(a,X, 0) 0 for a < 0 and
(a, x, 0) 0 for a > 0. Thus, we can write (6.4) as

(6.5) (, x, O) red(, X, O) + da(a , x, O) red(, X, 0), > O,

(a.a) (,, o) a(, , 0)i + aa( ,, o)a(,, o), < o.

In the Newton-Marchenko inversion theory [4], the potential () is obtained from
(6.) and (6.6)as

V() =-20. V lim [(, 0)- (-, 0)]
0+

(6.7) =-20. V lim [red(a,X 0)- (a X 0)]i
0+

provided the righ-hand side is independent of 0; his 0-independence is known as
he "miracle" ideniy of Newton [4]. If he miracle occurs and he Riemann-Hilbert
problem (2.9) has a unique solution, (,z, 0) satisfies he equation

(6.8) [A-2 ]oo. v- V(x) (,x,O) o.

Then we would like to show that (6.7) and (6.8) imply (6.1). To see this, note that
from (6.3) we have

O(a x O)
ikX+(k) lira [(-a,x,O) (a,x,O)] daek

aO+ 0

Thus, using (6.7) and (6.8) we obtain

[ + io.- v(l]x+( ()+ e o " v(l (,,o.
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From this last equation, it is seen that (6.1) is implied by (6.7) and (6.8); hence, when-
ever the miracle condition of Newton is satisfied and the Riemann-Hilbert problem
has a unique solution, the potential of the SchrSdinger equation is given by (6.1).

Remark that whenever the scattering operator S(k) is known to have a corre-
sponding potential, it is guaranteed that the right-hand side of (6.1) is independent
of k and . As a consequence, any of the statements in Theorem 5.3 is sufficient to
guarantee that the right-hand side of (6.1) is independent of k and .

7. Concluding remarks. The results of this article remain true for any real
measurable potential V(x) on R3 without real exceptional points that leads to a
scattering matrix S(k) such that S(k) I is compact for all k E R and ()
S(i(1 / )/(1- )) is HSlder continuous in on T. In that case we may generalize our
results here to potentials on R’ with n _> 2.

Acknowledgments. The authors are indebted to Roger Newton for his com-
ments.
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