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A perturbation theorem is derived for bounded analytic bisemigroups on Banach 
spaces with the compact approximation property. The technique utilizes an abstract 
formulation of the Bochner-Phillips Theorem. The perturbation theorem is then applied 
to study uniqueness and existence of solutions of a boundary value problem in kinetic 
theory. 

1. INTRODUCTION 

In this article we derive a perturbation theorem for bounded analytic bisemi­

groups and discuss its applications to stationary transport equations. Here by a bisemi­

group on a complex Banach space X we mean a function E : R -+- L(X), where L(X) is 

the Banach algebra of bounded linear operators on X, such that 

(j) E(t)E(s) = E(t + s) for all real t, s with ts> 0 

(ii) E is strongly continuous except for a strong jump discontinuity at t = O. 

(iii) E(O+) - E(O-) = I, the identity operator. 

Then clearly 

are bounded complementary projections on X, which are called the separating projec­

tions of the bisemigroup. Using the ± direct sum of the generators of the strongly con­

tinuous semigroups obtained by restricting the bisemigroup to Ran n ± ' one may write 

the bisemigroup as 

( -t~ 
e -U +' 

E(t) = t 
-t~ -e -U_, 

DO 

t < 0, 

where 8 is called its infinitesimal generator. We also write E(t) = E(t,8). A bisemigroup 

is called bounded, (exponentially or strongly) decaying or analytic if both of the 

constituent semigroups have this property for a pair of separating projections. It should 
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be noted that the separating projections need not be uniquely defined. 

Bisemigroups arise in a natural way in linear transport theory, since the 

solutions of linear transport equations in homogeneous plane parallel media can be 

expressed as bisemigroups acting on a vector (cf.[22], [23], [24], [15]) and the kernels of 

the corresponding convolution equations involve derivatives of bisemigroups (cf. [21], 

[8], [22], [I5]). In all these cases the bisemigroups are analytic and strongly decaying. A 

systematic study of bisemigroups was made in [2], where a complete characterization of 

the operators that generate an exponentially decaying (but not necessarily analytic) 

bisemigroup was obtained. Inspired by the need to define certain separating projections 

for linear transport models with non selfadjoint collision operators, some perturbation 

results for analytic bisemigroups have been developed (see '£24], [15], [11], [10], [12]). 

Here we shall generalize the latter results. 

Let us give a short outline of the linear transport problem that has motivated 

the present study. Let H be a complex Hilbert space, T an injective selfadjoint operator 

on H with positive/negative spectral projections Q ± and A some compact perturbation 

of the identity. Write B = I-A. Then the abstract version of the half space problem in 

linear transport theory is the forward-backward boundary value problem 

(1.1) (d/dxmjJ(x) = -AIjJ(x), 0 < x < 00, 

(1.2) Q+IjJ(O) = 4>+, 

(1.3) IIIjJ(x) II H = o(xn), x -+ co, 

where n = 0, 1, 2. For this abstract problem there exists a plethora of applications in 

neutron transport theory, radiative transfer and rarefied gas dynamics. In most applic­

ations T is scalar type spectral, possibly in a Banach space setting. In other applications 

(such as gas dynamics for soft intermolecular potentials, or for Fokker-Planck type 

diffusion equations) one may even have to drop the boundedness of A. In all of these 

cases the solution can be written in bisemigroup form. For the sake of simplicity and 

also to have an equivalent Wiener-Hopf equation, we shall assume that A is a compact 

perturbation of the identity. Now suppose that T-1 A does not have zero or purely 

imaginary eigenvalues. Then under mild hypotheses it can be shown that T-1 A generates 

a strongly decaying analytic bisemigroup E(·, T-1 A) with separating projections P ±. 

The solutions of the equations (1.1) - (1.3) are precisely the functions 

-1 ljJ(x) = E(x,T A)g+, O.s x < co, 

where g+ € Ran P + and Q+g+ = c!>+, while the unique solvability of this problem is equi-
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valent to the decomposition 

Ran P + <!)Ran Q_ = H. 

It can be shown rigorously that under certain regularity conditions the boundary value 

problem(1.1) - (1.3) is equivalent to the vector-valued Wiener-Hopf equation 

00 

(1.4) l!J(x) - f H(x - y)B1\J{y)dy = E(x,T-1)cj>+, 0 < x < 00, 

o 

where H(x) = -(d/dX)E(x,T-1). Moreover, the unique solution of the full line convolution 

equation 
00 

(1.5) l!J(x) - f H(x - y)BI!J(y)dy = E(x,T-1)cj>, x E R, 
-00 

is given by 

Our proof of the perturbation result will be based on a study of the equation (1.5) on the 

Banach space of bounded continuous fuction from R to H with a possible jump discon­

tinuity at zero. 

In Section 2 we shall discuss preliminary results, which involve tensor products 

and invertibility in noncom mutative Banach algebras. In Section 3 we shall derive the 

main bisemigroup perturbation result. Section 4 will be devoted to applications in 

stationary transport theory. 

2. TENSOR PRODUCTS AND CONVOLUTION OPERATORS 

We begin by introducing some standard notation. Given (a,b) c R and a complex 
b Banach space Y, we denote by Lp(Y)a the Banach space of all strongly measurable 

functions l!J(a,b) -+ Y that are bounded with respect to the norm 

III!J II L(Y)~ = II III!J(·) II Y II Lp (a,b) , 

where 1 < P < 00. Here strong measurability is meant with respect to the Lebesgue 

measure (cf~ [29], [7], [20]). By C(Y)~ we mean the Banach space of all bounded con­

tinuous functions I!J : [a,b] n R -+ Y with supremum norm. Throughout this article T will 

be a closed operator on a complex Banach space X with the following properties: 

(j) A = 0 belongs either to the resolvent set of T or to its continuous spectrum, 

(ij) T-1 generates a bounded analytic bisemigroup on X with separating proj­
ections Q±, 
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(iii) there exists 0 £ (0, i IT) such that 

o(TI RanQ±)C f±A: largO .. ) I < o}U{O}. 

We first prove a simple result (cf. [10]). 

PROPOSITION 1. The bisemigroup E(· , T-l ) is strongly decaying. 

PROOF. By assumption, A = .0 is in the continuous spectrum of T. If T ± denotes 

the restriction of T to Ran Q +, then A = 0 is either in the continuous spectrum or in the 

resolvent set of T +. Now take x £ Ran(T~l), which is dense by assumption. Then x = 

=T-ly for some -Y£RanQ+, whence IIexp(-tT-1)xll = IlT-lexp(-tT-1)yll~const.x 
x II y II It -+ 0 as t -+ "'. Because the bisem igroup is bounded and Ran<T:1) is dense in 

Ran Q+, strong decay holds for all x £ Ran Q+. The proof of strong decay on Ran Q_ is 

Si.milar. 

For later use we observe that strong decay implies that A = 0 is in either the con­

tinuous spectrum or the resolvent set of T-1. Indeed, if A = 0 is an eigenvalue of one of 

T-l and, for instance, T +x = 0, then exp(-tT-1)x = lim (I - tT-1/n)nx = x for t> 0, cont-
- n"'''' 

radicting the strong decay of the bisem igroup. If A = 0 is in the residual spectrum of T-1, 

we consider the adjoint bisemigroup, which is a bounded analytic bisemigroup (see [24J, 

Corollary 1.10.6) with zero as an eigenvalue of its generator. As a result, the adjoint as 

well as the original bisemigroup cannot be strongly decaying, which proves our assertion. 0 

Let us write H(x) for -(d/dx)E(x,T-1). Assuming B compact on X and writing A = 

= I - B, we shall give sufficient conditions on T and B in order that T-1 A generates a 

bounded analytic bisemigroup on X satisfying (j) - (iiO, possibly for a different o. 
As it will turn out, one such condition is that 

(2.1) J II H(x)BII L(x)dx< "', 
-'" 

which is easily seen to hold true if B satisfies the regularity condition 

(2.2) 

for certain Cl, 8 > O. Here it should be observed that a generator of a bounded analytic 

semigroup has positive and negative fractional powers [19J. Under (2.1) the kernel H(. )B 

of the convolution operator 

(2.3) (Llfi)(X) = J H(x - y)Bt!J{y)dy 
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is Bochner integrable (cf. [8], [22], [15]) and consequently L is bounded on C(X):'"", 

C(X)~"" 0:) C(X)~ and Lp(X):'"", where 1 ~ P ~ "". Here a jump discontinuity at x = 0 is 

allowed for functions belonging to the second one of these spaces. 

We shali now generalize these results by using cross norms (see (17], [7], [20)). 

Let Y and Z be two complex Banach spaces. One calls a norm a on the algebraic tensor 

product Y ® Z a reasonable cross norm if a(Y® z) = II y II Y II z II Z for all y £ Y and z £ Z, 

and if, for all y* £ Y* and z* £ Z*, y* x z* £ (Yx Z,a)* with functional norm ~ II y* II-
-II z*lI· Then II Y®zlla = II ylill zll and II y*®z*lIa = II Y*1I11 z*1I (cf.[7], [20)). The 

completion of Y®Z with respect to a is denoted by Y€& Z. 

A reasonable cross norm a on the algebraic tensor product Y® Z is called un.i­

form if for all A £ L(Y), B £ L(Z) and v £ Y® Z 

a«A®B)v) ~ II A 1111 B II a(v). 

Here A®B is defined from (A®B)(y®z) = (Ay)®(Bz) by linear extension. The norm a 

induces a cross norm a on L(Y)®L(Z) via 

a(C) = sup (a(Cv)/a(v», C £ L(Y}®L(Z). 
Ol"v£Y®Z 

It is easily seen that a(C) is the norm of C as a linear operator on Y® Z. As a 
a 

result we have a(C1 C2) ~a(C1 xx(C2), where the product C1 C2 is defined in the natural 

way. Thus L(Y)®- L(Z) is a Banach algebra. a 
Two cross norms playa special role. The projective ('If-) cross norm defined by 

is the largest reasonable cross norm, while the injective (e:-) cross norm given by 

is the smallest reasonable cross norm. It is straightforward to show that the cross norms 

e: and 'If are uniform, which implies that € and i" are Banach algebra norms (cf.[20], 

Lemma 1.12). 

Next, let Z be the Banach algebra obtained from L1(R) by adjoining a unit, with 

convolution as its product operation and endowed with the norm 

Since II ul1 1 also is the norm of the convolution operator 
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co 
(C v)(t) = I u(t - s)v(s)ds u -co 

on L co(R) , we m!'ly identify Ll (R) isometrically with a closed subalgebra of L(L co(R». 

We shall need the generalization of Wiener's theorem on inverses of Fourier 

series [28] to noncom mutative Banach algebras. Let A be an arbitrary Banach algebra 

with unit element e. An operator ~ £ L(A) is called a multiplicative projection on A, if 

~2 = ~, ~e = e and ~(ala2) = ~(al)~(a2) for every pair of elements {a1,a2}c A. The 

range of a multiplicative projection is a closed subalgebra of A with unit element e. An 

important example of a multiplicative projection is the mapping 

~ ~ (a) = a(~O) 
o 

pnL1(T),whereT=k£C: I~I = I} and 

co 
a(~) = jIco ~jaj' I ~ I = 1, faj}j':_co £ J1. 1 • 

Now let Z be a closed subalgebra of the center of A containing e, and let F be a 

subalgebra of A such that the finite sums 

(2.4) Lr·z., fJ' £ F, zJ' £ Z, 
j J J 

form a dense set in A. For every non trivial multiplicative linear functional cj> on the 

commutative Banach algebra Z we define 

(2.5) ~(r f.z.) = r cj>(z.)f .. 
J J J J J J 

Supposing ~ to be bounded on its domain, we can extend ~ in a unique way to a 

multiplicative projection on A. We call ~ the multiplicative projection induced by cj>. We 

quote the following result, which was proved by Bochner and Phillips [6] for function 

algebras and extended to abstract algebras by Allan [1] and Gohberg and Leiterer [13]. 

THEOREM 2. Let F be a subalgebra of A such that the elements (2.4) form a 

dense set of A, and all multiplicative linear functionals on Z induce (by (2.5» bounded 

operators ~ on A. In order that a £ A be left, right or two-sided invertible, it is neces­

sary and sufficient that ~(a) be left, right or two-sided invertible for all multiplicative 

projections ~ induced by non trivial multiplicative linear functionals on Z· 
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Let us now consider the Banach algebra 

A = Z (8LL(X), 
e; 

89 

which is the completion of the algebra tensor product Z ®L(X) with respect to the 

Banach algebra norm "€. Obviously, A has a unit and Z is a closed commutative sub­

algebra of A. By a well-known result of Gelfand the nontrivial multiplicative fune­

tionals of Z are the evaluation mappings 

co .. 
{a®$}I - a + J eIAx$<x)dX, 

-co 

where A £ R, and the mapping 

{a + $}I -+ a. 

We see that the multiplicative projections on A induced by the nontrivial multiplicative 

functionals on Z are precisely the evaluation maps (for A £ R u {co}) on the Fourier 

transforms. Therefore, an operator function in A is left/right/two-sided invertible in A 

if and only if all values of its Fourier transform are invertible operators on X. 

Let K(X) denote the Banach algebra of compact operators on X. The algebra 

L1 (R)®_K(X) is a Banach sub algebra of A, for which the corresponding convolution 
e; 

operator is bounded on C(X) co • This is clear from the fact that C(X) co coincides with 
-m -~ 

C(Rh~ X (cf. [20], Theorem 1.13). If one would know that in this case II • 11_ = II • II , e; e; e; 

then it is not necessary to give a separate proof of the boundedness of L on C(X)co to 
-co 

prove thatH(.)B £ L1(R)®_K(X). 
e; 

One may also prove that the Fourier transforms of all v £ Ll (R)(8)e; K(X) are 

continuous (in the norm) functional on the extended real line that vanishes at infinity, 

under the hypothesis that X has the approximation property, i.e. that for every compact 

set KC X and every e; > 0 there is a finite rank operator A in L(X) such that II Ax - x II < 
n 

< e; for all x £ K (cf. [17], [7]). Indeed, let u = L f.A. belong to L1 (R)(8)F(X), where F(X) 
i=1 I I 

is the ideal of approximable operators on X, i.e. F(X) = X*® X. For every A £ R the 

function t -+ eiAtu(t) obviously belongs to L1 (R)®F(X). Le~ us denote the Pettis 
n 

integral of this function by U(A) = L f.(A)A .. By the Riemann-Lebesgue lemma, we 
i=1 I I 

obtain U £ CO(R)®F(X), where CO(R) is the space of continuous functions on R that 

decay at infinity. Here one notices that CO(R,F(X» = CO(R)®e; F(X). Now let C be a 
co 

nuclear operator of trace norm one: C = 1. y.e.(· ,e~), where II e·1I = II e! II = 1 and 
i=1 1 1 1 I 1 
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co 

2 y. = 1. Using that the Banach space N(X) of nuclear operators is the dual of K(X) 
i=1 1 

( = F(X», via C -+ tr(CT) for some T £ N(X) (cf. [18], Section 4.a), we have 

co co 

sup I tr(Cu(~J) I = sup I 2 y.(uO..)e., e\) I ~ sup 2 y·1 u().)e. , en I ~ 
A A i=1 1 1 1 A i=1 1 1 1 

co 

< sup su~ I (U(A)q, , 1jJ) I 2 y. < sUP. " (u( • )q, , w) "1 < 
- A II q,,, , "wll , "C "~1 i=1 1 - "q,,, , II 1jJ " ~1 -

~ sup { " tr(u( . )C) " 1 : "C" N(X) ~ 1} = II u II € • 

Taking the supremum over C on the left we conclude that 

Thus, if X has the approximation property, then F(X) = K(X) and the Fourier transform 

takes, simple functions from L1 (R)@€ K(X) into simple functions in CO(R,K(X». As it is 

a bounded operator, it may be extended by continuity to all of L1 (R)@€ K(X). 

In the sequel an important role is played by the assumption 

(2.6) 

This assumption is satisfied in particular if X is a Hilbert space and T is a normal oper­

ator on X satisfying the conditions (j) - (iii) at the beginning of Section 2. Indeed, if a<.) 
is the resolution of the identity of T, there is a unitary equivalence between X and a 

direct integral of L2 - spaces which turns T into a direct integral of operators of multi­

plication by the independent variable (cf. [3]). Then for all x, y £ X there exist X, Y € X 

such that II x II = II x II, "y II = II y II and I (0<. )x , y) I ~ (0<. )x ,y). But then one easily 

estimates 

co co 

I I(H(t)x,Y)ldt~ I (H(t)x,Y)dt=(x,Y)~ II x" IIyll, 
-co -co 

which proves the assertion. Another case where (2.6) is satisfied occurs when X is a 

Banach lattice, I T I is positive on its domain and the bisemigroup E(· ,T-1) consists of 

positive operators. Then X* is a Banach lattice also and 

co co 

I I q,(H(t)x) I dt ~ I I q, I (H(t) I x Pdt = 
-co -co 

co 

I -(d/dt) I q, I (E(t,T-1) I x Pdt = I q, I q x I) < co, 
-co 
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because E(, ,T-1) is strongly decaying (cf. Proposition 1). 

We now easily prove the following result. 

THEOREM 3, Suppose X has the approximation property. Let the assumption 

(2.6) be satisfied, B be compact on X and L be bounded on C(X):'ex>' Then the operator 

I - L is invertible on C(X):' ex> if and only if T-1 A does not have zero or purely imaginary 

eigenvalues. 

PR 00 F. In view of the aboye, H(,)B belongs to the E - tensor product of C @ 

® Ll (R) and F(X). Its Fourier transform k<') is continuous on R and vanishes at ± <XI in 

the norm. Indeed, allowing for a trivial change of variable, we obtain 

(2.7) 1- j eX/AH(x)Bdx = (T - Afl(T -AA), 
-<XI 

which is continuous in the norm on the extended imaginary line with value A at ex> and I 

at zero. Hence, (2.7) is invertible for all extended imaginary A if and only if T-1 A does 

not have zero or purely imaginary eigenvalues, which proves the assertion. o 

If X has the approximation property, B is compact and B satisfies (2.1), then 

H( ,)B belongs to the 1T-tensor product of C EE> L1 (R) and K(X) and the result is known 

(cf. [24] , [I5]). 

We remark that the boundedness of L on C(X)ex> implies its boundedness on -ex> 
C(X)~oo ® C(X);. In order to prove this statement, it is sufficient to consider the case 

where ljJ(x) = 0 for x < 0 and ljJ(x) = ~ = constant for x> O. In this case one has 

(LIjJ)(x) = 

which belongs to C(X)~oo EE> C(X); with norm ~ N II ~ II for some constant N. 

Let us indicate one more case where L is bounded on C(X)oo • As known, even if 
-00 

X does not have the approximation property, the operators on X of finite rank can be 

identified with the algebraic tensor product X*(8)X. If one completes this space in the 

1T-norm, one thus obtains the nuclear operators and the 1T-norm is the nuclear norm (see 

[7], [26]). If X is a Hilbert space and X* is identified with X, one obtains the trace class 

operators. 

THEOREM 4. Let the assumption (2.6) be satisfied, and let B be a nuclear oper­

ator on X. Then L is bounded on C(X)oo , 
-00 
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PROOF. Suppose first that 

Bx = <l><x)y, x £ X, 

where y £ X and <I> £ X*. Then for all X £ X* we have 

00 

x«Ll/J)(t» = f x(H(t - s)y)<P(l/(s»ds, t £ R. 
_00 

Then a simple estimate yields 

sup I X«Ll/J)(t» I ~ II X(H(· )y) II L (R) I SUI p I <l><l/(s» I· 
tER 1 II <I> =1, sER 

However, a closed graph argument yields the existence of a finite constant M such that 

IIx(H(·)y)ilL (R)~M IIXllllyll· 
1 

Taking the supremum over X with II X II = 1, we obtain 

from which the result is immediate. o 

If the assumption (2.6) is satisfied and X is a Hilbert space, one easily proves by 

Fourier transformation of the operator L that L is bounded on L2(X) ~ 00 for any bounded 

B (see [9]). However, the L2 -setting is not appropriate for getting bisemigroup pertur­

bation results. 

3. THE BISEMIGROUP PERTURBATION THEOREM 

Let us state the main result of this article. 

THEOREM 5. Suppose X has the approximation property. Let the assumption 

(2.6) be satisfied, and let B be a compact operator such that L is bounded on C(X)~oo. 

Assume that T-1A does not have zero or purely imaginary eigenvalues. Then T-1A 

generates a strongly decaying bounded analytic semigroup on X. 

PROOF. From Theorem 3 it is clear that 1- L is boundedly invertible on 
o 00 

C(X) _ 00 ® C(X)o • For every vector x E X we now define 

E(· ,T-1 A)x = (I - Lr1E(. ,T-1)x. 

Then the boundedness of (I - L)-l implies that t -+- E(t, T-1 A) is bounded and strongly 
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continuous except possibly for a jump discontinuity at zero. Since L maps L (X) 0:> into 
00 -00 

( ) 00 -1 
C X -00' the jump at zero does not change when applying (I - L) and therefore 

The bisemigroup property can be proved as follows. Putting F(t) = E(t,T-1 A) and 1/I(t) = 
= F(t)x we obtain for t> 0 

«(I - L)\f!)(t) = F(t + s)x - I H(t + s - r)BF(r)xdr = 
s 

s 
= (I - L)F(t + s)x + I H(t + s - r)F(r)x~r, 

_00 

since for r < s we have t + S - r > 0 and H(t + s - r) = E(t,T-1)H(s - r)B, while for r> s we 
-1 have 0 = E(t,T )H(s - r)B. We can rewrite the above as 

Therefore 1/I(t) = F(t)F(s)x for t> O. For t < 0 we have 

0:> 

«(I - 01/l)(t) = - I H(t + s - r)BF(r)xdr = 
s 

00 

= E(t,T-1) I H(s - r)BF(r)xdr = E(t,T-1)F(s)x. 
-00 

Combining the two cases and recalling the definition of 1/I<t), we get F(t)F(s) = F(t + s) 

for t, s> 0 and F(t)F(s) = 0 for t < 0 and s> O. 

Applying Laplace transformation to the equation (1.4), one easily sees that 

(T-1A - )..f1x = J eAtE(t,T-1A)Xdt, 
-00 

where a Weyl type of argument yields that every nonzero).. in o(T -1 A) satisfies I arg()..) I < 

< <5 for some <5 dO, hI). Hence T-1 A is indeed the gen~rator of th: bisemigroup F(t\£R' 

Repeating the above with T-1 and T-1 A replaced by e1<PT-1 and e1<PT- 1 A for sufficiently 

small 1<p1 and applying [18], Theorem IX 1.23, we obtain that E(- ,T-1A) is an analytic 

bisemigroup. Finally, since).. = 0 is either in the continuous spectrum or in the resolvent 

set of T-1 A, the bisemigroup E( -, T-1 A) is strongly decaying. 0 

If the hypotheses of Theorem 5 are satisfied except for the occurrence of 

finitely many imaginary eigenvalues of T-1 A, there is a partial result. Put 
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ZA(T-1A) = ~ Ker(T-I A - A)n. 
n=l 

Then, accordin~ to a Weyl type of argument, ZA(T-1A) has finite dimension for all 

purely imaginary A, and there are at most countably many such A with nonzero ZA(T-1A) 

and CD as their only possible accumulation point. If T is bounded, there are only finitely 

many such A, and ZO(T-1 A) is finite dimensional also. Now assume that ZA (T-1 A) is non­

zero for only finitely many zero or purely imaginary A, and that these subspaces have 

finite dimension. Let Z be their direct sum and let S be an operator on Z without zero 

or purely imaginary eigenvalues. Then Z has a unique closed complement Zl such that 

the restriction of T-1 A does not have an eigenvalue aLzero and has its nonzero 

spectrum within a double sector of the form f±A: larg(A) I < IS} for some IS £(0, hr). 

Let Po be the projection of X onto Z along Z l' and put 

-1 Then BS is a finite rank perturbation of B, AS is invertible and T AS does not have 

imaginary eigenvalues. Moreover, the operator 

CD 

(Lcorrw)(t) = J H(t - s)[B - BS]lliS)dS 
-CD 

is bounded, since B - B S has finite rank. Hence, under the hypotheses of Theorem 5, T-1 AS 

generates a bounded analytic bisemigroup on X with separating projections P ±. We then 

define 

(3.1) 

In the right hand side of (3.1) the first term is a uniformly continuous group whose norm 

is O(tn) as t __ ± CD for some n £ N. When restricted to ZI the second term is a bounded 

analytic bisemigroup. For later use we write PI = (I - PO)P . We remark that some 
,± ± 

constructions of this type appeared before in [4], [22], [16] and [5]. 

4. RESULTS ON HALF LINES AND FINITE INTERVALS 

In this section we derive some results on the convolution operator restricted to 

the positive half line and the finite interval (0, T). An important role in the subsequent 

derivation will be played by the compactness of the difference E(t,T-1A) - E(t,T-1). 

THEOREM 7. Suppose X has the approximation property. Let the assumption 
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(2.6) be satisfied, B be compact and L be bounded on C(X)~eo. Suppose T-1A does not 
+ 

have zero or purely imaginary eigenvalues. Then for all t E: R (including t = 0 -) the 

operator E(t,T-1 A) - E(t,T-1) is compact. 

PROOF. For extended imaginary A one may define 

eo 
f( = J eAt k(t)dt 

-eo 

as a continuous function in the norm that vanishes at infinity, whenever k(·) belongs to 

LI (R)(8J_ K(X), where we have utilized the fact that E is a reasonable cross norm. Con­

sider th~ Banach algebra" 

A = CIL(X)®Li(R)®_K(X). 
e: 

Then for every u = a® (-k) E: A the Fourier transform a- fC(· ) is continuous in the norm 

on the extended real line and 

We may then apply the Bochner-Phillips theorem to prove that every u = a®(-k) E:A, 

such that its Fourier transform U(A) = a- k(A) is invertible for all extended real A, is 

invertible in A. Moreover, for all such u the Wiener-Hopf operators 

±eo 
(4.1) ((I -L +)1jJ)(t) = Ij,(t) + J k(t - s)1J(s)ds, ±t> 0, 

- 0 

are Fredholm operators on C(X); or C(X)~ eo' respectively. Indeed, by [14], Theorem 4.3 

and 4.4, there is a Wiener-Hopf factorization of a- k(.) with respect to the natural 

"splitting" of the algebra A. Following the classical Wiener-Hopf method for solving the 

half-line convolution equation, one obtains that the operators (4.1) are Fredholm, which 

proves the assertion. By first approximating u ::: a® (-k) by un ::: a® (-kn) in the 

algebraic tensor product of Ll (R) and K(X) and then approximating the k n obtained by 

k n in the algebraic tensor product of Ll (R) and the operators on X of finite rank, we 

obtain an approximation of L ± in the operator norm. Using the obvious result that L -

- (L _ <±>L+) is compact for k(·) = H(·)B and B of finite rank, we get its compactness in 

the general case. From its compactness on C(X)~ co EEl C(X); we easily obtain the 

compactness of E(t,T-1A) - E(t,T-1) for all t. 0 

If we only assume that ZO(T-1A) is finite dimensional and T-1A has only finitely 
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many imaginary eigenvalues, we may use (3.1) to prove that, under the remalmng 

hypotheses of Theorem 7, E{t,T-1A) - E{t,T-1) is compact. In fact, by a finite rank 

perturbation one may reduce the problem to the situation of Theorem 7. 

The above theorem has the following ramifications. Suppose X has the 

approximation property, and let condition (2.6) be satisfied, B be compact and L be 

bounded on C(X):'""o Then the Wiener-Hopf equation (I.4) is a Fredholm equation on 

C{X); if T-1 A does not have zero or purely imaginary eigenvalues. Under the 

assumption Ran B C D(T) it can be prov-ed that for every <1>+ £ Ran Q+ the boundary value 

problem (1.1) - (1.3) with n ::: 0 and Equation (1.4) are equivalent in the following sense: 

If '" E C(X);, 1Ji(x) E D{T) for all x E (0,""), T'" is strongly differentiable on (0,"") and 

Equations (1.l) - (1.3) are satisfied for n ::: 0, then'" is a soiution of Equation (1.4) in 

C{X); ° Conversely, if '" is a solution of Equation (1.4) in C(X);, then ",(x) ED{T) for all 

)CE (0,"") and Equations (1.1) - (1.3) are satisfied for n::: O. In the equivalence proof the 

a~s'bmption Ran Be D(T) is essential, but the absence of imaginary eigenvalues of T-1 A 

is not. Equivalence proofs in situations where (2.1) holds true can be found in [22], [23], 

[24] and [15]. 

One method of proving the unique solvability of Equations (1.1) - (1.3) is to 

prove that (i) Equations (1.l) - (1.3) with <1>+ ::: 0 have the zero solution only, and (ij) L+ 

is a Fredholm operator of index O. The equivalence of boundary value problem and 

Wiener-Hopf equation then yields the unique solvability of both. This situation occurs 

for Re A ::: l{A + A *)>> O. In this case T-1 A does not have zero or purely imaginary 

eigenvalues [11]. By a series of approximations we may then derive the vanishing of the 

Fredholm index of I - L + from the corresponding property for A satisfying Re A » 0, 

condition (2.2), Ran Be D(T) and B of finite rank. A second method of proving unique 

solvability is to assume that T is an injective selfadjoint operator on a Hilbert space and 

II B II < 1. The result then follows from the equivalence of boundary value problem and 

Wiener-Hopf equation in combination with the main result of [13]. In fact, it is suffi­

cient to assume that X is a Hilbert space and the norm estimate 

is satisfied. 

sup II A(A - TflB II L(X) < 1 
ReA:::O 

Let us now consider the boundary value problem (1.1) - (1.3), or the equivalent 

Wiener-Hopf equation (1.4), for the case when ZO(T-1 A) is finite dimensional and T-1 A 

has only finitely many imaginary eigenvalues. Then every solution of Equations (1.l) -

- (1.3) has the form 

-1 ) -1 ",{x) ::: E(x,T A g+ + E{x,T A)go' 
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-1 n 
where g £ Ran PI ,Q+(g+ + gO) = '+' and go £ NeZ. Here N = ~ Ker(T A -],,) • 

+ ,+ ReA=O 
Hence, if T-1 A does not have zero or purely imaginary eigenvalues, it is immaterial to 

the solvability of Equations (1.1) - (1.3) whether n = 0, lor otherwise. If there are imag­

inary eigenvalues, unique solvability is easily seen to be equivalent to the decomposition 

RanP1,+®N®KerQ_ = X. 

For Re A ~ 0 and Ker A = Ker(Re A) finite dimensional, it can be shown that ZO(T-1 A) = 

= Ker(T-1A)2. Unique solvability of either of the problems (1.1)-(1.3) may then be 

linked to the structure of Ker A as an indefinite inner product space with respect to 

[ • , • ] = (T 0 ,0 ) (see [11], [12]). 

In order to produce results on the abstract boundary value problem 

(4.2) 

(4.3) 

(4.4) 

(TIfJ)(x) = -A1/I(x), 0 < x <T, 

Q+$(O) = '+' 

Q_$(T) = ,_, 

where T is finite, one has to study the operator 

T 
(L $)(t) = f H(t - s)B/I(s)ds 

T 0 

on C(X)~. We have 

THEOREM 8. Suppose X has the approximation property. Let condition (2.6) be 

satisfied, B be compact and L be bounded on C(X)ex> • Then the operator L is compact -ex> T 

on C(X)~. 

PROOF. Under the above assumptions on T and B, we have the boundedness of 

the full-line convolution operator L on C(X):'ex>o Again by a similar series of approxima­

tions as in the proof of Theorem 7, we may reduce the problem to the case when B has 

finite rank and satisfies condition (2.2), for which the result is known (cf. [15]). 0 

It may be proved that under the assumption Ran Be D(T) the boundary value 

problem (4.2) - (4.4) is equivalent to the convolution equation 

(4.5) 
T ~ ~ 

$(x) - f H(x - y)B/!(y)dy = E(x,T »+ - E(x -T,T »_ 
o 

on C(X)~. A proof of the equivalence under the condition (2.2) may be found in [22], 
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[23], [24] and [15]. As a result we may treat Equations (4.2) - (4.4), or alternatively 

Equation (4.5), ,as a Fredholm problem where uniqueness of a solution implies its 

existence. In this way we will get their unique solvability for X a Hilbert space, Re A ~ 0 

and Ker A = Ker( Re A). 
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