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PREFACE 

This monograph is intended to be a reasonably self -contained and fairly 

complete exposition of rigorous results in abstract kinetic theory. Throughout, abstract 

kinetic equations refer to (an abstract formulation of) equations which describe 

transport of particles, momentum, energy, or, indeed, any transportable physical 

quantity. These include the equations of traditional (neutron) transport theory, 

radiative transfer, and rarefied gas dynamics, as well as a plethora of additional 

applications in various areas of physics, chemistry, biology and engineering. 

The mathematical problems addressed within the monograph deal with existence 

and uniqueness of solutions of initial-boundary value problems, as well as questions of 

positivity, continuity, growth, stability, explicit representation of solutions, and 

equivalence of various formulations of the transport equations under consideration. The 

reader is assumed to have a certain familiarity with elementary aspects of functional 

analysis, especially basic semigroup theory, and an effort is made to outline any more 

specialized topics as they are introduced. 

Over the past several years there has been substantial progress in developing 

an abstract mathematical framework for treating linear transport problems. The 

benefits of such an abstract theory are twofold: (i) a mathematically rigorous basis has 

been established for a variety of problems which were traditionally treated by 

somewhat heuristic distribution theory methods; and (ii) the results obtained are 

applicable to a great variety of disparate kinetic processes. Thus, numerous different 

systems of integrodifferential equations which model a variety of kinetic processes are 

themselves modelled by an abstract operator equation on a Hilbert (or Banach) space. 

The ge11eral results so obtained are equally applicable to problems which range from 

neutron transport in nuclear reactors and polarized light transfer through planetary 

atmospheres, to reaction-diffusion processes m solutions, electron scattering in 

semiconductors and metals, and cell growth in tumors. We attempt to present herein a 

description of the methods and the history of this abstract g~neralization of kinetic 

equations, at the same time discussing an extensive list of concrete physical applications. 

The presentation divides into four subjects, which may be read somewhat 

independently. We outline the division below. 
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There are some exceptions within the indicated divisions, however. Chapter X on 

Sturm-Liouville equations develops aspects of the abstract theory. Section III.3 details 

evaporation models. Section VIII.5 on adding methods is equally relevant to differential 

and convolution formulations, although the method for representing solutions is certainly 

integral. We have made a strenuous effort to separate the abstract theory from the 

various applications. For example, Chapter IX, the longest chapter in the monograph, 

consists entirely of examples of stationary transport problems, and is cross-referenced 

throughout the text. 

Four years ago, Birkhauser Verlag published a book [211] covering certain aspects 

of linear kinetic theory. One may legitimately question whether the publication of a 

second one is timely and opportune. We would point out that, in the last years, many 

new - mostly abstract - results have been obtained which could not have been 

contained m [211]. Specifically, Chapters IV, V, VII, VIII, X and XI, and parts of 

Chapters III, VI, IX and XII are based on recent developments. The topics discussed in 

Chapters II and III have largely been tackled in [211], but not in the generality and 



X 

abstract setting adopted here. Also, the time dependent theory in [211] is devoted to 

the neutron transport equation in an L1 -setting with vacuum boundary conditions. In 

Chapters XI - XIII we shall study the initial value problem for general abstract kinetic 

equations and a wide class of boundary conditions. 

We are indebted to the Department of Mathematics at Virginia Polytechnic 

Institute and State University and to C. Wayne Patty, chairman, for providing 

substantial secretarial services during the preparation of this manuscript, and for their 

hospitality during the visit of one of us (vdM). We are also indebted to J. W. Hovenier 

and his group at the Department of Physics and Astronomy of the Free University of 

Amsterdam for financial support and a variety of discussions on radiative transfer with 

one of us (vdM) and to the Engineering Physics and Mathematics Division at O.R.N.L. 

for its supportive attitude toward this project. We would like to thank G. Busoni, G. 

Frosali, A. Ganchev, 1(- ~ 1\, J. Voigt and W. Walus for various suggestions on 

improvements in the manuscript. We especially thank R. Beals, C. Cercignani and P. F. 

Zweifel for having thoroughly and enlighteningly discussed with us many important 

matters included in this book. Parts of the book have been written and discussed 

while we, together and separately, have visited the University of Florence, and for this 

we are particularly indebted to V. Boffi and to the Istituto Matematico "U. Dini" and 

the Istituto di Matematica Applicata "G. Sansone". We are much obliged to M Williams 

for solving a variety of technical problems associated with the reproduction of the 

manuscript. Finally, we are appreciative of the encouragement given us by I. Gohberg, 

and the assistance of Birkhiiuser Verlag, in carrying out this project. 

The research contained herein was supported in part by the U. S. Department 

of Energy under grants DE-AS05 83ER10711-1 and DE-AC05 840R21400, and by 

the National Science Foundation under grants DMS 83-12451 and DMS 85-01337. 



Chapter I 

ELEMENTS OF LINEAR KINETIC THEORY 

1. Introduction 

In this monograph we present a rigorous exposition of boundary value problems 

for an extensive class of kinetic equations. These equations describe the transport of 

particles or radiation through a host medium (possibly the vacuum) in the region 0 

with velocities or frequencies belonging to a subset V c !Rn, and the solutions represent 

particle densities as a function of position and velocity, or radiative intensities as a 

function of position and frequency. At the boundary 80 of the spatial domain 0, 

particles or radiation may be incident from outside and may be exiting the medium, and 

reflection and absorption processes may be specified. One may also deal with particle 

or radiative sources within the region 0. 

The basic assumption underlying all kinetic equations to be studied here is that 

the particle flux or radiation does not interact with itself in a many-body sense, but 

only with the given host medium or with its own thermal equilibrium distribution in a 

perturbative way, and with the boundary under a linear reflection law. That is to say, 

we will treat only linear or linearized kinetic equations. The distinction between 

systems which are genuinely linear, such as neutron transport and radiative transfer in 

scattering atmospheres, in which the neutron-neutron and photon-photon cross sections 

are for all practical purposes zero, and linearized systems, such as rarefied gas 

dynamics, will play no role in modeling the corresponding equations by abstract operator 

equations. We shall analyze stationary boundary value problems, where the solution 

does not depend on the time t, as well as time dependent problems, where both initial 

values and boundary conditions must be specified. The techniques for these two types 

of problems, however, will differ completely, and, as we shall see, for stationary 

problems we will essentially be confined to spatially homogeneous, force free, one 

dimensional models. 

Before we give additional details on the nature of the problems to be treated in 

the ensuing chapters, let us present typical kinetic equations from an important field of 
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application, namely neutron transport in a fissionable medium. We emphasize that 

neutron transport theory, although historically the area in which some of the techniques 

to be presented were first exploited, is only one of many areas where linear kinetic 

equations play an important role. Such kinetic equations are also fundamental in gas 

dynamics, in radiative transfer, and in electron and phonon transport, and arise in 

numerous other applications - from traffic modeling to medical physiology. Indeed, it is 

precisely the similar mathematical structure of equations from so many different areas 

which makes an abstract theory particularly rewarding. 

In neutron transport, the quantity of interest is the neutron (angular) density 1/J 

as a function of position r dl and velocity v tV. In the diffusion of neutrons through 

a fissionable medium, it is reasonable to assume that there are no neutron-neutron 

collisions, since the neutron density is typically less than 10- 12 times the atomic 

density of the medium. Let 1/J{r,v,t)d3rd 3v represent the number of neutrons in a 

volume element d 3r about r whose velocities lie in the element v+d3v of velocity space. 

Then the change at time t in the number of neutrons with velocity in v+d3v which are 

located in a small volume A about the point r is given by the balance, equation 

d (J 1/J{r,v,t)d3r J d3vdt = - {net number flowing out of 8A) - {number of 

A velocity v suffering collisions in A) + {number of secondaries of velocity 

v produced in A) + {number of velocity v produced in A by sources). 

The first term on the right is a free streaming term obtained by integration about the 

surface 8A of A, or via Green's theorem, as a divergence 

3 J A2 3 J 3 d vdt v,P{r,v,t) • n d r = d vdt V' • v,P{r,v,t)d r, 
8A 0 A 

where no is the unit outer normal on 8A. 

The second term can be written in terms of the macroscopic total cross section 

u{r,v), which represents a variety of neutron-nuclear reactions, including elastic 

scattering, inelastic scattering, radiative capture and fission, 

3 I 3 d vdt vu(r,v),P{r,v,t)d r. 
A 

The third term may be written in terms of the differential collision cross section 

u(v-+v,r), 
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and the fourth term can be described in terms of the angular source density q(r,v,t): 

3 I 3 d vdt q(r,v,t)d r. 
~ 

Collecting all this leads to the neutron transport equation 

*(r,v,t) + .v • V'¢(r,v,t) = 

= - vcr(r,v)¢(r,v,t) + I cr(v->v,r)v¢(r,v,t)d3v +"q(r,v,t). (1.1) 

If the system is plane symmetric, then the cross section will depend only on 

one spatial variable, x say, and its angular dependence only on 0 • x = cos (} = 1-1 

or on 0 · 0: 

H(x,v,/-l,t) + Vl-l*(x,v,/-l,t) = 

= - vcr(x,v)¢(x,v,/-l,t) + I vcr(v,v,O. O,x)¢(x,v,p,t)d3v + q(x,v,/-l,t). 

An important approximation is the one speed approximation or constant cross section 

approximation. In this approximation, cr(v->v,r) = cr(O • O,r,v)8(v-v)/v 2 and cr(r,v) = 
cr(r,v). Defining k(O • O,r,v) = cr(O • O,r,v) I cr(r,v), the equation for the integrated 

angular density 

IV 2 2 
¢(r,O,t) = v ¢(r,v,t)dv 

vl 

in terms of the integrated angular source density q(r,O,t) becomes 

H(r,O,t) + v0·V'¢(r,O,t) = 

= - vcr(r,v)¢(r,O,t) + vcr(r,v) I 1/>(r,O,t)k(O • O,r,v)dO + q(r,O,t). 

Consider, finally, a time independent boundary value problem with plane 

symmetry and the one speed approximation. By replacing x with J x cr(x)dx, but still 

labeling the new variable x, and assuming that the kernel k(O • O,r,v) 1s 
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independent of position, we have, after some spherical harmonics algebra, 

(1.2) 

Eqs. (1.1) and (1.2) are examples of the sort we wish to discuss here. Along 

with (1.1) are provided an initial condition and boundary conditions at the spatial 

boundary (and possibly at the boundary of the velocity space). In particular, the 

initial- boundary value problem (1.1) requires the specification of the neutron 

distribution 1/Jo at time t=O, • 

1/J(x,€ ,0) = lfJ 0(x,€), 

as well as the "incoming flux" cp at the boundary, 

1/J(x,€ ,t) cp(x,e ,t) 

for X € 80 and € • n(x)<O with n(x) the unit outer normal at X € 80. Similarly, 

since the stationary problem (1.2) is in plane symmetry, one will be interested in 

boundary conditions corresponding to half space geometry 0:5x<oo and slab geometry 

0:5x:5r <oo. (The full space problem -oo<x<oo IS uninteresting technically as well 

as physically.) For example, for the slab problem related to (1.2), typical "incoming 

flux" boundary conditions are 

1/J(x=O,Jt) 

1/J(x= r ,Jt) 'P _(Jt), J.t<O, 

for given cp ±' representing a flux cp + entering the slab at x=O and a flux cp _ 

entering the slab at x=r. For the half space problem, the boundary conditions might 

be 

1/J(x=O,J.t) = cp+(J.I), J.1>0, 

I im sup 
X-+oo 

f II/J(x,J.1)1 2dJ.1 
-1 

< oo. 
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In neutron transport, boundary reflections are not relevant. However, to study kinetic 

equations m gas dynamics and radiative transfer, it will be necessary to include 

reflection at the boundaries. 

This discussion was not intended to be a rigorous "derivation" of a kinetic 

equation (e.g., regularity conditions necessary for existence of traces and various changes 

of integration order have not been considered), but rather to familiarize the reader with 

the sort of equation which will be of interest in the sequel. 

Let us now consider the abstract formulation of problems such as the neutron 

transport equations (1.1) and (1.2). Consider first the abstract Banach space equation 

tf + v·'V1(; =- A1(; + q 

defined on X=L (OxJR3, d 3r d 3v), which models the time dependent equation (1.1). 
p 

Here, A is the operator 

(Ag)(r,v) vu(r,v)g(r,v) - J u(v->v,r)vg(r,v)d3v, 

1/J(t)tX, and appropriate initial-boundary values have to be posed. When the total 

time derivative ~t = :t +v • V' is formulated on the left hand side of the equation, 

the method of characteristics suggests itself as a natural approach. In this case the 

spatial domain 0 and the boundary conditions themselves may be time dependent. On 

the other hand, one may include the streaming term v · \11(; on the right hand side, 

tf = - v·'V1/J- A'lj; + q, 

whence a perturbative semigroup approach is obvious, if it can be shown that the 

streaming operator is the generator of a semigroup. (For the definition of a semigroup, 

refer to section 3.) 

To formulate the half space stationary problem (1.2), let us consider the Hilbert 

space H L2([-1,1],dJL) with respect to Lebesgue measure dJL, and define the 

bounded operators 

(Tg)(JL) 
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g(Jl), 

0 

1'>0, 

1'<0. 

Then the boundary value problem can be written 

TM =- A,P + q, 

I im 111/J(x)ll < co, 
X -+co 

(1.3a) 

(1.3b) 

(1.3c) 

for an H-valued fuction 1/J:IR+ -+H. Defining the operator K - T-l A, Eq. (1.3a) has 

the form 

- K,P + q, (1.4) 

which may appear to be a semigroup problem. However, at the "initial" value x=O the 

solution is specified only in the forward (incoming or incident flux) direction; the 

backward (outgoing) flux must be derived from the equation itself. For this reason, 

such boundary value problems are referred to as "forward-backward" equations. 

Actually, the derivation of the outgoing flux at the boundary x=O completely solves 

the problem, in the sense that standard semigroup theory provides the solution of the 

kinetic equation at interior points once the solution at the boundary is known. Thus, 

the major part of our effort will be devoted to producing the outgoing flux from a 

specified ingoing flux. This is sometimes referred to as the albedo problem. 

The equations discussed above are examples of neutron transport. There are 

many other similar equations, describing phenomena in physics, engineering, chemistry, 

and biology, as well as from more diverse applications: economics, sociology, etc. The 

main feature of these equations is that they consist of a linear operator -/r + v • \I 

representing streaming and a (linear or nonlinear) collision operator A. That is to say, 

the kinetic equation can be written 

- A,P + q, 
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and the specific features of the model are contained primarily in the details of the 

collision operator A. 

In this monograph, we will consider only linear collision operators A. Chapters 

II through X will be devoted to a formulation of the stationary equation in plane 

parallel geometry, with ,P(x, ·) a Hilbert space valued or Banach space valued function 

of the position coordinate x. The abstract equation will be written in the form 

- A,P + q (1.5) 

with the operators T and A possibly unbounded linear operators. The following three 

chapters will consider time dependent equations essentially of the form 

- A,P + q (1.6) 

on Banach spaces Lp(A,dJ.l), l~p<oo. We will include results relating to the inclusion 

of an external force field and to time dependent boundary conditions and spatial 

domains. 

2. Historical development 

Around 60 B.C., elaborating on the Greek atomists the Roman poet and 

philosopher Titus Lucretius Carus enunciated a descriptive and crude kinetic theory, a 

world of indestructible atoms ("primordia" or "elementa") moving without cease. Even 

the notion of stationary states did not escape him: "Great armies cover wide fields m 

maneuvers .... and yet there is a place on the peaks from which these armies appear to 

be motionless." [252] 

Although Lucretius had a profound influence on Horace and Virgil, his scientific 

writings were quickly forgotten and it was not until the nineteenth century that kinetic 

theory was reformulated, then of course on a mathematical and experimental foundation. 

The high point of that development was the Boltzmann equation, proposed by Ludwig 

Boltzmann [48] in 1872 based on heuristic arguments and gradually recognized as a 

keystone of future developments. The Boltzmann equation is deceptively simple in 

appearance, a semilinear integrodifferential equation consisting of a linear differential 
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operator representing pure streaming of particles and a quadratic integral operator 

describing the collision process. Quite remarkably, virtually every aspect of the 

equation has led to problems which, more than 100 years later, are still unsolved [158, 

299]. These include the existence (and uniqueness) of solutions, their explicit 

representations and properties, numerical algorithms, and even the rigorous derivation of 

the equation from the principles of statistical mechanics. 

Beginning with the work of van Kampen [371] and Case [68] in the 1950's, the 

singular eigenfunction method has become a workhorse in the computational analysis of 

stationary linear kinetic equations. Consider, for example, Eq. (1.5) with q =0 and half 

space boundary conditions 

* =- K,P, 

lim II,P(x)ll < oo, 
X -+co 

where we have written K = T-l A, and assume for simplicity that the spectrum cr(K) 

of K is real. Then standard separation of variables suggests that elementary solutions 

have the form exp{-Ax},P , , and that the boundary value problem may be solved a," 
by a superposition of such solutions, where the coefficients are to be obtained by 

imposing the boundary condition. That is to say, suppose the distributional functions 

¢> , are continuum eigenfunctions of K, a," 

K¢> , = A¢> , , a,A a," 

for A f cr(K) and a a label representing possible degeneracies of the spectrum. If 

the (continuum) eigenfunctions of K are complete, then the solution of the boundary 

value problem at x=O can be expanded 

1/J(O) = Ioo 
-oo 

for p(A) a Borel measure on cr(K), and one may expect that 



I. ELEMENTS OF LINEAR KINETIC THEORY 9 

1f(x) = Joe 
-oe (2.1) 

will be the solution of the boundary value problem. Of course, the difficulty is that 

the boundary value 1f(O) is not known in its entirety, but only a projected part 

Moreover, boundedness of the solution as x--+oo would 

seem to require that the expansion in (2.1) involve only eigenfunctions with Re A ~ 

0. Indeed, what is needed, for half space problems, is a half range completeness 

theorem, guaranteeing that the set of functions {Q+ ¢1 a,A : Re A~O} is complete on a 

dense subspace D of Ran Q+' the range of the projection Q+. Then if <p + t D is 

expanded as 

the solution of (1.5) may be written 

NA 
1f(x) = Joe 2: exp{-h}A (a,A)I/I A dp(A). 

0 a=1 'P+ a, 
(2.2) 

Note that the measure p on 

measure p in (2.1). Further, 

and not Q+ ¢1 a A; 
' 

physically, 

a(K)niR + in (2.2) 

the 

this 

expansion in 

corresponds 

IS not the same as the spectral 

(2.2) involves the functions ¢1 , 
a," 

to the validity of the solution 

represented by (2.2) in both incoming and outgoing directions. 

Although the Case-van Kampen eigenfunction expansion procedure was a 

keystone in the development of linear kinetic theory, the method suffers from some 

serious drawbacks. First of all, the analysis depends upon a study of the properties of 

the eigenfunctions for the specific model under consideration, and thus is not easily 

adaptable to the study of the abstract problem. Of even more concern, the proof of a 

half range completeness theorem and the derivation of the measure p require careful 

manipulation of eigenfunctions which exist in general only in a distributional sense. 

Although this difficulty may in principle be surmounted, in practice in the literature it 

always results in heuristic treatment of the completeness and orthogonality "theorems" 

(but see [221] for a study of isotropic neutron transport in terms of rigged Hilbert 

spaces). Indeed, the seminal paper of Case on solutions of the linearized Vlasov 

equation [67] has been a standard in plasma theory since it appeared in 1959, yet only 

recently was it noted [16] that the result derived for certain modes is incorrect. 
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Finally, it should be pointed out that the derivation of the measure p needed 

for a half range completeness theorem is nontrivial, and, in fact, is the central problem 

in the analysis. It requires the factorization of a function basic to the particular 

kinetic equation under study into a pair of factors, each analytic on a half plane. This 

is the so-called Wiener-Hopf factorization problem, or in the case of a matrix function, 

the Riemann factorization problem. 

In an effort to provide a mathematically more satisfactory treatment of 

continuum eigenfunctions, Larsen and Habetler [241] proposed in 1972 that the analysis 

might be carried out in an effective manner using contour integration to obtain the 

necessary spectral projections. Their ideas have, over the past decade, been expanded 

to generate a rigorous and methodical treatment of the class of models which had been 

subject to continuum eigenfunction methods (see, for example, [56, 240] and reviews in 

[168, 407]). This technique is referred to in the literature as the resolvent integration 

method. 

Consider for simplicity the case when K has a bounded inverse with spectrum 

u(K-1) on a simple Jordan curve. The principal idea in this method is to obtain a 

family of spectral projections associated with the operator K- 1 by integrating the 

resolvent (z-K- 1)-1 about a contour C surrounding u(K- 1) and then contracting the 

coutour C to u(K- 1). More precisely, for a dense set D of vectors in the Banach 

space X, one must estimate the uniformity of convergence of the limits R±p,,K- 1) = 
1!.r::± (>.+6-K-1)-1g for >.Eu(K- 1) and gED. If the limits e~ist in an 

appropriate (weak) sense, then general properties of spectral operators of scalar type 

(cf. [105, 109]) will insure that the integral 

gives the spectral resolution of K- 1. In this case the expansion (2.1) IS an evident 

application of the spectral calculus: 

t/J(x) .., Joo exp{-x/>.} dEt/J(O)(>.). 
-oo 

If K does . not have a bounded inverse, then it is possible to consider a bounded 

function of K. For example, one might choose to study the resolvent (z-(K+i)- 1)- 1 m 

order to obtain a functional calculus for K. 

The resolvent integration method does not reduce t.he difficult problem of 

dealing with a (Wiener-Hop£ or Riemann matrix) factorization problem to obtain a half 
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abstract problem. 

I. ELE:V1El'\TS OF LINEAR KINETIC THEORY ll 

Nor does it give a great deal of insight into the nature of the 

However, it does provide an elementary and mathematically 

consistent way to handle the distributional functions arising in the Case-van Kampen 

method. Indeed, it was by resolvent integration that the difficulty in the formula for 

the Vlasov modes was (quite easily) recognized. 

During the same period that the Larsen-Habetler work appeared, Hangelbroek 

[181] proposed a rather different approach to these problems. Consider the case when 

T and A are bounded and self adjoint on an abstract Hilbert space H, with u(A) c 

(O,oo). Since the operator AY:!KA -Y2 = Ay2T-l Ay2 is transparently self adjoint, if the 

similarity transformation induced by Ay2 is used to define an equivalent inner product 

on H, then K itself will be self adjoint, and the spectral theorem for self adjoint 

operators will provide the machinery to construct a spectral family {E(f) fciR 

Borel} for K, and thus to obtain the completeness theorem used in (2.1). This 

observation does not deal with the heart of the problem, namely "half range 

completeness." However, writing P ± = E(IR±), it was soon realized that the existence 

of the (Wiener Hopf or Riemann matrix) factorization, and therefore of half range 

completeness, is equivalent to certain matching properties of the projections P ± and 

Q±. This then provided a new approach to dealing with these kinetic equations, an 

approach naturally suited to abstract generalization which replaces a difficult problem in 

analytic function theory with a straightforward characterization of noncommuting 

projections. A detailed study of stationary equations utilizing this functional analytic 

approach will be the topic of Chapters III - VI. 

Already at the beginning of this century, a connection between certain transport 

type integrodifferential equations and (scalar) convolution equations had been made. In 

particular, we note the Schwarzschild-Milne integral equation [265], formulated for 

describing the transfer of light through a stellar atmosphere, and the early theory of 

Wiener-Hop£ equations [392]. In the 1940's and 1950's the elaboration of invariant 

imbedding theory m radiative transfer, especially the work of Ambarzumian [6], 

Chandrasekhar [89], Sobolev [340] and Busbridge [61], produced a plethora of explicit 

solution formulas for scalar equations (Note, however, the vector valued polarized light 

equation with Ray leigh scattering, also solved m [89]). The result of these 

investigations has been the complete solution of the scalar equation of radiative 

transfer in terms of solutions of nonlinear integral equations, by Busbridge [61] for the 

half space and Sobolev [341] and Hovenier [200] for the slab, a performance not 

matched using the Case-van Kampen method. Only in the last two decades have these 

studies been extended to more general matrix and operator equations, and consequently 
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to the treatment of more diverse applications in kinetic theory. The work of 

Maslennikov [259] and Feldman [116] is particularly to be noted. The mam reason for 

the emergence of these generalizations was the development, from 1958 to 197 4, of the 

theory of vector valued convolution equations and operator Wiener-Hopf factorizations. 

We mention the work of Gohberg, Krein, Feldman, Semenyul and Heinig [139, 140, 141, 

151] on the theory of convolution equations, and the articles of Gohberg and Leiterer 

[138, 148, 149, 150] on the theory of Wiener-Hopf factorizations. In the years after 

1980 these methods facilitated a merger of the invariant imbedding tradition with the 

semigroup approach initiated by Hangelbroek. The outcome has included a proof of the 

equivalence of the in tegrodiff eren tial and integral formulations, explicit representations 

of solutions, and the construction of the semigroup apparatus for non self adjoint 

kinetic models. 

Chapters VI-VIII are devoted to the convolution equations approach. A proof is 

presented of the equivalence of a class of differential equations of the type (1.5) with 

boundary conditions and convolution equations of the form 

-rf(x) - ro ){(x-y)Bt/l(y)dy = w(x), O<x<oo. 
0 

Explicit representations of solutions are derived in terms of solutions of certain 

operator valued nonlinear integral equations, both for finite and semi-infinite domains, 

and their connection to Wiener-Hopf factorizations. Existence and uniqueness results 

are then transferred from the Hilbert space setting to a Banach space setting with the 

help of a Fredholm argument. 

Paradoxically, in some respects the time dependent linear problem is easier to 

study than the stationary problem. That is because the time evolution problem IS 

unidirectional and not forward-backward, and, indeed, the construction of the 

initial-boundary data, which is the hard part of the stationary theory, is obviously 

unnecessary in the time dependent setting. 

Substantial progress in understanding the properties of solutions of the 

initial-boundary value problem for time dependent kinetic equations dates from the 

development of semigroup theory in the 1950's. Among the first to apply rigorous 

methods to obtain existence and uniqueness results for specific linear kinetic equations 

were Lehner and Wing [246], whose strategy of proving the transport operator to 

generate a strongly continuous semigroup became a model for treating wellposedness of 

such problems. Motivated by the desire to develop time dependent theory in the 

physically more interesting 1 1-setting, Birkhoff [44] and Vidav [375] introduced Banach 
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lattice theory to the study of these equations, obtaining also the long time behavior of 

solutions. In fact, a guiding principle was that transport operators should have 

dominant eigenvalues which determine the asymptotic behavior, and for this reason 

compact perturbation methods were introduced. In the 1970's this strategy was further 

elaborated upon; we especially mention Voigt [382] and Greiner [171] for their 

contributions in this direction. An offspring of this approach was the development and 

application of positive semigroup theory after 1979, mainly by the Tiibingen group (see 

[102, 173]), with its obvious implications for the asymptotic spectrum of the transport 

operator. In Chapter XII we shall give a thorough treatment of the semigroup method. 

We shall establish the unique solvability of a large class of time dependent linear 

kinetic equations describing an autonomous transport system, and shall discuss certain 

aspects of positive semigroups and the asymptotics of solutions of time dependent 

kinetic equations. 

For initial value problems with time dependent phase space, boundary reflection 

or collision operators, semigroup theory is not applicable. Recently, extending a program 

espoused by Bardos [23], the classical method of characteristics has been applied in the 

abstract setting of vector fields of the type appearing in kinetic theory [37]. In 

Chapter XI we shall apply the method of characteristics to an extensive class of 

kinetic equations, where we shall incorporate divergence free force fields and arbitrary 

collision operators that allow separation into a scalar gain term and a bounded loss 

term. 

The bulk of the monograph relates to abstract kinetic theory, which leans 

heavily on a variety of functional analytic methods involving semigroups, selfadjoint 

operators, Banach lattices, convolution equations and vector fields. However, three 

chapters are devoted to a large number of applications from a variety of fields. In 

Chapter IX we shall present some details on a number of model problems from the 

stationary theory of radiative transfer in planetary atmospheres, neutron transport, 

rarefied gas dynamics and phonon and electron transport. In Chapter X we shall focus 

on stationary problems arising in the study of kinetic equations of Fokker-Planck type. 

Finally, in Chapter XIII we shall discuss several specific applications of time dependent 

kinetic theory. These involve some well known equations from neutron transport 

theory, as well as the lesser known Spencer-Lewis equation, the runaway electron 

problem and a problem from cell growth dynamics. 
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3. Semigroups 

We collect here some quite elementary results on linear operators and semigroup 

theory. For a more complete account of semigroup theory we refer to the monographs 

by Pazy (301], Davies (97], Hille and Phillips [194], Kato [213], and Krasnoselskii et a!. 

[224] 

Let X be a (real or complex) Banach space and S:X-+X a linear operator on X 

with domain D(S). Then S is closed if {xn}cD(S), xn -+X£ X, and Sxn -+y EX imply 

XE D(S) and Sx=y, and is closable if it has a closed extension. All operators will 

henceforth be assumed densely defined and closed, unless otherwise specified. 

The bounded operator S is compact if the image under S of every bounded 

sequence in X has a convergent subsequence. This includes, for example, the finite 

rank operators, i.e., operators S with image Ran S of finite dimension. The special role 

of compact operators is exhibited by the Fredholm alternative. We give also an 

analytic version of this result. 

Fredholm Alternative: If S is compact, then either (I-S)- 1 1s a bounded operator on X 

or Sx=x has a nonzero solution x EX. 

Analytic Fredholm Theorem: If D is an open connected subset of C, X a complex 

Banach space, and S(z) an analytic operator valued function such that S(z) is a compact 

operator for each ZED, then either (1-S(z))- 1 is a bounded operator on X for no 

ZED or there is a subset D0cD with no limit points in D such that (1-S(z))- 1 is a 

bounded operator on X for all ZED\D0, analytic in D\Do with finite rank residues at 

z .E D0, ;~.nd S(z)x=x has a nonzero solution x EX at each ZE D0 

For S an operator on a complex Banach space X, we say that >. E C belongs 

to the resolvent set p(S) of S if >.I-S is injective on D(S) and has X as its range; 

the Closed Graph Theorem then implies that the inverse (>.I-S)- 1 is a bounded 

operator. On the open set p(S) (when nonempty) the resolvent (>.I-S)- 1 depends 

analytically on >.. The complement of p(S) in the complex plane is referred to as 

the spectrum u(S) of S. If >.I-S is not injective on D(S), then >. is called an 

eigenvalue of S and a nonzero vector XED(S) satisfying Sx=>.x is called an eigenvector 

of S corresponding to the eigenvalue >.. Those nonzero vectors x E D(Sn) which are 

not eigenvectors of S but satisfy (>.1-S)nx=O for some n~2 are called generalized 



I. ELEME~TS OF LINEAR Kl~ETIC THEORY 15 

eigenvectors of S corresponding to the eigenvalue A. The eigenvalues of S form the 

point spectrum a p(S). A complex number A f a(S) which is not an eigenvalue IS m the 

continuous spectrum a c(S) if AI-S maps D(S) onto a dense submanifold of X, and is in 

the residual spectrum a r(S) if AI-S fails to have a dense range. The union of the 

point spectrum and the continuous spectrum forms the approximate point spectrum 

a ap(S); A fa ap(S) if and only if there exists a sequence {xn}~= 1 of vectors in X 

of unit norm such that (AI-S)xn -+0. The spectral radius of S is defined by r(S) 

sup {I A I : A f a(S)}. 

A C0-semigroup on X is a family {U(t)}t~O of bounded operators such that 

(i) U(O) = I, 

(ii) U(s)U(t) = U(s+t), s,t~O, 

(iii) the mapping t-+U(t) 1s strongly continuous. 

If IIU( t) II :>;1 for all t~O, then the c0 -semigroup 1s said to be a contraction 

semigroup. If A:X-+X is defined by 

Ax I im t- 1(U(t)-I)x, 
t-+0 

with D{A) = {HX: I im t- 1(U(t)-I)x exists}, then A is said to be the generator (or 
t-+p infinitesimal generator) o the semigroup U. It is not hard to see that A will be closed 

and densely defined. By the type w0(U) of the semigroup U we mean the infimum 

(possibly -oo) of all wfiR satisfying IIU(t)ll :>; Mewt for some M>O and all t>O. 

We have w0(U) = ~~ 1 og ~U( t l II and {A fC: Re A>w0(U)} c p(A). 

The connection between the generator and the semigroup is given by the two 

formulas 

valid for Re A >w0(U), and 

U(t)x = I im (I+*A)nx, HX, 
n-+oo 

and justifies the "symbolic" equality U(t) = exp{tA}. 

If U( t) is the restriction to the positive real ax1s of an analytic family of 

operators T(z) for z in the open sector S {I = {z I arg z I :>;{I} which satisfy the 

semigroup property T(z+z)=T(z)T(z) for all z,zfS{I and which converge strongly to 
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T(O)=I as z--+0 in every sector s0 with 0 < 0, then U(t) is called an analytic semigroup. 

Such semigroups share a number of useful properties with the exponentiation of a 

positive (Hilbert space) operator, of which they are a generalization. In particular, U(t) 

maps X into D(A) and tnAnU(t) is bounded uniformly in t for O<t<N and integer n>O. 

* An operator A on a Banach space X with dual space X is said to be accretive 
* * * * 2 *2 

if Re<x ,Ax>:?:O for each XtD(A) and some x eX satisfying <x ,x>=llxll =llx II . 

The most important theorems characterizing generators of semigroups are due to Hille, 

Phillips, Yosida, and Lurner. 

Rille-Phillips Theorem [304]: The operator A generates a 0 0 -semigroup iff there exists 

w,M>O such that Afiu(A) and II(AI-A)-nii~M(>.-w)-n for all A>w, neZ+. 

Hille-Yosida Theorem [194, 399]: The operator A generates a contraction semigroup iff 

Afiu(A) and II(>.I-A)- 1 11~>. - 1 for all >.>0. 

Lurner-Phillips Theorem [253, 305]: The operator A generates a contraction semigroup 

iff A is accretive and Ran(AI-A)=X for some >. >0. 

Hille-Phillips-Yosida Theorem [194, 400]: The operator A generates an analytic 

semigroup iff there exists 0< 0 ~Y21r and for each () < () constants M,w>O such that 

z-wfiu(A) and ll((z-w)I-A)- 1 ii~(z,O)-l for all z with larg zi<Y2rr+0, 

where r(z,O) = inf{ I z-y I : I arg y I :?:¥21r+IJ}. 

The simplest perturbation result for 0 0 -semigroups is the invariance of the 

generator property under bounded perturbations. Indeed, if A is the generator of a 

C0 -semigroup {U0(t)}t:?:O and if the semigroup generated by A+B, for a bounded 

operator B, is denoted by {U( t )}t:?:O' then u0 and U are related by 

t 
U(t) = U0(t) + J u0(t-s)BU(s)ds, 

0 

or by the Hille-Dyson-Phillips expansion, 

U(t) I u(n)(t) 
n=O 

with 
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t 
u(n)(t) = I u(n- 1)(t-s)BUo(s)ds, 

0 

u(0)(t) = u0(t). 

17 

The importance of semigroups in mathematical physics lies m the fact that they 

provide the solution operators for Cauchy problems of the form 

M = At/J + q, (3.1a) 

t/J(O) tp. (3.1b) 

More precisely, 

THEOREM 3.1. Suppose q:IR+ -+X is strongly continuous on [O,oo) and strongly 

continuously differentiable on (O,oo). Then for each tpeD(A) there exists a function 

1/J:IR+ -+D(A) which is strongly continuous on [O.oo), strongly continuously differentiable 

on (O,oo), and satisfies (3.1) iff A is the generator of a C0 -semigroup U. In this case 

the solution of (3.1) is 

t 
t/J(t) = U(t)tp + J U(t-s)q(s)ds. 

0 

As was pointed out in Section 1, time dependent kinetic equations (with time 

independent generator and boundary conditions) can be viewed as the study of the 

related semigroups, provided the spatial and velocity domains and the collision and 

boundary processes do not depend on time. However, the situation for the stationary 

equations is quite different. Writing (1.3a) as 

one finds that -K=-T-1 A does not generate a semigroup. Indeed, it will turn out 

that K is a dichotomous operator, i.e., the Banach space X has a direct sum 

decomposition X = X.leXr 

semigroup on X and K I X 
r .I 

between the decomposition 

with the property that -K I X is the generator of a 

is the generator of a semigroup ~n X .1" The relationship 

of X and the boundary conditions on t/J will be the 

principal subject of study for the stationary equations. 
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4. Positive cones and Banach lattices 

In this section we shall introduce a senes of standard results on positive cones 

and on linear operators that leave them invariant. These results will be used in 

subsequent chapters primarily to determine when the solutions of certain kinetic 

equations are nonnegative. 

Given a real Banach space X, a positive cone m X IS a nonempty closed subset 

K of X that satisfies the following properties: 

(i) K is closed with respect to addition, i.e., x+y e K whenever x e K and 

yeK. 

(ii) K is closed with respect to multiplication by a nonnegative scalar constant, 

i.e., >. x e K whenever >. e [O,oo) and x e K. 

(iii) The zero vector is the only element xeX for which x and -x belong to K. 

A positive cone in X defines a partial order on X by y~x whenever y-x e K, whence 

{xeX : x~O} = K. We call K a solid cone if it has a nonempty interior, i.e., if 

there exist xeK and e>O such that {yeX: llx-yllx<e} c K. We call K a 

reproducing cone if every element of X is the difference of two elements of K, i.e., 

{x-y : xeK, yeK} = X. Finally, we call K a normal cone in X if there exists a 

constant M such that II x II :S; Mil y II whenever x and y-x belong to K. 

It is easily seen that every solid cone is reproducing. A very simple example of 

a solid cone is provided by vectors with nonnegative entries in !Rn. If (E,dtt) is a 

measure space, then the nonnegative functions in L (E,dtt) form a reproducing cone, p 
which is solid if p=oo. If E is a compact Hausdorff space, then the nonnegative 

functions in the space C(E) of real continuous functions on E with supremum norm 

form a solid cone in C(E). More generally, if E is a Tychonoff space, then the 

nonnegative functions in the space C(E) of bounded real continuous functions on E 

with supremum norm form a solid cone in C(E). All of these cones are normal with 

M=l for the constant. 

dual of 

<p(x)~O 

* Consider a real Banach space X with reproducing cone K, and let X be the 

* X. Then the positive linear functionals on X, i.e., those <peX satisfying 
* for all xeK, form a positive cone m X, which IS referred to as the dual 

* cone to K and denoted by K. It should be emphasized that K IS taken to be 
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* reproducing so as to guarantee that K 1s a cone m * X. * One may prove that K 1s a 

* * normal cone in X , and that K is a reproducing cone if and only if K is a normal 

* HK strictly positive, if <p(x) > 0 for every o,.<pfK . cone. We call a vector 

In some publications strictly positive vectors are called interior vectors. This is related 

to the fact that in Banach spaces with solid cones the strictly positive vectors are 

precisely the points of the interior of K. It is easily seen that the cone of 

nonnegative functions in L (L:,dtt) is the dual of the cone of nonnegative functions m p 
L (L:,dtt ), where q =p / (p-1) and 1 < p:5:oo. In these spaces a nonnegative function f 1s 

q 
strictly positive if its set of zeros has Jt-measure zero. 

Given a real Banach space X, its complexification 1s defined to be the vector 

space Xc of ordered pairs (x,y) of vectors x,y f X, with (x,y) written as x+iy, endowed 

with the norm 

llx+iyll sup {cosO llxll +sinO llyll}, 
0:5:0:5:211" 

and with scalar multiplication defined by >.(x+iy) (ux-vy)+i(vx+uy) for A £C 

with u=Re>. and v=Im>.. The real space X is contained in Xc by identifying 

x £X with x+iO in Xc. The notions defined above related to positive cones in 

Banach spaces carry over in an obvious fashion to their complexifications. It is common 

to utilize the complexification of a real Banach space without explicit distinction in the 

notation. 

Positive cones m Banach spaces were first systematically studied by Krein and 

Rutman in the late 1930's. The main results were published in [229], primarily for 

solid cones. The extension to reproducing cones, and even more general ones, was made 

by Krasnoselskii and co-workers (see [223], Chapter 1). The relationship between 

normal and reproducing for dual cones is due to Ando [7], who generalized a result by 

Krein [225] for solid cones. 

A real Banach lattice 1s a real Banach space X with reproducing and normal 

cone K that satisfies the following two conditions: 

(i) Every pair of vectors x,y £X has a supremum z=max{x,y}, i.e., z~x and 

z~y, while ~x and ~y imply ~z. 

(ii) The norm of X is monotonic with respect to the order induced by K, i.e., if 

0:5:x:5:y, then llxll :5: llyJI. 

As a result every pair of vectors x,yfX has an infimum, namely w=-sup{-x,-y}. Also, 
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for every x EX one may define the absolute value I xI E K as max{x,-x}. Then 

I xI =x if and only if HK, while ·111 x ill = llxll. Moreover, there exist unique 

vectors x+ and x in K such that x+ +x_ =I xI and x+ -x_ =x. By an ideal in X we 

mean a (not necessarily closed) linear submanifold I of X satisfying the condition 

{ XE X : I x I ~ I y I for some y d} = I. 

The complexification of a real Banach lattice is called a complex Banach lattice. 

All of the examples of Banach spaces with cone provided above are in fact Banach 

lattices. A comprehensive account of the theory of Banach lattices can be found in the 

monographs by Schaefer [324], Zaanen [402], and Aliprantis and Burkinshaw [3]. 
* Given a (real or complex) Banach lattice X, one may construct the dual cone K 

* * and the corresponding partial order on X . Then for every tp E K we have 

I tp(x) I ~ tp( I xI) for any HX, whence II~PII sup {tp(x): XEK, 
* * llxll=1}, tpEK. As a result, if O~tp~t/J in X, then II~PII ~ llt/111. One may 

* then derive that X with the above partial order is a Banach lattice, called the dual 

Banach lattice to X. 

If {U(t)}t~O is a semigroup defined on a Banach lattice X, then U is said to be 

a positive semigroup if U(t)x~O for all t>O, whenever x~O. Positive semigroups have 

important applications connected to their ergodic properties (cf. [120, 278]). In Section 

Xll.4, a systematic study of the relationship ,between the spectral properties of a 

positive semigroup and its generator and the asymptotic behavior of the solution of the 

corresponding Cauchy problem will be presented. 

A triumph of the theory of positive cones and Banach lattices has been the 

spectral theory of positive operators. The origin of this theory is Perron and 

Frobenius' work on positive eigenvalues of nonnegative matrices (cf. [123, 124, 303]) and 

its generalization to integral operators by Jentzsch [203]. Let X be a (real or complex) 

Banach space with cone K, and let A be a linear operator with domain X. Then A is 

called a positive operator in the lattice sense (or simply positive when there is no 

chance of confusion with the notion of positive in the Hilbert space sense) if 

A[K] c K. It is easily seen that every positive operator is bounded. Given 

o .. u0 E K, we call A 

a,/3 E (O,oo) such that 

u0 -positive, if for every o .. xEK there exist mEIN and 

au0 ~ Amx ~ {3u0. We call A irreducible if {0} and X 

are the only closed invariant ideals of A. Otherwise we call A reducible. Every 

u0 -positive operator A is irreducible; indeed, it is immediate to see that the only closed 

invariant ideal I of A is the principal ideal I = {XE X : I xI ~ {3u0 for some 

/3 E (O,oo)}. This ideal then coincides with X, due to the fact that the cone of X is 

reproducing and normal. 
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The next result, as well as Theorems 4.3 and 4.4, are due to Krasnoselskii 

([223], Chapter 2), extending earlier results of Krein and Rutman [229] for solid cones. 

There are various generalizations to operators whose spectral radii are isolated 

eigenvalues (cf. [324, 402]). Actually, the result is usually formulated for compact 

operators; the extension to power compact operators (i.e., An compact for some n fIN) 

is straightforward. 

THEOREM 4.1. Let A be a power compact positive operator on a Banach space X with 

a reproducing cone. Then either the spectral radius of A vanishes or the spectral 

radius of A is a positive eigenvalue with at least one corresponding eigenvector in K. 
* The adjoint operator A has the same property. 

For power compact operators one may conclude that the spectral radius belongs 

to the spectrum. That this is also true for general positive operators can be seen from 

the following result of Karlin ([212], Theorem 4). 

THEOREM 4.2. Let X be a Banach space with reproducing and normal cone K. Then 

the spectral radius of every positive operator on X belongs to its spectrum. 

The next results have generalizations to irreducible operators (cf. [324, 402]) 

and related results for positive semigroups and the resolvents of their generators. 

THEOREM 4.3. Let X be a (real or complex) Banach space with cone K, and let A be 

a u0 -positive operator on X. Then we have the following statements: 

(i) The spectral radius r(A) of A is a positive eigenvalue of A. This eigenvalue 

is algebraically simple and the corresponding eigenvector x0 belongs to K 

and satisfies 1u0 $ x0 $ 8 u0. 

(ii) The only eigenvalue of A on the circle {A fCC : I A I =r(A)} is A=r(A). 

(iii) The only eigenvalue of A to which corresponds at least one eigenvector m 

K is A =r(A). 

THEOREM 4.4. Let X be a (real or complex) Banach space with reproducing cone K, 

and let A be a u0 -positive operator on X with spectral radius r(A). Consider the 

vector equation (I-cA)x = y, where y f K. Then the following statements hold true: 
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(i) For OS:c<r(A)- 1 there is a unique solution xd( for every yd(, which IS 

given by the absolutely convergent series 

(ii) For c=r(A) - 1 and y f K there 1s no solution Xf K unless y =0. In that 

case all the solutions in K are positive multiples of the positive eigenvector 

corresponding to the eigenvalue r(A). 

(iii) For c>r(A)- 1 and yEK there do not exist any solutions xEK unless y=O. 

In this case x=O is the only solution in K. 

We conclude this chapter with a result of Nelson [282] which generalizes 

somewhat the previous theorems. 

THEOREM 4.5. Let X be a Banach lattice and B a positive power compact operator on 

X, and suppose 0<c1 <c2 < ... are a finite or countably infinite set of numbers for which 

(1-cB)h=O with c=ci has a nonzero positive solution. Then for c~O and k~O the 

linear equation (1-cB)h=k has a solution h~O if and only if (k, I cp I )=0 for every 
* * cpEX such that (1-ciB )Pcp=O for some ciS:c and pEN. 



Chapter II 

STRICTLY DISSIPATIVE KINETIC MODELS 

1. Introduction and historical development 

In the next several chapters we shall develop an existence and uniqueness 

theory for the Hilbert space boundary value problem 

T'l/l '(x) - A'f/i(x) + q(x), 0< x<oo, (1.1) 

{1.2) 

lim sup 111/!(x)ll < oo, {1.3) 
x-->~ 

where T and A are self adjoint operators on a complex Hilbert space H, the null space 

Ker T = {0}, and Q+ is the orthogonal projection of H onto the maximal T-invariant 

subspace on which T is positive. The meaning of T'l/l' and of a solution to {1.1)-(1.3) 

will be made precise below. Because of the mathematical techniques to be employed, it 

is convenient to study separately several different classes of collision operators A. In 

this chapter we shall assume that A is strictly positive; namely, its spectrum 

u(A)c(O,oo). In the next 

u(A)c[O,oo) with A Fredholm. 

finite dimensional negative part. 

chapter we shall relax this assumption to allow 

Finally, in Chapter IV we shall allow A to have a 

Aside from mathematical considerations, these classes 

of collision operators represent different types of physical models. Strictly positive 

collision operators describe transport in dissipative media, such as subcritical neutron 

transport and radiative transfer in absorbing media. Positive collision operators with 

Ker A non-trivial are typical of transport in systems with conservation laws, such as 

those in rarefied gas kinetics. Finally, non-positive collision operators occur in kinetic 

equations relevant to supercritical media, as in neutron transport in multiplying media. 

Within this chapter, the diversity of mathematical techniques, and, indeed, the 

results themselves will warrant a further division in to subclasses depending upon the 
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collision operator A being a compact perturbation of the identity (Section 2), a bounded 

operator (Section 3), or an unbounded operator (Section 4). An additional complication, 

requiring somewhat sensitive treatment, is introduced if the operator T is unbounded. 

At this time, before concluding with some historical comments, it seems opportune 

to sketch the method which will dominate this and subsequent chapters. In order to 

keep matters simple, we will assume A (self adjoint) strictly positive and bounded, T 

self adjoint, bounded and injective. Then the homogeneous boundary value problem to 

be solved, with q(x)=O, may be written as 

* = -K1/;, O<x<oo, (1.4) 

(1.5) 

lim sup 111/J(x)ll < oo, (1.6) 
x-+~ 

where K T-l A. We shall define, m later sections, precisely what is meant by a 

solution of (1.4)-(1.6). At present we will require 1/J:[O,oo)-+H continuous on [O,oo), 

(strongly) differentiable on (O,oo), and satisfying (1.4)-(1.6). To deal with the 

inhomogeneous boundary value problem, where q(x)o*O, one has only to prove the 

existence of a particular solution. 

At first glance, the solution of such a problem for general vectors 

<p + € Ran Q+ may appear not to exist. Indeed, in typical cases the spectrum a(T) 

of T satisfies a(T)::}(-c,c), c>O, and A is a compact perturbation of the identity, so 

that the spectrum a(K) of K contains unbounded subsets of both left and right real 

half -axes, and K certainly does not generate a semigroup on H. Of course, the 

relevant point is that the initial datum (1.5) is not the specification of the initial state 

1/1(0), but rather only a projected part of 1/;(0), the "incoming flux" Q+ 1/;(0). The 

formal solution 

1/;(x) e -xK 1/1(0) (1. 7) 

will be a solution of the boundary value problem if and only if 1/;(0) belongs to the 

subspace associated with the "positive part" of K and (1.5) is satisfied. 

Let us be more precise. Suppose H may be decomposed as 

H (1.8) 
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m such a way that +K generate bounded semigroups on H±. We let P be the 
± 

complementary projections P ±:H-+H± and we define the complementary projection 

Q_ =I-Q+. Q is related to the homogeneous left half space problem 

-K1/>, -oo<x<O , ( 1. 9) 

Q 1/>(0) <p, (1.10) 

lim sup 111/>(x)ll < oo. (1.11) 
x~-oo 

Then 1/J(x) as given m (1.7) will be a solution of the right half space boundary value 

problem if 1/>(0)ERanP+ and Q+1/>(0) = <p+ERanQ+. Likewise, it will be a solution 

of the left half space boundary value problem if 1/>(0) fRan P and Q 1/>(0) 

'P £Ran Q_. 

The albedo operator E is defined by E: 'P ± -+1/>(0), where 1/>(x) is the solution 

of the corresponding homogeneous half space boundary value problem (if such a solution 

exists). Both left and right homogeneous half space problems are treated 

simultaneously precisely so that the albedo operator will be defined on all of Ran Q+ (!) 

Ran Q = H. Since the solution of the homogeneous half space problems is given by 

1/>(x) 
-xK 

e E<p ±' (1.12) 

the existence of solutions for all (uniqueness is guaranteed by the 

dissipativity assumption on -A) is equivalent to the existence of the linear operator 

E:H--+H. 

The albedo operator may be defined abstractly as a linear operator E:H--+H 

satisfying: 

(i) 

(ii) 

The 

P EQ = o. 
+ ± 

first condition merely assures that the solution ( 1.12) satisfies 

(1.13) 

(1.14) 

the boundary 

condition (1.5) or (1.10). The second condition guarantees E<p ±fRan P ±. In the 

terminology of transport theory, these conditions imply that if f fRan Q+ is an 
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incoming flux for a right half space problem, then Ef will be the corresponding total 

(incoming plus reflected) flux, and if f fRan Q is an incoming flux for a left half 

space problem, then Ef will be the corresponding total ilux. Assuming, for the moment, 

that such an albedo operator exists, let us find an explicit representation for it. Using 

(i) and (ii) above gives easily 

(1.15) 

and 

( 1.16) 

Then, adding the ± equations in ( 1.16) and utilizing ( 1.15) yields 

I. (1.17) 

Indeed, the existence of E, and therefore the existence of solutions of the half space 

problems for all boundary data in Ran Q±, will follow at once from the bijectivity of 

(1.18) 

Most of the work to be carried out in the present and the next two chapters will be 

devoted to proving the invertibility of V. 

We have glossed over the decomposition (1.8). In terms of the (equivalent) mner 

product 

(Ah,k) ( 1.19) 

on H one sees easily that K is self adjoint with respect to this inner product. Then 

the Spectral Theorem provides the decomposition and the projections P ±' and only 

the analysis of V remains. 

When A is strictly positive and a compact perturbation of the identity, the 

scenario above may be carried out rigorously without additional complications. A 

non-trivial null space Ker A;<{O} complicates the geometry somewhat; however, a trick 

introduced by Beals [32] and van der Mee [360] enables one to carry out the necessary 

bookkeeping in a convenient fashion. Already for more general bounded (but still 
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positive) A, a more senous complication anses, as the proof of the invertibility of V on 

H breaks down. We shall rectify this difficulty by seeking a solution of the boundary 

value problem in a larger Hilbert space HT:::)H; m this sense we will be admitting 

weaker solutions. Both A unbounded and T unbounded introduce increasing 

complications, and when the dissipativity assumption on -A is relaxed, it will be 

convenient to v1ew the inner product (1.19) as an indefinite metric on a Krein space. 

As discussed in the previous chapter, van Kampen [3 71] and Case [68] developed 

the singular eigenfunction expanswn method to solve half space boundary value 

problems. Despite the widespread use of this method, even at present, many 

mathematicians remained unconvinced of the validity of such computations because of the 

non-rigorous treatment of the continuous spectrum involved m the eigenfunction 

expansion. This problem was alleviated somewhat by the resolvent integration approach 

introduced in 1971 by Larsen [239, 241]. The method became a popular tool in deriving 

explicit representations of solutions of various kinetic equations and has been applied 

far beyond the range of strictly dissipative models. In 1973 Hangelbroek [180, 181] 

introduced an operator theoretic approach to linear transport equations which, with 

further developments by a number of authors, has provided the framework upon which 

the abstract theory of the next few chapters will be constructed. 

Hangelbroek's work was extended to isotropic neutron transport m conservative 

media by Lekkerkerker [248] and to the scalar BGK model equation by Kaper [207]. 

Other applications followed in anisotropic one-speed neutron transport. Lekkerkerker 

[249] studied the case of a degenerate scattering law but did not include a proof of the 

invertibility of V, though it can be constructed using the method of [184]. A proof 

covering both degenerate and non-degenerate scattering is due to van der Mee [359] 

and is presented also in Chapter 6 of [25]. We note also a proof for special 

non-degenerate cases [182]. Finally, a somewhat weaker existence and uniqueness result 

follows from the abstract theory of boundary value problems presented by Beals [32]. 

In recent years the class of half space problems that can be treated rigorously 

has been vastly extended by the emergence of so-called abstract kinetic models, where 

the boundary value problem (1.1)-(1.3) is studied for a large class of operators T and 

A. Concrete problems in neutron transport, radiative transfer, rarefied gas dynamics et 

a!. then arise as natural applications. Overall, two variants of such a theory can be 

distinguished with different possibilities of generalization. The first one of these 

variants was developed by Beals [32, 33] and extended by Greenberg et al. [161, 166], 

and has proved particularly successful in situations where A is a differential operator 

(see [34]; also Chapter X). The second one of these variants was developed by van 
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der Mee [359, 360] and applies to models where A is a compact perturbation of the 

identity. 

Beals [32] considered an arbitrary {bounded or unbounded) injective self adjoint 

operator T and an arbitrary bounded strictly positive A {as well as non-injective A 

with special Jordan structure). The novelty in Beals' approach was to consider two 

additional Hilbert space extensions, namely the completion HT of D(T) with respect to 

the inner product 

{h,k)T = (IT I h,k) {1.20) 

and the completion H8 of D(A) with respect to the inner product 

(h,k)g = (I A - 1T I h,k) A = {T{P + -P _)h,k). {1.21) 

It is then immediate that the orthogonal projections Q± of H onto the maximal 

T-positive/negative T-invariant subspaces admit continuous extensions from D(T) to HT, 

while the orthogonal (with respect to the inner product (1.19)) projections P ± 

associated with the spectral decomposition of T- 1 A allow continuous extensions from 

D{A - 1T) to H8. The second new element of Beals' approach was the proof of the 

equivalence of the inner products (1.20) and (1.21) on D(T), thereby enabling the 

natural identification HT "' H8. The invertibility of the operator V Q+P + + 

Q_P _ on HT then arises as a corollary. As a result, Eqs. {1.1)-(1.3) were shown to 

be uniquely solvable in the space HT, which is an extension of D(T). 

Van der Mee [359, 360] considered an arbitrary bounded injective self adjoint 

operator T and a positive operator A which is a compact perturbation of the identity 

satisfying the weak regularity condition 

3a>O: Ran(I-A) c Ran IT I a. (1.22) 

Under these hypotheses he proved the invertibility of V and therefore the unique 

solvability of Eqs. {1.1)-{1.3) on the given Hilbert space H. Although this result 

implies Beals' result in HT (see Section 3), it provides more detailed information about 

the solution, useful in further developments (see Chapters VI to VIII), but the price 

one must pay is its applicability to a more restricted class of problems. The 

invertibility proof for V relies on the Fredholm alternative, where the proof of Ker V 

= {0} is borrowed from [184]. The compactness of I-V, needed to implement the 
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Fredholm alternative, follows from the identity I - V = (Q_ - Q+) (P + - Q+) in 

combination with an estimate applied to a resolvent integral representation for the 

projections P + and Q+. The estimate requires Eq. (1.22) as a tool. In Section 2 we 

shall also provide an extension of this approach to unbounded T, due to Greenberg et 

al. [165] 

On generalizing the Beals method to include unbounded operators A, the proof of 

the equivalence of the inner products (1.20) and (1.21), and thus the proof of the 

natural identification HT "' Hs, appeared to be the major obstacle. A one sentence 

argument by Beals [32] intended to establish this result for the electron scattering 

equation (see Section X.6) was generally considered overconcise. Finally, Beals [34] 

proved HT"'Hs and the unique solvability for a large class of problems (1.1)-(1.3), 

where T is multiplication by a (sufficiently regular) function and A is a positive self 

adjoint Sturm-Liouville differential operator. In this way the unique solvability of the 

electron scattering problem was settled. (We remark that a previous and detailed proof 

of HT"'Hs, formulated for a specific Sturm-Liouville example, namely the 

Fokker-Planck equation, appeared in [35].) Recently Curgus [96] observed that the 

identification HT"'Hs is equivalent to infinity being a regular critical point of T- 1 A in 

a suitable indefinite inner product on HT (see Section IV.1 for the terminology), and 

used this observation to obtain an alternative proof. 

A somewhat different route was followed by Greenberg et al. [166] Arguing 

that E=V- 1 is the relevant operator rather than V (since E appears in the solution 

and V does not), they- proved that E=V- 1 admits a continuous extension from 

V[D(A~)] to a bounded operator from HT into the completion of D(A) with respect to 

the sum of the inner products (1.20) and (1.21), and so they circumvented the issue of 

establishing whether HT"'Hs or not. A technical difficulty still is a surjectivity 

assumption on V. The approach of [166] was subsequently extended to unbounded T 

(see [160]), but now the theory only goes through with the additional assumption of the 

essential self adjointness of A - 1T on the space D(A~) endowed with the complete 

inner product (1.19). 

Rigorous results for multiplying media (A with negative part) have been obtained 

only more recently. Ball and Greenberg [21] utilized Krein space theory to study the 

neutron transport equation for isotropic scattering and the one speed approximation. A 

theory for the abstract equation with T bounded has been given by Greenberg and van 

der Mee [163]. In concluding this historical overview, we note that the last reference 

provided also an analysis of the connection between existence and uniqueness and the 

asymptotic behavior of solutions for both conservative and multiplying media. 
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The following notation is more or less standard up through Chapter X. H 1s a 

complex Hilbert space, T is a self adjoint injective operator on H, and A 1s a self 

adjoint Fredholm operator on H. Q± are the orthogonal projections of H onto the 

maximal T-invariant subspaces on which T is positive/negative. Q± will also be used 

for the natural extensions of the orthogonal projections to HT:JD(T). 

2. Strong solutions 

In this section A will be a strictly positive operator which 1s a compact 

perturbation of the identity satisfying the regularity condition 

3a>O: Ran(I-A) c Ran IT I a n D( IT ll+a). (2.1) 

We shall consider the boundary value problem 

(Tt/!)'(x) -At/!(x) + q(x), O<x<oo, (2.2) 

Q+ t/!(0) = cp +' (2.3) 

111/J(x)IIH = 0(1) (x-+oo). (2.4) 

As we shall illustrate in Chapter IX, boundary value problems of the above type, with 

T and A subject to these hypotheses, occur frequently in one-speed and symmetric 

multigroup neutron transport, radiative transfer and rarefied gas dynamics. For bounded 

T the results of this section are due to van der Mee [359, 360], except for Lemma 2.7 

which was derived by Hangelbroek and Lekkerkerker [184]. The generalization to 

unbounded Tis due to Greenberg et a!. [165] 

We shall define a solution of Eqs. (2.2)-(2.4) for any cp+f Q+[D(T)] to be a 

continuous function 1/J:[O,oo)-+H with values in D(T) such that Tt/J is strongly 

differentiable on (O,oo) and Eqs. (2.2)-(2.4) are satisfied. Since 1/J takes values in 

the original space H, and not an enlargement thereof, 1/J is called a strong solution of 

the boundary value problem (cf. Sections 3 and 4). The inhomogeneous term q:[O,oo)-+H 

will be bounded and uniformly Holder continuous. Toward the end of this section we 

will define a different type of (strong) solution which will allow for a wider class of 



II. STRICTLY DISSIPATIVE KINETIC MODELS 31 

boundary data (for unbounded T), namely <p + ~ Q+[H]. 

Let us consider the inner product (l.I9). Due to the strict positivity and 

boundedness of A, this inner product is equivalent to the original inner product. 

Furthermore, A -IT is an (unbounded) self adjoint operator on H relative to this mner 

product. Indeed, if h ~ D(T)->(A -ITh,k) A =(Th,k) is bounded, then this implies that 

k~D(T*)=D(T)=D(A -IT). We write HA for the vector space H endowed with the 

inner product (l.I9) and define P ± as the HA -orthogonal projections of H onto the 

maximal A -IT-positive/negative A -IT-invariant subspaces. Since, by assumption, T 
-I 

and A T have zero null spaces, P ± (and Q±) are pairs of complementary projections. 

Actually, one can say more. P ± (and Q±) are invariant on D(T) and are bounded 

complementary projections on the complete inner product space D(T) with graph norm 

defined by 

(h,k)GT = (h,k) + (Th,Tk). (2.5) 

The self adjointness of A -IT with respect to the mner product (l.I9) allows 

the machinery of the Spectral Theorem to be introduced. It is then evident that the 
-I 

restrictions of e +xT Ap ± to Ran P ± are bounded analytic semigroups on Ran P ±' 

whose infinitesimal generators are the (unbounded) mverses of the restrictions of 

+A -IT to Ran P ±' and therefore differentiable on (O,oo) with respect to the 

operator norm topology. From the injectivity of A, we have 

0, h~H. (2.6) 

Exploiting the invariance of the serrugroups on D(T), we may also demonstrate that the 

semigroups restricted to D(T) are bounded analytic semigroups on Ran P ± nD(T) 

relative to the topology generated by the graph norm (2.5 ). 

We shall first state a result on Bochner integration, due to Hille and contained 

m [I04], which is straightforward to prove and will be crucial in the present section as 

well as in Chapters VI and VII. 

LEMMA 2.1. Let R be a closed linear operator and let <p:(a,b)-+D(R)cH be a vector 

function satisfying the integrability conditions 

b J II'P(x)lldx < oo, 
a 
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b 
J IIR<p(x)lldx < oo. 

a 

Then the integral J~ <p(x)dx { D(R) and R J~ <p(x)dx = J~ R<p(x)dx. 

We next apply this lemma to derive a representation of the solution of the 

homogeneous boundary value problem. 

LEMMA 2.2. lfi(x) is a solution of the homogeneous boundary value problem (2.2)-(2.4), 

where q(x)=O, if and only if 

lf!(x) (2. 7) 

All such solutions are strongly 

differentiable on (O,oo) and vanish at infinity with respect to the graph topology of 

D(T) as well as the original topology of H. 

Proof: Suppose l/J:[O,oo)->D(T) IS a solution of the homogeneous boundary value 

problem. Using the facts that lfi:[O,oo)->H is continuous, A is bounded and (Tlfi)' = 

-Alj!, we see that the function (Tlfi)' is bounded and continuous on (O,oo). Since, for 

O<e<x<oo, 

Tlji(x)-Tlf!(e) r (Tl/J), (y)dy = -A r lfi(y)dy, 
c c 

it follows that Tlji is continuous on (O,oo) and satisfies IITlf!(x)IIH=O(x) (x->oo). 

For all Re>.. < 0 and m> 0, we have 

as a consequence of the previous lemma, whence 

0 = ). Jm ex/>..{(Tlji) '(x) + Alji(x)}dx = 
c 

(2.8) 

Notice that Tlfi(x) has a strong limit as x 1 0; using that ljJ is continuous on [O,oo) and 

T is a closed operator, the limit is, in fact, Tlji(O), and (2.8) is valid for c =0. Noting 
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also that A~ x/ AT!{>(x) vanishes as x-->oo, we have 

for all non-real A in the left half plane. 

the left half plane, the same 1s true 

Since G(>-) has an analytic continuation to 

for (>--A - 1T)- 11{>(0)=>- - 2G(>-)+>- - 11{>(0). 

We may therefore conclude that 1{>(0) ~Ran P + nD(T), and Eq. (2.2) with 1{>(0) given a 

priori IS an initial value problem on Ran P + whose solution must have the form (2.7). 

The relation Q+ !f>(O)=cp + IS immediate, as IS the proof of the converse 

argument. • 

It IS clear that the operator V=Q+P + +Q_P _ leaves invariant D(T). We shall 

establish the compactness of 1-V on H and on D(T). First we shall state three 

technical lemmas from operator theory. The first of these IS a consequence of the 

norm closedness of the algebra of compact operators, and the second is a moment 

inequality, which follows easily from the Spectral Theorem and Holder's inequality. The 

third was proved by Krein and Sobolevskii [231]; we will sketch a proof presented by 

Krasnoselskii et al. [224] 

LEMMA 2.3. The integral of a (norm) continuous compact operator-valued function with 

integrable norm is a compact operator. 

LEMMA 2.4. Let A be a positive definite self adjoint operator. Then 

liAr xll:o;;IIAxll T llxii 1-T for x~D(A) and any r f{0,1). 

LEMMA 2.5. Let A be a positive definite self adjoint operator and B a closed operator 

satisfying D(A)cD(B) and IIBxll:5;kiiAxiiTHxii 1-T for XED(A) and some rf{0,1). 

Then D(A 8 )cD(B) and II Bx II :o;;k0 IIA 8 x II for x ~ D(A 8 ) and all 8 > r. 

Proof: We may see easily that the vector function 

1s continuous for t>O and all x~D(A). Let us estimate: 
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rX> t- 6 1!B(tl + A)- 1xildt ::;; k f" t- 8 1!A(tl + A)- 1xl! 7 l!(tl + A)- 1xill-r dt ::;; 
0 0 

::;; k f" t- 8 (a + t) 7 - 1dtllxll = k 1 1!xll 
0 

for some a> 0, where we have used that 1 > 8 > T. 

fD(B) and 

Using the rep res entation 

-a -1 . J"" -a( )-ld A = 7r Sin arr t tl + A t, 
0 

Joo -8 ( )-1 Thus t tl + A xdt 
0 

which is obtained from the Spectral Theorem with some manipulation of integrands, it 

follows that D(A 8)cD(B) and IIBA- 8xl!::;;k 1 1!xl!. • 

LEMMA 2.6. The operator P + -Q+ is compact on H and the restriction of P + -Q+ to 

D(T) is compact on D(T) (endowed with the jnner product (2.5)). Moreover, 

(P + -Q+)[H] c D(T). 

Proof: We will prove first that P + -Q+ is compact on H and (P + -Q+)[H]cD(T). Let 

A1 =A( e ,M) denote the oriented curve composed of the straight lines from -ie to 

-i, from -i to M-i, from M+i to i, and from +i to +i+ e. Let A2 =A(M) denote the 

oriented curve composed of the straight lines from M-i to +oo-i and from +oo+i to 

M+i. Write A=A1 UA2 with the orientation inherited from A1 and A2. We 

recall that the projections P + and Q+ are bounded on H and on D(T) endowed with 

the graph inner product (2.2). We have the integral representations 

Q+ = I im ~2 1 J (.A-T)- 1d.A, 
e-+0 7rl A 

where the limits are in the strong topology and S=A -IT. Let 

p( 1 ) = I im ~J (.A-S)- 1d.A 
+ e-+0 2 rr 1 Al ' 
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and 

Then one has 

p -Q = (P ( 1 ) -Q ( 1 ) ) + (P ( 2 ) -Q ( 2 ) ) 
++ + + + +. (2.9) 

We will show that P ( 1 ) -Q ( 1 ) and P ( 2 ) -Q ( 2 ) are compact on H and + + + + , 
(P ( 1 ) -Q ( 1 ) )[H]cD(T) as well as (P ( 2 ) -Q ( 2 ) )[H]cD(T). 

+ + + + 
Consider first 

(2.10) 

We shall see that this limit can be taken m the norm topology. We exploit the 

regularity condition (2.1) and obtain from the Closed Graph Theorem the existence of a 

bounded operator D such that B= IT I 01 D. Then, for non real >., 

which shows that (>.-S)- 1 -(>.-T)- 1 1s a compact operator on H. Next, smce S is 

self adjoint on H with respect to the inner product (1.19), we may use the Spectral 

Theorem to derive the norm estimate 

But the inner products on H and HA are equivalent, and thus also are the L(H) and 

L(HA) norms, so there is a constant c0 such that IIS(itt-S)- 1 11 L(H):5:c0. 

Likewise, from the Spectral Theorem, 
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Thus 

which shows that the limit (2.10) exists in the operator norm topology, and 

consequently proves the compactness of Pi 1 ) -Qi 1 ). 

[ -1 ( -1] [( -1 ( -1] Since the vector functions (>.-S) - >.-T) x and T >.-S) - >.-T) x 

T(>.-T)- 1BS(>.-S)- 1x for HH are bounded and continuous on .6.1, we have 

and 

Now, note that 

implies the existence of the limit 

I im ~2 1 J T[(>.-S)- 1-(>.-T)- 1]xd>. 
e --+0 rr 1 .6.( e ,M) 

in the operator norm topology. Therefore, by the closedness of T, 

which proves the inclusion (Pi 1 ) -Qi 1 ) )[H] c D(T). 

Next let us consider 
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Since, for non-real A, (A-S)- 1-(A-T)- 1 = (A-T)- 1BS(A-S)- 1 is compact, it IS 

sufficient to show the integrability of this operator. We can rewrite the operator In 

the following form with C=BA - 1: 

Evidently Ran (A-S)- 1=D(A-T) and by the Closed Graph Theorem (A-T)(A-S)- 1 

is a bounded operator on H. In fact, we will show that the norm of this operator is 

uniformly bounded for A ~2.2 . We easily derive the identity (A-T)(A-S)- 1 = 

I+BS(A-S)- 1 = I+CT(A-S)- 1 By virtue of the estimate II(A-S)- 1 11L(H):$;c0 

for A~ t.2, it is sufficient to show that CT is bounded on D(T)=D(S). But by the 

regularity condition (2.1), Ran C = Ran B c D( IT 1 1+a) c D(T) and then by the 

* Closed Graph Theorem, the operator TC is bounded on H, thus CT c (TC) is bounded 

on D(T)- Finally, for any A~.:l2 we have II(A-T)(A-S)- 1 11L(H) :$; 

1+II(TC) IIL(H) c0, which provides a A-uniform bound, as claimed. 

Therefore it 1s sufficient to show the integrability of F(A) 

(A-T)- 1CT(A-T)- 1. Let Q0 be a spectral projection belonging to the spectral 

decomposition of the self adjoint operator T such that the resolvent set of the 

restriction of T to the range of Q1 =I-Q0 contains a real neighborhood of zero. We 

can decompose F(A) as follows: 

where v=Y2a and 2w>max{1+a,2-a}, and we may choose w<1+Y2a. Note 

that v+w>l. For A ~[M±i, oo±i) we have the following estimates: 

II(A-T)- 1
1 T l-wQ1 11 L(H) :$; const. (ReA)-w, 
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II(>.-T)- 1Q0 11 L(H) ~ const. (Re>.)- 1, 

IIT(>.-T)- 1Q0 11 L(H) ~ const. (Re>.)- 1. 

Moreover, since Ran e = Ran B c D( IT 11+w) c D( IT 11+a) c D( IT 11+v) c 
( w w ( l+v * l+v D I T I ), both I T I e and e I T I ) = I T I e are bounded, thus also 

e IT ll+v (on D( IT ll+v)). So we must consider IT I we IT ll+v. 

Fix u e (0,1). As e IT 11+a is bounded on D( IT 11 +a), there exists a 

constant k such that llehll ~ kiiiTI- 1-ahll for all h E D(ITI- 1-a) 

Ran( IT 11 +a). Then, by Lemma 2.4, we have Ill e I uh II ~ 
kuii1TI- 1-ahllullhll 1-u for all h D(ITI- 1-a). Hence, by Lemma 2.5, 

llleluhll ~ k0 111TI- 6 (1+a)hll for all h D(ITI- 6(1+a)) and 6>u. 

Thus ITI 6 (1+a)lelu and 1e10'1T1 6(1+a) are bounded. For 6= 1 ~a and 

r 1 +v · I d b d d u = 1 +a' respective y, an u =% we recover as oun e operators 

IT I w I e I% and I e I% IT 11 +v. Then, using the polar decomposition 

B=U I B I, we can represent IT I we IT 11+v as a composition of bounded operators; 

one has 

Now we can estimate the norm of F(>.): 

~ const. (Re>.)-s, 

where s=min{v+w,1+w,1+v,2}. This estimate, along with the uniform boundedness 

of (.>.-T)(.>.-S)- 1 for ). e~, shows the integrability of (.>.-S)- 1-(.>.-T)- 1 on 

Ll2 and completes the proof of the compactness of P ( 2 ) -Q ( 2 ) . 
1 1 + + 

Let xeH. Note that [(>.-S)- -(>.-T)- )xeD(T) for any ). eLl2. In order 

to prove that (P l2 ) -Ql 2 ) )x e D(T) it is sufficient to show that 

T[(>.-S)- 1-(>.-T)- 1]x is Bochner integrable on Ll2 (see Lemma 2-,1). Since 
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it 1s sufficient to prove the 

But this can be done in the 

change being that one must 

integrability of IIT(>--T)- 1CT(>--T)- 1 11 L(H) on .:l2. 

same way as in the case of IIF(>-)11 L(H)' the only 

use the factorization ITI-l-wiTil+w instead of 

I Tl-w IT I w m the decomposition of TF(>.). Then (2.9) implies that P + -Q+ 

is compact on H and (P + -Q+)[H]cD(T). 

It remains to prove that the restriction of P + -Q+ to D(T) is compact with 

respect to the graph norm (2.5). Let us write P =AP A - 1. Then, clearly, 
+ + 

P -Q =P -Q +P C-BP -BP C 1s 
~ + + + + + + 

compact m H. Moreover, for hi D(T), 

(P + -Q+)Th=T(P + -Q+)h. Using the compactness of P + -Q+ and this intertwining 

property, one can show the compactness of the restricti~n Aof P + -Q+ to D(T) with 

respect to the graph norm. Indeed, put L=P + -Q+ and L=P + -Q+' and observe that 

L[D(T)jcD(T) and TL=LT on D(T). Let {hn}~= 1 be a sequence in D(T) that is 

bounded with respect to (2.5). Then {hn}~= 1 and {Thn}~= 1 are bounded in the 

H-norm. Since L and L are compact, the sequences {Lhn};= 1 and {LThn};= 1 have 

convergent subsequences {Lh }""k- 1 and {LTh }""k- 1 in H. Using the intertwining 
nk - nk -

property in combination with l2.5), we obtain the convergence with respect to (2.5) of 

the subsequence {Lh }""k-l, whence L is compact. 
nk -

This completes the proof of the 

1emma. • 

For bounded T the proof of the next lemma was given in [184]. 

LEMMA 2.7. The operator V has zero null space. 

Proof: Suppose Vh=O for some hiH. Then Q+P +h=-Q_P _h=O yields (cf. the 

previous lemma) 

P h -(P + -Q)P _h t D(T), 



40 BOUNDARY VALUE PROBLEMS IN ABSTRACT KINETIC Tl-IEORY 

whence h=P +h + P _h E D(T). Thus Ker V c D(T). We now obtain 

in the first case because P +hE Ran Q_ and in the second case because P +hE Ran P +" 

Thus we conclude that P + h=O and in a similar way derive P _ h=O. • 

By virtue of the simple but important identity 

(2.11) 

and Lenuna 2.6, we may conclude that I-V is compact (in both topologies under 

consideration). Now with the above lenuna, the Fredholm alternative gives us the 

principal result of this section for q(x)=O. The extension to q(x)l*O is then direct. 

Let us define the operator }( g(x) by 

x>O 

x<O. 

THEOREM 2.8. The operator V is invertible. The boundary value problem (2.2)-(2.4) 

is uniquely solvable for each 'P + EQ+[D(T)] and each bounded uniformly Holder 

continuous function q:[O,oo)-+H such that Ill T I 'Y q(x) II =0(1) (x-+oo) for some 'Y >0, 

and the solution is 

(2.12) 

where E= v- 1 and 

(2.13) 

Proof: The proof for q(x)=O is immediate from the previous two lenunas. If there is an 

inhomogeneous term, we will follow the line of reasoning prevailing in Section Vl.3. For 

this reason we shall only sketch the proof and refer the reader to that section for 
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additional details. 

In order to interpret X(x) as a Bochner integral, we rewrite it as 

-1 00 

x(x) = {I-e -xT A}A -lq(x) + I ){ s(x-y)A -l{q(y)-q(x)}dy, 
0 
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where the second term at the right hand side is a well-defined absolutely convergent 

Bochner integral. This may be seen from the uniform Holder continuity of q on [O,oo). 

The boundedness of q implies the boundedness of X. On premultiplying (2.13) by 

S=A -IT, we obtain the absolutely convergent Bochner integral 

Ioo 1 
SX(x) = S){ 8(x-y)A- q(y)dy, 

0 

which IS readily proved strongly differentiable with derivative -X(x)+A -lq(x). It 

should be noted that Lemma 2.1 implies X(x) t D(S) if q(x) t D(S). • 

We have established an existence and uniqueness theory for half space problems, 

where A is a strictly positive compact perturbation of the identity satisfying the 

regularity assumption (2.1). It is possible to seek solutions of the boundary value 

problem for all <p + tQ+[H] rather than just <p + tQ+[D(T)]. However, in this case it 

seems necessary to reformulate the problem slightly. The differential equation (2.2) 1s 

replaced by 

T( ,P '(x)) -A,P(x) + q(x), O<x<oo, (2.14) 

and a solution is defined to be a continuous function ,P:[O,oo)->H which is continuously 

cliff eren tiable on (O,oo) such that ,P '(x) t D(T) for O<x<oo, and which satisfies 

(2.14) -(2.3)-( 2.4 ). One should then assume that q(x) t Ran S for all X€ [O,oo), while 

s- 1q(x) IS bounded and uniformly Holder continuous on [O,oo) with 

IIJSJ 1 - 1q(x)II=O(l) ( X->oo ). Then the analog of Theorem 2.8 may be proved Ill 

the same manner, but of course unique solvability will be obtained for each 

<p + tQ+[H]. We shall see in Section VI.3 that the differentiability of T,P leads to 

an equivalent vector-valued convolution equation, but the differentiability of ,P does 

not. 
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3. Bounded collision operators 

In this section A will be a bounded strictly positive operator. We shall drop all 

compactness assumptions on A. It will turn out that under these conditions the 

boundary value problem (l.I)-(1.3) associated with T and A is not necessarily well 

posed on the Hilbert space H or the domain D(T) of T. We shall therefore construct a 

Hilbert space extension HT on which the problem is well posed. In this way we shall 

recover a result of Beals [32]. However, we shall follow a different route to these 

results and avoid the use of a second Hilbert space extension (as was done in his 

derivation). 

First, let us introduce some pairs of complementary projections. We recall the 

projections Q± associated with T, which are, of course, invariant on D(T): 

hED(T). ( 3.I) 

As in the previous section, we see that A -IT is self adjoint on H relative to the inner 

product (l.I9), which is equivalent to the given inner product on H, since A is bounded 

and strictly positive. The operator TA-l is self adjoint with respect to the second 

inner product 

(3.2) 

which is again equivalent. Now let P ± be the orthogonal projections of the Hilbert 

space H onto the maximal A -IT-positive/negative A -IT-invariant subs paces (where the 

positivity and orthogonality notions concern (l.I9)), while P ± are the orthogonal 

projections of H onto the maximal TA - 1 -positive/negative TA - 1 -invariant subs paces 

(where the positivity and orthogonality properties relate to (3.2)). Finally, let us note 

that +T-IA and +AT-I generate bounded analytic semigroups on Ran P ± and 

Ran Pi' respectively. Using the invariance of P ± and P ± on D(A -lT)=D(T) and 

D(AT- )=Ran T, respectively, we obtain the intertwining relation: 

T-I 
T(e+x Ap h) 

± 

T-I 
e+xA P (Th), 

± 
h ED(T). (3.3) 

We now define the Hilbert space HT as the completion of D(T) with respect to 

the inner product (1.20). If T is bounded, then H can be imbedded in HT in a natural 

way, but for unbounded T such natural imbedding does not exist. We shall develop the 
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existence and uniqueness theory for the boundary value problem (1.1)-(1.3) in the 

space HT" In order to implement this extension we have to continue certain operators 

on H from their restrictions on D(T) to bounded operators on HT" This will be 

achieved using a proposition originally due to Krein [226], which appears as Theorem 1.2 

of [41]. 

PROPOSITION 3.1: Let R and R be two bounded operators on H such that R leaves 

invariant D(T) and satisfies the intertwining property 

TRh RTh, h f D(T). (3.4) 

Then the restriction of R to D(T) has a continuous extension to HT, while 

(3.5) 

Proof: First we turn the domain of T into a Hilbert space by introducing the graph 

inner product (2.5). Using the intertwining property (3.4) we have the estimate 

A 2 2 
~ [max{IIRII,IIRII}] llhiiGT' 

'mplying that the restriction of R to D(T) is bounded with respect to (2.5). We also 
A* 

observe that R , with the adjoint relative to H, leaves invariant D(T) and satisfies the 

intertwining property 

A* * 
TR h = R Th, hfD(T). (3.6) 

A* 
Repeating the above estimate we find that the restriction of R to D(T) 1s bounded 

with respect to (2.5) with norm estimate 

...... * A. • A 

IIR IIGT ~ max{IIR II,IIR II} = max{IIRII,IIRII}. 

A* 
Next, put L=(Q+ -Q_)R (Q+ -Q_). Then L leaves invariant D(T) and 

IILIIGT ~ max{IIRII,IIRII}. 
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Furthermore, for all h,k e D(T) we have 

* (Lh,k)T = ( IT I Lh,k) = (R IT I h,k) = (h,Rk)T, (3. 7) 

which means that L and R are adjoints with respect to HT (We shall see shortly that 

L and R are bounded on HT) Fix heD(T) with llhiiT=l, and let Sn=II(LR)nhll 2. 

Using the symmetry of LR with respect to (1.20), for real ).. we obtain the inequality T 

0 ~ II(LR)n-lh + X(LR)n+lhll 2 = s + ns + ).. 2s 
T n-1 n n+l' 

which implies that S~ ~ Sn-lSn+l for ne!N. Since S0 =1, we find 

whence 

and so sl ~ s; /n_ 

On the other hand, using the estimate 

(3.8) 

for heD(T), we obtain 

implying 

Letting n-+oo we find 
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A 2 
IILRhiiT :<;; [max{IIRII,IIRII}] , 
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where h Is an arbitrary vector in D(T) with II h II T= 1. Since D(T) is a dense linear 

subspace of HT, we must conclude that LR extends to a bounded operator on HT with 
A 2 

norm:<;; [max{IIRII,IIRII}] . Thus for htD(T) we must have 

which implies the proposition. • 

The above proposition has far reaching ramifications for the boundary value 

problems under consideration. Using (3.1) we may see that Q± extend to orthogonal 

projections on HT. 

projections on HT 

The analogous equation for P ± yields that P ± extend to bounded 

Moreover, the families {exp( :nT- 1 A)P ± O:<;;x<oo} have 

continuous extensions to HT which form a bounded set in HT-operator norm. To see 

that they, in fact, form analytic semigroups on P ±[HT] requires more effort. First, the 

proposition implies the analyticity in x of both families on the open right half plane, as 

well as the semigroup property. It therefore remains to prove the identities 

I im (3.9) 
X-+oo 

-1 
I im ilenT Ap h-P hilT 

x-+0, largxl:<;;8 ± ± 
(3.10) 

where 0:<;;8 <lf21T. Both of these identities hold true for h t D(T) in the norm 

induced by the inner product (2.5). Thus, as a consequence of (3.8), they are also 

valid for h t D(T) in HT-norm (i.e., as they are stated). However, since the families 

{exp( =nT- 1 A)P ± : O:<;;x<oo} are bounded in the HT-operator norm and D(T) is 

dense in HT, the identities {3.9) and (3.10) are true for all htHT, which settles the 

analyticity of the semigroups. We will write K ::> T-l A for the operator which gives 

the infinitesimal generators (within ± sign) of the extensions of exp{+xT- 1 A}P ±' It 

will be seen in the next section that K may also be obtained as an appropriate closure 

of T- 1A. 

In order to establish the unique solvability of the boundary value problem in an 

appropriate functional formulation, we first prove 

THEOREM 3.2. The operator V=Q+P + +Q_P _ extends to a bounded invertible 
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operator on HT. 

Proof: Since the projections Q± and P ± extend to bounded operators on HT, the same 

property must be true for V. One easily computes that 

2V-I = (2Q+P + -P +) + (2Q_P _ -P _) = (2Q+-I)P + + (2Q_ -I)P _ 

= (Q -Q )(P -P ). + - + -
(3.11) 

Then for all hED(T) we must have 

((2V -I)h,h)T = (IT I (Q+ -Q_)(P + -P _)h,h) = (T(P + -P _)h,h) 

where I A -IT I denotes the absolute value of A -IT with respect to (1.19). Hence, 

2(Yh,h)T ~ llhll~, hED(T). 

Thus V is a bounded strictly positive self adjoint operator on HT" • 

It remains to link the invertibility of V on HT to the unique solvability of the 

boundary value problem 

1/J '(x) = -K'I/J(x) + q(x), O<x<oo, (3.12) 

Q+'I/J(O) = r.p+, (3.13) 

111/J(x) liT = 0(1) (x-+oo), (3.14) 

A I 
where q(x)=A- q(x). We define a (weak) solution of the boundary value problem 

(3.12)-(3.13) for any r.p + EQ+(HT] to be a continuous function 1/J:[O,oo)-+HT such 

that 1/J is continuously differentiable on (O,oo) with values in D(K) and Eqs. 

(3.12)-(3.14) are satisfied. Putting E=V- 1 on HT, one would expect unique solutions 

of the homogeneous boundary value problem of the form 
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1/l(x) -xKE o:s;x<co. 
e 'P +' {3.15) 

THEOREM 3.3. For every <p + € Q+[HT] the homogeneous boundary value problem 

{3.12)-{3.14), where q(x)=O, has a unique solution, which is given by {3.15). If 

q:[O,co)-+HT takes values in D(K) and Kq is uniformly Holder continuous, then 1/l{x) is 

given by 

1/l(x) = e -xKE(rp + -Q+x(O)) + X(x) 

with 

foo 1 
X(x) = )( g(x-y)A- q(y)dy. 

0 

Proof: Let 1/J:[O,co)->HT be a solution of the boundary value problem {3.12)-{3.14) 

with q(x)=O. Then for O<e<m<co and Re>.<O we have 

Here J~1/l(x)dx € D(K) and K J~1/l(x)dx = J~K1/I(x)dx, as a consequence of the 

continuous differentiability of 1/1 on {O,co). We easily prove, using that 111/l(x)IIT=0{1) 

(x->co), that for all non-real >. in the left half plane 

(3.16) 

Because of the definition of K and the analyticity of (3.16) in the left half plane, we 

obtain 1/1(0) € P +[HT]. The boundary condition Q+ 1/I(O)=rp + and the invertibility of 

V on HT imply 1/I{O)=E<p +' where E=V- 1. The solution (3.15) follows by solving 

the evolution equation 1/1' = -K1/I with initial value 1/I(O)=E<p + on P +[HT]. The 

extension to the inhomogeneous case follows the proof of Theorem 2.8. • 

We notice that the solution of Eqs. (3.12)-(3.14) is a function with values m 

HT, even if <p + t Q+[D(T)]. The solution has all its values in D{T) only if 

'P + tQ+ V[D(T)]= VP +[D(T)]. It is not known whether the half space problem is well 

posed in a functional formulation only involving D(T). 
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4. Unbounded collision operators 

We will consider now A an (unbounded) self adjoint strictly positive Fredholm 

operator. Because of complications introduced by the unboundedness of T, we will 

assume either that T is bounded, or more generally that D(AY2)cD(T). As we shall 

see, the boundary value problem (l.I)-(1.3) will be transferred to yet another Hilbert 

space setting H8, with the boundary values ¢(0)€HTnH 8. That is to say, the albedo 

operator E will map E:HT-+HTnH8. Moreover, although E will turn out to be continuous 

from HT into either HT or H8, its inverse V=E-I will in general be unbounded. 

Special emphasis will be given to conditions under which HT and H8 can be identified. 

Let us assume that D(A)nD(T) is dense in H, and let HA be the completion of 

D{A) with respect to the inner product {l.I9). We will always view HA as a linear 

submanifold of H to be identified with D(AY2). Assuming A -IT to be essentially self 

adjoint with respect to the HA inner product, we denote its unique self adjoint 

extension by S. Then HA nD{T) = D{A -IT) c D(S) c HA The essential self 

adjointness assumption is obviously satisfied if HA cD{T), since in this case the Closed 

Graph Theorem implies that T:HA-+H is bounded and S=A -IT is bounded self adjoint 

on HA We now define by HTS the completion of HA nD(T) with respect to the inner 

product 

(h,k)TS = ( IT I h,k) + (IS I h,k) A ( 4.I) 

Write Q± for the H-orthogonal projections onto the positive/negative spectral 

subspaces of T and P ± for the HA -orthogonal projections onto the positive/negative 

spectral subs paces of S. Then S IS I W and IT I = TU, where W = Q+ - Q_ and 

U = P + - P _. We define HT as the completion of HTS with respect to the mner 

product {1.20), and H8 as the completion of HTS with respect to the inner product 

{h,k)g = ( IS I h,k). ( 4.2) 

The continuous and dense embeddings 
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~[ ~[ 

for HA cD(T) with the additional continuous and dense embedding H --->HT for T 

bounded, and the continuous and dense embeddings 

HAnD(T) ~! "Ts ~[ 
HA __.... H 

for unbounded T are evident. It is also evident that HA nD(T) is densely imbedded in 

H8 and in HT Clearly S and P ± extend from D(S) to self adjoint operators on H8, 

and T and Q± extend from D(T) to self adjoint operators on HT 

Let us now give a precise statement of the boundary value problem. For the 

sake of convenience we will take q(x)=O. Given <p ± f Q±[HT], a (weak) solution of Eqs. 

(1.1)-(1.3)/(1.9)-(1.11) 1s a continuous function 1/J:[O,oo)-+Hg having its values 

1/J(x) fD(S- 1)nH8 for O<x<oo, which is continuously H8 -differentiable on (O,oo), has 

1/1(0) fHTS' and satisfies (1.2)-(1.3)/(1.10)-(1.11) along with 

1/1 ' ( x) K1)i(x) + q(x). ( 4.3) 

S-1 H A -1 We have written K for on S and q=T q. 

As in the case of bounded A, we are choosing boundary data <p + from Q+[HT] 

and demanding that the total boundary flux 1/1(0) f HT However, because of the 

(possibly) singular behavior of the generator K on HT, we must seek solutions m H8. 

In effect, this problem did not arise in the previous section because HT and H8 can be 

identified when A is bounded. The albedo operator now may be viewed as a map from 

HT into either HT or H8, smce the definition of a solution 1/l(x) requires that 

Ran EcHTs· 

Thus, we define an albedo operator E to be a linear operator E:HT-+HTS such 

that 

(i) (4.4) 



50 BOUNDARY VALUE PROBLEMS IN ABSTRACT KINETIC TIIEORY 

( 4.5) 

on HT. Note that an immediate consequence of (4.5), if an albedo operator exists, 1s 

the invariance of Ran E under P ±. 

The equivalence of the existence of solutions to the homogeneous boundary value 

problems (1.1)-(1.3)/(1.9)-(1.11) for all <p ± tQ±[HT] and the existence of an albedo 

operator is transparent. Indeed, assuming 'f/l(x;<p +) is the solution corresponding to <p +' 

and defining E: <p + -+,P(O;<p +)' only the validity of ( 4.5) might be questioned. 

However, for Re >..<0 and Im A;t.O, the (Bochner) integral J~ex/>..'f/l(x;<p+)dx is 

H8 -absolutely convergent, and 

after an integration by parts. Thus 

has an H8 -analytic continuation to the open left half plane and therefore 

'f/i(O;<p +) t P +[H8], or, equivalently, ( 4.5) holds true. 

Motivated by (1.15), let us define v0 = Q+P + +Q_P _:HTS-+HT with D(V0) = 

{ftHTS: P±ftHT8}. Thus we also have v0r = Y:!(WU+I)f for all ftD(V0)cHTs· 

Moreover, V 0 is closed as an operator from HTS into HT Indeed, if {hn}';:'= 1 is a 

sequence in D(V 0) such that hn -+h and V 0hn -+g, then P + hn -+(Q+ -Q_)g+Q_ h and 

P _hn -+(Q_ -Q+)g+Q+h in HT Since also P ±hn -+P ±h in H8, the two limits of 

{P ±hn}';:'=l coincide; they are limits in the HT8 -norm and hence h f D(V 0) and 

v oh=g, which proves the statement. 

Let us consider first the case when HA cD(T). We have 

LEMMA 4.1. If HA cD(T). Then Ker V 0 ={0}, and, as an operator on HT, V 0 1s closed, 

symmetric and positive. 

Proof: The lemma will follow from the identity 

( 4.6) 

Suppose ftD(V0) and gtHA We have 
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where the unitary equivalence IT I :HT-+H _ 1 has been utilized. Here H T_ 1 IS the 

completion of Ran TcH with respect to the 'fnner product 

(h,k) 1 = (IT I - 1h,k). 
T-

If HAcD(T), then the unitary equivalence S:Hs-+HS_ 1, where HS_ 1 is the completion of 
Ran S cHA with respect to the inner product 

(h,k) 1 = (IS 1-1h,k), s-

and the fact that SUf f H A give 

(TUf,ITig) 1, 
T-

which completes the proof. • 

LEMMA 4.2. If HA cD(T), then Ran V 0 = HT if and only if there exists an albedo 

operator, and then E 0 =V(j 1 is the unique albedo operator. 

Proof: Assume Ran V o=HT. By construction, E 0:HT-+HTs· If gEHT and we write 

E0Q±g=h±, then Q±g=Q+P +h± +Q_P _h±, whence Q:;:P +h± =0. But we also 
have V0P+h±=Q+P+h±=O, so P+h±EKer v0 and, by injectivity, P+h±=O. 
We have shown that P :;:EOQ± =0 on HT From V 0E 0 =I and the result just obtained, 

we have Q± =Q±P ±EOQ± =Q±EOQ± on HT. Thus E 0 is an albedo operator. 
Suppose E 0 is an albedo operator. Since we have P ±EQ± =EQ± on HT, 

Ran Ec{f f HTS : P ± f f HT}. Following Section 1, we derive easily the intertwining 

relation P ±E=EQ± on HT, and thus Q±P ±EQ± =Q±. 

equations gives V 0E=l on HT, from which the lemma follows. • 

We now derive the main results of this section. 

Adding together the ± 

THEOREM 4.3. If HA cD(T), then the following statements are equivalent: 
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(i) The boundary value problems (1.1)-(1.3)/(1.9)-(1.11) with q(x)=O are 

solvable for all rp ± €Q±[HT]. 

(ii) There exists an albedo operator E:HT-+HTs· 

(iii) The operator V 0 has dense range in HT 

(iv) The operator V 0 is a self adjoint operator on HT 

Proof: The equivalence of (i) and (ii) is clear from previous considerations. Note that 

E exists as a bounded operator on HT That is immediate from the estimate 

(4.7) 

The boundedness of E and the closedness of V 0 imply the closedness of Ran V 0 C 

HT, and hence the equivalence of (iii) and (ii). Let V be the Friedrichs extension of 

the positive symmetric operator V 0. As we must have 

( 4.8) 

the extension V coincides with V 0 if (iii) is valid, whence V 0 1s self adjoint. 

Conversely, the self adjointness of V 0 along with ( 4.8) gives (iii). • 

COROLLARY 4.4. If E exists, then it is injective, and E: HT-+Hg and E: HT-+HT 

Moreover, the boundary value problems (1.1)-(1.3)/(1.9)-(1.11) are uniquely solvable for 

each rp ± €Q±[HT]. 

THEOREM 4.5. If HA cD(T), then the following statements are equivalent: 

(i) V 0: HT-+HT is bounded. 

(ii) V 0: H8-+HT is bounded. 

(iii) The norms II • II T and II • II 8 are equivalent: HT:.H8. 

If any of these, then V 0 is invertible and E=V(j 1 is the albedo operator. 

Proof: If (i) is satisfied, then ( 4. 7) implies 
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Now following an estimate of Beals [32], we have 

for h f HA cH, which implies HT::.H8. In a similar fashion, if (ii) is satisfied, then 

which gives HT"'Hs directly. Conversely, HT"'Hg implies D(V ol=HT, by definition, 

and then (i)-(ii) by the Closed Graph Theorem. 

If (i)-(ii)-(iii) are fulfilled, then the self adjointness of V 0 along with the 

identity (4.6) complete the proof of the theorem. • 

The next corollary indicates why one did not need the space H8 in the previous 

section. Although for bounded A we need not have HA cD(T), all previous arguments 

can still be carried out if A is bounded. 

COROLLARY 4.6. If A is bounded, then HT"'Hg. 

Proof: If A is bounded, we may identify HA and H, and the operators P ± and V 0 

will then be bounded on H while leaving invariant D(T). • 

In applications of the present theory to physical models, one seems to have 

HT::.H8. This is evident m models for which A is bounded, which covers most of 

radiative transfer, neutron transport and rarefied gas dynamics. In Chapter X we will 

encounter an extensive class of Sturm-Liouville diffusion equations, where T is 

multiplication by an indefinite weight and A is a Sturm-Liouville differential operator. 

The general proof for this case that HT"'Hs has been given by Beals [34]. An 

alternative proof has recently been given by Curgus [96]. On the other hand, Kaper et 

a!. [209] have constructed an example, even with bounded T, where HT;.;H8. For this 

the assumptions of Theorem 4.3 are still satisfied; we shall present the example below. 

Let us define the matrices 

T n 1 0 l , An 

0 
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00 

Next we consider the Hilbert space H = e 
n=1 

c2, on whic~ we define the operators 

00 

T = e Tn, 
n=1 

A 

Then T is bounded and self adjoint with u(T)={-1,1}, and A is unbounded and strictly 

positive self adjoint; we have 

where 

and 

0 

-3 n 

- .!.[ 1 - 2 
. ±1 

Q = 
± 

p 
±,n 

00 

e p ±,n' 
n=1 

We now easily derive that IT I is the identity operator on H and hence HT=H. 

However, IS I, which can be factorized as S(P + -P _), has the form 

00 

IS I = e I Sn I, 
n=1 

where 

Hence Hg properly extends HT=H, and we have Hg*HT. 

V=Q+P + +Q_P _ one sees easily that Vis unbounded on H. 

On computing 



Chapter III. 

CONSERVATNE KINETIC MODELS 

1. Preliminary decompositions and reductions 

In the previous chapter we studied boundary value problems m half space 

geometry of the type 

T'if; '(x) -A'if;(x), O<x<co, ( l.la) 

'P +' (1.2a) 

II ,P(x) II 0(1) (x--+oo), (1.3a) 

and 

T'if; '(x) -A'if;(x), -co< x< 0, (l.lb) 

Q_ 1/;(0) tp, (1.2b) 

JI,P(x)ll = 0(1) (x-+-co) (1.3b) 

with A strictly positive. Depending on the specific assumptions on T and A, different 

variants of the boundary value problems were defined. In each case, the above 

problems were reformulated as invertibility problems for the operator 

v = Q+ p + + Q_ p _, (1.4) 

on a suitable Hilbert space, where the projections P ± associated with the operator 
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A -IT are analogs of the projections Q± associated with the operator T. The result is 

that the problems (under appropriate hypotheses) are solvable, indeed are uniquely 

solvable, and, even more, are uniquely solvable if the boundary condition at infinity 

(1.3a)/(1.3b) is replaced by 

I im 11'!/l(x)ll 0, (1.5) 
X-+±oo 

or 

3n dN: II '!/l(x) II 0( I xI n) (x-+±oo). (1.6) 

In fact, solvability for every pair of vectors tp ± f Ran Q± IS precisely equivalent to 

the invertibility of V. 

In the previous chapter we have also dealt with the inhomogeneous boundary 

value problem, where a term q(x) is present on the right hand side of the differential 

equation. As the inhomogeneous half space problem amounts to construction of a 

particular solution once the homogeneous version is solved, the introduction of such a 

term q(x) does not yield a challenging problem. In fact, we will shortly introduce a 

transformation which will modify the half space problem in such a way that the 

resultant kinetic equation will be represented on an infinite dimensional subspace with a 

strictly positive collision operator, and we may proceed as in Chapter II. The remaining 

finite dimensional problem will be essentially trivial. For this reason, in this chapter 

we shall confine ourselves to the homogeneous version of the boundary value problem. 

Requiring Ker A={O} excludes from consideration many physically important 

problems, such as most linearized gas kinetics equations (where the existence of 

conservation laws results in the collision operator A having a nontrivial kernel), the 

neutron transport equations precisely at criticality, and radiative transfer problems for 

non-absorbing media. In this chapter we will generalize the results of the previous 

chapter to the case where A is (still) positive, but with nontrivial kernel, and will 

study conditions at ±oo corresponding to (1.5) and to (1.6) with n=O and n=l. The 

existence of a nontrivial kernel for the collision operator will cause a number of 

difficulties - even the proper definition of the projections P ± is not a priori clear -

and the equivalence of solvability with invertibility of V will be lost. Indeed, 

depending on the boundary condition at ±oo, both non-uniqueness and non-existence of 

solutions are possible. 

For R a linear operator defined on the Hilbert space H and >. in the spectrum 
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of R, At u(R), the root linear manifold ZA (R) is defined by 

Of course, if R is normal, then the Spectral Theorem guarantees that ZA (R) is 

precisely the eigenspace corresponding to the eigenvalue A. More generally, ZA (R) 

consists of the eigenvectors and generalized eigenvectors associated with the "Jordan 

blocks" corresponding to A l u(R). 

Let us write K 0 for the H-closure of T- 1 A. The definition and study of the 

projections P ± will be accomplished by proving the decompositions 

H, (1.7a) 

(1.7b) 

On z0(K0 \L one may define the inner product ( •, •) A" We then denote by H A the 

Hilbert space obtained by taking the orthogonal direct sum of z0(K0) (endowed with 

some inner product) ·and the (·,·)A -completion of z0(K0 \L (constructed as a 

submanifold of H, which is possible because A has closed range). Since, as will be 

proved separately, z0(K0) is finite dimensional, all inner products thus constructed are 

equivalent. Then the (·,·)A-closure of the restriction of T- 1A to z0(K0*)J. is the 

mverse of an 

product. This 

By replacing A 
* J. z0(K0 ) , the 

operator A- 1 T 
(3 

injective self adjoint operator with respect to the ( •, •) A inner 

inverse can be used to construct the projections P ± on Z0(K0 *)J.. 

with a strictly positive self adjoint operator Ar; coinciding with A on 

inverse of the restriction of T- 1 A to Z0(K0 *)J. extends to an 

on H, as do the projections P ±" In this way the boundary value 

problems can be reduced to four subproblems: 

(i) To solve Eqs. {1.1)-(1.3) in a suitable functional formulation with A replaced 

by Ar;· Since Ar; is strictly positive, this problem can be dealt with using 

the methods of Chapter II. 

(ii) To solve an evolution equation of the form t/J~(x) 
z0(K0). As this space will be finite dimensional, the equation is trivially 

solvable. 

(iii) To match the boundary conditions (1.2) and {1.3), (1.5) or {1.6). Essentially 

this involves an analysis of z0(K0) only. 
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(iv) To assure that the solution is independent of the alteration of A. 

If solutions of the original problem (1.1)-(1.3) m fact exist, we expect to write 

them in the form (say for T,A bounded): 

* .l where P IS the projection of H onto Z0(K0 ) along Z0(K0), the albedo operator E 

arises as the inverse of the operator V f3 defined as in Eq. (1.4), ¥> 0(0) ~ Ker A, and 

E must be constructed in such a way that Ran EQ+ n z0(K0) c Ker A. For Eqs. 

(1.1)-(1.2)-(1.6), the solution will have the form 

V>(x) 

with ¥> 0(0) ~ z0(T- 1 A). 

The decomposition {1.7) and the projections PP ± were first applied by 

Lekkerkerker [248] to one speed neutron transport with isotropic scattering. The 

abstract generalization was developed by van der Mee [360] and further refined by 

Greenberg et a!. [160, 166] Under more restrictive assumptions on the structure of 

z0(T- 1A), such a procedure was applied already to transport problems by Beals [32], 

who more recently formulated his own version of the above program (cf. [34]). We shall 

now outline this procedure in more detail. 

Let us assume T is injective self adjoint and A is non-negative self adjoint and 

Fredholm. In addition we will assume that z0(T- 1 A)cD(T) and D(A)nD(T)cH densely. 

We recall that for a self adjoint operator A to be Fredholm means that dim Ker A<oo 

and Ran A is closed. We will see shortly that also dim Z0(K0)<oo. 

LEMMA 1.1. We have Ker K0 

Proof: Let h t Ker K0. Then there exists a sequence {hn}~= 1 m 

D{T- 1A)n(Ker A).l such that h ..... h and T- 1Ah ..... o. Put k =T- 1Ah Then, for n n n n 
A - 1 the bounded operator from Ran A into (Ker A).l inverting A, we find 

hn =A - 1Tkn. Since A - 1Tc(TA - 1) * and TA-l is densely defined, the operator A -IT 

is closable and therefore h=O. Thus Ker K 0cKer A, thereby proving they coincide. 

Next, suppose that K 0f =g ~ Ker A. Then there exists a sequence {f n}~= 1 m 
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D(T- 1A)n(Ker A).l such that fn-+f and gn=T- 1Afn-+g. Therefore, gnfD(A- 1T) (as 

A - 1 has its range in (Ker A).l), g -+g and A - 1Tg -+f, whence g is in the domain of 
1 n n 

the closure of the operator A- T, and 

rA- 1T 1 f L Jg = . 

Now g f D(T), by assumption, while, for all i' f Ker A, 

lim (fn,Ai') = 0, 
n--+oo 

whence Tgf(Ker A).l=D(A - 1). Thus A - 1Tg [A - 1T] g = f, implying that 

ffZ 0(T- 1A). Finally, if K0e=dfKer(T- 1A)n for some n~2, we may repeat the 

previous argument to obtain efKer(T- 1A)n+ 1. Thus z0(K0)=Z0(T- 1A). • 

LEMMA 1.2. If h f z0(T- 1 A), then there exists k f z0(T- 1 A) such that T- 1 Ah k 

and T- 1 Ak = 0. 

Proof: Using k,h,i' f D(A) and 

i',k f D(T), we have 

(Ak,k) = (Ti',k) = (i',Tk) = (i',Ah) = (Ai',h) = 0. 

Since A is positive self adjoint, we find Ak=O. Using that Ak=Ti' and Ker T={O}, 

we obtain i'=O, which establishes the lemma. • 

This lemma was published in [360] for A a compact perturbation of the identity 

and T bounded and in [166] for A unbounded. It means that the Jordan chains of 

T- 1 A at the zero eigenvalue have at most length two, and thus implies dim z0(K0) ~ 
2 dim Ker A. 

PROPOSITION 1.3. One has 

*.L .l .l I A[Z0(K0 ) nD(A)] = Z0(K0) = T [ Z o ( K0 ) nD ( T) , 
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and the fallowing decompositions hold true: 

(1.8a) 

(1.8b) 

Proof: Let us first prove the identity 

(1.9) 

1 * * * 
If h d(er A, then TlH D(AT- )cD(K0 ) and K0 Th=Ah=O, whence ThE Ker K0 . 

Similarly, if f E D(T- 1 A) and T- 1 Af d(er A, then f E z0(T- 1 A)cD(T). Thus, 

TfED(AT- 1) and K0*Tf=Af=TK0 f, where fEZ 0(1<:0). Since 

we obtain 

* To prove the converse, let us first show that D(K0 )cRan T. Take 

g E D(K0 \ Then h-+(T- 1 Ah,g) extends from D(T- 1 A) to a bounded linear functional 

on H, and therefore z-+(T- 1z,g) extends from Ran AnRan T to a bounded linear 

functional on Ran A. Because 

Ran T Ran A + Ran T H 
dim dim ;5; dim < oo, 

Ran A n Ran T Ran A Ran A 

we can define z-+(T- 1 z,g) as a linear functional on Ran T, which is bounded with 

T -1 . -1 respect to the H-norm. Since IS self adjoint on H, we have g £ D(T )=Ran T, 

which proves the statement. 

Now take gd(er K0*. Then gED(T- 1), and for all i'ED(T- 1A) we have 

(T- 1g,At')=(g,T- 1At')=O. Thus, we also have T- 1gE(Ran A).L=Ker A, and 

therefore T- 1g d(er(T- 1 A). 

Suppose, by induction hypothesis, that for some n~2 
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* * * n Take g f Ker (K0 ) . Then g f D(K0 )cRan T and K0 g=T£ for some 

K0 *TI'=(AT-1)TI'=AI'. I'ED(T- 1A)n- 1. Now observe 

* Since AI' f D(K0 )cRan T, we have 

that ThD(AT- 1) and 

whence 8' f Ker (T- 1 A)n - 1. Finally, because g f D(K0 *) and h---->(T- 1 Ah,g) extends 

from D(T- 1 A) to a bounded linear functional on H, we also have that h---->(Ah,T- 1g) 

extends to a bounded linear functional on H. By virtue of the self adjointness of A, 

the latter in turn implies that T- 1gED(A), and therefore gED(AT- 1). But then we 

have AT- 1g=K0*gfKer (T- 1A)n- 1, whence T- 1gEKer (T- 1A)n, which we intended 

to prove. Consequently, we have established (1.9). 

Next take h f Z0(K0)nZ0(K0 *)1.. Then Z0(K0)=Z0(T- 1 A) and (1.9) imply 

(Th,k)=O for all kfZ0(T- 1A), and thus ThEZ0(T- 1A)l. c (Ker A)l. = Ran A. 

This in turn implies the existence of some 8' f z0(T- 1 A} such that h=T- 1 A£, so 
* 1. (A£,1')=(Th,1')=0, Th=AI'=O, and h=O. Hence, z0(K0)nZ0(K0 ) ={0}. In a 

similar way, if f f Z0(K0 *)nZ0(K0)1., then f =Th for some h f Z0(K0)nZ0(K0 *)1.={0} 
* 1. and therefore f=O. Thus also Z0(K0 )nZ0(K0) ={0}. 

We now use some simple dimension arguments. Obviously, for d=dim Z0(K0), 
* . * . 1. * . *1. d =d= z0(K0 ), c=codun z0(K0) and c =cod= z0(K0 ) one has 

* * * c = d, c = d' d = d (1.10) 

* * (see (1.9) for the last one). We then have d = c , d c, and the decompositions 

( 1.8) are clear. 
* * 1. Finally, we observe that T maps z0(K0) onto z0(K0 ) and z0(K0 ) nD(T) into 

z0(K0)1.. Since T has dense range, we have, using (1.8), 

(1.11) 

* 1. 1. Analogously, we observe that A maps Z0(K0 ) nD(A) into Z0(K0) and maps Z0(K0)c 
* D(A) into z0(K0 ), while Ker AcZ0(K0). Since Ker A has finite dimension and A has 

closed range, we must have 
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which completes the proof. • 

The decompositions (1.8) will now enable us to reduce the boundary value 

problems (1.1)-(1.2)-(1.3)/(1.5)/(1.6) with given A to one with strictly positive A. In 

fact, this reduction follows immediately from the following proposition. 

PROPOSITION 1.4. Let /3 be an invertible operator on Z0(T-l A) satisfying 

(1.12) 

(1.13) 

Then A/3 is strictly positive self adjoint and satisfies 

(1.14) 

Moreover, if A is a compact perturbation of the identity satisfying the condition 

3a>O: Ran(I-A) c Ran IT I anD( IT I 3+a), (1.15) 

then A/3 is a compact perturbation of the identity satisfying the condition 

3a>O: Ran(I-A/3) c Ran IT I anD( IT ll+a). {1.16) 

Proof: From {1.13) we easily derive (1.14). Moreover, for g~D(A) we have 

(A/3g,g) = (APg,Pg) + (T,a- 1(1-P)g,(I-P)g) ~ 0, 

where we used (1.12) for h=/3- 1(1-P)g. Since u(A)c{O}U[c,co) for some c>O and 

z0(T- 1 A) has finite dimension, we must have strict positivity of A (3 from the obvious 

triviality of its kernel. 
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Next, let A be a compact perturbation of the identity satisfying (1.15) for 

certain O<a<l. Since Aj3-A=(Aj3-A)(I-P) has finite rank, Aj3 must be a compact 

perturbation of the identity too. Furthermore, 

I-Aj3 = (I-A) - (ArA)(I-P) = (I-A) - T(r 1-T- 1A)(I-P), 

and therefore 

Ran(I-Aj3) c Ran IT I a. (1.17) 

( 2+a) . ( -1 ) -1 Also, using that Ran(I-A) C D IT I , we fmd, for h £ z0 T A and g=T Ah, 

h = (I-A)h + Tg = (I-A)h + T(I-A)g £ D( IT I 2+a), 

which implies 

Ran(I-Aj3) c D( IT ll+a). (1.18) 

From (1.17) and (1.18) we obtain (1.16). • 

If A is a bounded operator on H, so is Aj3, while A(3 1T is a self adjoint 

injective operator on HA. Here we endow HA with the (complete) inner product 

(1.19) 

We note first that, since the j3- dependence of A j3 is isolated on the finite dimensional 

subspace z0(K0), the completion of D(A) with respect to (·,·)A is independent of 

j3 and may be denoted by HA for each ;3. The boundedness an'! strict positivity of 

Aj3 imply the coincidence of HA and H as sets and the equivalence of (1.19) to the 

original inner product of H. We may then define P ± as the HA- orthogonal projections 

of H onto maximal A~ 1 T-posi~ive/negative A~ 1T-invariant subspaces. If P IS 

the projection of H onto z0(K0 )1. along z0(K0), the decomposition (1.14) makes it 

clear that PP +' PP _ and I-P form a family of complementary projections, independent 

of j3 and commuting with T-l A. 

If A is unbounded, then A j3 is unbounded as well and the above analysis is more 
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involved. By Lemma 1.1, the finite dimensional subspace z0(T-l A)cD(A), and therefore 

the projection P leaves invariant HA' its restriction to HA is bounded, and it has null 

space z0(T- 1A) and range z0 (1<0*)J.nHA" If T is bounded, A~ 1 T is self adjoint on 

HA and P ± may be defined as the HA -orthogonal projections of HA onto maximal 

A~ 1T- positive/negative A~ 1T-invariant subspaces. If T is unbounded, let K 

be the HA-closure of T- 1A. Since HA is continuously imbedded in H, we have T- 1A C 

K c K 0 and D(K) D(K0)nHA" Moreover, Lemma 1.1 implies 

(1.20) 

while Proposition 1.3 gives nse to the ( •, •) A -orthogonal decomposition 
f3 

(1.21) 

-1 We then obtain for the HA -closure of Af3 T the operator 

It is easily observed that this operator is closed and symmetric on HA (with respect to 

( ·, •) A ). Let us choose a self adjoint extension S f3 (provided it exists) and define 

P ± a/ the HA -orthogonal projections of HA onto the maximal S 13 -positive/negative 

s13 -invariant subspaces. Again, PP +' PP _ and I-P are a family of {3-independent 

complementary bounded projections on HA" 

For various cases the next proposition was established in [160, 166, 360]. 

PROPOSITION 1.5. The subspaces 

(1.22) 

satisfy the condition 

±(Tf,f) > o, 0 * f € M±, (1.23) 

while 

(1.24) 
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Proof: For ftM+ there exist gtPP _[HA] and htQ+[H] such that f=g+h. Then 

0 :o; (Th,h) = (Tf,f) + (Tg,g) - (Tf,g) - (Tg,f). 

* * ~ 1 Since Tf t z0(K0 ) and g t z0(K0 ) , we have (Tf,g)=O, while f t z0(T- A) and 

Tg t z0(T- 1 A)~ imply (Tg,f)=O. Also, 

-1 (Tg,g) = (A /3 Tg,g) A :o; 0. 
/3 

Thus, (Tf,f)~O. However, (Tf,f)=O would imply (Th,h)=(Tg,g)=O, and therefore 

h=g=O, which m turn would imply f=O. Hence, (Tf,f)>O for all O,<f tM+ and Eq. 

(1.23) is clear. It is also clear that 

(1.25) 

Note that 

(TPP _[HA])~:::JPP +[HA]. From the identity (cf. (1.9)) 

we find 

where we have used the finite dimensionality of z0(K0) and the finite co-dimensionality 
* ~ of Z0(K0 ) . Thus, 
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Using the finite dimensionality of M+ and M_ and (1.8) we find 

which together with (1.25) implies (1.24). • 

PROPOSITION 1.6. The subspaces 

(1.26) 

satisfy the direct sum decomposition 

{1.27) 

while 

is a maximal subspace of z0(K) on which ±(Th,h) is nonnegative. 

Proof: Let us apply the (T •, • )-orthogonal decomposition {1.24) as well as the inclusion 

T-l A[Z0(K)]cKer A and compute that 

(T[M+nKer A]).L n Ker A = [M_nKer A] e T- 1A[Z0(K)]. {1.28) 

Since in this equality the left hand side is the (T·,·)-orthogonal complement in Ker A 

of a subspace on which (Th,h)>O for nonzero h and the right hand side is a subspace 

of Ker A on which (Th,h) is nonpositive, we clearly have (1.28). • 

If we combine Proposition 1.6 with the construction in the statement of 

Proposition 1.4, we can derive an identity which has important ramifications for the 

existence of bounded solutions of the half space problem. Indeed, let us choose a 

maximal subspace N+ of z0(K) on which (Th,h)~O, and a maximal subspace N of Z0(K) 

on which (Th,h)<O for nonzero h. Then obviously 
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Further, the above proposition shows that one may take N + cKer A. On defining 

,Bh= ±h for h £ N ± and extending ;3 linearly to all of z0(K), we can construct 

A ,8 in such a way that 

(1.29) 

The positivity of T,B on z0(K) then is most easily seen from the identity 

(T ,Bh,h) 

for all h=h+ -h_ with h± £N±. It should be observed that (Th+,h_) need not vanish, 

since Ker A may contain a nontrivial subspace of T- 1A[Z0(K)]. 

Let us next construct the completion of D(A)nD(T) with respect to the inner 

product 

(h,k)g = (ITih,k) + (IS,alh,k)A. 
,8 ,8 

Again, because the ,8-dependence of A,a is isolated on the finite dimensional subspace 

z0(T-l A), this Hilbert space does not depend on ,8 and may be denoted by HTs· 

From HTS we then obtain HT as the completion with respect to (h,k)T=( IT I h,k) 

and H8 as the completion with respect to (h,k)g =(IS ,8 I h,k) A . The latter does not 

depend on ,8. The projections P ± and P can a~! be extended" to bounded projections 

on H8, resulting in the triple of complementary projections PP +' PP _, I-P on H8. As 

it turns out, the space HT is defined as in the previous chapter, with the projections 

Q± extending as orthogonal projections on HT 

COROLLARY 1.7. The subspaces 

(1.30) 

have the property 

±(Tf,f) > 0, 0 # f £ M( S) 
± ' 

and therefore coincide with M±. The analogous statement applies to the intersection of 
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these spaces with Ker A. 

2. Boundary value problems 

In this section we will analyze the boundary value problems (1.1)-(1.2) along 

with a condition at infinity, namely, one of 

I im 111/>(x)ll 0, (2.1) 
X-+±oo 

II 1/>(x) II 0(1) (x-+±oo ), (2.2) 

111/>(x)ll (2.3) 

(The upper/lower signs are to be taken with (1.1a)-(1.2a)/(1.1b)-(1.2b).) Actually, by 

virtue of Lemma 1.2, (2.3) is equivalent to (1.6). In Chapter II, these boundary value 

problems were studied assuming (2.2), and in all cases the unique solution satisfied (2.1). 

Indeed, the result would have been the same even with the (apparently) more general 

boundary condition (1.6), as is evident from standard semigroup theory. We shall now 

generalize these results to non-negative A with nontrivial kernel. However, it will be 

necessary to distinguish carefully among the boundary conditions at infinity. 

We shall first suppose that A is a compact perturbation of the identity, T 

bounded and Ran (I-A)cRan IT I a for some 0< a< 1. The definition of a solution of 

the boundary value problem is given in the second paragraph of Section II.2. Writing 

1/> 1 =PI/> and 1/> 0 = (I-P)!/>, Eq. (1.1a) may be decomposed as follows: 

(2.4) 

and 

(2.5) 

The second equation is an evolution equation on the finite dimensional zero root linear 

manifold z0(T- 1 A), and therefore admits the elementary solution 
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(2.6) 

where we have used Lemma 1.2. Clearly, on imposing condition (2.1), (2.2), or (2.3), we 

must require that ¢ 0(0)=0, ¢ 0(0) t Ker A or ¢ 0(0) t z0(T- 1 A), respectively. 

We consider next Eq. (2.4). Let us adjoin to this equation the dummy equation 

(2.7) 

on z0(T- 1 A), whose solution is not of concern, as it will be projected out shortly. 

However, defining t/J=t/Jo+¢ 1, we can now combine Eqs. (2.4) and (2.7) to obtain 

(Tt/J) '(x) = -A(3t/J(x), O<x<oo. (2.8) 

Referring to Section II.2, we may write the solution as 

(2.9) 

where g+ tQ+[H] and E IS the mverse of V=Q+P + +Q_P _. Then the solution of 

(1.1a) is given by 

(2.10) 

where ¢ 0(x) is given by (2.6), ¢ 0(0) determines which boundary condition at infinity is 

met, and the boundary condition (1.2a) is still to be satisfied. More precisely, 

depending on whether (2.1), (2.2) or (2.3) is imposed, we must find g+ tQ+[H] and 

¢ 0(0) f{O}, Ker A or z0(T- 1 A), respectively, satisfying 

(2.11) 

In case T is unbounded and A is a compact perturbation of the identity 

satisfying the somewhat more restrictive condition 

(2.12) 

we seek solutions for boundary data cp + tQ+[D(T)]. Again we find that all such 

solutions have the form (2.10), where we must find g+ tQ+[D(T)] and ¢ 0(0) f{O}, 
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Ker A or z0(T- 1A), satisfying (2.11). For solutions of the type described at the end 

of Section II.2, one only demands g+ f Q+[H]. 

Next we consider the case when A is bounded and seek solutions in the Hi! bert 

space HT (cf. Section II.3). T may be either bounded or unbounded, with 

z0(T- 1 A)cD(T). By Proposition II 3.1, P and l-P extend to HT Then (the 

unbounded operator) T- 1A,B extends to HT and may be treated as in Section 11.3; a 

closed extension of T- 1A to HT is obtained by T- 1 A=(T- 1 A .B)P + (T- 1 A)(I-P). If 

E is the bounded inverse of V on HT, which exists according to the results of Section 

II.3 applied to T and A,B, we obtain again 7/l(x) in the form (2.10), where we must find 

g+ EQ+[HT] and 1/1 0(0) precisely as in the previous cases. 

Finally, let us consider the most general case, when A is unbounded and we seek 

solutions in Hs for initial data <p+EQ+[HT]. As in Section Il.4, we assume that 

z0(T- 1 A)cD(T) and T satisfies HA cD(T) if T is unbounded. As a result, the 

techniques of that section can be applied to the transformed problem for 

<p + E Q+[HTJ. 

In summary, we are considering three functional formulations of the boundary 

value problem: 

(i) A a compact perturbation of the identity satisfying (2.12) with solutions m H 

for <p + EQ+[D(T)], or for <p + EQ+[HJ. 

(ii) A bounded with solutions in HT for <p + EQ+[HT]. 

(iii) A unbounded, V 0 surjective, and HA cD(T) if T IS unbounded, with solutions m 

Hs for <p + EQ+[HT]. 

In all cases it is assumed that z0(T- 1 A)cD(T) and D(T)nD(A) are dense in H if T is 

unbounded. As there is complete symmetry between left and right half space problems, 

we will write results for the right half space problem only. 

We give first a precise meaning to measures of· non-existence and non

uniqueness. 

0 Definition: The measure of non-completeness 1 + for Eqs. (1.1)-(1.2)-(2.1), the 

measure of non-completeness 1+ for Eqs. (1.1)-(1.2)-(2.2) and the measure of 

non-completeness 1! for Eqs. (1.1)-(1.2)-(2.3) are the codimensions in Ran Q+ of 

the subs paces of boundary values <p +fRan Q+ for which these problems are solvable. 

The measure of non-uniqueness 8~ for Eqs. (1.1)-(1.2)-(2.1), the measure of 



Ill. CONSERVATIVE KINETIC MODELS 71 

non-uniqueness 8 + for Eqs. (1.1)-(1.2)-(2.2) and the measure of non-uniqueness 

8! for Eqs. (1.1)-(1.2)-(2.3) are the dimensions of the solution spaces of the 

corresponding homogeneous problems. 

For historical reasons, the codimensionality of the subspace of boundary values 

at x=O for which the boundary value problem IS well posed is called the "measure of 

non-completeness", rather than "measure of non-existence", although the latter 

nomenclature would correspond more naturally to the related term "measure of 

non-uniqueness". 

THEOREM 2.1. In each of the above functional formulations, the boundary value 

problem 

Tl{; '(x) -Al{;(x), O<x<oo, (2.13) 

(2.14) 

I im lllf;(x)ll = 0, (2.15) 
X->oo 

0 has at most one solution for every cp +' and the measure of non-completeness 1 + for 

solutions of this problem coincides with the maximal number of linearly independent 

vectors g 1 , ... ,gk E Ker A satisfying 

1~i,j~k, i .. j, (2.16) 

1~i~k. (2.17) 

THEOREM 2.2. In each of the above functional formulations, the boundary value 

problem 

Tl{;' (x) -Alf;(x), O<x<oo, (2.18) 

'P +' (2.19) 

lllf;(x) II 0(1) (x-+oo), (2.20) 
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has at least one solution for every <p +' and the measure of non-uniqueness 8 + for 

solutions of this problem coincides with the maximal number of linearly independent 

vectors h 1 , ... ,h .f f Ker A satisfying 

(a) (Th.,h.) = 0, 1~i,j~.t, io'j, 
I J 

( 2. 21) 

(2.22) 

THEOREM 2.3. In each of the above functional formulations, the boundary value 

problem 

Ttj>'(x) -A¢(x), O<x<oo, (2.23) 

0, (2.24) 

II ¢(x) II O(x) (x-+oo), (2.25) 

has at least one solution, and the measure of non-uniqueness 8! for solutions of this 

problem coincides with the maximal number of linearly independent vectors 

e 1 , ... ,emf Z0(T- 1 A) satisfying 

(2.26) 

(2.27) 

COROLLARY 2.4. The solution of (2.13)-(2.15), if it exists, is given by 

tj>(x) = exp{-xK}PEg+' (2.28) 

where g+ is the unique solution of 

(2.29) 

The solutions of (2.18)-(2.20) have the form 

¢(x) exp{-xK}PEh+ + h0, (2.30) 
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where h0 f {Ran PP +@Ran Q_}nKer A and h + 1s the unique solution of 

(2.31) 

The solutions of (2.23)-(2.25) have the form 

V>(x) = exp{-xK}PEf+ + (I-xT- 1A)f 0, (2.32) 

where f 0 f {Ran PP + eRan Q_}nz0(T- 1 A) and f + is the unique solution of 

(2.33) 

Here the operator K is to be interpreted as an appropriate extension of T- 1 A, and 

likewise Ran Q+, according to the context, as Q+[H], Q+[D(T)] or Q+[HT]. 

Proof of Theorems 2.1, 2.2 and 2.3: Consider first the basic vector equation (2.11), 

where we require the solution to satisfy the conditions (1.2a) and (2.3). We must then 

find tt> 0(o) f Z0(K) and g+ f Ran Q+ such that (2.11) is fulfilled. Using Proposition 

1.4 we may construct f3 in such a way that 

Ran P + c Ran PP + e z 0(K). 

Then the vector function 

tt>(x) e -xKPEcp + + (I-xK)(I-P)Ecp +' O~x<oo, 

IS a solution, and the existence of a solution to the boundary value problem 

(l.la)-(1.1 b)-(2.3) is established. 

Next, we recall that the results of the third chapter remain unchanged if the 

boundedness condition is replaced by the boundary condition (2.25). Using the 

reduction to strictly positive A/3, we find the formula (2.32) for V> where f+ =PEg+ 

for a vector g+ERan Q+ and f 0 EZ0(T- 1A) such that (f++f0)£Ran Q_. Therefore 

(2.34) 
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Conversely, if f 0 satisfies (2.34), we can find a unique f +fRan PP + so that 

f + +f 0 fRan Q_, whence (2.32) will provide a solution of (2.23)-(2.25). We have thus 

proved Theorem 2.3. At the same time we have shown the existence of a solution of 

the boundary value problem (l.la)-(1.2a)-(2.2). Indeed, it is possible to construct within 

Ker A a maximal subspace of z0(K) on which (Th,h) is nonnegative (see Proposition 

1.6). Such a subspace will then be a complement of M_ in z0(K), and hence it is 

possible to subtract from every solution of (l.la)-(1.2a)-(2.3) a solution of 

(2.23)-(2.25) as to obtain a solution of (l.la)-(1.2a)-(2.2). Using (1.29) one may see 

that 

is a solution of the boundary value problem (l.la)-(1.2a)-(2.2), where 

E=(Q+P + +Q_P _)- 1. 

To study the uniqueness of this problem, let us suppose that 1/J is a solution of 

(2.18)-(2.20) corresponding to cp + =0. Then 1/J has the form (2.10) with PEg+ +1/Jo(O) f 

Ran Q_ for some g+ £Ran Q+ and 1/Jo(O) f Ker A. Therefore, 

1/J0(o) £ (Ran PP + E& Ran Q_]nKer A = M_nKer A, 

where we are using the notation of Proposition 1.5. Conversely, if 1/J(O) EM_ nKer A, 

we can find vectors g+ £Ran Q+ and h_ £Ran Q such that 1/J0(0)=PEg+ -h_, 

thereby leading to a solution of (2.18)-(2.20) with cp + =0. Hence, the measure of 

non-uniqueness of solutions of the boundary value problem (2.18)-(2.20) coincides with 

the dimension of the subspace M_nKer A. However, M_nKer A is a subspace of 

Ker A maximal with regard to vectors h satisfying (Th,h)<O for h,.O (see Proposition 

1.6). We shall see in Section IV.1 that the dimension of such a maximal subspace does 

not depend on the specific choice of the subspace. Therefore, the dimension of 

M_nKer A equals the dimension of the subspace spanned by hi satisfying (2.21)-(2.22), 

which completes the proof of Theorem 2.2. 

The uniqueness question for solutions of the boundary value problem 

(2.13)-(2.15) follows from the uniqueness of solutions of the problem 

Tcp' (x) = -A,ecp(x), 0< x<oo, (2.35) 

(2.36) 



III. CONSERVATIVE KINETIC MODELS 75 

I im llcp(x)ll 0, (2.37) 
X-+oo 

which was proved m Chapter II. In fact, every solution of (2.13)-(2.15) has its initial 

value IP(O) in Ran PP + and therefore must be a solution of (2.35)-(2.37). 

To analyze existence for Eqs. (2.13)-(2.15), we consider the possibility of 

finding g+ € Ran Q+ such that 

or, equivalently, 

cp + e (Ran PP + e Ran Q_)nRan Q+. (2.38) 

Let us compute the orthogonal complement: 

[T{(Ran PP _ e Ran Q+)nRan Q_}].L = [(T[Ran PP _]).LnRan Q_] e Ran Q+ 

= [(Ran PP + e z0(K))nRan Q_] e Ran Q+. 

Using the inclusion 

{0} c Ran PP +nRan Q_ c Ran P +nRan Q_ c Ker V = {0} 

and the density of the subspaces 

Ran PP + e z0(T- 1 A) + Ran Q_ :J Ran P + + Ran Q_ :J Ran V, 

we find that the orthogonal complement of the subspace 

(Ran PP +eRan Q_)nRan Q+ in Ran Q+ has the same dimension as M+ 

(Ran PP _ eRan Q+)nZ0(T- 1 A). In Proposition 1.6, we saw that M + is a subspace of 

z0(T- 1 A) maximal with regard to vectors h satisfying (Th,h)~O. Arguing as before, 

we obtain that the dimension of M+ equals the maximal number of linearly independent 

vectors x 1, ... ,xk such that (Txi'xj)=O for i;~oj and (Txi'xi)>O. The dimension of this 

subspace is the co-dimension in Ran Q+ of the closure of the set of vectors cp + for 

which Eqs. (2.13)-(2.15) are solvable. This completes the proof of Theorem 2.1. • 
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COROLLARY 2.5. The conclusions of Theorem 2.3 and Corollary 2.4 remam unchanged 

if (2.25) is replaced by 

3n~1: 11'1/l(x) II 0( I x In) (x-->oo). (2.39) 

For A a compact perturbation of the identity, T bounded and (2.12) satisfied, 

Theorem 2.2 and 2.3 were established by van der Mee [360]. All three results were 

obtained m more general settings by Greenberg et a!. [160, 162, 166]. Earlier 

treatments of these problems (generally for specific models, but see [32] for abstract 

models of this type) either considered A strictly positive or a situation where 

-1 [ ( -1 )] . T A z0 T A =Ker A, whence umque solvability of the boundary value problem 

(2.18)-(2.20) was assured. It appears that this may have been responsible for 

introducing an unfortunate misconception into the literature, wherein it is claimed that 

invertibility of V=Q+P + +Q_P _ is equivalent to half-range completeness, thus 

completely disregarding the boundary value problem leading to the operator V. 

3. Evaporation models 

A few years ago Arthur and Cercignani [15] conjectured that the non-existence 

of a steady flow in a gas beyond the speed of sound would show up in the linearized 

BGK model for a rarefied gas as a non-completeness result. These authors applied 

resolvent integration techniques to the linearized BGK equation 

(v+d}~(x,v) + '1/l(x,v) = 

= 1r -% Joo {1 +2vv+2(v2 -%)(v2 -%)}'1/l(x,v)e -v2 dv, 
-oo 

(3.1) 

with O<x<oo, -oo<v<oo, subject to the boundary condition 

Ioo 2 
I im 1T-Y2 1'1/l(x,v) 12e-v dv = 0 
X-->oo -oo 

(3.2) 

at infinity, and an incoming flux boundary condition at x=O reflecting conservation of 

mass and energy. (As a result of the BGK linearization, 1/1 represents the 

perturbation from an equilibrium distribution.) Here d~O is the drift velocity with 
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d=(3/2)'12 corresponding to the speed of sound of the gas. They showed that the 

existence of solutions, valid for d2<3/2, did in fact break down for d2 >3/2. Later, 

Siewert and Thomas [334] reproduced these results by reducing the analysis to a 

suitable Riemann-Hilbert problem, and obtained analytical solutions. They subsequently 

applied their technique to a more complicated model incorporating transverse velocity 

variations and a three dimensional scattering kernel [335]. 

In this section we will follow the analysis of Greenberg and van der Mee [162] 

and derive non-existence results for the corresponding abstract kinetic equations from 

the general theory of the previous sections. To a large extent this is no more than a 

restatement of results obtained in Section 2. However, it seems worthwhile to present 

the abstract theory in a fashion more oriented toward existence results for restricted 

sets of initial data, as this abstract analysis provides a powerful method of efficiently 

determining regimes of existence and non-existence for specific models. For example, 

the Arthur-Cercignani results for the model described by Eq. (3.1) can be obtained at 

a fraction of the effort required by the earlier analyses. An additional application of 

these abstract results will be presented in Section IX.5. 

For the sake of convenience we will consider the case where A is a bounded 

non-negative Fredholm operator, T a (bounded or unbounded) injective self adjoint 

operator, and the abstract equation 1s studied on the Hilbert space extension HT of 

D(T). We then seek a solution in HT of the boundary value problem (2.13)-(2.15). 

PROPOSITION 3.1. Let k be the maximal number of linearly independent vectors 

h1" .. ,hk in Ker A satisfying the conditions 

(a) (Th.,h.) 
I J 

0, (3.3) 

(3.4) 

and put m=dim{Ker AnRan Q_}. Then the vectors <p + t Q+[Ker A] for which the 

boundary value problem (2.13)-(2.15) is solvable form a linear subspace of dimension 

k-m. 

Proof: According to Theorem 2.1, there 1s at most one solution of Eqs. (2.13)-(2.15), 

which will be of the form 

,P(x) -xK 
e g, O~x<oo, (3.5) 
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precisely if there is a g (Ran PP + with Q+g=<p + ( Q+[Ker A]. Thus <p + =Q+ a for 

some a ( Ker A with g-a ([Ran PP + eKer A]nRan Q_. This implies that 

a ( [Ran PP +e Ran Q_]nKer A = M_nKer A 

and g is the unique {for fixed a) vector in Ran PP + satisfying g-a (Ran Q_. 

Thus, the number of linearly independent ad{er A such that (2.13)-{2.15) with 

<p + =Q+ a is solvable coincides with dim{M _ nKer A}=k ( cf. the proof of Theorem 

2.2). 

Finally, in order to obtain the number of linearly independent <p + ( Q+[Ker A] 

for which {2.13)-{2.15) is solvable, we must correct the estimate above by the degree 

of non-uniqueness in constructing a ( Ker A from <p + ( Q+[Ker A]. This correction 1s 

evidently m=dim{Ker AnRan Q_}, which completes the proof of the proposition. • 

2 
In the example of Eq. (3.1), if H=L2(1R,1r -'he -v dv) with 

Tf{v) (v+d)f{v), 

Af{v) f(v) - 1r -'I:! Joo {1 +2vv+2(v2 -Y:!){v 2 -Y:!)}e -v2 f(v)dv, 
-oo 

then h 1 =dv-v2, h2 =1 h 3 =v2-Y:! is a basis of the type indicated m Proposition 3.1, 

and since (Th 1,h 1)=Y:!d{d 2-3/2), {Th2,h2)=d>O, {Th 3,h 3)=5d/4>0, it is evident that 

the measure of non-completeness is 2 for d2 <3/2 and 3 for d 2~3/2. If we consider 

<p + ( Q+[Ker A] given by 

then for d 2<3/2 there will be unique values of the "density perturbation" Po and 

the "temperature perturbation" T0 for each c1 (IR such that <p+(Q+[M_nKer A]. 

This result corresponds to conservation of mass and energy (but not momentum). If 

d 2 ~3/2, then 'P + (Q+[M_nKer A] if and only if p 0 =T0 =c1 =0. 

Note that, in general, if the operator T has the form T=T0+di for d>O and if 

m=dim (Ker AnRan Q_) is independent of d, then the number k-m of Proposition 3.1 

as a function of d is monotonically non-increasing and reaches zero for d sufficiently 

large. In fact, we must have {Th,h) = {T0h,h) + d(h,h) for every h ( Ker A. This 
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may be viewed as an abstract generalization of the supersonic breakdown of linear 

systems predicted by Arthur and Cercignani. 

4. Reflective boundary conditions 

The development of abstract half space theory has so far been limited to 

"autonomous" incoming fluxes, where there is no reflection at the boundary x=O. This 

IS a severe restriction in applications related to gas dynamics and Brownian motion, 

where reflection at the boundary is generally present. Reflective boundary conditions 

are common as well in radiative transfer. 

A typical reflective boundary condition for gas dynamics or Brownian motion m 

half space geometry requires 

0 
,P(O,v) = a,P(O,-v) + f3 J u(v-+v),P(O,v)dv + cp +(v), 

-oo 
O<v<oo, (4.1) 

and an appropriate boundary condition at x=oo. Here a£[0,1] and /3£[0,1-a] are 

the accommodation coefficients for specular and diffuse reflection, respectively, and the 

surface scattering kernel ~(v-+v), defined by 

( 2 ~2) 
~(v-+v) = (v/ I vI) e-Y2 v -v u(v-+v), v<O<v, 

satisfies the following positivity, reciprocity and normalization conditions: 

(i) ~(v-+v) ~ 0, v<O<v, ( 4.2) 

2 ~2 

(ii) ve -1/.lv ~( -v-+-v) lvle-1/.lv ~(v-+v), v<O<v, ( 4.3) 

(iii) Joo ~(v-+v)dv = 1, v<o. ( 4.4) 
0 

For a detailed discussion of surface scattering kernels we refer to the monograph of 

Cercignani [84]. 

In the following, we shall formulate an abstract generalization of such problems. 

We assume T is a (bounded or upbounded) injective self adjoint operator on a complex 

Hilbert space H, A a positive self adjoint Fredholm operator, with the following 
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properties: 

(i) Z0(T- 1 A)cD(T), 

(ii) T- 1 A essentially is self adjoint on HA' 

(iii) D(T)nD(A) is dense in H, Hs and HT, and the Hs- and HT-inner products 

are equivalent on D(T)nD(A). 

This third condition enables one to implement the analysis entirely on HT, and is valid, 

for example, for A a Sturm-Liouville differential operator and T multiplication by an 

indefinite weight function ( cf. Section X.1 ). 

To formulate the abstract reflective boundary condition at x=O, we assume the 

existence of an inversion symmetry (or signature operator) J:H-+H and a surface 

reflection operator R:Q+[H]-+Q+[H] such that 

(iv) J = / = r 1, JT = -TJ, JA = AJ, 

(v) TRh = RTh for some bounded operator R:H-+H, 

(vi) (ITIRh,Rh) ~ (ITih,h) for all hEQ+[D(T)]. 

Condition (iv) implies that J[D(T)]cD(T) and J[D(A)]cD(A), and (v) establishes that R is 

bounded on Q+[D(T)]. The last condition represents the fact that the "current" 

reflected at the boundary should not exceed the incident current. 

The identities JQ± =Q+J may be exploited to extend R to H with RJ=JR. 

Further, R extends to a contr1~ction on HT and J extends to a self adjoint unitary 

operator on HT. For the model (4.1), the operators J and R may be taken as (Jh)(v) 

= h( -v), -oo<v<oo, and 

0 
(Rh)(v) = ah(v) + f3 J u(v-+v)h( -v)dv, O~v<oo. 

-oo 

In treating these stationary kinetic equations, we have separated the operator 

describing boundary reflecting processes into a factor J accounting for pure inversion of 

the direction and a factor R accounting for the remaining reflection processes. The 

result is a decomposition into two operators, which are usually self adjoint in HT" 

When treating time dependent problems in Chapters XI to XIII, we do not make such a 

distinction. The main reason is that in the time dependent setting one generally does 

not assume plane parallel geometry, which results in the loss of self adjoin tness 

properties of the reflection operator. 
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The abstract boundary value problem may be written 

T'l/;'(x) -A'!j;(x), O<x<oo, (4.5) 

Q+ '1/;(0) = RJQ_ '1/;(0) + 'P +' (4.6) 

11'1/J(x)IIT = 0(1) (x-+oo), (4.7) 

where conditions (i)-(vi) will be assumed throughout this section. 

PROPOSITION 4.1. The boundary value problem ( 4.5)-( 4.7) with <p + EQ+[HT] has a 

solution in HT of the form 

( 4.8) 

where P is the continuous extension to HT of the projection along z0(T- 1A) onto 

Z0(K*)l., E is the albedo operator, and SR is an invertible operator on HT defined by 

SR = I + RJ(I-E). (4.9) 

Proof: Defining 

and using the identity II (1.13) yields easily the expression (4.9). The albedo operator 

satisfies the inclusion 

Ran EQ+ c Ran PP + ED Ker A. ( 4.11) 

Because of the equivalence of the inner products in HT and H8, E is a strictly positive 

self adjoint operator on HT with spectrum a(E)c(0,2) ( cf. Eq. II ( 4. 7)). Thus 

III-EIIH <1 and 
T 

which yield the invertibility of SR Since, by (4.14), (I-P)EsR_1 <p+EKer A, it is 
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immediate that the function m Eq. ( 4.8) satisfies ( 4.5) with boundary condition ( 4.7). 

We may then compute 

and the proposition follows. • 

THEOREM 4.2. Define M~ by 

Then the measure of non-uniqueness for solutions of the boundary value problem 

( 4.5)-( 4. 7) coincides with dim(M~nKer A). 

Proof: The solutions of the boundary value problem for tp + =0 are of the form 

,P(x) = e -xKh + + h0, O~x<oo, 

where h + € Ran PP +' h0 € Ker A and 

Now g € Ran PP + nKer(Q+ -RJQ_) implies g=Eg+ with g+ € Ran Q+ and SRg+ =0. 

The invertii;>ility of SR then gives g=O. Therefore, we have 

h0 € [Ran PP + E&Ker(Q+ -RJQ_)]nKer A and h + +ho € Ker(Q+ -RJQ_), which proves the 

theorem. • 

COROLLARY 4.3. Under the hypothesis Ker(Q+ -RJQ_)nKer A = {0}, the boundary 

value problem (4.5)-(4.7) has measure of non-uniqueness k, where k is the maximal 

number of linearly independent vectors h 1, ... hk € Ker A satisfying 

(a) (Th.,h .) 
I J 

In particular, the hypothesis is satisfied if IIRIIH < 1. 
T 
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Proof: Let us prove first that (Th,h)~O if h €M~. We write h=f +g with 

f € Ran PP + and g € Ker(Q+ -RJQ_). 

(Th,f)=O. Hence, 

1 * 1 Since h € z 0(T- A) and f € z 0(K ) , we have 

(Th,h) + (Tf,f) = (Tg,g) = IIQ+gllf-IIQ_gllf = IIRJQ_gllf-IIQ_gllf ~ 

Since (Tf,f)=(A,8 1Tf,f)A ~0, we must have (Th,h)~O. 
Note that if 11R11H <1, then (Th,h)<O with h,.Q as above. For (Th,h)=O 

implies f=O and either IIRIIHT =1 or Q g=O. But the latter would give Q+g=RJQ g=O T - -
and so g=O, whence h=O. 

Now we compute (orthogonal complements to be taken in H): 

""* "* We have used the fact that Ran(Q+ +Q_JR ) is closed in H, since Q+ +Q_JR 1s a 
bounded projection on H. Writing h=f+gEZ0(T- 1A) with fERan PP and g= A* 
(Q+ +Q_JR ).t, we obtain 

which is non-negative since 

"* "* * "* ...... 0 ~ (R h,R h)T = (R Th,(Q+ -Q_)R h) = ((Q+ -Q_)h,R(Q+ -Q_)R h}T ~ 

and therefore IIR\IIT ~ llhiiT" Thus (Th,h}~O for h€(TM~).Lnz0(K), with strict 
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positivity if IIRIIH <1. Since M~ has the property that (Th,h)<O for o .. h€M~, 
it must be maxima?in this respect, and likewise within Ker A for the corresponding 

R 
subspace M_nKer A. • 

COROLLARY 4.4. For R=I (i.e., purely specular reflection), the measure of 

non-uniqueness for solutions of the boundary value problem (4.5)-(4.7) is the dimension 

of the subspace {h f Ker A : Jh=h}. 

Proof: Note that any vector h€HT satisfying Q+h=JQ_h has the property 

If h€Ran PP +E&Ker A, then h=f+g for f€Ran PP + and g€Ker A. Now h=Jh, 

and so f=Jf, g=Jg. But Jf€Ran PP and Ran PP nRan PP ={0} give f=O. Thus 
- + -

h=Jh€Ker A. Conversely, if h=Jh€Ker A, then Q+h=Q+Jh=JQ_h. • 

We have presented an existence and uniqueness theory for half space boundary 

value problems with reflection at one surface. For strictly positive self adjoint A such 

a theory was provided by van der Mee [367], and extended to non-negative A by van 

der Mee and Protopopescu [369], using the techniques of this section. Earlier, Beals 

and Protopopescu [35, 36] established the existence of solutions for the Fokker-Planck 

equation (4.5) with a general reflection law, but an extra condition on the incoming flux 

cp + was imposed to ensure existence. This condition is now known to be unnecessary. 

Guiraud [177, 178[ has derived existence and uniqueness results for the 

stationary Boltzmann equation with sufficiently regular scattering term and for rather 

arbitrary reflective boundary conditions. These results were improved by Maslova [260, 

261[. We shall return to the one dimensional linearized Boltzmann equation in Section 

IX.5. 



Chapter IV 

NON-DISSIPATIVE AND NON-SYMMETRIC KINETIC MODELS 

1. Indefinite inner product spaces 

In previous chapters we developed the existence and uniqueness theory for 

boundary value problems of the form 

T¢ '(x) -A,P(x), O<x<oo, (1.1} 

'P +' ( 1.2} 

with an appropriate condition at x=oo, either 

II ¢(x) II 0(1} (x--+oo) ( 1.3} 

or 

I i m 111/>(x} II =0, (1.4} 
X--+oo 

as well as the corresponding problem for the interval -oo<xSO. The operators T and 

A were assumed self adjoint on a complex Hilbert space H, with T injective and A 

non-negative Fredholm. Further, Q+ denoted the orthogonal projection of H onto the 

maximal T-positive, T-invariant subspace, and the specific functional formulation of the 

problem depended on the boundedness properties of T and A. The idea was to strive 

for semigroup type solutions of the form 

1/>(x) exp{ -xT- 1 A}Ecp +' o:::;x<oo, ( 1. 5) 

where the range of the operator E belonged to a suitable T- 1 A-invariant subspace. 

(In certain functional formulations we had to specify this more carefully; see Sections 

II.3 and II.4.} In order to find such a subspace, we employed the Spectral Theorem, 
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since, at least for strictly positive A, (an extension of) the operator T-l A was similar 

to a self adjoint operator. For A with a nontrivial kernel, we were able to carry out a 

similar analysis after splitting off a finite dimensional root linear manifold containing 

Ker A, and to obtain results on related problems involving reflective boundaries. 

In Sections 2 and 3 we will develop an existence and uniqueness theory for 

boundary value problems of the type indicated above with T bounded and A having a 

finite dimensional negative part. To accomplish this, we will exploit a Spectral Theorem 

for self adjoint operators on indefinite inner product spaces. Although the stationary 

theory of kinetic models with multiplying media obviously 1s not important for 

physically relevant models in half space geometry, the results obtained herein will play 

an important role in the analysis of the abstract problem in slab geometries, and 

models with multiplying media are of considerable importance in such finite geometries. 

In Section 4 we will consider the case in which A has a nonnegative real part. 

In analogy with the case of non-negative A, our approach aims at obtaining a 

reduction of the problem to four subproblems: 

(i) Eqs. ( 1.1) -( 1.2) with A replaced by a finite dimensional perturbation A f3 
which is strictly positive. 

{ii) An elementary evolution equation on a finite dimensional subspace. 

(iii) The matching of boundary conditions. 

(iv) An analysis of the effects of the perturbation. 

As we shall see, part (ii) of the program will have to be modified due to spectrality 

problems related to indefinite inner product spaces. 

The most elementary example of the boundary value problem under study anses 

from neutron transport in a multiplying medium. Under conditions of isotropic 

scattering and fission and the one speed approximation, we have the stationary neutron 

transport equation 

P. %* (x,p.) + ,P(x,p.) = f J 1 ,P(x,~ )d~, 
-1 

for ,P{x, •) fL 2{[-l,l],d/l), and we may define 

Th{ll) 

O<x<oo, ( 1.6) 
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I 1 A A 

Ah(p) = h(p) - t h(p )dp. 
-1 

87 

Under the multiplying medium condition c>1, it was observed by Ball and Greenberg 

[21] that T- 1 A is self adjoint with respect to an indefinite inner product. This 

observation was used to determine the spectral decomposition of T- 1A, although the 

boundary value problem (1.1)-(1.2) remained unstudied. An analysis of the abstract 

boundary value problem was made by Greenberg and van der Mee [163] along the lines 

to be described in this chapter. 

In the remainder of this section we will summanze some standard material on 

indefinite mner product spaces. For this theory we refer m particular to the 
I 

monographs of Bognar [46] and Gohberg et a!. [146, 147] The latter contains results 

primarily in a finite dimensional setting. In the most general formulation developed to 

date (i.e., for definitizable operators) the spectral theory for operators self adjoint on 

indefinite inner product spaces was largely advanced through the pioneering work of 

Krein and Langer (e.g., [228, 237]). The state of affairs up to 1978 has been reviewed 

by Azizov and lokhvidov [19]. For a complete proof of the Spectral Theorem one may 

refer to a recent article of Langer [238]. A new proof of the Spectral Theorem was 
I 

recently given by Bognar [47]. 

Let H be a complex vector space and [ ·, ·] a symmetric sesquilinear form on H, 

with respect to which H is complete. The space H with its indefinite metric is called a 

(complete) indefinite inner product space. In general, such spaces do not have sufficient 

structure to be of interest from the point of view of operator theory. Of considerably 

more interest are certain subclasses of these, Krein spaces and IT" spaces. 

An indefinite mner product space H 1s a Krein space if H has an 

[ •, ·]-orthogonal decomposition H H+ e H- such that the metric [ ·, • J 1s 

complete and (strictly) positive definite on H+, and complete and (strictly) negative 

definite on H-. If one of these subspaces (generally taken to be H-) is finite 

dimensional of dimension ~~:, then H is called a IT" space (or Pontrjagin space). 

Throughout we will assume that the dimension of the maximal negative subspace of a 

IT" -space is 11:. If a linear operator J is defined by Jh = ± h for h f H±, 

then 

(h,k) [Jh,k] ( 1. 7) 

defines a complete (positive definite) inner product on H; i.e., H with ( ·, ·) is a 

Hilbert space, and J is unitary and self adjoint with respect to ( •, • ). The above 
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decomposition IS called a fundamental decomposition of the Krein space H. 

decomposition 1s never unique, though the dimension "' is. 

Such a 

A subspace M of an indefinite inner product space 1s strictly positive/strictly 

negative if 0¢HM implies ±[x,x]>O, and positive/negative if ±[x,xj;:::o. It IS 

neutral if [x,x]=O, and non-degenerate if O¢x€M implies the existence of some y€M 

with [x,y]¢0. We call M maximal positive if M C N and N positive imply M=N, and 

similarly for the maximality of neutral and negative subspaces. 

We note that any indefinite inner product space has a fundamental decomposition 

as an orthogonal direct sum of a strictly positive, a strictly negative and a neutral 

subspace. 

The following results will be used frequently (see, for example, [46]). 

PROPOSITION 1.1. In an arbitrary inner product space, any positive linear manifold is 

contained in a maximal positive subspace. Any two maximal positive subspaces have the 

same dimension. Both statements are true with "positive" replaced by "strictly positive", 

"negative" or "strictly negative". 

COROLLARY 1.2. If M is a non-degenerate (closed) subspace, then MnMl.={O} and 

If M 1s a maximal positive subspace, then Ml. is a strictly negative 

subspace. This is also true with positive replaced by "strictly positive", "negative" or 

"strictly negative" and "strictly negative" replaced by "negative", "strictly positive" or 

"positive", respectively. If H is a Krein space and M is a (closed) non-degenerate 

subspace, then Ml. is non-degenerate. 

In the previous chapter we have used these results on several occas10ns. If A 

IS non-negative, the zero root linear manifold z0(K) IS a finite dimensional indefinite 

inner product space with respect to the inner product 

[h,k] (Th,k). (1.8) 

Proposition III 1.6 can be reformulated as follows: M+ and M_ are maximal strictly 

positive and maximal strictly negative subspaces of z0(K), respectively, while the inner 

product (1.8) is non-degenerate. In the existence and uniqueness theory of Sections 

III.2 to III.4 an important role is played by bases of subspaces of Ker A, which consist 

of vectors h with [h,h]<O or vectors h with [h,hj;:::o. In fact, all of these results can 

be formulated in terms of dimensions of maximal strictly negative and maximal positive 
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subspaces of Ker A. The more general results for indefinite self adjoint A obtained in 

this chapter are valid also for non-strictly positive self adjoint A, thereby 

reformulating the existence and uniqueness results of Chapter III in terms of these 

dimensions. 

Let us now turn to the spectral theory of self adjoint operators on a Krein 

space. First we remark that all topological notions related to a Krein space H are 

connected with the strong (or weak) topology of the Hilbert space (with inner product 

(1.7)) associated with the given Krein space. For instance, {hn};=l converges to h in 

the strong sense means that I i m (hn -h,hn -h) = 0, where ( ·, ·) = [J •, ·] is 

defined by (1.7). By a self adjo~t operator on a Krein space H we mean a (closed) 

linear operator R on H, with domain D(R), satisfying the conditions 

(i) [Rh,k] = [h,Rk] for all h,k e D(R)cH. 

(ii) D(R) = {k e H : h~-+[Rh,k] extends from D(R) to a continuous functional on H}. 

We remark that this is the natural extension to Krein spaces of the usual definition for 

self adjoint operators on Hilbert spaces. In general, one may not expect a Spectral 

Theorem for self adjoint Krein space operators. As a matter of fact, if R0 is a 

bounded linear operator on the Hilbert space H0 and if we make H=H0eH0 into a 

Krein space by putting 

* * then the operator R=R0eR0, where R 0 is the adjoint of R0, will be self adjoint 

with respect to [ •, •], but in general its invariant subspace structure will not allow a 

Spectral Theorem. Thus some restriction is necessary. It turns out that a self adjoint 

operator on a II" -space always allows a Spectral Theorem. A more general version, 

for so-called definitizable operators, is due to Langer [237] (see [238] for an accessible 

proof). It generalizes both the result for II" -spaces (derived first in [228]) and the 

result for positive operators (due to Krein and Smuljan [230]). A new and most simple 
I 

proof for positive operators was recently given by Bognar [47]. 

Let us formulate the Spectral Theorem, restricting ourselves to bounded self 

adjoint operators. By a (bounded) positive operator on a Krein space H we mean a 

(bounded) operator R satisfying [Rh,hj~O for all he H. Such an operator necessarily is 

self adjoint. A (bounded) definitisable operator on a Krein space H will be a (bounded) 

self adjoint operator R such that p(R) is positive for some polynomial p. Such a 
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polynomial is called a definitizing polynomial for S. It is easily shown (cf. [46], Theorem 

IX 7.3) that every (bounded) self adjoint operator on aIl -space is definitizable. 
II: 

Every (bounded) definitizable operator S admits a decomposition S=S 1 eS 2, 

where S1 and s2 are defined on the [·,·]-orthogonal subs paces H1· and H2, 

respectively, such that 

(i) the spectrum of sl is real. 

(ii) H2 has finite dimension and the real spectrum of s2 is empty. 

In this case the spectrum of s2 is symmetric with respect to the real line, also as far 

as its multiplicities and Jordan structure are concerned. In particular, if H 1s a 

Il/1:-space, then the dimension of H 2 is at most 2~~:, while H 1 is a 1l£-space with 

.l=~~:-%dimH2 . For all these results we refer to Chapter IX of [46]. In 

consideration of the above, we may assume that there is only real spectrum in 

formulating the Spectral Theorem for definitizable operators. 

THEOREM 1.3. Let R be a (bounded) definitizable operator on the Krein space H with 

real spectrum only. Then there exists a unique projection valued function F on the 

real line with the following properties: 

(i) F is monotonically non-decreasing in the sense that 

[F(t)h,h] S [F(s)h,hj, t<s, h€H, 

except if the interval [t,s] contains one of the finitely many (real) critical 

points a1'" .. ,ar; at these points and for all t<ai<s there exists a vector 

hi such that [F(t)hi,hi] > [F(s)hi'hi]. 

(ii) F is strongly right and left continuous, except possibly at the critical points; 

moreover, F(t)-+0 and F(s)-+1 as t-+-oo and s-++oo in the strong sense. 

(iii) for all t,s which are not critical points we have F(t)F(s) F(s)F(t) 

F(min{t,s}). 

(iv) for every closed interval [t,s] not containing a critical point we have 

r + zdF(z)h = R(F(s)-F(t))h, h €H, 
t+ 

where the integral is defined as the strong limit of Riemann sums. 
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(v) for all t<s which are not critical points the projection F(t)-F(s) commutes 

with R and the restriction of R to its range has its spectrum inside [t,s]. 

The critical points necessarily appear as zeros of a definitizable polynomial of R, 

though not all such zeros need to be critical points. The eigenvalues of R are precisely 

those points t where F(t) is not strongly continuous, the real resolvent set of R 

consists of those t where F(t) is locally constant, and the continuous spectrum of R 

consists of all t where F(t) is strongly continuous but not locally constant. There IS 

no residual spectrum of R. The function F is called the resolution of the identity 

associated with R. 

Except for the critical points, definitizable operators share many properties with 

self adjoint operators on Hilbert spaces. For the critical points we have the following 

proposition (cf. [228, 237, 238]). 

PROPOSITION 1.4. For a critical point a of a (bounded) definitizable operator R on a 

Krein space H the following statements are equivalent: 

(i) F( ·) has strong left and right limits at a. 

(ii) F( ·) is bounded in a deleted neighborhood of a. 

(iii) for sufficiently small c>O and M6 =Ran (F(a+c)-F(a-c)) we have 

{htMe : [h,k]=O for all ktMe} = {0}. 

If His a II,.-space, then we have the fourth equivalent condition: 

(iv) a IS an eigenvalue and 

{htZa(R) : [h,k]=O for all ktZa(R)} = {0}. 

Critical points satisfying the above equivalent conditions are called regular. If 

these conditions are not satisfied, they are called irregular. It is clear that we may 

extend conditions (iii) and (v) of Theorem 1.3 to all t,s which are not irregular critical 

points and condition (iv) to closed intervals [ t,s] which do not contain irregular critical 

points. 

With respect to II,. -spaces we mention two important results for later use. 
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First, Za(R) = Ker (R-ai) 2 tc+ 1 for ad~; i.e., Jordan chains for real eigenvalues 

have length at most 2tc+1 (see [46], Theorem IX 4.9). Further, every (bounded) self 

adjoint operator on a Iltc -space has a closed invariant subspace which is maximal 

positive (see [31 OJ). 

2. Reduction to a strictly dissipative kinetic model 

In this section we reduce the boundary value problems (1.1)-(1.2)-(1.3)/(1.4) to 

boundary value problems of the same form, where A is replaced by a strictly positive 

self adjoint perturbation of A of finite rank. Here, and in the next section also, we 

assume T and A are self adjoint operators on the Hilbert space H, T is bounded 

injective and A is (possibly unbounded) Fredholm with spectrum intersecting ( -oo,OJ at 

finitely many points representing eigenvalues of finite multiplicity, By imposing the 

boundedness condition on T we remove many of the technical difficulties encountered in 

Section III.4, while enabling the application of the theory of bounded (rather than 

unbounded) definitizable operators. 

Let >.1'" .. ,>.m be the negative eigenvalues of A. 

decomposition 

Then we have the 

(2.1) 

where Z>. (A) is the ). root linear manifold of A and Z(O,oo)(A) is the orthogonal 

complement of the m+1 other constituent subspaces in (2.1). We note that Z(O,oo)(A) 

is a maximal A-strictly positive, A-invariant subspace of H. Let us define HA as the 

completion of D(A) with respect to the indefinite metric 

{h,.t'} (Ah,.t). (2.2) 

Then HA is an indefinite inner product space with fundamental decomposition 

(2.3) 

where 
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(2.4) 

It should be noted that HA may be identified with H if A is bounded. Otherwise, HA 

IS a proper dense submanifold of H. If Ker A = {0}, then HA is a nit space, where 

~e is the sum of the multiplicities of the negative eigenvalues of A. The injectivity of 

A and the Fredholm assumption guarantee that S=A - 1T is bounded self adjoint with 

respect to (2.2). Then S has at most ~e non-real eigenvalues (multiplicities taken into 

account) occurring in complex conjugate pairs with pairwise coinciding Jordan structures, 

while the length of a Jordan chain for a real eigenvalue of S does not exceed 2~e+l. 

There is a resolution of the identity for the real part of the spectrum of S, possibly 

with finitely many critical points at certain eigenvalues (see Theorem 1.3). 

If A has non-zero kernel, then HA with metric (2.2) is not even a Krein space, 

and the spectral analysis of S is somewhat more circuitous. In this case we will use 

the fact that s is invariant on Zo(AT- 1).l, which IS a nit space under (2.2), though It 

need not coincide either with the number of negative eigenvalues or with the number of 

nonpositive eigenvalues of A. 

Definition: The operator A will be called T-regular if for each o .. aEC, Za(S) 

is non-degenerate with respect to the indefinite inner product (2.2), and if Z0(S) is 

finite dimensional and non-degenerate with respect to the indefinite inner product (1.8}. 

The condition on· z0(S) is sometimes called T -regularity at zero [163]. The 

T-regularity assumption precisely guarantees that the critical points in the spectral 

resolution of S are regular, and thus that the resolution of the identity of S is 

bounded on the real line ( cf. Proposition 1.4). If A has a nontrivial kernel, 

T-regularity at zero is essential for extending S from z0(AT- 1).l to HA in such a 

way as to preserve the applicability of the Spectral Theorem. Actually, the reduction 

(2.5) 

for K T- 1 A and the deformation of A to a non-singular operator A/3 in the 

fashion of Proposition III 1.4 are still available, by virtue of the T -regularity. What is 

required, however, is a decomposition of H into K-invariant subspaces in such a way 

that A can be deformed to a strictly positive operator. 

provided by the following proposition. 

Such a decomposition is 
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PROPOSITION 2.1. Let A be T-regular and write K=T- 1A and K*=AT- 1. Then 

there exist a K-invariant finite dimensional subspace Z(K)cD(K) and a K-invariant 

finite codimensional subspace Z(K \L with the following properties: 

(i) T[Z(K)] = Z(K \ T [ Z ( K ) J. ] = Z(K)J.. 

(ii) A[Z(K *)J.nD(A)J = Z(K)J.. 

(iii) Z(K)eZ(K*)J. = Z(K*)eZ(K)J. = H. 

(iv) Z(K)e[Z(K*)J.nHAJ = HA. 

(v) Z(K*)J. is strictly positive with respect to (2.2). 

(vi) Z(K) is non-degenerate with respect to (1.8). 

Moreover, if P denotes the projection of H onto Z(K*)J. along Z(K) and (3 

invertible positive operator on Z(K) (with respect to (1.8)), then the operator 

-1 A(3 = T(3 (1-P) + AP 

with D(A,a) = D(A) is strictly positive self adjoint and Fredholm, and 

1s an 

(2.6) 

(2.7) 

Proof: * J. Observe that z0(K ) nHA is a II" -space for certain "· Let " be the sum 

of the algebraic multiplicities of K in the open upper (or lower) half plane. Because 

the real part of S=A -IT on z0(K*)J. does not have irregular critical points, the 

subspaces Z>.. (K), with >.. running through all non-zero critical points, are 

II~e(>..)-spaces, where 

E ~e(>..) = " - "· 
>.. 

(2.8) 

For every critical point >.. we choose a T- 1A-invariant subspace M>.. of Z>..(K), 

which is maximal strictly negative (see the last paragraph of Section 1; strict negativity 

is by virtue of the finite dimensionality). Now we extend M>.. to the T-l A-invariant 

subspace N>.. of Z>.. (K) spanned by , the' maximal Jordan chains of T-l A corresponding 

to the eigenvalue >.. which have at least one vector in M>... Then 

(2.9) 
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Next we put 

(2.10) 

where T runs through the nonreal eigenvalues and ). through the nonzero critical 

points. In this way we find Z(K) to have finite dimension. Obviously, Z(K) IS 

T- 1A-invariant and contained in D(A). 

If we take the orthogonal complements of both sides of Eq. (2.10), we get 

Z(K)n(T[Z(K)]).l = 

= n {W n(T[W ]).l} n {Z0(K)n(T[Z0(K)]).l} n {N, n(T[N, ]).l}, 
Imr>O T T ). " " 

where W =Z (K)eZ-(K). For all h,k€W we have 
T T T T 

The non-degeneracy of W T with respect to (2.2) gives W T n(T[W T ]).l = {0}. From 

the T-regularity of A at zero we obtain z0(K)n(T[Z0(K)]).l = {0}. Since N). 

contains the maximal strictly negative subspace M). of Z). (K), we cannot have 

N). n(T[N).]).l¢{0}, as otherwise for h in this intersection we would have 

for all kEN).. But this would imply that M>. e{N).n(T[N>.]).l} is a negative 

subspace of Z). (K) (with respect to (2.2)), which properly contains M)., thereby 

contradicting the maximality of M).. Hence, N). n(T[N ).)).l = {0}. We therefore conclude 

that 

Z(K)n(T[Z(K)]).l = {0}, (2.11) 

which is equivalent to the non-degeneracy of Z(K) with respect to (1.8). 

- 1 K* T-1 b . h . c··) d (" ) f h From K = T A and = A we o tam t e properties 11 an IV o t e 

theorem, while (i) and (iii) follow easily from (2.11). It is clear also that Z(K) and 
*.L *.L Z(K ) are orthogonal with respect to (2.2). Since Z(K)nZ0(K ) contains 
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as a negative subspace of dimension K+~~~:(>.)=~~: and z0(K\LnHA is a I1"-space 

(both with respect to the indefinite metrtc (2.2)), it follows then that the subspace 

(T[Z(K)]).L must be strictly positive with respect to (2.2), which yields (v). 
* .L Finally, let P denote the projection of H onto Z(K ) along Z(K), and define 

A {3 by (2.6). Then Eq. (2. 7) is easily verified, while 

(A{3h,h) = [r 1(I-P)h,(I-P)h] + (Ph,Ph)A' htD(A). 

Since condition ( v) holds true, the strict positive self adjoin tness of A {3 then follows 

easily. • 

COROLLARY 2.2. If I-A 1s compact with Ran (I-A)cRan IT Ia for some 

O<a<l, then I-Af3 is compact with Ran (I-Af3)cRan ITia. 

Proof: Since Af3 is a finite rank perturbation of A, it is necessary only to show that 

Z>. (K) c Ran IT Ia for every eigenvalue >. of K. If Ax=>. Tx, then 

x=(I-A)x+>.Tx Ran ITia, which shows Ker (K->.) c Ran ITia. Let us 

assume that Ker (K->.)n c Ran IT Ia and (K->.)n+ly=O. Then for 

ztKer (K->.)n one has (A->.T)y=Tz, and thus y=(I-A)y + >.Ty + Tz t 

Ran IT Ia. Hence, Ker (K->.)n+l c Ran IT Ia. • 

We have proved that Z(K) is non-degenerate with respect to the indefinite 

mner product {1.8). The next proposition indicates examples of strictly positive and 

negative subspaces of Z(K). The proof is completely analogous to the proof of 

Proposition III 1.6. 

PROPOSITION 2.3. The subspaces 

are maximally strictly positive/strictly negative m Z(K) with respect to (1.8). We have 

(M±).L = T[M=!'] e Z(K).L, and Z(K) = M+ e M 1s a fundamental decomposition 

of Z(K) with respect to the indefinite inner product (1.8). 
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We recall that Q± are the orthogonal projections of H on to the maximal 

T-positive/negative, T-invariant subspaces with respect to the Hilbert space inner 

product on H. Let us construct analogous projections for S (3 =A (3 1 T. We note first 

that S/3 is a bounded self adjoint operator on HA with respect to the Hilbert space 

inner product obtained from the completion of 

(x,y)A = (Af3x,y), 
(3 

x,y fD(A). (2.12) 

Since the operators A/3 coincide on a subspace of H of finite codimension {T[Z(K)]).l, 

all inner products (2.12) are equivalent on HA. Let P ± be the orthogonal projections 

of HA onto the maximal S (3 -positive /negative, S (3 -invariant subs paces, all with respect 

to (2.12). These projections are complementary, because S (3 has zero null space. The 

projection P of H onto {T[Z(K)]).l along Z(K) also maps HA onto {T[Z(K)]).lnHA along 

Z(K). As the restriction of S (3 to {T[Z(K)]).l does not depend on (3, neither do 

PP ±' and PP +' PP _, I-P are a set of disjoint complementary projections on HA' 

In the next section we shall study the boundary value problems 

( 1.1) -{2.1) I ( 2. 2). 

3. Existence and uniqueness theory 

For the conservative case developed in Chapter III, the boundary value problem 

was studied by replacing the collision operator A with a strictly positive operator A ;3· 

The existence and uniqueness of solutions, depending upon the boundary condition at 

infinity, was entirely determined by the structure of the generalized eigenspace z0(K) 

of K=T- 1A. 

For the case of multiplying media, we will follow an analogous procedure. A 

finite rank perturbation A/3 of A which is strictly positive and which respects the 

decomposition of H into K-reducing subspaces Z(K) and Z(K*).L IS provided by 

Proposition 2.1. In this case, however, the existence of negative eigenvalues of A may 

result in both imaginary and complex eigenvalues for K=T- 1A, and the structure of all 

of the corresponding generalized eigenspaces, along with z0(K), play an important role 

in analyzing existence and uniqueness properties. With this in mind, let us define 
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0 L = ED Z±X (K), 
± ReX~O 

where X runs through the eigenvalues of the restriction K 1 Z(K) of K to the subspace 

Z(K). 

We will now see to what extent one may develop an existence and uniqueness 

theory for the boundary value problems (1.1)-(1.2)-(1.3)/(1.4) under the assumption 

that A is T-regular with finite dimensional negative part. We consider three functional 

formulations: 

(i) The operator A is a compact perturbation of the identity satisfying 

Ran (1-A) c Ran I T I 01 (3.1) 

for some O<a<l. Solutions are to be found in H (cf. Section 11.2). 

(ii) The operator A is bounded. Solutions are to be found in HT (cf. Section 11.3). 

(iii) The operator A is unbounded, while the HT- and Hs-topologies coincide on 

HA" Solutions are to be found in HT (cf. Section 11.4). 

We recall that P is the projection of H onto Z(K\L along Z(K). P extends 

to a bounded projection on HT with kernel Z(K) in formulation (ii), and to a bounded 

projection on Hs with kernel Z(K) in formulation (iii), and, as is our custom, we use the 

same notation for P and its extensions. Similarly, P ± extend to complementary 

projections on HT and on Hs for the appropriate formulations. By virtue of 

Proposition 1.1, the boundary value problem decomposes into the finite dimensional 

equation 

' -1 ,p 0 (x) = -T A,P0(x) (3.2) 

on Ran (1-P) and an equation on Ran P which (following the strategy of Chapter III) 

may be replaced by 
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(3.3) 

Then, on adding boundary conditions of the type (1.2) and (1.3)/(1.4) and solving (3.2), 

(3.3), we obtain 1/J(x) = exp{-xK},P(O) as the solution of (1.1)-(1.2)-(1.3)/(1.4), where 

(3.4) 

if one imposes condition (1.3), and 

(3.5) 

if one imposes condition (1.4), and where the intersection with HT should be omitted if 

I-A is compact satisfying (3.1). Thus, the boundary value problem has been reduced 

entirely to conditions (1.2) and (1.3)/(1.4) on 1/1(0). 

We shall now give a characterization of the measures of non-uniqueness and 

non-completeness for the boundary value problem. We recall that the measures of 
0 non-uniqueness· 8 + and 8 +' defined in Section III.2, are the dimensions of the 

solution spaces of the homogeneous problem with appropriate boundary condition at 

infinity, and the measures of non-completeness 1 + and 1 ~ are the codimensions of the 

subspaces of boundary values at x=O for which the boundary value problem is well 

posed. 

0 THEOREM 3.1. The measures of non-uniqueness 8 + and 8 + for the boundary value 

problems (1.1)-(1.2)-(1.3) and (1.1)-(1.2)-(1.4)) are given by 

8 + = dim {[Ran PP +eRan Q_] n K+ = dim (M_nK+) (3.6a) 

and 

(3.6b) 

Proof: The measures of non-uniqueness are determined by considering the 

corresponding homogeneous problems. In this case, the condition on 1/1(0) for the 

problem (1.1)-(1.2)-(1.3) becomes 1/1(0) e [Ran PP + eK+] n Ran Q_, and for the 
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0 problem {1.1)-(1.2)-{1.4) becomes ,P{O) E [Ran PP +eK+] n Ran Q_. On considering 

the modified problem, where A is replaced by A{3 and V=Q+P + +Q_P _ is defined in 

terms of the spectral projections P ± of T- 1A13, it follows that Ran PP + and Ran Q_ 

have zero intersection. The theorem now follows easily from the triviality of this 

intersection. • 

THEOREM 3.2. The measures of non-completeness "/ + and "/ ~ for the boundary 

value problems {1.1)-{1.2)-{1.3) and {1.1)-{1.2)-{1.4)) are given by 

"'+ = dim {[Ran PP _ eRan Q+] n L_} = dim (M+nL_) {3.7a) 

and 

"'~ = dim {[Ran PP _ eRan Q+] n L ~} = dim {M + nL ~). {3.7b) 

Proof: Since tp + =1/1{0)-Q_ 1/1(0) E Ran Q+' it is evident that we must require 

for problem (1.1)-{1.2)-(1.3), and 

for problem {1.1)-{1.2)-{1.4). The indicated ranges must be interpreted, according to 

the functional formulation, as submanifolds of H, HT or H8. 

We will consider "/ + only, as the proof for "/ ~ proceeds mutatis mutandis with 

K+ replaced by K~. We proceed first for the case 1-A compact satisfying (3.1), i.e., 

for solutions in H. It is clear that 

We may use the inclusions 

H :J [Ran PP + eZ(K)] + Ran Q_ :J Ran P + + Ran Q_ :J V[H] = H 



and obtain 

')'+ 

and thus 
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[RanPP+®Z(K) )+RanQ_ 
dim --------~-------------

[RanPP+$K+)+RanQ_ 

[RanPP_®L_)nRanQ+ 
d~------------------~ 

RanPP_nRanQ+ 

1+ = d~ {[Ran PP _®L_] n Ran Q) = d~ {M+ n L_}. 
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For the other functional formulations, the intermediate steps in Eq. (3.7) must 

be taken somewhat differently, but again we obtain the above expressions for ')' + for 

the most general case of A unbounded, provided HT and H8 coincide naturally. • 

In [163) it was stated erroneously that M±nN 1s a maximal strictly 

positive/negative subspace of N with respect to {1.8), where N is one of the subspaces 
0 0 K+' L_, K+ and L_. As a matter of fact, these spaces are strictly positive/negative, 

but not necessarily maximal in this respect. In general, the right hand sides of (3.6) 

and (3. 7) may be bounded in terms of the sign characteristics of the restriction of 

T- 1 A to Z(K), i.e., in data which one may readily derive from the matrix representation 

of this (finite d~ensional) operator with respect to a special basis. (For sign 

characteristics we refer to [144, 145, 146, 315].) If A IS positive self adjoint, then 

the maximality statement IS satisfied and the measures of non-uniqueness and 

non-completeness are given by these explicit expressions. 

4. Nonsymmetric collision operators 

In the last several chapters the selfadjointness of the collision operator A has 

played a key role in the development of existence and uniqueness results for stationary 

abstract kinetic equations. Recently, Ganchev et a!. [126, 128] have indicated how the 

theory of these chapters might be extended to a class of nonsymmetric collision 

operators. The techniques employed m the arguments utilize results from the 

perturbation theory of c0 bisemigroups, and thus lie somewhat between the differential 

equations theory of these chapters and the convolution equations theory developed in 

Chapters VI and VII. Nevertheless, we feel it opportune to sketch the ideas at this 
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time, drawing on one basic result contained in Chapter VI. 

In what follows, the selfadjointness of A will be replaced by an accretiveness 

assumption: 

* Re A = lh(A+A ) ~ 0. 

We will consider the case T injective and selfadjoint, and B = I-A compact and 

satisfying the regularity assumption Ran B c D( IT I a) n Ran IT I 'Y for some 

a>l and 'Y>O. In addition, for simplicity we will make the dissipative medium 

assumption Ker A Ker (Re A) = {0}. Nonsymmetric collision operators typically 

occur in multiphase transport, in which the symmetry of the collision process is broken, 

for example, in multigroup neutron transport, in radiative transfer of polarized light, 

and in the dynamics of rarefied gas mixtures (see Chapter IX for the various 

applications). 

Although the study of left and right half space boundary value problems in this 

and the preceding two chapters has led to the construction of semigroups acting, 

repectively, to the left and to the right, it is convenient at this time to develop more 

carefully the notion of a bisemigroup. By a c0 bisemigroup E(t) on a Banach space X 

we will mean a function E from R \ {0} into L(X), the bounded operators on X, with the 

properties 

(i) E(t)E(s) = ±E(t+s) if sgn(t)=sgn(s)=±l and E(t)E(s) 0 if sgn(t)=-sgn(s). 

(ii) E( ·) is strongly continuous. 

(iii) II+ +II_ = I, where II± = s -1 im (±E(t)). 
±tlO 

The bounded projections II± are called separating projectors, 

11+11-=0=11_11+. From (iii) we may see that ±E(t)II±, ±t~O, are 

semigroups on Ran II±. An operator S is the generator of E(t) if II± leaves 

invariant and SII±h=II±Sh, for all h€D(S), and if E(t)=±exp( -tS)II±, 

and 

co 
D(S) 

±t>O. 

If the Laplace transform of E(t) exists, then it is the resolvent of S on the imaginary 

axis, i.e., (S->.)- 1h = J~00e>.tE(t)hdt for Re>.=O and h€X. The bisemigroup will be 

called bounded analytic, strongly decaying analytic, or exponentially decaying analytic if 

the semigroups ±E(t)II±' ±t>O, have the respective properties. Here by a strongly 

decaying (bi)semigroup we mean a (bi)semigroup that converges to zero at infinity in the 

strong sense. For a systematic study of bisemigroups we refer to [27]. 
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Following Ganchev and Greenberg [126], we have the following lemma, which 

follows easily from the properties of bounded analytic semigroups. 

LEMMA 4.1. Suppose that S generates a bounded analytic semigroup exp( -tS) and that 

zero is in the spectrum of S. Then the semigroup is strongly decaying if and only if 

zero is in the continuous spectrum of S. 

Now Jet us consider the case at hand. Evidently, the self adjoint operator T- 1 

on the Hilbert space H is generator of a strongly decaying, analytic bisemigroup E(t) 

with separating projectors given by the spectral projections Q±. We wish to conclude 

that K = T-l A generates a bisemigroup as well. The essential observation is that K 

has no eigenvalues on the imaginary axis. 

THEOREM 4.2. K generates an analytic bisemigroup Ex(t) with separating projectors 

P±. For any tdR\{0} we have that E(t)-Ex(t) and Q±-P± are compact. 

The bisemigroup Ex(t) is strongly decaying. If u(T- 1) has a gap at zero (i.e., T is 

bounded), then Ex(t) is exponentially decaying. 

Proof: We sketch the proof; for additional details, see Section Vll.2 Consider the 

operator valued function k( t )=T - 1E( t )B defined for t e 1R \ {0}. The regularity, 

condition on B assures that k( ·) e L 1 (L(X))':'co' the space of norm integrable operator 

valued functions on the real line. Define the bounded operator L on the spaces 

L (H)co of L Bochner integrable vector valued functions on the real line, or on p -oo p 
C(H)co , the space of norm continuous vector valued functions on the real line, by -co 

(Ltfi)(t) = Jco k(t-s)t/l(s)ds. 
-co 

Then the Laplace transform of the operator (I-L) is given by 

W(A) = I - Jco eAtk(t)dt = (A-S)- 1(A-Sx) = I + A - 1(s-1 -A - 1)-1B 
-co 

for ReA =0. From the assumptions on B it follows that W(A) has a bounded inverse 

on the extended imaginary axis. We may then apply the Bochner-Phillips Theorem 

(Theorem VI 2.2) to conclude that the operator I-L on L (H)co or C(H)co is p -co -co 
invertible with inverse I+L x, where 
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(L x,P)(t) = Jco k x(t-s),P(s)ds. 
-co 

We claim that Ex(tlh=(I+L x)E(t)h, for hEX and td~\{0}, is the bisemigroup generated 

by K. First let us check that Ex(t) defined above is a bisemigroup. Fix some s>O and 

hEH and define ,P(t)=Ex(t+s)h if t>O and ,P(t)=O if t<O. For t>O we have 

(1-L)t/l(t) = Ex(t+s)h - Jco k(t+s-r)Ex(r)hdr = 
s 

= (I-L)Ex(t+s)h + r k(t+s-r)Ex(r)hdr, 
-oo 

since for r<s we have t+s-r>O and k(t+s-r)=E(t)k(s-r), while for r>s we have 

O=E(t)k(s-r). We can rewrite the above as 

(1-L),P(t) = E(t+s)h + E(t)LEx(S)h = E(t)(E(s) + LEx(s))h = E(t)Ex(s)h. 

Therefore t/l(t)=Ex(t)Ex(s)h for t>O. For t<O we have 

(1-L),P(t) = - Jco k(t+s-r)E x(r)hdr = E(t) Jco k(s-r)E x(r)hdr = 
S -co 

= E(t)(E(s)+LEx(s))h - E(t)Ex(s)h. 

Combining these cases and recalling the definition of t/l(t), we get Ex(t)Ex(s)=Ex(t+s) 

for t,s>O and Ex(t)Ex(s)=O for t<O, s>O. 

It is easy to see that Ex(t) is strongly continuous and bounded. To check that 

P + +P _ =1, not~ that the jump of Ex(t) at t=O is equal to the jump of E(t), i.e., 

(P + +P _)h = Ex( +O)h - Ex( -O)h = E( +O)h - E( -O)h = (Q+ +Q_)h = h. 

Therefore Ex(t) is a bounded C? bisemigroup. 

Because T-1-K is T- -relatively compact, the spectrum of K outside of R 

consists of isolated eigenvalues that can accumulate only on u(T- 1). Therefore, we 

may take the Laplace transform of Ex(t), and we get 

(K->.)-lh = Jco e>.tEx(t)hdt, Re>.=O, X¢0, hEH. 
-co 

Hence, K is the generator of Ex(t) and P ± are positive/negative spectral projectors for 
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K. 

The compactness of 

Ex(t) - E(t) = Joo k(t-s)Ex(s)ds, 
-co 

and consequently of P ± -Q±, follows from the fact that the (Bochner) integral of an 

integrable compact operator valued function is compact (Lemma II 2.3). Because 

D(K- 1)=D(A - 1T)=D(T) is dense, we get that zero is either in the resolvent set or in 

the continuous spectrum of K, and hence that Ex is strongly decaying. If the spectrum 

of T- 1 has a gap at zero, then it is immediate that E( t ), and thus k( t ), is 

exponentially decaying. Then it can be shown that kx(t) will be exponentially 

decaying, implying the exponential decay of Ex(t). This completes the proof of the 

theorem. • 

Now we may consider Eqs. (1.1)-(1.3). By a solution we will understand a 

continuous function f/!:[O,oo)-+D(T), such that T!JI(x) is strongly differentiable for 

x f (O,oo) and the equation and boundary conditions are satisfied. We may show, as in 

Chapter II, that every solution has the form !J!h(x)=exp(-xK)P +h, x~O, for some 

h f D(T) such that Q+ P + h=ip +' and, moreover, that (1.4) is satisfied. 

The unique solvability of the boundary value problem is equivalent to the fact 

that Q+ maps P +D(T) one-to-one onto Q+D(T). Introducing the operator 

V=Q+P + +Q_P _, we have unique solvability if V maps D(T) one-to-one onto D(T). 

Denoting by E=V- 1 the albedo operator, we will have P +h=E'P+· 

LEMMA 4.3. The projectors P ± and the operator V leave D(T) invariant. The 

operator (I-V) is compact on H and also on D(T) equipped with the T graph norm. 

Proof: We can write I-V=(Q_ -Q+)(P + -Q+). According to Theorem 4.2 we have 

P + -Q+ J':'00k(-y)Ex(y)dy and it is a compact operator, hence (I-V) is compact in 

H. The regularity assumption on B with a>1 assures that Tk(•)tL 1(L(H))':'00• 

Therefore, (P + -Q+)htD(T) for all htH. This implies that P ±D(T)cD(T) and 

VD(T)cD(T). 
A* 1 A* 

Let us define P ± =AP ±A- . Obviously, we have that P + -Q+ = (P + -~t)+ 

P +BA- 1-BP + -BP +BA- 1 is a compact operator on H. For htD(T) we have P +Th 
1 1 A* 

= AP +A- Th = A(A- T)P + h = TP + h, and so T(P + -Q+)h, = (P + -Q+)Th. This, 
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A* 
along with the compactness of (P + -Q+)' implies that P + -Q+' and hence (1-V), JS 

compact on D(T) in the T -graph norm. • 

LEMMA 4.4. If hED(T), then ,Ph( • )EL2(H)0, ,Ph(x)ED(T) for all x~O, and 

IIT,Ph(x)ll-+0 as x-+oo. 

Proof: Because we have an analytic bisemigroup, the derivative ,Ph(x) = -T-1A,Ph(x) 

exists and obviously belongs to D(T). Since P +hED(T), we have that ,Ph(x) = P +h 

+ g.ph(y)dy is in D(T). 

Using the shorthand notation wh( •) for the bisemigroup generated by T-l 

applied to a vector h, one has that hED(T) implies wh( • }EL2(H)':'00 (the space of 

Bochner square integrable H valued functions). For, using the Spectral Theorem, 

But wh( • )EL2(H)':'00 implies ,Ph( • }EL2(H)':'00• 

= TP +h-A J~,ph(y)dy and taking x-+oo, we get 

which completes the proof. • 

LEMMA 4.5. Ker V = {0}. 

Then, noting the equality T,Ph(x) 

Proof: First note that Ker V c D(T). Indeed, let Vh=O. · Then h=(l-V)h E D(T), 

where the inclusion is assured by the first lemma. Because we have Ker V = 

(Ran P +nRan Q_)e(Ran P _nRan Q+)' the proof will be completed if we can show 

that Ran Q~nRan P ±nD(T)=O. 

Suppose that hE Ran P + nRan Q_ nD(T). Adapting an argument of (3 96], one 

has 
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But -(Th,h)~O, because h fRan Q_. Using the accretiveness of A and Lemma 4.4 we 

have the estimate 

= I im (T¢h(r),v\(r)) - (T¢h(+O),¢h(+0)) = -(Th,h) ~ 0. 
T-+oo 

Therefore (Th,h)=O. But T is injective and negative definite on Ran Q , whence we 

get the equality h=O. This shows that Ran P +nRan Q_nD(T)={O}. Analogously 

Ran P _ nRan Q+ nD(T)={O} holds, and hence we have proved that V is injective. • 

THEOREM 4.6. For every <p + fQ+D(T) the boundary value problem (1.1)-(1.3) has a 

unique solution, which is given by 1/!(x)=exp( -xK)Ecp +" The solution is decaying at 

infinity and is also square integrable m x. If T is a bounded operator, then the 

solution is exponentially decaying. 

Proof: Because V maps D(T) into itself and I-V is compact in D(T) in the T graph 

norm, the injectivity of V implies that V maps D(T) onto D(T). Therefore the operator 

E= y-l is a bounded operator in D(T) with the T graph norm, and obviously for 

<p + € Q+ D(T) we have Ecp + € P + D(T) and Q+ Ecp + =<p +" • 

As in Chapter II, if T is an unbounded operator, the boundary value problem 

can be interpreted in another way, in which case the boundary value cp + may satisfy 

<p + f Q+ H rather than just <p + € Q+ D(T). With an appropriate redefinition of solution, 

we again have unique solvability for every <p + fQ+H, and the decay of all solutions at 

infinity; only the square integrability of the solution may be lost. 

If A has a nontrivial kernel, a somewhat more detailed analysis along the lines 

of this section, but utilizing a K-invariant decomposition of H as in Chapter II, leads to 

the characterization of the boundary value problem in terms of measures of 

non-uniqueness and measures of non-completeness. So far, this generalization seems to 

require some restrictions on Ker A, which are, however, satisfied m vanous radiative 

transfer models. We refer to [128] for these later developments. 



Chapter V. 

KINETIC EQUATIONS ON FINITE DOMAINS 

1. Slab geometry 

In the previous three chapters we have analyzed in detail the existence and 

uniqueness theory for the abstract differential equation 

T'l/> '(x) -A'I/>(x), O<x<r, (1.1) 

with T =oo, with an mcommg flux boundary condition at x=O, possibly with reflection 

at the surface, and with one of several possible boundedness conditions at x=oo. 

Physically speaking, this equation models transport processes m the half space 

{(x,y,z) ~ JR 3 : x~O} which are uniform m the transverse (y-z) directions. In this 

chapter we will present an analysis of the abstract equation (1.1) on the finite interval 

[O,r], T <oo, which represents slab geometry. That is to say, we now wish to study 

transport processes on the slab {(x,y,z) ~ JR 3 : 0:5:x:5:r} which are again uniform in the 

transverse directions. The appropriate boundary conditions are 

'P +' ( 1. 2a) 

Q_ '1/J( T) (1.2b) 

corresponding to incoming fluxes <p +' <p at x 0, T, respectively, or 

R .tJQ_ '1/>(0) + 'P +' (1.3a) 

Q '1/J( T) (1.3b) 

which allows for reflection at the surfaces x=O and x= T. (The surface reflection 
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operators R .I and Rr and the inversion symmetry J are defined in Section 5 below.) 

Throughout this chapter, as in much of the previous chapters, we will assume T 

and A are self adjoint operators on a complex Hilbert space H, with T injective and A 

Fredholm, and Q± are the maximal T-positive/negative T-invariant projections on H. 

Also, as before, we shall distinguish between several functional formulations, 

corresponding to collision operators A with different properties: 

(i) A is a bounded operator, and solutions are to be found in HT, which is the 

completion of D(T) with respect to an appropriate inner product. 

(ii) A is a compact perturbation of the identity satisfying a regularity condition 

(cf. (2.7)), and solutions are to be found in H. 

(iii) A may be unbounded, but a finite slab analog of V=Q+P + +Q_P _ IS essentially 

self adjoint on HT 

D(T)nD(A). 

Solutions are to be found in a Hilbert space Hs ::J 

In the next three sections we will study the existence and uniqueness theory of the 

boundary value problem (1.1)-(1.2) for each of the three functional formulations, and 

the existence of transmission and reflection operators. In the last section we will 

extend these results to include slab problems with reflective surfaces. 

2. Boundary value problems for llOnmultiplying slab media 

Let us assume that T is an injective self adjoint operator, and A is a positive 

self adjoint Fredholm operator, both defined on the complex Hilbert space H. 

Positivity of the collision operator A corresponds physically to the assumption that 

transport takes place within a nonmultiplying medium. As for the half space problem 

discussed in Section III.2, we assume that the zero root linear manifold z0 (T- 1A) 

satisfies 

Z0(T- 1 A) = ~ Ker(T- 1 A)n c D(T). 
n=O 

Then we may derive the decompositions 

(2.1) 
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(2.2) 

and the reduction of the operator 

where S is the unique operator on the finite co-dimensional subspace z0(AT-l).l such 

that ASh=Th for hE z0(AT-l).LnD(T). We discuss each of the functional formulations 

in turn. 

(a) The collision operator A bounded 

We observe that the inner product 

(h,k) A = (Ah,k), (2.3) 

is equivalent to the original mner product on H and that S is self adjoint and injective 

with respect to (2.3). Denoting by P the projection of H onto Z0(AT-l).l along 

z0(T- 1A), we define PP + (resp. PP _) as the projection of H onto the maximal 

S-positive (resp. -negative) S-invariant subspace of z0(AT- 1).l. Here positivity and 

negativity relate to (2.3). Then the restriction of -T-1A (resp. +T- 1A) to Ran PP + 

(resp. PP _) generates a bounded analytic semigroup. We note that z0(T- 1 A) has finite 

dimension, z0(T- 1A)=Ker(T- 1A)2 (see Lemma III 1.3), and thus we have 

e.xp{-xT- 1 A}(l-P)h=(l-xT- 1 A)(l-P)h for hE z0(T- 1 A). 

A similar construction can be carried out with respect to AT- 1. Then, using 

Proposition II 3.1, the projections and semigroups can be extended to HT; we write K :::> 

T-1 A for the operator which gives the infinitesimal generators (within ± sign) of the 

extensions of exp{+xT- 1A}P ±' A solution of the boundary value problem (1.1)-(1.2) 

then is defined to be a continuous function t/J:[O,r ]-+HT with t/l(x) E D(K)cHT, which is 

continuously differentiable on (O,r) and satisfies (1.1)-(1.2). 

Premultiplying (1.1) by PP +' PP _ and I-P, we find easily that 1/1 is a solution 

if 



V. KINETIC EQUATIONS ON FINITE DOMAINS Ill 

,P(x) 
-1 1 

[e-xT App + + e( T -x)T- App + (I-xT-1 A)(I-P)]h, (2.4) 

where 

h = pp + ,P(O) + pp- ,P( T) + (I-P),P(O). 

By fitting the boundary conditions (1.2) and writing <p + +<p _ =<p, we get V Th=<p, 

where V T is defined on HT by 

-1 
V T = Q+[PP + +e rT App _ +(I-P)] + 

T -1 T-1 
+ Q_[PP _ +e-T App + +e-r A(I-P)j. (2.5) 

THEOREM 2.1. In this formulation, for every <p + fQ+[HT] and <p _ fQ_[HT] there is 

a unique solution of the boundary value problem (1.1)-(1.2), which is given by 

,P(x) (2.6) 

Here <p=<p + +<p_ and V T is the, invertible operator defined by (2.5). 

Proof: In VIew of (2.4)-(2.5) it suffices to show that V T is invertible on HT. First 

we restrict ourselves to invertible A. As the operators I+exp{- T I T- 1 A I} and 

I+exp{- T I AT- 1 I} are invertible on H - observe that (2.3) is an equivalent inner 

product on H in which A -IT is self adjoint, while A acts as a similarity between the 

two operators - a straightforward application of Proposition II 3.1 implies that 

I+exp{- T I T-l A I} extends continuously to an invertible operator on HT Put 

-1 w =V [I+e-riT Alri. 
T T 

Using the identity V T = V +(I-V)exp{- T I T-l A I}, where, as m the previous three 

chapters, we have written V = Q+ P + +Q_ P _, we obtain 

-1 
W = (2V-I)[I+e -r IT A I r 1 + (I-V). 

T 

We then compute 
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Defining 4>(z)=(1 +e- r I I z I) -¥2 and employing the identity 2V -I=(Q+ -Q_)(P + -P _), 

we find, for h t D(T), 

smce 4>(z)~Y2- Hence, W r is an invertible strictly positive self adjoint operator on 

HT" 
Next, let us drop the invertibility assumption on A. Following the general 

procedure developed in Section III.1, we extend the restriction of A to z0(AT- 1).l to 

a strictly positive self adjoint operator A/3 on H satisfying A~ 1T=f3eS, where f3 

is invertible on z0(T- 1 A). We then define P ± as the (extension to HT of the) 

orthogonal projections of H onto the maximal A{3 1T-positive/negative A{3 1T-invariant 

subspaces. Here orthogonality is related to the equivalent inner product (2.3) with 

A f3 instead of A. Define 

Then V f.l is invertible on HT and v- 1 13v is a finite rank perturbation of the 
T ,p T , T 

identity. Thus it suffices to show that V r has zero null space. Indeed, let V rh=O 

and write [h,k]=(Th,k). Then (2.6) implies Q+[PP + +exp{ rT-l A}PP _ +(1-P)]h=O and 

Q_[PP _ +exp{-rT- 1A}PP + + (I~rT- 1A)(I-P)Jh=O, whence 

and 

where h0 =(1-P)h and hr =(I-rT- 1 A)(I-P)h. On subtracting these we obtain 

0 ~ [(I-exp{-2rT- 1A})PP +h,PP +h]- [(I-exp{2rT- 1A})PP _h,PP _h] + 
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Thus, (I-exp{-2rT- 1A})PP +h=O, (I-exp{2rT- 1A})PP _h=O, and A(I-P)h=O, which 

implies that hfKer A. But for such vectors we have h=Vrh=O, whence VT has 

zero kernel. • 

The above result was obtained for the case of injective and certain 

non-injective A by Beals [32]. Except for the last part of the proof, which is taken 

from [360], the arguments presented here are new. 

(b) The collision operator A a compact perturbation of the identity 

We shall next investigate the boundary value problem (1.1)-(1.2) for the case 

where T is a (bounded or unbounded) injective self adjoint operator and A is a positive 

self adjoint operator which is a compact perturbation of the identity satisfying 

30< 1 < 1: Ran(I-A) c Ran IT I 1 nD( IT I 2+1). (2.7) 

As in Section II.2 it is possible to distinguish between two types of solutions, and the 

results contained herein are applicable to both, with appropriate restrictions on 

boundary conditions and the class of solutions. We shall define a solution of the 

boundary value problem for cp + f Q+[D(T)] and cp _ f Q_[D(T)] to be a continuous function 

¢:[0, T ]-+H with values in D(T) such that T¢ is a strongly differentiable on (O,r) 

and Eqs. (1.1)-(1.2) are fulfilled. 

As in the previous subsection, we consider the bounded analytic semigroups which 

are connected with the operator T- 1 A restricted to PP +[H], PP _[HJ and (I-P)[H], and 

the bounded analytic semigroups which are connected with the operator AT- 1 restricted 

to PP +[H], PP _[HJ and (I-PJ[H]. Then, in the same manner as before, we obtain 

(2.4)-(2.5), where V T is a bounded operator on H leaving invariant D(T). For every 

cp=cp + +cp _ f D(T) the boundary value problem (1.1)-(1.2) has a unique solution if 

and only if the restriction of V to D(T) is invertible on D(T). 
T 

THEOREM 2.2. In this formulation, for every cp + fQ+[D(T)] and cp _ fQ_[D(T)] there 

is a unique solution of the boundary value problem {1.1)-(1.2), which is given by (2.6), 

where V T has a restriction to D(T) which is invertible on D(T). 
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Proof: Since D(T)cHT, we obtain (Ker V T)nD(T)={O} from Theorem 2.1. Using that 

PP + -Q+ and PP _ -Q_ are compact operators on H (cf. Lemma II 2.6; the result can 

easily be extended to non-invertible A), we find 

I-V T = TQ_T- 1A(I-P) + Q+(Q_ -PP _) + Q_(Q+ -PP +) + 

T-lA -TT-1A 
+ Q+(Q_ -PP _)eT PP _ + Q_(Q+ -PP +)e PP +' 

which is a compact operator. We may prove in the same way that 

satisfying the intertwining relation TV T =V T T on D(T) is compact. 

the operator V T 

From this identity 

and the compactness of V T and V T we can easily derive the compactness of 

V T I D(T) on the Hilbert space D(T) with (complete) inner product 

(h,k)GT = (h,k) + (Th,Tk), (2.8) 

using the reasoning of the last paragraph of the proof of Lemma II 2.6. Hence, 

V T I D(T) is an invertible operator on D(T). 

It remains to prove that Ker V TcD(T), but this easily follows, using that Q+ 

and Q leave invariant D(T), z0(T-l A)cD(T) and (PP ± -Q±)[H]cD(T). We conclude 

that V T has zero null space and I-V T is compact on H, which implies its invertibility 

on H. • 

In Section II.2 we have introduced an alternate notion of solution m which 

boundary data may be chosen in H rather than in D(T). Here we define the analogous 

notion for slabs. Given <p ± fH, we seek a continuous function t/J on [0, T] which is 

strongly differentiable on (O,T), with derivative having its values in D(T), and which 

satisfies the boundary value problem. We refer to Section II.2 for additional details. 

COROLLARY 2.3. In the formulation of the previous paragraph, for every <p + f Q+[H] 

and <p _ fQ_[H] there is a unique solution of the boundary value problem (1.1)-(1.2), 

which is given by (2.6), where V T is invertible on H. 

(c) The collision operator A unbounded 
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We will now consider a bounded self adjoint operator T with zero null space, 

and an (unbounded) self adjoint operator A which is positive and Fredholm. Under 

these assumptions we shall analyze the boundary value problem (1.1)-(1.2) m the 

Hilbert space setting H8 of Section II.4, with boundary values 1/>(0)~HT and 

1/>( r) ~ HT" We shall focus on the technicalities involved m dropping the 

boundedness of A, and assume A is injective. The injectivity condition may, in fact, be 

removed by a construction parallelling that discussed in Section III.l. 

Let us define the Hilbert space HA =D(AY:!)cH with inner product (h,k) A = 

(AY:!h,AY:!k). On HA the bounded operator S=A -IT is self adjoint, and so IS 

K=S-l ::>T-l A. Next, let us define by HTS the completion of HA with respect to the 

inner product 

(h,k)TS = (IT I h,k) + (IS I h,k)A. 

By H8 we shall denote the completion of HTS with respect to the inner product 

(h,k)g = (IS I h,k) A = (T(P + -P _)h,k) A" (2.9) 

Here P ± denote the maximal positive/negative projections associated with S on HA' 

and the same symbols are used for their extensions to H8. The completion of HTS 

with respect to the inner product 

(h,k)T = (IT I h,k) (2.10) 

will be denoted by HT" As before, Q± extend to orthogonal projections on HT::>H and 

will be specified by the same symbols. 

Let us give a precise statement of the boundary value problem (1.1)-(1.2). 

Given <p+~Q+[HT] and <p_~Q_[HT], a solution of Eqs. (1.1)-(1.2) is a continuous 

function 1/>:[0,r]->Hg which is H8 -differentiable on (O,r) with 1/>(0)~HT and 

satisfies (1.1)-(1.2). As in the case of bounded A, we are choosing boundary data 

<p + ~ Q+[HT] and <p _ f Q_[HT] and demanding that the "total boundary fluxes" 

1/>(0) f HTS and 1/>( r) f HTs· However, because of the (possibly) singular behavior 

of the operator K, we must seek solutions in H8. We note that this problem did not 

arise previously because HT;:Hg when A is bounded (see Corollary II 4.6). 

On premultiplying Eq. (1.1) by P ±' solving the resulting equations and adding 

their solutions, we arrive at the expressions 
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1/>(x) O<x<r, (2.11) 

where the sernigroups are the continuous extensions to HS of corresponding sernigroups 

on H A· In order to obtain a vector equation relating P + ¢(0) and P _ ¢( T) to the 

boundary data <p+ and <p _, we define an operator V 0 with domain D(V 0) = 
T, T, 

{h€Hs : [P ± +exp{±rT- 1A}P +]hfHTs} by 

Vr,Oh = {Q+[P++erT-1AP_] + Q_[P +e-rT-1AP+]}h. 

The boundary value problem 

<p=<p + +<p _ f HT if and only if 

The corresponding solutions are 

(1.1)-(1.2) has at least one solution for given 

there exists h f D(V T ,ol such that V r ,oh=<p. 

then given by (2.11), where P+I/>(O)=P+h and 

P_l/>(r)=P_h. Existence and uniqueness for the boundary value problem thus 

amounts to the invertibility of V T ,O as an operator from its domain on to HT 

In order to address this issue, we introduce the operator Z 0 with domain 
T, 

D(Z 0) = {h€HS: [l+exp{-r IT- 1Ailr 1h€D(V 0)} by r, r, 

Since l+exp{- T I T- 1 A I} is bounded and invertible on Hs, the invertibility of 

V is equivalent to the invertibility of Z 0, where both operators are viewed as r,O r, 
acting from their respective domains into HT As in Section 11.4 we define V 0 with 

D(V0) = {h€HTS: P±hfHT} by v0 ~ (Q+P++Q_P_). 

Let us first derive the analog of Eq. (II 4.6). 

LEMMA 2.4. For all h f D(Z T ,ol and g f HTS we have 

where Ill T(z) = (1-exp{-r /z})(1+exp{-r /z})- 1. Moreover, D(Zr,O)cHTs· 

Proof: We compute, on D(V 0), 
T, 
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T-1 T-1 
(2Q+ -I)[P + +e T Ap _] + (2Q -I)[P +e- T Ap +] 

T- 1A T- 1A 
= (Q+ -Q_){[P + +eT P _] - [P _ +e-T P +]}. 

Notice that both sides map an arbitrary vector of D(V r ,ol into HT" Hence, on 

D(ZT ,0 ), 

2Z -I = (Q -Q )(P -P )IV (A - 1T). 
T ,0 + - + - T 

For htD(Zr,ol we have (P+-P_)IVT(A- 1T)htHTs· Therefore, for htD(Zr,ol the 

vectors Z T ,Oh and (Q+ -Q_)(P + -P _)IV T (A - 1T)h belong to HT, and therefore h f HTs· 

We also remark that HA c HT. Thus, for all gtHA' 

2(Z r ,0h,g)T - (h,g)T = ((Q+ -Q_)(P + -P _)IV r (A - 1T)h,g)T" 

Following precisely the method to prove Eq. (II 4.6), we derive 

2(Z r ,0h,g)T - (h,g)T = (T(P + -P _)IV r (A - 1T)h, 1 T 1 g\_ 1 

= (T(P+-P )IV (A - 1T)h,g) = (S(P -P )IV (A - 1T)h,g)A = (w(A - 1T)h,g)8, 
- T + - T 

which settles the desired equality for gtHA. The more general case follows by 

continuous extension to HTs· • 

Lemma 2.4 implies that Ker Z 0 ={0} and therefore that every solution of Eqs. 
T, 

(1.1)-(1.2) is unique. Indeed, since a(A - 1T)c[-M,M] for some finite M, we have 0< 

IV r(M)~IV r(z):5:1 for zt a(A - 1T). Thus (h,kls,r (IV r(A- 1T)h,k)s 1s an 

equivalent inner product on H8, while (h,k)TS, r = (h,k)T + (w T (A - 1T)h,k)s is an 

equivalent inner product on HTs· Hence, Z T ,oh=O implies (h,gls, T =0 for all g f HTS' 

which in turn implies h=O. 

LEMMA 2.5. Z T ,O is a closed symmetric operator on HT" 

Proof: Let {hn}~= 1 be a sequence in D(Z T ,ol c HTS satisfying hn -+ h and Z T ,Ohn 

-+ f in HT-norm. Then, for every gtHTS we have 
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whence, by taking n-+oo, we see that hE HTS and 

Indeed, the above hypotheses, the inclusion D(Z T ,O) c HTS and the completeness of 

the ( •, • )TS, T mner product on A HTS imply that {hn};= 1 1s a weak Cauchy 

sequence in HTs· Hence, hn -+ h in the weak topology of HTS for some hi HTs· 

Since this topology IS weaker than the HT-norm topology, we have h=h and 

consequently hi HTS" On the other hand, using the identity 

I i m II (P + -P _)1{1 T (A -IT)hn - (Q+ -Q_)(2f -h) II T = 0 
n-+oo 

and (P + -P _)1{1 T 0(A -IT)h i Hs, we must conclude that the latter vector belongs to 

HTs· Hence,' (P±+exp{±rT- 1A}P"')[I+exp{-riT- 1AI}r 1h E HTS• and therefore 

hED(Z 0 ) and Z 0h=f. Substituting gED(Z 0 ) in Lemma 2.4 we see that Z O 
T, T 7 T, T, 

is symmetric in HT" • 

2 Lemma 2.4, we have 2(Zr,Oh,h)T;?: llhiiT for 

hE D(Z 0 ). Thus Z 0 has closed range in H and Z- 1 0 acts as a bounded 

As a consequence of 

T, T, T T' 

operator from Ran ZT ,O (cHT) into HT. Since we also have, for some 8 >0, 

hED(Z 0), 
T, 

we also find that z;~ 0 acts as a bounded operator from Ran zr,OcHT into Hs. We 

obtain easily an analog of Theorem II 4.3. 

THEOREM 2.6. The following statements are equivalent: 

(i) For all 'P+EQ+[HT[ and 'P_EQ_IHT] the boundary value problem (1.1)-(1.2) 

has a (unique) solution. 

(ii) Ran Z T ,O = HT" 

(iii) Zr ,o!HA] is a dense subspace of H. 

(iv) Z T ,O is a self adjoint operator on HT" 
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In a similar way we obtain an analog of Theorem II 4.5. 

THEOREM 2.7. The following statements are equivalent: 

(i) z r,O IS a bounded operator on HT' 

(ii) z r,O IS a bounded invertible operator on HT' 

(iii) z 
T ,0 IS a bounded operator from Hs into HT' 

(iv) z r,O IS a bounded invertible operator from H8 into HT' 

(v) The Hilbert spaces HT and H8 allow a natural identification. 

Proof: It is sufficient to observe that ( •, • ls represents a complete inner product on 
,T 

H8. Therefore, we may repeat the proof of Theorem II 4.5 completely, using this inner 

product instead of ( ·, · )8. • 

The latter result implies that either the operators zr,O and v0 are bounded 

invertible on HT for all T or unbounded for all r. Thus, by Theorem II 4.6, the 

operators Z T ,O are bounded on HT if A is bounded. As we shall see in Chapter X, 

one may also identify HT and Hs naturally in the case of a Sturm-Liouville diffusion 

equation, and consequently the operators V 0 and Z T ,O are bounded for this case too. 

We may modify these results for the case when Ker A 1s nontrivial in the 

manner of Chapter III, leading to a modified operator Z 0. This 1s accomplished with 
T, 

the help of a strictly positive self adjoint auxiliary operator A/3, which coincides with 

A on z0(AT-l).L. In this way we may prove uniqueness of solutions, but existence 

again depends on the completeness property Ran Z T ,o=HT' 

3. Boundary value problems for multiplying slab media 

In this section we study the abstract boundary value problem ( 1.1) -( 1.2) 

relevant to transport in a multiplying medium confined within the slab [0, T] and with 

bounded collision operator A, following closely the analysis of Greenberg and Walus 

[167, 386]. The multiplying character of the medium manifests itself mathematically in 

allowing A to have a finite dimensional negative part. That is to say, we shall let A 

be a bounded self adjoint Fredholm operator on H satisfying conditions (i) and (ii) on 
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z0(T- 1A) specified below and such that the spectrum of A in (-oo,O) consists of a 

finite number of eigenvalues of finite multiplicity. We shall let T be a self adjoint 

injective operator on H, and for simplicity we assume T is bounded. 

Let us introduce an (indefinite) inner product on H d~fined by (see Section IV.1) 

[f,g)A = (Af,g). (3.1) 

We will denote by HA the space H equipped with the [ •, ·)A -inner product. If Ker 

A={O}, then HA is a II II: -space where 11: 1s the sum of the multiplicities of the 

negative eigenvalues of A. One can easily show that the operator T- 1 A is self adjoint 

with respect to the indefinite inner product (3.1). Then T- 1 A has at most 2~~: 
nonreal eigenvalues (multiplicities taken into account) occurring in complex conjugate 

pairs with pairwise coinciding Jordan structures, while the length of a Jordan chain for 

a real eigenvalue of T- 1A does not exceed 2~~:+1. Moreover, there is a resolution of 

the identity for the real spectrum of T- 1 A, possibly with finitely many critical points 

at certain eigenvalues (see Theorem IV 1.3). If A has a nontrivial kernel, then HA is 

no longer a II II: -space, nor a Krein space; however, the decomposition of H to be 

developed will allow the spectral analysis of the operator T-1 A to be carried out. 

In order to exclude the existence of so-called irregular critical points, we shall 

assume the following (cf. Proposition IV 1.4). 

(i) z0(T- 1 A) is finite dimensional 

inner product [f,g)T=(Tf,g); 

g € Z0(T- 1 A), then f =0. 

and nondegenerate with respect to the indefinite 

i.e., if f €Z 0(T- 1A) and (Tf,g)=O for all 

(ii) for any real nonzero .>., Z.>. (T- 1 A) 1s nondegenerate with respect to the 

indefinite inner product [·,·)A. 

Under these assumptions we obtain a decomposition of the Hilbert space H into T- 1 A 

invariant subspaces in such a way that A can be deformed to a strictly positive 

operator by a perturbation of finite rank. Such a decomposition is provided by 

Proposition IV 2.1, which we reformulate here for the sake of completeness. 

PROPOSITION 3.1. There exists a T- 1A-invariant finite dimensional subspace Z(T- 1A) 

of H with the following properties: 
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(ii) The subspace (T[Z(T- 1 A)]).L Is T- 1 A-invariant and strictly positive with 

respect to [ •, ·]A' 
(iii) The constituent subspaces in the decomposition (i) are [·,·]A -orthogonal. 

Moreover, if P denotes the projection of H onto (T[Z(T- 1 A)]).L along Z(T- 1 A) and f3 
is an invertible [ ·, ·]T-positive operator on Z(T- 1 A), then the bounded operator 

Af3 = AP + T(3- 1(I-P) is strictly positive with respect to the H-inner product and 

Fredholm. Here, [h,k]T = (Th,k). 

Since A f3 is strictly 

(·,·)A defined by (f,g)A 

H. {{re will denote bf 

positive on H and A~ 1 is bounded, the inner product 

= (Af3f,g) is equivalent to the original inner product on 

HA the space H endowed with the ( ·, • )A -inner 

product. It is clear that its t!pology does not depend on (3, and that the !perator 

S f3 defined by S f3 =A~ 1 T is bounded, injective and self adjoint on H A . We 

define P ± as the orthogonal complementary .projections of HA onto the f3 maximal 

S f3 -positive/negative S 13 -invariant subs paces. Note that :P ± depend on (3. 

However, since the decomposition (i) reduces the operator S (3' and S f3 I (T[Z(T-1 A)]).L 

does not depend on (3, the operators PP +' PP and I-P form a set of 

f3 -independent complementary projections on H. 

As in Section II.4 we first introduce HTS as the completion of HA nD(T) with 
f3 respect to the inner product 

(h,k)TS = ( IT I h,k) + ( IS f3 I h,k) A . 
f3 f3 

Next, let Hs be the completion of HTS with respect to the inner product 
f3 f3 

(f,g)s = (ISplf,g)A. 
f3 f3 

As Z(T- 1 A) is finite dimensional, the topologies of HTS and H8 do not depend on 

(3. In fact, one can show that Hs is topologically is/morphic t! HT, the completion 

of H with respect to the inner groduct (f,g)T = (IT I f,g) (cf. Corollary II 4.6). 

Therefore we will suppress the subscripts f3 in HTS and H8 and write HTS and 
f3 f3 

Hs, respectively. 

Since the extension of T- 1Af3 to the space Hg is self adjoint, one can define 

the projections P ± and the contraction semigroups exp{ +xT- 1 A f3}P ± with the help 

of the Spectral Theorem. Moreover, one can extend P ± and P to bounded projections 
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acting in Hs; we will denote by K the resulting extension of T- 1 A to Hs. Solving Eq. 

(1.1) on the subspaces Ran PP , Ran PP and Ran(I-P)=Z(T- 1A) as in the previous 
+ -

section, we obtain, for the solution of the boundary value problem (1.1)-(1.2), 

l/l(x) (3. 2) 

for V Th = cp, where cp=cp + +cp _ and V T is defined in (2.5). Therefore the umque 

solvability of the boundary value problem is equivalent to the bounded invertibility of 

the operator V T on Hs. The proof of invertibility utilizes the following estimate on 

the operator V ~ defined in Section 2 (a). 
T '"' 

LEMMA 3.2. For any T >0 the operator V T ,(3 is invertible on Hs and 

(3.3) 

where V=Q+P++Q_P_ has a bounded inverse on H8 satisfying II v- 1-IIIL(Hg(l. 

Proof: The following proof is adapted from an argument of Beals [32]. We first recall 

that the Hilbert spaces H8 and HT can be identified in a natural way by means of the 

equivalence of their norms on a suitable common dense subspace (see Corollary II 4.6). 

As a result V=Q+P + +Q_P _ establishes a topological isomorphism of Hs onto HT' Let 

W=I-V= Q+P _ +Q_P +' Then, for any heHA(j' we have the useful identity 

IIVhlli - IIWhlli = ((V-W)(V+W)h,h)T = ((2V-I)h,h)T = (T(P + -P _)h,h) 

In a similar way we prove that 

2 
lihll s . 

(3 

* 2 * 2 2 IIV klls - IIW k/1 8 ~ /lki/T. 
(3 (3 

Here we have exploited the identity 

((2V -I)h,k)T = (h,k)s 
(3 

to derive the equalities 

(3.4a) 

(3.4b) 
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* v = p + Q+ + p-Q_, 

where the adjoints are operators from HT into H8. 

In order to proceed to the proof of the inequality (3.3), note that 

* * 1 IIW (V )- II L(Hg)" 

Moreover, from (3.4) it follows that 

Since v* is a topological isomorphism, II(V*)- 1hiiT ~ Cllhlls for some constant C>O. 

Finally it is clear that C:5:1 and 
(3 

* * 1 2 J,1 IIW (V )- IIL(Hg) :5: (1-C) 2 < 1. 

Using simple algebra we show 

V t~ = V [I+(V- 1-I)exp{-r IT- 1 At~l}]. 
T •I-' 1-' 

Then since 

the inequality (3.3) follows by direct computation. • 

THEOREM 3.3. There exists T c>O such that for all 0< T < T c and every 

cp+€Q+[Hg] and cp_fQ_[Hg] the boundary value problem (1.1)-(1.2) has a unique 

solution. The solution is given by 

(3.5) 

where cp=cp + +cp _ and V T is the invertible operator on HT defined by (2.5). 
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Proof: We will show that, for sufficiently small r, 

{3.6) 

which guarantees the bounded invertibility of V r· Simple algebra shows that 

v 
T 

r/3-1 13 -1 
- V f3 = Q [I-e ]{1-P)P + Q [1-e- r ](1-P)P + r, + - + 

+ Q_[e-r{T- 1A I Z{T- 1A))_I](I-P). 

Therefore, 

for constants c1,c2 dt Clearly f{r)-+0 as r-+0. Let 

Now using Lemma 3.2 one shows that the inequality {3.6) holds true for any 

r£(0,rc). • 

In the case m which the collision operator A IS a compact perturbation of the 

identity satisfying the regularity condition Ran B c Ran IT I '"Y nD( IT In) for some 

"( >0 and all n £IN, one can improve the statement of Theorem 3.3. In particular, 

the function z -+ V z -I is compact operator valued {on H) and analytic in the open right 

half plane. Then, using the analytic version of the Fredholm alternative, one can infer 

the existence of a discrete subset ~ of the open right half plane such that for any 

real r £~ the boundary value problem {1.1)-{1.2) with <p ± =0 has at least one 

nontrivial solution, which is given by {3.2), where h is a nontrivial solution of V r h=O. 

Further, if V z -1 is a trace class operator, which is the case, for example, if 1-A is a 

finite rank perturbation of the identity, then ~ can be characterized as the set of 

solutions of det [Vz] = 0 with Re z>O. 
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4. Reflection and transmission operators 

Reflection and transmission operators for abstract kinetic equations were studied 

m detail by van der Mee [362]. They were introduced there as the functional analytic 

counterparts of the reflection and transmission functions which play an important role 

m radiative transfer (see, for instance, [89, 342]). In [164] they were studied further 

m connection with an abstract differential equation with reflecting boundary conditions. 

In both of these articles these operators were analyzed in the original Hilbert space H. 

In [183] Hangelbroek introduced similar operators to investigate the monotonicity of 

reflection and transmission as a function of slab diameter. 

In the present and the next section we will restrict ourselves to bounded 

nonnegative collision operators A. Let us define unique reflection operators R + T and 

R _ T and transmission operators T + T and T _ T, corresponding to the boundary value 

problem (1.1)-(1.2), satisfying the conditions 

,P(O) !/>( T) ( 4.1) 

(4.2) 

We study these operators· first on HT Using (2.6) we find easily the expressions 

-1 
+ (I-P)JV; 1Q+' R+T [PP + + erT App ( 4.3) 

R [PP + -rT- 1App + (I-rT- 1A)(I-P)]V- 1Q , -T e + T - ( 4.4) 

-1 
+ (I-rT- 1A)(I-P)JV; 1Q+' T+T [PP +e-rT App+ ( 4.5) 

( 4.6) 

Using the boundary conditions (1.2) (or Eq. (2.5) directly) we obtain Q±R±T =Q± 

and Q=F T ± T =0, from which it is evident that T ± T leaves invariant Q±[HT] and 

R± T is a projection on HT with kernel Q=F[HT]. 

These identities may also be found in a different way. It is seen immediately 

that R+ T <p and T + T <p are the values at x=O and x= T of the unique solution of 
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the boundary value problem (1.1)-(1.2) with <p+=Q+<p and <p_=O, and R_r<p and 

T_r<p are the values at x=r and x=O of the solution of this boundary value 

problem for <p+=O and <p_=Q_<p. Then (4.2) and the properties mentioned in the 

sentence following (4.6) are immediate. In the present definition the transmission 

operators account for the fluxes transmitted through the slab, while the reflection 

operators account for incident plus reflected fluxes. 

THEOREM 4.1. The operators R+r+R_r• T+r and T_r are self adjoint on HT, and 

II[R+r+R_r)-IIIHT <1. 

Proof: Let us denote by 1/J the solution of Eqs. (1.1)-(1.2) with boundary data <p, 

and by fP the solution of these equations with boundary data ({;. Putting N=Q+ -Q_, 

we compute 

d ~ 
fx(NI/J(x), 1/J( r -x))T = -(NKI/J(x), 1/J( r -x))T + (1/J(x), NKI/J( r -x))T = 0, 

implying 

(4.7) 

For the transmission operator T+r we have 

where we have employed Ran (l-R+r)=Ran Q_ and Q_T+r=O. The selfadjointness 

of T _ r is proved similarly. 

Next let us consider the reflection operators R + r and R _ r 

computation yields 

A careful 



V. KINETIC EQUATIONS ON FINITE DOMAINS 127 

On the right side of the last equality the second term vanishes as does the fourth 

term, while the third and fifth terms cancel each other as a consequence of the 

selfadjointness of T_T on HT Hence, 

( 4.8) 

In a similar way we obtain 

(4.9) 

On adding these we find that R+T+R_T is self adjoint on HT 

Let us next consider the contractiveness of R + T +R _ T -I. The differential 

equation (1.1) gives immediately 

- J: (1/1 '(x),N1{1(x))Tdx = -[(1/J(x),N1{1(x))T]~=O + J: (1/J(x),N1/J '(x))Tdx = 

= -[(tf(x),N1{1(x))T]~=O - J:(1/J(x),NK1{1(x))Tdx. 

Therefore, 

JT 2 
(N1{1(0),1/J(O))T - (N1{1( T ),1/!( T ))T = 2 (NK1{1(x),1/J(x))Tdx ~ 811 (I-P)<p II T ~ 0, 

0 

where we used that P is a bounded projection on HT We then obtain 

where we have made use of the identities (cf. (4.7)) 
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From (4.8) arid (4.9) we know that the HT-adjoint of R±T coincides with RH±N. 

This in turn leads to the equality 

Finally, we obtain, in the partial order of self adjoint operators on HT, 

2{R +R } ~ T 2 + T 2 + 8N(I-P) ~ 0. +T -T +T -T 

Since Ker P=Z0(T- 1 A) has finite dimension, strict positivity of R + T +R _ T IS 

guaranteed if R+T+R_T has zero null space. 

In order to establish this, it suffices to prove that R+ T k=R _ T k implies 

k=O. For this would imply the strict positivity of R +r +R _ T and, in view of the 

identity (Q+ -Q_)[R+r+R_r](Q+ -Q_) 21-[R+T+R_r], the strict positivity of 

21-[R+T+R_T] on HT" Suppose that k is as indicated. Then h=(Q+ -Q_)k satisfies 

[R+r+R_T]h=O, and therefore 

-1 
k = [R+ +T ]k = [PP+ + erT App + (I-P)]V- 1k, T -T - T 

On premultiplication of these equations by the projections PP +' PP _ and I-P, we get 

-1 { -1 } -1 PP +k = PP + V T k = exp -rT A PP + V T k, 

-1 { -1 } -1 PP _ k = PP _ V T k = exp r T A PP _ V T k, 
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From these one obtains easily PP+V- 1k=0, PP v- 1k=0, and T-1A(I-P)V- 1k=0. T - T T 
Therefore v- 1k€Ker A. However, for .I€Ker A we have V .1=.1 whence 

-1 T-1 T ' 
VT k= VT(VT k)EKer A. But VT[Ker A]cKer A, VT is injective and Ker A has 

a finite dimension, from which we deduce that k € Ker A. 
1 -1 Finally, we use T ± Tk=O to obtain pp ± v; Q±k=O, pp ± v T Q=!=k=O, 

(1-P)v; 1Q_k=O, and (1-rT- 1 A)(I-P)v; 1Q+k=O, which implies v; 1Q±k€Ker A 

and therefore Q±kEKer A. Since v; 1y=y for all yEKer A, we must have 

0, 

Q k = (1-P)V- 1Q k = 0, 
- T -

whence k=Q+k+Q_k=O. This completes the proof of the theorem. • 

Next we consider I-A compact and the reflection and transmission operators 

acting on the original Hilbert space H. 

LEMMA 4.2. If 1-A is compact and satisfies (2.7), then the operators R±T-Q± 

and T ± T -exp{ =!= T T- 1 }Q± are compact on H. Their restrictions to D(T) are 

compact as operators on D(T) endowed with the inner product (2.8). 

Proof: Since v; 1 -1 is compact and the same is true for PP ± -Q± and 1-P, it 

suffices to show that exp{=!=rT- 1A}PP ± -exp{=!=rT- 1}Q± is compact. In order to 

prove the latter, we can repeat the proof of .Lemma II 2.6 with three modifications: 

(i) The result is first proved for invertible A and then extended to noninvertible 

A using the procedure of Section III.l. 

(ii) All integrals in the proof of Lemma II 3.2 contain the additional factor 

<p(>.)=e-T 1>-. 

(iii) The integration curve near ). ~o must be a subset of two straight lines through 

the origin that do not coincide with the real or the imaginary axis. 

In this way we can exploit the fact that on the one hand 

-TT- 1App - 1. 1 I -T j).(' S)-1d' 
e + - € l~ 211'"1 r € e 1\- 1\ 
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and 

T -1 
-T 

e Q+ 

while on the other hand cp( A) =e- T I A IS bounded and continuous on 

largAI~Y27r-O and analytic on largAI<Y27r-6 for any 0<6<Y27r. Here 

f € IS the oriented broken line consisting of the lines from i+oo to i+tan 0, from 

i+tan6 to !(i+tan6), from - e(i+tan6) to-(i+tan6), and from -(i+tan6) to-(i+oo), 

while the limits are taken in the strong operator topology. As a result we find the 

desired compactness. • 

As a consequence of the above lemma, we obtain that R + T +R _ T is a compact 

perturbation of the identity. We may, however, exploit the selfadjointness of this 

* operator on HT to prove that {ITI(R+r+R_T)} =ITI(R+T+R_T) on D(T). (Here 

the adjoint relates to H). In combination with the identity N{R + T +R _ T }N = 

21-{R+ +R }, we may then prove that 
T -T 

(4.10) 

* * where R+T+R_T is a compact perturbation of the identity on H. The restriction of 

R+T+R_T to D(T) will then be a compact perturbation of the identity on D(T), 

when endowed with the inner product (2.8). We have the following result. 

THEOREM 4.3. If 1-A is compact and satisfies (2.7), then the operator R+T+R_T 

is invertible on D(T). Moreover, Ran(R+T+R_T-I)cD(T). 

Proof: Since R+T+R_T-1 is compact on H and its restriction to D(T) is compact on 

D(T), it suffices to establish Ker(R+ +R )nD(T)={O} and Ker(R +R )cD(T). T -T +T -T 
The former follows directly from the invertibility of R +R on HT (cf. Theorem +T -T 
4.1). In order to prove the latter, we have to show that 

which can be proved along the lines of Lemma II 2.6 with the above modifications. We 

may then exploit this property, the inclusions (PP ± -Q±)[H]cD(T) and z0(T- 1 A)cD(T) 
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to obtain the inclusion. The last statement of the theorem is now immediate. • 

5. Slabs with reflective boundary conditions 

In this section we analyze the boundary value problem (1.1)-(1.3), where Re 

and Rr are surface reflection operators for the left and right surface, respectively, and 

J is an inversion symmetry. The operator T will be assumed (bounded or unbounded) 

injective and selfadjoint, and A positive self adjoint and Fredholm. We shall take A 

bounded throughout. 

The above problem naturally comes up m several fields of physics. In radiative 

transfer the boundary value problem 

1 
Jl* (x,Jl) + 'lj!(x,Jl) = !(2c J _1 1/!(x,;J)d;J, 

1 
1/!(r,Jl) = J u(v-+Jl)¢(r,v)dv, 

0 

O<x<r, -1::;;Jl::;;1, ( 5.1) 

( 5.2) 

(5.3) 

gives a simple model of radiative transfer in a planetary atmosphere of finite optical 

thickness with sunlight incident on the top (x=O) and reflection by the planetary 

surface (x=r). The operator (Jh)(Jl)=h(-Jl) then describes the inversion of the 

direction of a beam of light. We thus have an example of the boundary value problem 

(1.1)-(1.3), where Re=O and <p_ =0. In rarefied gas dynamics, if one describes the 

stationary transport of gas with full account of reflection and absorption by the walls, 

the BGK procedure to lowest order leads to the problem 

dv, O<x<r, v t IR, (5.4) 

1/!(0,v) (5.5) 

1/!( r ,v) (5.6) 

where the operator (Jh)(v)=h( -v) describes inversion of direction, and both boundaries 

x=O and x= r are partially specularly reflective. 
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The planetary atmosphere problem (5.1)-(5.3) was studied in an abstract setting 

by Greenberg and van der Mee [164]. The boundary value problem with both 

boundaries reflective has not been analyzed before within the present framework. We 

shall solve both problems in the functional formulations (i) and (ii) discussed in Section 

2. Throughout we assume the existence of bounded operators R e and R e on Q+[H] 

and Rr and Rr on Q_[H] such that Re (resp. Rr) leaves invariant Q+[D(T)] (resp. 

Q_[D(T)]) with 

(5. 7) 

and such that, for every h tQ+[D(T)] and bQ_[D(T)], we have 

0 :5; ( IT I R i'h,h) :5; (IT I h,h), (5.8a) 

0 :5; (IT I Rrk,k) :5; (IT I k,k). (5.8b) 

The former condition implies that Re (resp. Rr) extends to a positive self adjoint 

contraction on Q+[HT] (resp. Q_[HT]). The physical meaning of the latter condition is 

that the boundaries (e.g., the planetary surface or the walls of the gas vessel) do not 

increase the incident current (for radiative transfer, the incident energy). A similar 

condition was imposed in Section III.4 for the corresponding half space problem. We 

assume also the existence of an inversion symmetry J, which is an arbitrary unitary and 

self adjoint operator on H, leaving invariant D(T) and satisfying JT = -TJ and JA = 

AJ. 

Let us first analyze the "unilateral" boundary value problem, where R e =0. 

THEOREM 5.1. The boundary value problem 

T¢' (x) -A¢(x), O<x< r, 

Q+ ¢(0) 'P +' 

IS uniquely solvable in the functional formulations (i) and (ii). 
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•roof: Clearly, 

iubstituting the second boundary condition, one obtains 

vhich implies 

(5.9) 

Ne extend Rr to the complete Hilbert space H (or HT) by defining 

which yields an operat~r comm~uting wi:h J and with HT-norm at most one. In the 

same way we construct R from R J!' and Rr. We now define 

and write (5.9) in the form 

where we used the commutator relation Q SR( r ) 
± , T 

S ( r ) Q . We may, however, 
R,T ± 

write 

(5.10) 

In view of Theorem 4.1 and the estimates IIJIJ =1 and IIRII~1 in HT-norm, this 

operator is invertible on HT. Since 1-[R+ +R ] is compact on H and leaves D(T) 
T -T * * 

invariant, and since Eq. (4.10) holds true for 1-(R+T+R_T) a compact operator on H, 

it is clear that K=(I-[R +R ])RJ is a compact operator on H leaving invariant 
-t_T -T A * * "' 

D(T) and satisfying TK=KT for the compact operator K=(I-[R+T+R_T])RJ on H. 

This means that the operator in (5.10) is a compact perturbation of the identity on H, 
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while its restriction to D(T) is a compact perturbation of the identity on D(T) when 

endowed with the inner product (2.8). Since this operator is invertible on HT, we have 

[Ker sk: ;] n D(T) = {0}. Using that Ran(R+r+R_r-I) c D(T) (see Theorem 4.3), 

we find Ker S ( r) c Ran (I-S ( r)) c D(T). Hence, SR( r) is invertible on H and R,r R.,r ,r 
its restriction to D(T) is invertible on D(T). In the functional formulations (i) and (ii) 

we now obtain 

This in turn implies 

whence, 

from which we can easily construct the unique solution. • 

Let us consider the "bilateral" boundary value problem, where R l and Rr are 

both nonzero. We shall give a partial solution to the problem. 

THEOREM 5.2. 

problem 

Suppose that IIR.t'IIH <1 and IIR 11 11 <1. 
T r T 

Tl/>'(x) = -Al/>(x), O<x<r, 

is uniquely solvable in the functional formulations (i) and (ii). 

Proof: Straightforward calculation yields 

Then the boundary value 
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1/>(0) = R Q 1/>(0) + T Q I/>( T) = +T + -T -

and 

,P( T) = T Q 1/>(0) + R Q I/>( T) = +T + -T -

Let us introduce the operator 

SR =1-QR RJ-QR R 0 J-T RJ-T R 0 J. ,T + -T r - +T ~ -T r +T ~ 

We may then derive the equation 

Let us rewrite SR,r by introducing R = Re e Rr. We obtain 

where IIRII~l and IIJII =1 in HT-norm. If one only assumes that IIRII~l in the 

HT-norm, it would suffice to show that ZT = R+T+RT+T+T+T_T is a self adjoint 

operator on HT with spectrum within (0,2) in order to establish unique solvability for 

the first functional formulation. However, since we can confine the spectrum only 

within (.0,2], we must assume in general that R is a strict contraction. 

In view of the identity 

(see(4.3)-(4.6)), we may write ZT as the inverse of the operator 
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which generalizes the operator defined in Section 2. First we observe that 

We then find 

whence 

for h 0 =(1-P)h0 and h 1 =Ph, and thus W 7 ;o: ¥21 on HT" We may thus conclude that 

Z7 IS a self adjoint operator on HT with spectrum in (0,2]. However, let us notice 

that 

O<z<oo, 

1s a nonnegative continuous function on (O,oo) satisfying ¢( +oo) =~ r, while z - 1 ¢(z )-->¥2 

as z 10. We then obtain 

which implies (W7 h,h)T=Y2IIhll~ if and only if htKer A. As a result, 

Ker (21-Z 7 )=Ker A. We may also conclude that 

111-SR IIH :5: 111-Z IIH IIRIIH IIJIIH < 1, 
,T T T T T T 

which establishes unique solvability in the first functional formulation. The modification 

of the existence and uniqueness results for the second functional formulation can be 

implemented as in Section 2. • 
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For purely specular reflection, where R=I, we easily find Ker SR = {he Ker 
,T 

A : Jh=h}, and unique solvability may, in general, be violated. However, the proof of 

the above theorem is valid for IIRII ~1 if we assume that A is strictly positive self 

adjoint. 



Chapter VI 

EQUIVALENCE OF DIFFERENTIAL AND INTEGRAL FORMULATION 

1. Kinetic equations in integral form 

Integral forms of transport equations first appeared in radiative transfer theory 

at the beginning of this century. If one considers radiative transfer with isotropic 

scattering in a layer of finite optical thickness r, the boundary value problem may be 

writ ten ( cf. Section IX.1) 

li 1 
p 0 x(x,J.I) + 1/>(x,J.I) = Y2c J ,P(x,;J )d;J, O:<>x:<>r, (1.1) 

-1 

1/>(0,J.I) = 'P + (J.I ), O:'>p:'>1, (1.2a) 

,P(r,p) = 'P_(p), -1:'>p:'>O. (1.2b) 

The right hand side of Eq. (1.1) IS usually called the source term. If one were to 

consider this term as known (which, of course, it is not), Eqs. (1.1)-(1.2) would be 

easily solved in the form 

for 0<p:'>1, and 

1/>(x,J.I) = e(r-x)IJJ'P_(p) - Y2cr JJ-1e-(x-y)/JJX(y)dy 
X 

for -1:'>p<O, where 

1 
x(x) = J ,P(x,/l )dp. 

-1 

(1.3a) 

(1.3b} 

( 1.4) 

Equation (1.3) may be considered as an integral equation for the unknown function 
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'1/J(x,p.). By integrating (1.3) with respect to the angular variable p. and adding the 

resulting equations, a further reduction is accomplished to the scalar integral equation of 

convolution type 

where 

X(x) - \;2c r E 1 (x-y)X(y)dy 
0 

1 0 
= I e-x/p.'P (p.)dp. + I e(r-x)/p.'P_(p.)dp., 

0 + -1 

1 
E() f -1-lxl/p.d 

1 x = p. e p. 
0 

( 1.5) 

1s the exponential integral function. As 0<c~1, Eq. (1.5) can, in principle, be solved 

by iteration (see [340], for instance). Since the exponential integral function has a 

logarithmic singularity at x =0 (see [8 9, 2 55]), for numerical purposes one should prefer 

iterating (1.3). In radiative transfer theory this is known as the method of expansion 

with respect to orders of multiple scattering, since the n-th iterate accounts for the 

contribution to the intensity '1/J(x,p.) of light scattered n times (cf. [89, 357]). 

If one takes in (1.4) the limit as T-+=, one obtains 

foo 1 
X(x) - \;2c E 1 (x-y)X(y)dy = J e-x/ Jl.'P +(p.)dp., 

0 0 
O~x<oo, (1.6) 

which is known as the Schwarzschild-Milne integral equation (cf. [89, 342]). It was 

first studied by Milne [265] as early as 1921. Both convolution equations (1.5) and 

(1.6) were extensively analyzed in the monograph of Hopf [196] and were the major 

stimulus which triggered the early theory of Wiener-Hopf equations (see [392]). In the 

early 1940's Ambarzumian found a way to express the general solution of Eqs. (1.3) in 

two functions only (cf. [6]). These functions were later denoted X and Y by 

Chandrasekhar [89] and satisfy a coupled set of nonlinear integral equations. In the 

case of Eq. (1.6), one deals only with one so-called H-function. This method 

introduced by Ambarzumian [6] was called "invariant imbedding". It was further 

developed by Chandrasekhar [89], Sobolev [340], Busbridge [61] and many others. The 

mathematical background has been treated in detail in the monograph of Wing [3 97]. 

Theorists soon realized that radiative transfer with anisotropic scattering also 

allows reduction to a convolution equation, but now the kernel will be a matrix function. 

Similar procedures were developed for inhomogeneous media [62, 339] and polarized light 
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([199], for instance). Integral formulations were less salient in neutron transport and 

rarefied gas dynamics, presumably because of the popularity of the classical Case-van 

Kampen method in the 1960's. In fact, integral formulations appearing in the books of 

Case, de Hoffmann and Placzek [69] and Davison [98] were soon replaced by "Caseology." 

Radiative transfer theory was relatively unaffected by this transformation in neutron 

transport theory. 

A rigorous, fairly general formulation of kinetic equations m integral form was 

g1ven by Maslennikov [259]. Indirectly, through the work of Feldman [116], as well as 

through the study of H-functions (cf. [58, 216]) and criticality problems (cf. [281], for 

example), integral formulations reappeared in neutron transport theory. A rigorous 

proof of the equivalence of the abstract boundary value problems of the previous 

chapters to a vector-valued convolution equation IS due to van der Mee [359] (also 

[3 60]). It should be emphasized that most (if not all) transport theorists have worked 

either with the differential form, as in the previous chapters, or with the integral form, 

as in the present chapter, mostly taking their equivalence for granted. Among the few 

to give some argument for their equivalence are Kelley and Mullikin (see [216, 274], for 

instance), but their arguments are unidirectional: the integral form is derived from the 

differential form, but not conversely. We feel the necessity of having a rigorous 

equivalence proof, smce we intend to use the equivalence as a tool to derive properties 

of the abstract boundary value problems from those of the integral equations. Our 

objective is an integrated development of both approaches in an abstract setting. 

2. Preliminaries on convolution operators 

The present section 1s devoted to some well known and some less known 

properties of convolution operators. Since the seminal work of Wiener and Hopf [392], 

a considerable part of convolution equations theory was developed during the late 

1960's and early 1970's; see Gohberg and Krein [141], Feldman [117], Gohberg and 

Semen;ul [151], Gohberg and Heinig [140], and Gohberg and Leiterer [148, 149, 150]. 

The major tools in these approaches are classical Fredholm theory and factorization. 

Not all the material is easily accessible, and for our purposes it is preferable to use 

(modified) Laplace transforms instead of the more usual Fourier transforms. For these 

reasons, we include a basic summary of the properties of convolution operators in this 

and the next two sections. 
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We first consider the full line convolution equation 

1/l{x) - Joo k{x-y)1/J(y)dy = w{x), 
-oo 

-oo<x<oo, {2.1) 

where 1/1, w are functions from the real line to some {real or complex) Banach space 

X and k is a function from the real ax1s to the Banach algebra L{X) of bounded linear 

operators on X. On defining vectors 1/J and w in certain spaces of functions from IR 

into X as well as the convolution operator 

(L1/!)(x) = Joo k(x-y)1/J(y)dy, 
-oo 

{2.2) 

one can restate Eq. {2.1) as the following vector equation: 

(I-L)1/I w. {2.3) 

In order to formulate our assumptions on the convolution kernel k and the 

function spaces, we use the resources of strong measurability (always with respect to 

Lebesgue measure, unless explicitly stated otherwise) and Bochner integration. A short 

account can be found in Section 31 of [401[; more modern material appears in the 

monographs of :Mikusinski [264] and Diestel and Uhl [104]. Given a real (possibly 
b infinite) interval (a,b) and a {real or complex) Banach space X, we denote by Lp(X)a 

the {real or complex) Banach space of all strongly measurable functions 1/J:(a,b)--.X 

which are bounded with respect to the norm 

b p 

![J 111/J{x)ll dx] 11 P, 
a X 

ess sup {111/J(x)ll 
X 

1~p<oo, 

a~x<b}, p=oo. 

We let C(X) b denote the subspace of L (X) b consisting of all bounded continuous a oo a 
functions 1/J:{a,b)--.X continuous at the endpoints a, b, as well, if they are finite. The 

functions 1/J f 1 1 (X)~ are called Bochner integrable on {a, b) and the functions 

1/J f L (X) b essentially bounded on {a, b). 
oo a ( )b-a 

It is easily proved (cf. [141]) that for kfL1(L X) a-b the operator 
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b 
(L,P)(x) = I k(x-y)lf>(y)dy, a<x<h, 

a 

is bounded on the spaces Z=L (X)b (l~p~oo) and Z=C(X)b, in all cases with norm p a a 

b-a 
IlL liz ~ I llk(x)IIL(X)dx. 

a-b 
(2.4) 

For L1(X) b and L (X) b this is a straightforward estimate, from which one derives a oo a 
the result for L (X)b (l<p<oo) using the Riesz interpolation theorem ([224], Theorem p a 
2.4). In order to obtain the estimate for C(X) b we may use the following proposition. a 

PROPOSITION 2.1. Let p - 1 + q -1 = 1. 

L,P is bounded and continuous on (a,b). 

Proof: Extending ,P and k to ( -oo,oo) by putting ,P(x) = 0 and k(y) = 0 for x f (a, b) 

and I y I~ I b-a I, it is evidently sufficient to prove this proposition for a = -oo 

and b = oo. Let us first take 1~p<oo, ,P f L (X)00 and kf L (L(X))00 • Then p -oo q -oo 
there exists a sequence {,pn}n: 1 of strongly measurable step functions such that 

I im 111/>-1/> II =0. Therefore, using n p 
X-+oo 

II(L,P)(x)-(L,Pn)(x)ll ~ Ioo llk(x-y){,P(y)-1/>n(y)}lldy ~ llkllqlll/>-1/>nllp' 
-oo 

one finds that ,P is bounded continuous if all functions L ,P n are bounded continuous. 

So let us suppose that there exists a subset E of the real line of positive measure and 

a fixed vector e £X such that 

,P(x) I e, 
0, x4:E 

xEE 

where AAB = (A \B)u(B\A). Since the Lebesgue measure of the symmetric 

difference (E-x1)t.(E-x2) vani~hes for 

implies that I (L,P)(x1)-(L,P)(x2) 1-+0 

on ( -oo,oo) and obviously bounded. 

I x1-x 2 l-+0, the Bochner integrability of k 

as lx1-x2 1-+0. Thus L,P is continuous 

We may conclude that L,P is bounded 
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continuous if 1/JEL {X)00 and l~p<oo. p -oo If p=oo, then q=l and, instead, one 

approximates k by step functions. • 

This result is well-known, at least for X = <r: 1. It implies that L is bounded 

on C(X) b with norm estimate {2.4), if we have kE L1{L(X)) b- ba. It will play an a a-
important role in the next two sections. 

We continue our investigation of convolution operators by stating the following 

deep result essentially due to Bochner and Phillips [45], which plays a fundamental role 

in convolution equations theory. We formulate an abstract generalization of their result 

due to Allan [4] and Gohberg and Leiterer [149]. 

THEOREM 2.2. Let k E L1 (L{X))':00• Suppose that the operator 

W(A) = I - Joo ex/Ak{x)dx {2.5) 
-oo 

is invertible for all extended imaginary A. Then there exists .t E L1 (L(XJJ':00 such 

that 

+ Joo ex/A.t(x)dx, ReA 
-oo 

0. (2.6) 

Moreover, if k{x) IS compact operator valued almost everywhere, then the same property 

holds for .t(x). 

COROLLARY 2.3. If W(>-..) is invertible for all extended imaginary >-.., then Eq. (2.1) 

is uniquely solvable in all spaces L (X)00 (1~p~oo) and C(X)00 , and the solution is p -oo -oo 
given by 

,P(x) = w(x) + Joo .t(x-y)w(y)dy. 
-oo 

Proof: Taking integral transforms of both sides of Eq. (2.1) and using that the 

Laplace transform of a convolution product of two functions is the algebraic product of 

the Laplace transforms of their f~ctors, we easily obtain 

00 00 )... 

W(A) J ex/ A,P(x)dx = J ex/ w(x)dx, Re )... 0. 
-oo -oo 

We now use the invertibility of W(A) for extended imaginary A and the identity (2.6) 
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to obtain the corollary. • 

Additional results for convolution equations on the half line (O,oo) and on finite 

[n tervals (0, r) will appear in the next chapter. 

3. Equivalence theorems 

In this section we shall establish the equivalence of boundary value problems of 

the previous chapters to convolution equations. First we give a detailed proof for the 

finite slab problem, followed by less detailed proofs for the half space problem and a 

related "full space" problem. We begin by proving some estimates. The results are 

based to a large extent on parts of [359, 360] and the Appendix of [366]. Throughout, 

T will be a (possibly unbounded) self adjoint operator with zero null space and B will 

be a bounded operator satisfying the regularity condition 

3a>O: Ran B c Ran IT I a n D( IT 11+a). (3.1) 

We shall write A = 1-B, u(.) for the resolution of the identity of T, and Q± for 

the orthogonal projections onto the maximal T-positive/negative T-invariant subspaces. 

For Q± we may, of course, write Q+ = u([O,oo)) and Q_ = u((-oo,O]). In terms of 

T one defines the propagator function ){(x) by 

-1 Joo t-le-x/tu(dt), [+T-1,-xT Q+ O<x<oo, 
){ (x) 0 

-1 -t t- 1 e-x/tu(dt), -T-1e-xT Q -oo<x<O. 
-oo 

It is easily seen that the restriction of ±){(I xI) to Ran Q± is the derivative with 

respect to x of the semigroup whose generator is the (unbounded) inverse of the 

restriction of +T to Ran Q±. 

Let us first derive two simple lemmas. 

LEMMA 3.1. We have the following estimates: 
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rX> ll){(x)BIIdx < oo, 
-oo 

Joo IIT){(x)BIIdx < oo. 
-oo 

Proof: If ¢J is a bounded measurable function on the real line, then r!J(T) 

J~00 ¢J(t)u(dt) is defined as a strong limit of Stieltjes sums, and has the norm 

II r!J(T) II = ess sup { 1 f/J( t) 1 :t t u(T)}. 

This equality allows us to obtain the following norm estimates: 

IIT){(x)ll = 0(1) (x-+0), 

Ill T 1-a){(x)ll = 0( I x 1- 1-a) (x-+±oo). 

Using (3.1) the lemma is immediate. • 

LEMMA 3.2. Let f:(O,oo)-+H be bounded and continuous. Then 

lime(y-x)T-IQ f(y) 
y-+oo 

m the weak sense. 

0 

Proof: Choosing arbitrary h t H and using dominated convergence, one has 

I im (e(y-x)T- 1Q_f(y),h) = I im f"e(x-y)/t(u(-dt)f(y),h) 0, 
y-+oo Y- 0 

which proves the lemma. • 

145 

We shall now derive the finite slab and half space equivalence results in one 

theorem. It will be seen that the proof actually depends only on the estimates 
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tr li)l(x)BIIdx < oo if r is finite, or f:'ooli)l(x)BIIdx < oo, f:'00 IIT)I(x)BIIdx < 

oo, if r is infinite, rather than the stronger regularity condition (3.1). 

THEOREM 3.3. Let 0< r:5;oo. Assume w:[O,r)-+H is continuous, and left-continuous at 

x=r if r<oo, w(x)tD(T) for O<x<r, and Tw strongly differentiable on (O,r). 

Then a function !JI:(O, r )-+D(T) is a solution of the boundary value problem 

(T!JI) '(x) = -A!JI(x) + (Tw) '(x) + w(x), O<x< r, (3.2) 

(3.3a) 

and 

I im IIQ !JI(x)-Q w(r)IIH xrr - - 0 (3.3b) 

for T <oo, 

II!JI(x)IIH = 0(1) (x->oo) (3.3c) 

for r =oo, if and only if tP tL00(H)~ and tP satisfies the convolution equation 

!JI(x) - r )l(x-y)B!JI(y)dy = w(x), O<x<r. 
0 

(3.4) 

Any such solution is continuous on [0, r] if r <oo or on [O,oo) if r =oo. 

Proof: Assume first that r<oo. Let !JI:(O,r)-+D(T) be a solution to Eqs. (3.2)-(3.3), 

and put X=!JI-w. If we choose O<x<oo and pick x 1 l{O,x) and x2 l{x,r), then 

r 1 )l(x-y)B!J~(y)dy = r 1 )l(x-y){(TX) '(y)+X(y)}dy 
0 0 

( ) -1 X 
= [e- x-y T Q+X(y)Jo 1 

and 
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T IT f )((x-y)B,P(y)dy = )((x-y){(TX)' (y)+X(y)}dy 
xz xz 

where advantage has been taken of the differentiability of the propagator function. In 

fact, in the strong sense one has 

)((x-y){(TX) '{y) + X(y)} = -/y )((x-y)TX(y). 

Using the first part of Lemma 3.1 and t/IEL00(H)~, we see that the left hand sides 

have strong limits as x1 T x and x21 x. Exploiting (3.3) and the equality X = ,P-w 
gives (3.4). 

Conversely, let 1/1 E L00{H)~ be a solution of (3.4). Because the functions 

)({.)BEL 1 (L{H))~T (see Lemma 3.1) and t/IEL00{H)~, it is immediate from Proposition 

2.1 that 

g(x) = r )((x-y)B,P{y)dy 
0 

depends continuously on the variable x E [O,r ). Similarly, because the functions 

T)((.)BEL1 (L(H))~T (see Lemma 3.1) and t/IEL00(H)~, we also find that 

g(x) = r T)((x-y)B,P(y)dy 
0 

depends continuously on the variable x E [0, T ). Moreover, from Lemma II 2.1 we see that 

g(x) E D(T) and Tg(x) = g(x) for all O~x~r. Repeatedly using the lemma, we obtain, 

for all E >0, 

where 
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1Jx+e h 3 e- T){(x+e-y)B,P(y)dy, 
X 

1 Jx+e h 4 = -e- T){(x-y)B,P(y)dy. 
X 

Let us take the limit as e ! 0. Simple semigroup theory yields 

h 1 -+ - r ){(x-y)B,P(y)dy. 
0 

As ,P g+w and both g and w are continuous on [0, T ), the function ,P is 

continuous on [0, T ]. Using this together with dominated convergence ( cf. [401], Section 

31) and the same semigroup property, one obtains 

h 2 -+ - r ){(x-y)B,P(y)dy. 
X 

The continuity of the expressions under the integral signs implies that h 3 -+ Q+ B,P(x) 

and h4 -+ Q_B,P(x). Thus, Tg is strongly differentiable on (O,r) from the right, 

with 

(Tg) '(x) = -g(x) + B,P(x). 

Strong differentiability from the left, with the same one-sided derivative, can be 

proved in an analogous way. Hence, Tg is differentiable on (O,r). From (3.4) it 

follows that g = ,P-w. We may conclude that ,P satisfies (3.2). The boundary 

conditions (3.3) follow by substitution. 
00 

Consider, finally, T =oo. The proof that any ,P € L00(H) 0 satisfying Eq. (3.4) 

is continuous on [O,oo) and is a solution of Eqs. (3.2)-(3:3a,c) can be given in precisely 

the same manner as for the finite interval. Conversely, if ,P:(O,oo)-+D(T) is a solution 

of Eqs. (3.2)-(3.3a,c) and x l{O,oo), we pick x1 € (O,x) and x2,x3 l{x,oo), put X = 

,P-w and compute 

r 1 ){(x-y)B,P(y)dy = r l ){(x-y){(TX) '(y)+X(y)}dy 
0 0 

= [e -(x-y)T-1 Q+X(y)]~ 1 

and 
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x3 x3 

I ){(x-y)B!J>(y)dy = I ){(x-y){(TX)' (y)+X(y)}dy 
x2 x2 

( ) -1 X 
= [-e- x-y T Q X(y)] 3. 

- x2 

Using Lemma 3.1 and the boundedness of !J> we see that the left hand sides have limits 

as x1 rx, x2l X and X3-+oo, Since Q+X(y)-+0 as y 10 and Lemma 3.2 holds true, we obtain 

the convolution equation (3.4). • 

Let us consider some special choices for w. 

(i) For hE D(T) and T <oo, we take 

-1 ( ) -1 
w(x) = e-xT Q h + e T -x T Q h. 

+ 

The boundary value problem equivalent to (3.4) then becomes 

(T!J>) '(x) = -A!J>(x), O<x< T, 

I im IIQ 1/>(x)-Q hiiH = o. 
X TT - -

(ii) For f:[O, T ]->H uniformly Holder continuous and T <oo, we take 

(3.5) 

T -1 ( ) -1 
w(x) = J 0 ){(x-y){f(y)-f(x)}dy + [1-e -xT Q+ -e T-xT Q_]f(x). (3.6) 

From the Holder continuity it follows that the above integral is a well defined 

Bochner integral, as 

II ){(x-y){f(y)-f(x)}ll s M I x-y I "Y II ){(x-y) II = 0( I x-y I "Y - 1) (I x-y l-+0) 

Formally one could write w(x) = J ~ ){(x-y)f(y)dy, but the status of the latter 

integral is not always clear. The bou~dary value problem equivalent to (3.4) 

now has the form 
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(TtJI) '(x) = -AtJI(x) + f(x), 0< x< T, 

(iii) For Q+ hE D(T) and T =co, the choice 

(3.7) 

leads to the usual half space problem 

(TtJI) '(x) = -AtJI(x), O<x<co, 

lltJ~(x)IIH = 0(1) (x-+co). 

(iv) For f:[O,co)-+H a bounded uniformly Holder continuous function such that 

llf(t)IIH = O(t-P) (t-+co) for some P>O and T=co, the choice 

Jco T-1 
w(x) = Jl(x-y){f(y)-f(x)}dy + (I-e-x Q )f(x) 

0 + 
(3.8) 

leads to the equivalent half space problem 

(TtJI) '(x) = -AtJI(x) + f(x), O<x<co, 

II tJI(x) IIH = 0(1) (x-+co). 
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As before, the formal integral J~J/(x-y)f(y)dy may not be well-defined m 

the Bochner sense. 

(v) A more general class of problems JS obtained by adding (3.7) and (3.8), or (3.6) 

and the slab analog of (3.8). 

Finally, let us note that if w:[O, T )-+H is continuous for any 0< r ~oo, left 

continuous at r if r <oo, and strongly differentiable on (O,r ), and if 

w'(x)fD(T) for all O<x<r, then every solution of the boundary value problem 

(3.2)-(3.3) is a solution of (3.4), but the converse proof fails. One may apply this 

"unilateral implication" to w(x) of the form (3.6) or (3.7), where h and Q+h may not 

be contained in D(T). 

The next theorem is a "full line" result, which is instrumental to the 

developments of the next chapter. Note that the theorem does not give an equivalence 

result, the implication being only in one direction. 

THEOREM 3.4. Let w:IR-.H be bounded and continuous, except possibly for a jump 

discontinuity at x=O. Suppose that w(x) f D(T) and Tw is strongly differentiable at all 

0 ,.x f JR. Then every solution t/H L (H)00 of the convolution equation oo -oo 

,P(x) - Joo J/(x-y)B,P(y)dy = w(x), HIR, 
-oo 

(3.9) 

is bounded and continuous on IR, except possibly for a jump discontinuity at x=O of size 

(3.10) 

and satisfies the vector-valued differential equation 

(T,P)' (x) = -A,P(x) + (Tw) '(x) + w(x), O .. HIR. (3.11) 

Proof: Theorem 3.4 is easily derived from Theorem 3.3 and its analogue for ( -oo,O), 

Proposition 2.1, the essential boundedness of 1/>, and Lemma. 3.1, by rewriting (3.9) as 

oo Jo ,P(x) - J J/(x-y)B,P(y)dy = w(x) + J/(x-y)B,P(y)dy, 
0 -oo 

O<x<oo, 
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0 
'1/J(x) - J )l(x-y)B'Ijl(y)dy w(x) + Joo )/(x-y)B'Ijl(y)dy, -oo<x<O. 

0 -co 

The integrals 

I±oo 
tfl(x) = ± )l(x-y)B'Ijl(y)dy, 

0 
sign(x) +1, 

m the newly obtained right hand sides satisfy the equation 

(Ttfl) '(x) + tfl(x) 

as a corollary of the principle of dominated convergence (cf. [401], Section 31). • 

Theorem 3.4 applies to right hand sides of the form 

w(x) 

T-1 l+e-x Q+h, 

-1 
-e-xT Q_h, 

O<x<oo, 

-oo<x<O, 

where htD(T). For this case one finds (Tw)' + w _ 0. 

4. Reduction of dimensionality 

In the previous section we have established the equivalence of certain boundary 

value problems to a vector-valued convolution equation. AI though the convolution 

equation is solved over the given Hilbert space H, that is to say, its solution is 

represented as an element of L00(H)~, there seems to be a considerable excess of 

dimensionality in the space on which the convolution equation is defined. An example 

of this was already seen in radiative transfer with isotropic scattering, Eqs. (1.1)-(1.2), 

wherein the convolution equation {1.3) on H may be reduced to the scalar convolution 

equation (1.5). In this section we will indicate how the dimensionality of such problems 

may be reduced, in fact, to the rank of the operator B. 

Let us consider a closed subspace lB of the (real or complex) Hilbert space H, 

* which contains Ran B . We adopt all notations and conventions of the third section. 

Let j:IB-+H and 1r:H-+IB be the unique operators such that 1rj is the identity on lB 
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* and j71" is the orthogonal projection of H onto lB. From Ran B ciB one derives 

immediately the equality 

Bj7r = B. (4.1) 

* We also note that 71" = J. 

PROPOSITION 4.1. For 0 < r :5:oo, the convolution equation 

1/>(x) - r )((x-y)B,P(y)dy = w(x), O<x< T' 
0 

is uniquely solvable on Lp(H) ~ if and only if the convolution equation 

X(x) = r 7r)((x-y)BjX(y)dy = 7rw(x), O<x<r, 
0 

is uniquely solvable on Lp(IB) ~· Then X(x) = 11"1/>(x) and 

,P(x) = w(x) + r )((x-y)Bjx(y)dy. 
0 

( 4.2) 

( 4.3) 

( 4.4) 

Proof: Eq. (4.4) is obtained from (4.3) by defining X = 71"1/> and utilizing (4.1). 

Consider the operators W t=Lp(IB) ~ -+ Lp(H) ~ and W 2:Lp(H) ~ -+ Lp(IB) ~ defined 

by 

and 

(W1 x)(x) r )((x-y)BjX(y)dy 
0 

(W2x)(x) = 11"1/>(x). 

Then (4.2) and (4.3) can be written as 

respectively, where w 11"W. We easily check the identities 
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which establish the equivalence of unique solvability. • 

5. Reflecting boundaries 

Hitherto we have only considered integral formulations of boundary value 

problems which do not involve reflecting boundaries. The result was a convolution 

equation. This situation is quite different if reflecting boundary conditions are imposed. 

Let J be a signature operator anticommuting with T and commuting with B, and let R be 

a bounded reflection operator (see Sections III.4 and V.5 ). For the sake of simplicity 

we will take T bounded. 

In Chapter III we studied the half space problem 

(T¢) '(x) -A¢(x), O<x<oo, ( 5.1) 

<p + + RJQ_ ¢(0), (5.2) 

11!/l(x)IIH = 0(1) (x-+oo), (5.3) 

which accounts for reflection at the surface x=O. In Section V.5 we studied the 

problem in slab geometry 

(T¢) '(x) -A¢(x), O<x<r, (5.4) 

<p +' (5.5) 

Q_ ljl( T) (5.6) 

sometimes called the "abstract planetary problem." We will now indicate how each one 

of these may be converted to an equivalent integral equation. However, although the 
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derivation will UlllillC those leading to the equivalence theorems, the resulting equation 

will not be of convolution type. 

Consider first (5.4)-(5.6). According to Theorem 3.3 with 

w(x) 

the solution ,P f L00(H) ~ satisfies 

,P(x) - r )f(x-y)B,P(y)dy 
0 

Utilizing (5.5)-(5.6) yields 

,P(x) - r )f(x-y)B,P(y)dy 
0 

T-1 JT + JReT cp+ + JR )f(T-y)B,P(y)dyj, 
0 

If we premultiply by Q+ and set x=T, we obtain 

(5.7) 

Finally, combining the last two equations and rearranging terms leads to the integral 

equation 

JT ( )T-1 
,P(x) - [){(x-y) + e T -x JR)(( T -y)]B,P(y)dy = 

0 

T -1 ( ) -1 T-1 -x T-xT [ JR-T ] =e cp++e cp_+ e cp+' (5.8) 

which is not of convolution type. 

Conversely, if ,PeL00(H)~ is a solution of (5.8), we may write (5.8) in the 

form (3.4), with w given as above. Note that w contains the solution function ,P, 
and satisfies the equation 

(Tw)'(x)+w(x)=O, O<x<T. 

The boundary conditions (5.5)-(5.6) are easily confirmed. Hence ,P is a solution of the 

boundary value problem (5.4)-(5.6). 

The half space problem (5.1)-(5.3) is analyzed in a precisely analogous fashion. 

In this case ,P f L00(H)~ satisfies 
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J~ T-1 
1/l(x) - 0 Jl(x-y)B1/I(y)dy = e-x (cp + + RJQ_,P(O)], 

which leads to the integral equation 

J~ T-1 T-1 
1/J(x) - (JI(x-y) + e-x RJJI( -y)]B1/I(y)dy = e-x q, +' 

0 
(5.9) 

again not of convolution type. 

We remark that in both cases the argument may be modified to deal with 

unbounded T, with the reflection operator satisfying suitable domain requirements. We 

note also that the dimensionality of (5.8) and (5.9) can be lowered just as with the 

convolution equations in Section 4. 

The bilateral slab problem 

(T1/J)'(x) = -A1/I(x), O<x<r, (5.10) 

Q+ 1/1(0) - cp + + RJQ_1/I(O), (5.11) 

(5.12) 

formulated here with bounded T, though this restriction is easily removed, can be 

written in the form (5.3). · Using (5.11) and (5.12), one obtains the equation 

-1 T 
QIR(Q+ 1/1( T )+Q_,P(O)) =- e- T IT I cp + J (JI( T -y)+JI( -y)]B1/J(y)dy, (5.13) 

0 

where cp = cp +cp and QIR is defined by + -

If QIR is invertible on H, we obtain 

(5.14) 

Conversely, by rearranging (5.15) and applying Theorem 3.3 we easily recover Eqs. 
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(5.10)-(5.12}. The basic prerequisite to the equivalence of (5.15) to Eqs. (5.10)-(5.12) 
A A 

is the invertibility of !i!R on AD(T). This IS satisfied if TR = RT with R and R 

leading to invertible !i!R and !i!R on H. For example, if R = al with 0<a:5:1 and 

T is bounded, one easily estimates 

max (5.16) 

and invertibility is guaranteed. For unbounded T, one should require a £{0,1). 

6. Generalizations 

We have developed an equivalence theory for boundary value problems and 

integral equations in a Hilbert space setting. The operator T appearing in these 

boundary value problems has been assumed to be self adjoint. However, there exist 

kinetic models for which the selfadjointness assumption is too restrictive. 

One obvious generalization is to assume that T is a normal operator on a complex 

Hilbert space H. Such a generalization arises in a natural way from an abstract time 

dependent kinetic equation, namely 

a<P a A 

at(x,t) + crx(T</J)(x,t) = -A</J(x,t), O<x<r, t~O. 

Separation of variables, 1/J(x,t) = eiwt,P(x) for w complex, and division by l+iw lead 

to the abstract kinetic equation 

(6.1) 

where we might define T = (l+iw)-Lf and note that the right hand side still 

represents a compact perturbation of the identity. 

After some variable transformations one arrives at an equation of the form 

~.gf(x,S"} + 1/J(x,S") = fJ w(?)</J(x,?)d~dq, 
M 

!: EM, (6.2} 

where ~ =€ +il] (€ ,I] real) belongs to a complex region M which intersects the 
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imaginary ax1s at ~ =0 only. Problems of this sort related to velocity dependent 

neutron transport were first treated by Cercignani [78, 79], using the theory of 

generalized analytic functions devel()ped by Vekua [373]. A similar treatment IS 

contained in Section 8.1 of [211]. 

Equations (6.1) and (6.2) lead to abstract kinetic equations of the form 

(Ttl>)' (x) -Atf>(x), O<x<r, 

where T IS an injective (bounded or unbounded) normal operator on H and A is an 

arbitrary compact perturbation of the identity. We shall consider a somewhat more 

restrictive assumption on T, satisfied in both of the examples above, namely the 

spectral inclusion 

u(T) c ~! U ~S U {0} 

for . some where 

{ttC: largtl$c5} and 

the 

{ttC 

sets ~~ are defined 

l1r-argt I $c5}. For Eq. 

by 

( 6.1) 

~+ 
c5 

(6.3) 

we can, 

m fact, choose Y21r > c5 > I arctan w I. 

0<a<1, 

We then find the norm estimates, for 

II a II { a-1 -x/t ±} a-1 ITI )l(x) $sup It I le I: tt~0 = O(lxl ) (x-+0), 

where ± corresponds to the sign of x. The important step in deriving these 1s the 

estimates ltl $ (cosc5)- 1 1Re tl and le-x/t1 ::;; e-lxlcosc5/lt1. Using 

Mimicking the proofs while (6.3) we may also extend Lemma 3.2 to injective normal T. 

exploiting Lemmas 3.1 and 3.2, we may show that the equivalence theorems 3.3 and 3.4 

extend to situations where T is an injective normal operator satisfying condition (6.3). 

Another type of generalization of the equivalence theorems is to a Banach space 

setting. Here we are facing immense problems arising from the absence of a Spectral 

Theorem for T. Still a Banach space generalization is warranted because of the 

physical nature of L1 -solutions of neutron transport and radiative transfer equations. 

In the remainder of this section, we shall give a general discussion of how a Banach 

space theory of equivalence may be constructed. 

In formulating such a theory one needs proper definitions for Q±' the 
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propagator function Jl(x) and the semigroups associated with T. Let us assume a 

closed densely defined injective operator T on a (real or complex) Banach space H, 

whose spectrum satisfies (6.3) for some 0:5:8 <Y21r. We assume a decomposition of H as 

the direct sum H = H + e H of two closed subs paces H±, which satisfy the 

following hypotheses: 

(A.1) H±nD(T) is dense in H± and T[H±nD(T)]cH±. 

(A.2) The spectrum of the restriction T ± of T to H± is the set cr(T)nLl~, 
which is contained in the right/left half plane. 

(A.3) The operators +T- 1 generate (bounded) analytic semigroups {U ±(x)}x~O 
on H±. 

(A.4) One has I im U±(x) 
X->oo 

0 in the strong operator topology. 

(A.1) and (A.2) solve the problem of defining Q±. Indeed, one takes Q± as 

the projection of H onto H± along H+. The hypothesis (A.3) solves a number of 
problems. The propagator function we define by 

Jl(x)h I 
- ~U+(x)h, 

+ (lxU_(-x)h, 

O<x<oo, 

-oo<x<O. 

Further, we pick 0<1<Y21r, called the "opening angle", such that both semigroups are 

analytic in the cone s1 = {ZtC : I argz I :5:'"1} and strongly continuous on its 
closure. Following the treatment of Krasnoselskii et a!. ([224], Chapters 13 and 14), 

we obtain 

(6.4) 

for n=0,1,2, ... , and 0:5:x<oo (cf. [224], Eq. (13.64) with w=O). We may define 

"negative" fractional powers of the generator ( ± T ±) - 1 using the procedure of Section 

14.2 of [224]. In terms of these we then define 

According to Theorem 14.2 of [224] we have the estimates 
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where hED([(±T±)-1r.B)cRanQ± and O<a<,B. 
obtain 

Using the previous equation we 

(6.5) 

where hED(ITI.B) and O<a<,B. Inequalities (6.4) and (6.5) imply 

IIITI-n}{(x)ll s d1l f(n), n~O, 
(sin")')n+ 1 1xln+1 

(6.6) 

where we have exploited the convexity of log r(z) for zE[O,oo) (cf. [114); differentiate 

Eq. 1.7(6)). The estimates in the proof of Lemma 3.1 now follow irmnediately. 

Finally, condition (A.4) leads to Lemma 3.2. Repeating the proofs of Section 3, 

one finds that the equivalence theorems, Theorem 3.3 and The<;>rem 3.4, extend to 

Banach space settings if T satisfies assumptions (A.1) to (A.4), and, in addition, T and 

B satisfy the regularity condition (3.1). 

We believe that an equivalence theory as indicated in this section can be the 

starting point for a Banach space treatment of stationary boundary value problems in 

abstract kinetic theory. In fact, in Chapters VII and VIII we shall generalize most of 

our Hilbert space results to the Banach space setting. One expects that there is a 

complete generalization of reduction of dimension (Section 4) to Banach spaces, by 

requiring B :::> D where DeKer B = H, whence the imbedding j:IB-+H and the 

projection 1r:H-+IB satisfy ( 4.1). The inclusion of reflective boundary conditions 

(Section 5) would at first seem to be restricted by the need for the semigroups 

{U ±(x)}x~O to be contractive, in order to obtain the invertibility of the operator 

lliR in (5.14). However, one may renorm the Banach space and recover a contraction 

semigroup, thus obtaining the invertibility of lliR for R=al under the same conditions as 

for self adjoint T. 



Chapter VII 

SEMIGROUP FACTORIZATION AND RECONSTRUCTION 

1. Convolution operators on the half line 

In this chapter we shall continue our study of the theory of convolution 

equations and its applications to abstract kinetic equations. In the first section we will 

outline the classical method for solving Wiener-Hopf equations on a half line. This will 

reduce the half space problem to a factorization problem. In the second section we 

shall study the con!lection between the semigroups developed in Chapters II and III and 

the solution of convolution equations corresponding to abstract kinetic equations. In 

this way we will obtain an alternative way of defining these projections and semigroups. 

In the following section we will begin a study of explicit representations of the 

Wiener-Hopf factors of the symbol, which IS important m the derivation of 

representations for the solutions of the half space and the finite slab problem, to be 

discussed in the next chapter. In the fourth section, we present some recent results 

on the treatment of nonregular collision operators. Finally, in the last section, we 

outline the extension of the previous theory to a Banach space setting. 

Since its origin in the work of Wiener and Hopf [392], the theory of convolution 

equations on a half line has been studied extensively. Important contributions were 

made by Goh berg and Krein [ 141]. Their finite dimensional results were extended to 

infinite dimension by Feldman [ 11 7]. The corresponding factorization theory in an 

infinite dimensional setting was developed by Gohberg and Leiterer [138, 148, 149, 150]. 

Recall the vector valued Wiener-Hopf equation 

1/>(x) - r k(x-y)l/>(y)dy 
0 

w(x), O<x<oo, (1.1) 

on the (real or complex) Banach space X, introduced in Section VI.2. Assuming 

b L 1 (L(X))':'00 we strive for solutions 1/> t Lp(X)~ for given w t Lp(X)~. On 

defining w(x) = 0 and 1/>(x) = J~ k(x-y)lf>(y)dy for -oo<x<O, the equation itself 
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can be extended to the full real line. Let us define the Laplace transforms 

and 

± J±ooex/A,p'(x)dx, 
0 

Joo ex/ >.w(x)dx 
0 

W(>.) = I - Joo ex/>.k(x)dx. 
-co 

(1.2a) 

(1.2b) 

(1.3) 

The operator function in (1.3) is continuous on the extended imaginary line (with W(O) 
I 

= I) and is called the symbol of Eq. (1.1). This equation now transforms into the 

equation 

(1.4) 

A 

Let us consider the case p=l. Then ,P + and w + are continuous on the extended 

imaginary line and extend continuously to analytic functions on the open left half 

plane. The same applies to ~ with regard to the right half plane. 

The factorization properties of W(>.,) play a crucial role in solving Eq. (1.1), as 

we will see shortly. By a right Wiener-Hop£ factorization of the operator function W 

we mean a factorization of the form 

for Re >..=0, where 

(i) W ± satisfies 

W ±(>.) = I ± J±oo ex/>.k±(x)dx 
0 

for k+EL1(L(X)); and k_EL1 (L(X))~ 00i 
(ii) W ±(>..) is invertible for all >.. in the extended closed left/right half plane; 

(iii) P F .. ,P n are mutually disjoint one-dimensional projections; 

(iv) P 0 + P 1 + ... + Pn =I. 

(1.5) 
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The integers K 1, ... ,Kn are uniquely determined by the function W (see [138]) and are 

called the right indices of W. The middle factor D(>-.) we call the diagonal function. 

Using Theorem VI 2.3 and property (ii) we obtain the existence of functions 

11' + tL1 (L(X))~ and 11' _ tL1 (L(X})~ 00 such that 

The same theorem implies that 11' ±(x) is almost everywhere compact operator valued if 

k±(x) is. If all right indices vanish, i.e., if D(>-.)::1, then (1.5) has the form W(>-.) 

W _(>-.)W +()..) for Re ).. =0. Such a factorization is called right canonical. Assuming 

W ±(0) = I one can determine the factors W ± uniquely. 

consider a left Wiener-Hopf factorization of the form 

Alternatively one could 

for Re ).. =0, which is related to the half line convolution equation 

0 
1/l(x) - J k(x-y),P(y)dy = w(x), -oo<x<O. 

-oo 
(1.6) 

Here W ± ()..) and P 0,P 1 , ... ,P m are chosen as in the previous conditions (i) to (iv) and 

p l""'Pm are the left indices, which can differ in number and value from the right 

indices. If these indices all vanish, one has a left canonical factorization. 

Let us introduce the notation 

±oo 
(L±,P)(x) = ± I k(x-y),P(y)dy, o:s;±x<oo. 

0 

Then (1.1) may be written (1-L+)l/1 = w, and (1.6) may be written (1-L_),P = w. 

We now proceed to a solution of (1.1). If we substitute (1.5) in (1.4), we obtain 

the vector Riemann-Hilbert problem 

(1.7) 

for Re >-.=0. With a bit of algebra, we may derive 
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for Re A=O and functions 

~ JO /A Joo f _(A) = ex [ .£ _(x-y)w(y)dy] dx. 
-co 0 

On premultiplying (1.7) by P 0 we obtain 

The left hand side is continuous on the closed left half plane, analytic on the open 

left half plane and zero for A =0. The right hand side is continuous on the closed 

right half plane, analytic on the open right half plane and zero at A =0. The 

Schwarz reflection principle then implies that both sides represent an entire vector 

function that is bounded and vanishes at A =0. Using Liouville's theorem, both sides 

must vanish identically, which proves 

Similarly, premultiplication of (1.7) by Pi with ~~:i>O and the Liouville argument yield 

P.W (A)-I~ (A) = P.f (A), 
I - - I -

provided P.f (A) has a zero at A=-1 of order at least ~~:.. If f+ does not have 
I + I 

such a zero, the Riemann-Hilbert problem obtained from (1. 7) by premultiplication by Pi 

does not have solutions at all. For 11:i < 0 a premul tiplication by Pi and the above 

Liouville argument give 

~ 1-A ~~:i ~ ~~:i 
PiW+(A)!Ji+(A) = ('I"+X') Pl+(A) + (1-A) ~i(A)hi 

PiW _(A)-I~ _(A) = P/ _(A) - ~(A)(l-At\, 



VII. SEMIGROUP FACTORIZATION & RECONSTRUCTION 165 

where if>i is an arbitrary scalar polynomial of degree equal or less than (~~:i-1) and hi 

is a fixed vector in Ran P .. 
I 

As we shall see, the arbitrariness in if>i will lead to 

nonuniqueness in the solution of the convolution equation. 

It is now possible to separate the terms of (1. 7) into those analytic in the left 

half plane and those analytic in the right half plane. Again using a Liouville argument 

we obtain 

II:· 

~+(>.) = W+(>.)- 1[D(>.)- 1f+(>.) + I: (1->.) 1¢>.(>-)h.J, 
~~:.<O I I 

{1.8a) 

I 

~ (>.) 
/1:. 

W _(>.)[f _(>.) - I: (1->.) 1¢>.(>-)h.], 
11:·<0 I I 

I 

(1.8b) 

which represents the Laplace transform of the solution of the convolution equation 

{1.1), provided a set of d independent linear constraints on w is satisfied, where d is 

the sum of the positive indices "i· There are n independent arbitr~ry constants in this 

solution, where ( -n) 1s the sum of the negative indices "i· The same results can be 

found in LP(X)~. 

The next theorem summarizes our findings. 

THEOREM 1.1. Let the symbol W have a right Wiener-Hop£ factorization with indices 

"l'"···"n· Then on a!! spaces Lp(X)~ (1~p~oo) and C(X)~ the operator I - L+ 

is a Fredholm operator with characteristics 

dim Ker (I-L+) = - I: "i, 
K·<O 

I 

codim Ran (I-L+) = + I: If.. 
II:. >0 I 

I 

The convolution equation (1.1) has a unique solution for all w l Lp(X)~ if and only if 

Ki=O for all i. 

Theorem 1.1 implies that W has a right canonical factorization if and only if 

I-L+ is invertible on some (and hence all) spaces Lp(X)~ or C(X)~. From {1.8) and 

property (v) one finds 
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1 Joo [(I - L+)- w](x) = w(x) + 1(x,y)w(y)dy, 
0 

O~x<oo, 

where the resolvent kernel 1(x,y) is given by 

1(x,y) 

X 

f_(x-y) + J f+(x-z)f_(z-y)dz, 
0 

y>x;;:o:o 

x>y;;:o:o. 

( 1.9) 

Indeed, if the symbol has a canonical factorization, we obtain for the Laplace transform 

of the solution to the Riemann-Hilbert problem (1.4) 

and 

A A 

,P_(>.) = W_(>.)f_(>.). 

These formulas are special cases of (1.8). Exploiting the expressions for f ±(>.) 

obtained before, part (v) of the definition of a Wiener-Hopf factorization and the fact 

that the product of Laplace transforms of two functions is the Laplace transform of 

the convolution product, we find the above expression for the resolvent kernel after 

some algebra. 

In an analogous way one proves the following theorem. 

THEOREM 1.2. Let the symbol W have a left Wiener-Hopf factorization with indices 
0 0 p 1, ... ,p . Then on all spaces L (X) (l~p~oo) and C(X) , the operator I-L m p -oo -oo 

is a Fredholm operator with characteristics 

dim Ker (I - L_) 

codim Ran (I - L _) 

~ P· 
p. >0 J 

J 

~ P· 
p. <0 J 

J 

The convolution equation (1.6) has a unique solution for all wfL (X) 0 if and only p -oo 
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if p j=O for all j. 

The above method for solving Wiener-Hop£ equations depends critically on the 
existence of Wiener-Hopf factorizations of its symbol. In the remainder of this section 

we will be concerned with sufficient conditions for the existence of Wiener-Hopf and 
canonical factorizations. Algorithms for the explicit construction of the factors are 
deferred to later sections. The first result presented is due to Gohberg and Leiterer 

([150], Theorems 4.3 or 4.4). 

THEOREM 1.3. If W(>.) is invertible for all extended imaginary >. and has the form 

(1.3), where k € 1 1 (L(X))':00, and almost every k(x) is uniformly approximable by 

operators of finite rank, then W has a right and a left Wiener-Hopf factorization. 
Moreover, 

n 
E K· 

i =1 1 
(1.10) 

The last identity seems to be known, but a proof is difficult to find in the 

literature. However, if we naturally identify L (X) 0 Ell L (X)000 '" L (X)00 and p -oo p p -oo 
define L by 

(Ltt>)(x) 

then 

Joo k(x-y)ti>(y)dy, 
-co 

0 J k(x-y)ti>(y)dy, 
-co 

J00k(x-y)ti>(y)dy, 
0 

O<x<oo, 

-oo<x<O. 

By the compactness of k(x) for almost every x and the data k € 1 1 (L(X))':00, we have 

the compactness of the difference between 1-L and the direct sum of 1-L and 
1-L+. But Theorem VI 2.3 implies the invertibility of 1-L. Thus the sum of the 

Fredholm indices of 1-L_ and 1-L+ vanishes. Equation (1.10) is immediate from 

Theorems 1.1 and 1.2. 

The next result is also due to Gohberg and Leiterer [149]. 

THEOREM 1.4. Let X be a Hilbert space, and let 



168 BOUNDARY VALUE PROBLEMS IN ABSTRACT KINETIC THEORY 

sup IIW(>.) - IIIL(X) < 1 
Re>.=O 

for functions W of the form (1.3). 

f ac toriza tion. 

Then W has a right and a left canonical 

This result IS incorrect in a general Banach space setting (see [247] for 

counterexamples). 

2. Semigroup reconstruction 

In the study of existence and uniqueness properties of differential equations, one 

frequently obtains semigroups as operators which map the initial data into the solution. 

In this section we will, in fact, achieve the same result for abstract kinetic equations in 

integral form. In what follows we shall assume that T is a (possibly unbounded) 

injective self adjoint operator and B a (not necessarily self adjoint) compact operator, 

both defined on the (real or complex) Hilbert space H. We shall also assume the 

existence of 0<a<1 such that 

Ran B c Ran IT I a n D( IT ll+a). (2.1) 

In Sections 4 and 5 we will substantially relax these hypotheses. 

We define Q± as the orthogonal projections of H onto the maximal 

T-positive/negative T-invariant subspaces and the propagator function ){(x) by 

T -1 
T -1 -X Q 

e +' O<x<oo, 
){(x) 

-oo<x<O. 

With these assumptions the full equivalence theory of Section Vl.3 will be available to 

us. Throughout we put A = I-B. 

If B is self adjoint and A strictly positive, the operator T- 1 A is similar to a 

self adjoint operator (see Chapter II) and suitable invariant subspaces are readily found 

on which either - T- 1 A or + T-l A generates a (bounded) semigroup. Such semigroups 

are of the utmost importance in representing solutions of various abstract boundary 
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value problems (cf. Chapters II to V). We strive for the development of a theory for 

non-self adjoint B, but for such general cases it is not clear how to obtain suitable 

invariant subs paces of T- 1 A and corresponding semigroups. However, we shall draw on 

one of our few leads, namely the integral form of the boundary value problem (cf. [364, 

366]). 

Considering the identity 

(T-A)- 1(T-AA) - I = -A(A-T)- 1B, A~cr(T), 

we see that outside cr (T) the function W( A) (T-A)- 1(T-AA) IS a compact 

perturbation of the identity. If we now define the spectrum of Was 

I:(W) {A~cr(T) : W(A) is not invertible}, 

then a well-known stability result (see, for instance, [137, 152, 286, 319, 338] for this 

result at various stages of its development) implies that I:(W) is a discrete set in the 

resolvent set of T such that, at each A 0 E L:(W), 

00 

I: (A-Ao)nWn, 
n=-p 

for certain operators W 1, ... ,W of finite rank and some Fredholm operator w0. This - -p 
in turn implies that the spectrum of T- 1 A outside cr(T- 1) exists solely of isolated 

eigenvalues of finite geometric multiplicity. 

We can, in fact, rewrite W as 

W(A) =I- roo ex/AN(x)B dx, Re A=O. 
-oo 

Thus W turns out to be the symbol of a convolution equation on H with kernel 

k(x)=N(x)B. This kernel is compact operator valued and belongs to L1 (L(H))':00 (cf. 

Lemma VI 3.1). The theory of the previous section will therefore apply if W(A) is 

invertible for all extended imaginary A (See Theorem 1.3; note that B is uniformly 

approximable by operators of finite rank, since it is a compact operator on a Hilbert 

space). In a natural way we arrive at a distinction between the regular case, where 

T- 1 A does not have purely imaginary or zero eigenvalues, and the singular case, where 

T- 1 A has at least one imaginary or zero eigenvalue. In the regular case W(A) is 

invertible for all extended imaginary A; this is not true in the singular case. 
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Let us first consider the regular case. Then A is invertible and A -lT does not 

have imaginary eigenvalues. Consider the full line convolution equation 

t/J(x) - Joo Jl(x-y)BI/I(y)dy = w(x), -oo<x<oo. 
-oo 

{2.2) 

According to Theorem VI 2.3 this equation is uniquely solvable in L (H)00 for every p -oo 
wtL (H)00 (l~p~oo), and its unique solution is given by p -oo 

t/J(x) = w(x) + Joo J'(x-y)w(y)dy, -oo<x<oo, 
-oo 

{2.3) 

for certain compact operator valued functions J' E L1 (L(H)}':'00• Given hE H, define 

Then wh is bounded and continuous except for a jump at x=O of size 

and the unique solution 1/!h of Eq. {2.2) with right hand side w=wh is bounded and 

continuous except for a jump at x=O of size 

h. {2.4) 

We now define the linear operators 

(2.5a) 

V _(x)h = -1/!h(-x), {2.5b) 

where for x=O we may write 

(2.6) 

We may derive the following properties of these operators. 
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LEMMA 2.1. Suppose T- 1A does not have zero or imaginary eigenvalues. Then the 

following statements hold true: 

(i) For all O:S:x<oo the operator V ±(x) is bounded. 

(ii) The operator V ±(x) depends continuously on O:S:x<oo in the strong operator 

topology and IIV ±(x)ll :5: M <co for some constant M and all O:S:x<oo. 

(iii) The differences V ±(x)-exp{-xT- 1}Q±, for O:S:x<oo, and P ± -Q± are 

compact operators. 

(iv) We have the semigroup properties V ±(x)V ±(y) 

- V :;(x)V ±(y) = 0, for O:S:x,y<oo. 

V ±(x+y) and V ±(x)V :;(Y) 

(v) The operators P ± are complementary projections. 

(vi) The operators T- 1 A I Ran p have their spectra m the sets 

{>. t C : ±Re>. >O}U{O}. 
± 

(vii) The semigroups {V ±(x) I Ran p) are generated by :;T- 1 A I Ran p ± 

Proof: The boundedness statement (i) follows from the estimates 

where L is the full line convolution operator, and for (ii) it is only necessary to 

notice that ,Ph is bounded continuous except for a possible jump at x=O. For (iii) we 

observe that 

is compact, since .It L1 (L(H))':'00 is compact operator valued and the operator 

function exp{-yT- 1}Q+ tL00(L(H))~. 
To demonstrate the semigroup property, choose O:S:y<oo and define 

O:S:x<oo, 

,P(x) 

-oo<x<O. 

Then ,P satisfies Eq. (2.2) with some right hand side w. Let us compute w. For 

x<O we get 
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w(x) = - Joo ){(x-z)B,Ph(z+y)dz = - Joo ){(x+y-w)B,Ph(w)dw = 
0 y 

T-1 Joo = -e-x Q_ ){(y-w)B,Ph(w)dw = 
-co 

-1 
-e-xT Q_ V +(y)h = wy ( )h(x) 

+ y ' 

whereas x>O leads to 

w(x) = ,Ph(x+y) - Joo ){(x+y-w)B,Ph(w)dw = 
y 

= {,Ph(x+y) - Joo ){(x+y-z)B,Ph(z)dz} + r ){(x+y-z)B,Ph(z)dz 
-oo -oo 

This means that t/>=t/>y (y)h" Hence, for O~x,y<oo, V +(x)V +(y) = V +(x+y) and 

V (x)V (y) = 0. Not/ that the semigroup property implies that P± are disjoint - + 
projections (let x=y=O). This, along with Eqs. (2.4) and (2.6), gives (v). 

For O<y<oo and hlD(T)nRan P ± we have, in view of Theorem VI 3.4, 

as y-+0. Thus if G ± denote the infinitesimal generators of the semigroups 

{V ±(x) I Ran p }x~O' then A - 1TG±P ±h +P ±h on D(G±), and therefore 
± 

(2.7) 

Conversely, if >. .. o is imaginary and h l D(T), then a simple application of the 

identity W(>.) = (T->.)- 1(T->.A) gives 

Joo ex/A,ph(x)dx = W(>.)- 1 Joo ex/>.wh(x)dx = >.A - 1T(>.-A - 1T)- 1h. 
-oo -oo 

The linear operator which maps h into T- 1 A J ':co ex/ >-,ph (x)dx is bounded for all 

imaginary >. .. o. If hlRan P ±' the integration can be restricted to the half line 
{x l R : ±x~O} and the expression extends analytically to the open left/right half 

plane. Thus the restriction of T- 1 A to Ran P ± has its spectrum in {>. l C : 
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±ReA> 0 or A =0}. The operator =FG ± must, by virtue of the boundedness of the 

generated sernigroup, have its spectrum in the same set. (Note that G ± is a restriction 

of =FT- 1A). As it is also true that, for A;<o0 in closed left/right half plane, 

( ) -1 ( -1 )-1 A A ±G h = A A -A T I R p h, 
± an ± 

one must have the equality sign in (2. 7). We have therefore proved (vi) and (vii). • 

As a result of the foregoing, we shall use the notation V ±(x) 

exp{=FxT- 1A}P ± for O~x<oo. We have then equivalence proofs such as Theorems 

3.3 and 3.4 of Chapter VI. 

We have defined projections P ± and corresponding sernigroups. We shall now 

show that these operators may also be obtained using the solutions of the half space 

problem and that, in fact, they coincide with the corresponding notions encountered in 

Chapter II. 

THEOREM 2.2. Suppose T- 1 A has no zero or imaginary eigenvalues. Then every 

function I{>:(O,oo)->D(T) such that Ti{> is strongly differentiable and satisfies the 

equations 

(TI{>) '(x) -AI{>(x), O<x<oo, (2.8) 

(2.9a) 

ll¢(x)IIH 0(1) (x->oo), (2.9b) 

has the form 

l{>(x) exp{-xT- 1 A}P +h, O~x<oo, (2.10) 

where Q+ P + h = <p + for a vector h t D(T). 

Proof: Equations (2.8) and (2.9) are equivalent to the Wiener-Hopf equation 

Joo 1 
l{>(x) - ){(x-y)BI{>(y)dy = exp{-xT- }'P +' 

0 
O<x<oo, (2.11) 
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m L00(H)~ and any such solution is continuous on [O,oo) (cf. Theorem VI 3.4). 

Simultaneously we consider the equation 

0 . 
,P(x) - J )((x-y)B,P(y)dy = exp{-xT- 1}<p _, -oo<x<O, 

-co 
{2.12) 

where <p _fRan Q_. Let H± be the subspace of H consisting of all initial values 

1/>(0±) of solutions of Eq. (2.11) {resp. (2.12)), where <p±fRan Q±. Then we 

may use the method suggested by Lemma 2.1 to prove that 

is a bounded strongly continuous semigroup on H±, whose generator is the restriction of 

±T- 1 A to its invariant subspace H±. Hence, H± cRan P ±" 

Let us prove that H± = Ran P ±" As above, we define 

(L±,P)(x) = ±roo )((x-y)B,P(y)dy, O~±x<oo. 
0 

Then the equivalence theorem VI 3.4 and its analog on the half line ( -oo,O) imply that 

any solution of Eq. (2.11) (resp. (2.12)) satisfies Q±l/>(0±) = <p±. Hence, 

(2.13) 

The range of I-L ± can be described to some extent by observing that the function 

,P{x) = exp{ -xT-1 A}h ± {O~±x<oo) for h ± f H± is mapped by the operator 1-L ± 

into the right hand side of Eq. (2.11) (resp. {2.12)), where Q±h± <p±. 

Therefore, <p ± = h± -Q+h± f H± + Ran Q'l', whence 

(2.14) 

We thus conclude th.at 

{2.15) 

(2.16) 

The finiteness of the right hand side of {2.16) will be proved shortly. 
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Next observe that the operator V 

properties: 

Q+P++Q_P_ has the following three 

(a) Ker V = [Ran P +nRan Q_] e [Ran P _nRan Q+]' 

(b) Ran V = [Ran P + + Ran Q_] n [Ran P _ + Ran Q+], 

(c) 1-V = (Q+ -Q+P +) + (Q_ -Q_P _) = (Q_-Q+)(P + -P _), which implies that 

1-V is a compact operator (cf. (iii) of Lemma 2.1). 

Therefore, dim Ker V codim Ran V, or 

dim [Ran P + n Ran Q_] + dim [Ran P _ nRan Q+] = 

= codim [Ran P + + Ran Q_] + codim [Ran P _ + Ran Q+]. (2.17) 

In view of the inclusion H± c Ran P ± we also have 

(2.18) 

(2.19) 

Finally, combining Theorems 1.1 and 1.2 with Eq. (1.9) we find 

dim Ker (I-L+) + dim Ker (1-L_) = 

= codim Ran (I-L+) + codim Ran(I-L_). (2.20) 

We now consider Eqs. (2.15) to (2.20) and conclude that all inequalities among these 

are, in fact, equalities. Moreover, 

The latter two identities and the inclusion H± cRan P ± m turn imply 
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These, together with the inclusion H± cRan P ±' again imply H± 

we sought to derive. Theorem 2.2 now follows immediately. • 

Ran P ±' which 

Before paying attention to the singular case we observe that the identity 

A(T- 1 A) = (AT- 1)A and the invertibility of A imply the existence of bounded 

operators defined by 

1 1 ~ A exp{+xT- A}P ± = exp{+xAT- }P ±A. (2.21) 

The generators of the corresponding semigroups satisfy a similar intertwining property. 

We may use Lemma 2.1 (iii) and the compactness of B = 1-A to show that 

{ -1}~ { -1}Q exp =!=xAT P ± -exp =!=XT ±' OS:x<oo, is compact as well. Furthermore, Eq. 

(2.21) implies that exp{ +xT- 1 A}P ± leaves invariant D(T), while 

(2.22) 

But exp{=!=xT- 1}Q± also leaves invariant D(T) and satisfies 

Defining V = Q)' + + Q_P _, we find V[D(T)] c D(T) and 

TVh = VTh, h f D(T). (2.23) 

From the latter identity and the compactness of 1-V and 1-V we obtain the following 

proposition, which will play an important role later in the derivation of explicit 

Wiener-Hop£ factors. 

PROPOSITION 2.3. We have 

dim Ker V = dim Ker V, 

codim Ran V = codim Ran V. 
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Consequently, V is invertible if and only if V is invertible. 

Let us consider the singular case. In this case T- 1 A has imaginary eigenvalues. 

These form an at most countable sequence with limit points at A = oo and A = 0. 

Given a linear operator S and A € C, put 

00 00 

ZA (S) = U Ker (A -S)n = u {h € D(Sn) (S-A)nh=O} 
n=1 n=1 

( cf. Chapter III). We shall make the following simplifying assumptions: 

The operator T- 1 A has at most finitely many imaginary eigenvalues. 

For each of these, ZA(T- 1A) has finite dimension. 

(I) 

(II) 

(III) 

(IV) 

The subspaces ZA(T- 1A), ReA=O, are contained in D(T). 
-1 The finite dimensional subspace z0 = e ZA (T A), where the direct sum is 

A 
taken over eigenvalues A with Re A =0, has a closed direct complement z1 

which is invariant under T- 1A. 

If we now define z0 = T[Z0] a~d ~1 = A[Z1], we obtain A[Z0]cZ0, T[Z1] = z1 and 

z0 e z1 =H. In fact, if h€Z 0nz1, write h = Tk for k€Z 0 and h = A.l for 

.I€Z 1. Then .I€D(T- 1A) and k T- 1A.I€Z 1. Together with k€Z 0 we get 

k=O, and therefore h=G. The decomposition of H then is a simple consequence of the 

fact that, in view of Ker AcZ0, 

We remark that for bounded T all four conditions are automatically satisfied. 

In order to construct analogs of the projections P ± and the associated 

semigroups, we first prove a lemma which is related to similar results in Chapter III. 

LEMMA 2.4. Let us denote by P 0 and P 1 the complementary projections with ranges 
-1 z0 and z1, respectively. Suppose ,B:z0 ..... z0 and put A ,8 = T ,8 P 0 +AP 1 and B ,8 

1-A,a· If ,8 has no imaginary eigenvalues, then A,a is invertible, B,a is compact, and 

(2.24) 
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does not have imaginary eigenvalues. Furthermore, there exists 0 <a< 1 such that 

(2.25) 

provided 

Ran B c Ran IT I a n D( IT I m+1+a) 

Proof: Recall that A[Z1)=Z1 and T[Z0] = z0. Then the invertibility of A{3 is clear 

and Eq. (2.24) holds true. Also, B {3 = B+(A-A {3) = B+AP 0 = P o+BP 1 is compact 
and satisfies (2.25) if, for some 0<a<1, 

Ran P 0 c Ran I T I a n D( I T 1 1 +a). 

However, if for some imaginary ). one has (T- 1A->.)hk 

0, then 

h0 = Bh0 + >. Th0, 

h1 = Bh1 + >.Th1 + Th0, 

(2.26a) 

(2.26b) 

Since Ran B c Ran IT I a, one has {h0, ... ,hn} c Ran IT I a, which in turn implies 
t.hat Ran P 0cRan IT I a. Next, we rewrite Eqs. (2.26) as 

h0 = (I->. T)- 1Bh0, 

h1 = (i->.T)- 1Bh1 + (I->.T)- 1Th0, 

Since Ran B c D( IT I n+2+a) for 

D( IT I k+a) invariant for all imaginary ). 
h0 eD(ITin+l+a), h1 eD(ITin+a), ... , 

D( IT ll+a). • 

some O<a<l and (I->.T)- 1 leaves 

and k=1,2, ... ,n+2, we successively find 

hn eD( IT ll+a), whence Ran P 0 c 
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The operators T and B fJ satisfy the general assumptions of this section and the 

regular case applies to them. We may then define (;3 -dependent) projections P ± and 

P ± and semigroups exp{ +xT- 1 A fJ}P ± and exp{ -xA fJ T- 1}P ± and derive Theorem 2.2 

and Proposition 2.3, where A fJ plays the role of A. Let us define 

exp{+xT- 1A}P 1 + ,_ 

1 A 

exp{+xAT- }P 1,± 

where P 1 AfJP 1 A~ 1 From Eq. (2.24) it follows that these semigroups do not 

depend on fJ and that Ran P 1,± = (Ran P ±)nZ1 is T- 1A-invariant. Furthermore, 

the exponential difference operators exp{ +xT- 1 A}P 1 - exp{ +xT- 1 }Q and 
-1 A -1 ,± ± 

exp{+xAT }P 1 -exp{+xT }Q are compact. We summanze this with the 
,± ± 

following theorem. 

THEOREM 2.5. Under the conditions (I)-(IV) there is a decomposition of the Hilbert 

space H as a direct sum of the three T- 1 A-invariant subs paces Ran P 1 +' Ran P 1 _ 
' ' 

and Ran P 0 with the following properties: 

(i) 

(ii) 

The restriction of +T- 1 A to Ran P 1 ± generates a bounded analytic semigroup. 
' Ran P 0 has finite dimension and contains Ker A, while the restriction of 

T- 1 A to this subspace has purely imaginary spectrum. 

We have developed the basic ingredients for a later treatment of boundary value 

problems with non- self adjoint A. In Section 4 we shall do the same for normal T 

and for a Banach space setting (cf. Section VI.5). The notions developed parallel those 

of Chapters II to V. We remark that all of these semigroups are, in fact, analytic. 

3. Factorization of the symbol 

The classical factorization method for solving Wiener-Hopf equations on a half 

line has been discussed in Section 1. Applying this method to the integral form (2.11) 

of abstract kinetic equations, one arrives at the problem of factorizing its symbol, which 
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has the form 

W(>.) A - T(>.-T)- 1B, Re >.=0. (3.1) 

For strictly positive operators A and bounded self adjoint T a formal expression for 

the right canonical Wiener-Hopf factorization has been found in [25, 359, 360]. It was 

presented there as an application of a factorization principle for "transfer functions" of 

the form 

w(>.) ID + 0:(>.-A) - 10, (3.2) 

which in its most general form is due to Bart et al. [25, 26] For more general 

situations it is not straightforward to apply this principle to the symbol (3.1). A 

canonical factorization of the symbol might not exist, as is the situation, for instance, in 

the singular case of the previous section. Still, for many such cases factorizations (of 

non-Wiener-Hopf type) have been constructed (see [366]). 

In this section we shall obtain a canonical factorization of the symbol in terms 

of the albedo operator and prove the equivalence of the existence of a canonical 

factorization to a certain decomposition of the Hilbert space H. Let us state the 

factorization principle first (see [25, 26]). The proof is by direct computation. 

THEOREM 3.1. On Banach spaces X and Y, suppose ID:Y->Y lS invertible, and 

A:X->X, llJ:Y->X, a::X->Y are bounded. Write ID=ID 1ID 2 and A x=A-IlJID -10:. If 

mcx and mxcx are closed invariant subs paces of A and Ax, respectively, and the 

decomposition m Ell mx = X holds true, then 

where 

Here iE + is the projection of X on to m X along m. 
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The earliest applications of this theorem to the symbol (3.1) (where A=T, 

UJ=B, 0:=-T and lll=A) considered a product lll=lll 1ID 2 with ID 1 =I and 

ID 2=lll=A (cf. [25, 359, 360]). In spite of the fact that ID(O)=I, the factors thus 

obtained did not have this property. Because of the need to study the generalization 

to singular cases (considered in this section) and to construct the so-called generalized 

H-functions (considered in the next chapter), we shall make a different choice of ID 1 

and ID 2. A somewhat different generalization, already discussed in Section VI.4, will 

be of special interest if B has finite rank. Let IB be a closed subspace of H which 

* contains Ran B, and let rr:H-+IB and j:IB-+H be operators such that jrr IS the 

identity on IB and rrj the orthogonal projection of H onto lB. Then Bjrr=B ( cf. 

Section VI.4 ). We define the dispersion function by 

A(>.) = rrW(>.)j = rrAj - rrT(>.-T)- 1Bj, >. E£ u(T). (3.3) 

We note that A(>.) is a transfer function of type (3.2), where A=T, D=Bj, 

0:=-rrT and lll=rrAj. If A 1s invertible, then lil 1s invertible also and 

lll-l=rrA -lj. We thus obtain 

Ax = A-UJ!Il -IO: = A -IT. (3.4) 

We begin with a technical lemma. 

LEMMA 3.2. Let T and A satisfy the general assumptions of Section 2, and suppose 

that T-l A does not have zero or imaginary eigenvalues. Then in the strong operator 

topology we have 

I im T(T->.)- 1Q = 0, 
>.-+oo,Re >.~0 + 

I im A -lT(A -IT->.)-lP 0. 
A-+oo,Re >.~0 + 

Similar statements hold true if Q+ and P + are replaced by Q and P . 
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Proof: Denoting by u(.) the resolution of the identity of T, we obtain 

As I t(t-.>.)- 1 1 ~1 for ReX~O and t>O, and u(.) IS a bounded measure, the first 

pair of identities follow using the principle of dominated convergence. Next observe 

that 

Thus 

I im A - 1T(A - 1T-X)-lh h, 
X-+0, Re X=O 

I im A - 1T(A - 1T-X)- 1h 0. 
X-+0, Re X=O 

These limits also hold true if h is replaced by P +h. Using the maxlffium modulus 

principle we immediately have the second pair of formulas. • 

THEOREM 3.3. Suppose that T- 1 A does not have zero or imaginary eigenvalues. Then 

the following five statements are equivalent: 

(i) The convolution equation (2.11) is uniquely solvable m Lp(HJ'Q for every 

wtLP(H)0. 
(ii) For every cp + EQ+[D(T)] the boundary value problem (2.8)-(2.9) is uniquely 

solvable. 

(iii) Ran ~\ e Ran Q_ = H. 

(iv) Ran P + e Ran Q_ = H. 

(v) The symbol (3.1) has a right canonical factorization. 

If one of these statements is true and E+ (resp. E+) is the projection of H onto 

Ran P + (resp. Ran P +) along Ran Q_, then a right canonical factorization of the 

dispersion function (3.3) is given by 

(3.5) 
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where 

(3.6) 

(3.7) 

The inverses of these factors are given by 

+ -1 ( )-1 . H;(->.) = I - >.1rE+ >.-T BJ, (3.8) 

(3.9) 

Proof: The equivalence of (i) and (v) follows from Theorem 1.1, while Theorem VI 3.3 

implies that (ii) follows from (i). Using Eqs. (2.15) and (2.16) (the latter with equality 

sign) and the conclusion H + = Ran P + of the proof of Theorem 2.2, one establishes 

the equivalence of (ii) and (iii). From the proof of Theorem 2.2 and the inclusion 

Ker(I-L+)cD(T), we easily find 

T[Ran P + n Ran Q_] c Ran P + n Ran Q_. 

In the latter inclusion one has, in fact, equality (see Proposition 2.3). Hence, (iii) and 

(iv) are equivalent. We shall next prove that (iii) and (iv) imply (v), actually by 

explicit construction. 

Observe that m = Ran Q is T-invariant, mx = Ran P + is A -IT-invariant 

and m e mx = H (by assumption (iii)). Applying Theorem 3.1 for A=T, IIJ=Bj, 

<l:=-1rT and ID=1rAj with arbitrary splitting ID=ID 1ID 2, we obtain the factorization 

where 

-1 
[ID 1 + 7rT(T->.)- 1(I-E+)BjiD2 1J = IDi 1 - IDi 1 7rT(I-E+)(T->.A)- 1Bj, 

-1 
[ID 2 + IDl 11rTE+(T->.)-lBjj = ID2 1 - 7r(T->.A)- 1TE+BjiD2 1. 

Since for some 0<<p<¥.!1r one has 
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u(T I K E ) c {0} u {>. : I 7l' -arg>. I ~'f'}, 
er + 

u(A -IT I RanE} c {0} U {>. : I arg>. I ~'P}, 

(3.10) 

{3.11) 

the left factor and its inverse extend analytically to the right half plane, while the 

right factor and its inverse extend analytically to the left half plane. All four 

factors have continuous extensions to the closures of these half planes, except possibly 

at >.=co (for unbounded T) and >.=0. 

We note that all limits in the formulation of Lemma 3.2 are valid uniformly on 

compact subsets of H. Thus, exploiting the compactness of B, the factors of A(>.) 

and their inverses all have uniform limits for >. -+0 and >.-+co approaching from the 

appropriate half plane. Hence, we have, indeed, found a right canonical Wiener-Hopf 

factorization of A(>.). 

The next objective is to adjust lD 1 and lD 2 so that the factors will coincide 

with I as >.-+0 (from the appropriate half plane). We get 

(3.12) 

(3.13) 

Here we have used E +[D(T)] C D(T) and TE + = E + T on D(T), which follows from Eq. 

(2.11) (yielding 1/>(x)-w(x)fD(T)) and Eq. {2.23). Substituting ID 1ID 2 = 7l'Aj, one 

obtains 

1t'[A + E+B]j, 

Utilizing these, one may simplify the expressions for the factors of A(>.) and their 

mverses. The result is, in fact, obtained in the following manner. First observe 

(3.14) 
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Writing 

we apply a simplification, yielding 

which implies (3.9). Similarly, 

Writing TE+ = E+T (noting that Ran B c D( IT 11+a) c D(T)) and using (3.15), we 

obtain 

which simplifies to (3.8). ·Next, 

H+( ) -1 ( )-1 B. -1 ~ ->. = m2 - 1r T->.A TE+ JID 2 

Again using (3.15) we obtain 

which gives (3.6). Finally, 
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With the help of the intertwining relation TE + =E + T and (3.15 ), this simplifies to 

which yields (3. 7). • 

We provide next three sufficient conditions for the existence of right and left 

Wiener-Hopf factorizations. The sufficiency of the first condition follows easily from 

the results of Chapter II. We will prove the sufficiency of the second and third 

conditions. The second condition was studied in the context of multigroup neutron 

transport with isotropic scattering by Bowden, Sancaktar and Zweifel [57]. 

THEOREM 3.4. The boundary value problem (2.8)-(2.9) is uniquely solvable and the 

dispersion function A(z) has a right and a left canonical factorization, provided one of 

the following three conditions is satisfied: 

(i) A is a strictly positive operator; 

(ii) B has norm less than one; 

(iii) A is invertible and C = A - 1B has norm less than one. 

Proof: Part (i) follows from the equivalence theorem VI 3.3 and the results of 

Section Il.2. To prove parts (ii) and (iii), we write the dispersion function in the form 

A(z) = I-z7r(z-T)- 1Bj for Re z=O, with 1r and j of unit norm. Thus, 

III-A(z)ll :-;; sup llz(z-T)- 1 11 IIBII :-;; IIBII. 
Re z=O 

Hence, if II B II< 1, then A(z) satisfies the hypothesis of Theorem 1.4, and so it has a 

right and a left canonical factorization. 

If A is invertible, then 1rAj is invertible (with inverse 1rA - 1j) and 

A(z)(1rAj)- 1 = 7r[l+T(T-z)- 1C]j 

for Re z=O. Therefore, 

III-A(z)(?rAj)- 1 11 < sup IIT(T-z)- 1 11 IICII :-;; IICII, 
Re z=O 

and a similar application of Theorem IX 1.4 completes the proof. • 
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On inspecting Eqs. (3.6) to (3.9), one IS surprised at the conspicuous absence of 

A - 1. It is therefore reasonable to seek a generalization to singular cases. Thus, 
under the assumptions of the previous section let us consider the singular case, 

possibly with non-invertible A. In order to have a suitable analogue of statement (iii) 
of Theorem 3.3, we assume the existence of a T-1 A-invariant subspace N+ of z0 
such that 

Ran P 1 + e N+ e Ran Q_ = H. 
' 

(3.16) 

Defining N + = T[N +]' we must also have 

A A 

Ran P 1 + e N + ED Ran Q_ = H. 
' 

(3.17) 

Let E+(resp. E+) be the projection of H onto Ran P 1 +e N+ (resp. Ran P 1 + e 
' ' N+) along Ran Q_. The right hand sides of Eqs. (3.8) and (3.9) are analytic on one 

half plane and continuous up to the extended imaginary line. The right hand sides of 

(3.6) and (3. 7) are analytic on one half plane too, but their behavior on approaching 

the imaginary line is more involved. (We shall describe it shortly.) Clear-cut 

computation (as in [366]) yields that (i) the right hand side of (3.6) is the inverse of 

the right hand side of (3.8); (ii) the right hand side of (3.7) is the inverse of the 

right hand side of (3.9); and (iii) A(>..) = H~(>..)- 1H~(->..), Re>.. = 0. Thus we 
obtain a generalization of the factorization part of Theorem 3.3 to singular cases. 

Let us investigate the behavior of the right hand sides of (3.6) and (3.7) as >.. 
approaches the imaginary axis. We have to distinguish between three cases: 

(a) Let >.. 0 be a non-zero imaginary eigenvalue and let 

00 

E (>..->..o)nsn 
n=-p 

(T->..A)-l = 

be the Laurent series of (T->..A)- 1 m a deleted neighborhood of >.. 0. Then 

H~(->..) and H;(>..) have poles at >.. 0 with the Laurent series expansions 
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co 

H;(>-) = E (>.->. 0)n{6n0I-7r(I-E+)(>. 0Sn+Sn_ 1)Bj}, 
n=-p 

where we read S -p-1 =0. 

(b) Near >. =0 we have H J'(o+) = Hr(o+) = I as one approaches >. =0 from the 

closed right half plane. 

(c) Near >.=co the behavior of H~(->.) and H;(>.) is described by the Laurent 

series 

in a deleted neighborhood of >-=0. We then have 

H~(>.) = I - h'lr(I-E+)(T->.A)- 1P 1 _Bj + 
I 

C0 A 

+ E >. -n7r(I-E+)TnP0Bj, 
n=-p 

(3.18) 

(3.19) 

where (T->.A)- 1P 1 ± is an operator with values in Ran P 1 ±" The 
I I 

asymptotic expansions on approaching >.=co from the appropriate directions are 

then given by 

H~(->.) iOl! [I+'II"A - 1f>1,);+Bj) + ~ >. -n'~~"Ti0~\Bj, 
n=-p 

(3.20) 

0 
H;(>-) ~ [I+7r(I-E+)A - 1p 1 _Bj) + E >. -n7r(I-E+)Ti 0Bj, 

' n=-p 
(3.21) 

-lA 
where A P 1 ± is an operator with values in Ran P 1 ±" The difference of 

H~( ->.) (res~. H~(>.)) and its asymptotic expansio~ vanishes as >.-+co 

from the left (resp. right) half plane. 

We have thus accomplished a generalization of Eqs. (3.6) and (3.9) to singular cases. 

We summarize this in the following theorem. 

THEOREM 3.5. Let (3.16) be satisfied, and let E+ and E+ be the projections along 

Ran Q_ onto Ran P 1,+eN+ and Ran :P1,+eN+' respectively. Then the symbol W(>.) 

has the factorization (3.5) with the factors given by (3.6)-(3.9). At >.=co the 
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factors have the asymptotic expansions (3.18)-(3.21). 

4. Construction in a Banach space setting 

The first three sections were written for a Hilbert space setting, where T is 

injective and self adjoint. As was pointed out, for many applications one should allow 

that T is either a normal Hilbert space operator or a suitable Banach space operator. 

Such generalizations were discussed in Section VI.6, where an extension of the 

equivalence theorems was outlined. In the present section we shall also generalize the 

semigroup reconstruction and factorization of Sections 1 to 3. 

Let T be an operator on a Banach space H which satisfies the assumptions (A.1) 

to (A.4) of Section VI.6. We assume that B is uniformly approximable by operators of 

finite rank and satisfies the regularity condition 

3a>O: Ran B c Ran IT I an D( IT 11+a). 

Then B is a compact operator. (Note that not every compact operator is uniformly 

approximable by an operator of finite rank; see [112, 307] for counterexamples. 

However, on Hilbert spaces and Lp -spaces (1:S;p<oo),. such counterexamples do not exist.) 

By Eq. (2.1) we define the symbol of a convolution equation on H with kernel k(x) = 
){(x)B. As ){(x)B is norm-integrable over IR (cf. Lemma VI 3.1) and k(x) is almost 

everywhere uniformly approximable by operators of finite rank, Theorems 1.1 to 1.3 

apply, provided W(>.) is invertible for all extended imaginary >.. The latter IS 

equivalent to requiring that T- 1 A does not have zero or imaginary eigenvalues. As in 

the Hilbert space setting we may again distinguish between regular and singular cases. 

In the regular case we can repeat the construction of Section 2. We use the 

unique solution of Eq. (2.3) to construct bounded semigroups {V ±(x)}x~O and bounded 

complementary projections P ±. We prove the properties (i) to (vii) in the statement of 

Lemma 2.1, establish Theorem 2.2 and Proposition 2.3, and derive Eq. (2.23). In the 

singular case we again make the assumptions (I) to (IV), which are automatically fulfilled 

for bounded T, derive Lemma 2.4 and Theorem 2.5 and construct the relevant 

semigroups and projections. All proofs carry over in a natural way. 

Section 3 can be developed in the general Banach space setting by a repetition 

of those arguments. There are only two significant changes in the theory. The first 
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change, involving the operator T, anses in the first half of Lemma 3.2. Here we should 

prove the identities 

I im T(T->.)- 1Q 
>.~o,Re >.~0 + 

( 4.1 a) 

I im T(T->.)- 1Q = 0, 
>.~oo,Re >.~0 + 

( 4.1 b) 

(in the strong operator topology) by arguments which do not involve the Spectral 

Theorem for self adjoint operators. Indeed, using Eq. (13.53) of [224] (for A = 

(-TIR.an q}-l• o- 0 =0, a=')') one finds, for some £>0, 

1 l1r-arg>. I < 21T+c. 

Hence, ( 4.1 b) holds true. Also, for all k =Th we get 

0. 

Since II >.(>.-T)- 1Q+II ~ IIQ+II + c('"Y) for Re>.~O and Ran T is dense in H, one 

obtains (4.la). The second change involves Theorem 3.4. Obviously, one cannot 

generalize part (i). It is also impossible to generalize parts (ii) and (iii) in a 

straightforward way, since they are based on a Hilbert space result, namely Theorem 

1.4. 

Finally, in order to define and factorize the dispersion function we have to 

construct 1r:H~B and j:IB~H such that 1rj is the identity on IB, j1r a projection 

of H with range IB and Bj1r=B. The latter is satisfied if Ker j1rCKer B. In this 

ma1:1ner we may generalize the factorization results of Section 3. 

We now have available a Banach space theory of equivalence, semigroup 

reconstruction and factorization. In many transport theory applications one 1s 

accustomed, for reasons of mathematical convenience, to develop the mathematical theory 

in an L2 -setting, while the L1 setting is often the physically relevant one. Therefore, 

we would like to have a procedure for transferring results from the 1 2 - to the 

L 1-setting. For this reason we consider two Banach spaces H and )/, where H is 

densely and continuously imbedded in )/. (Note, in transferring results, say from 

L2 (1R) to 1 1 (IR), as is typical in gas dynamics, one may apply the subsequent theory 

in two steps, going through the intersection space L1 nL2 With norm II • 11 1 +II • 11 2.) 

On H we have operators T and B satisfying the general assumptions of Section VI.6; on 
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f{ we have operators T and B satisfying the same assumptions. Further, we assume 

that T and B are the restrictions to H of T and B, respectively. We put A=I-B and 

A =I- B. 

Let us write the symbols 

W( A) = I - A (A-T) -l B, 

for ReA = 0. Then W(A) is the restriction of W(A) to H. 

LEMMA 4.1. Let H and f{ be Banach spaces such that H is densely and continuously 

embedded in N. Let F€L{H) and 1 fL(N) be Fredholm operators such that F is the 

restriction of 1 to H. Then 

{hfH Fh=O} = {hff{: 1h=O}; ( 4.2) 

------}{ 

{Fh h fH} = {lh : hf N}. ( 4.3) 

Hence, F and 1 have the same Fredholm index, while 

dim Ker F dim Ker 1, ( 4.4) 

codim Ran F codim Ran 1. ( 4.5) 

Proof: Certainly, 

Ker F = {h f H : Fh=O} c {h f f{ 1h=O} Ker 1 

and 

Ran F = {Fh : h€H} c {1h : hf N} =Ran 1. 

Since H is dense in ){ and 1 f 1(){), the closure of Ran F in ){ will be the closed 

subspace Ran 1, which settles (4.3) and {4.5). By replacing H and N, and F and 1 

by Banach adjoints and on applying (4.5) to these adjoints, one finds (4.4). Finally, 
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using Ker FcKer l one irrunediately has ( 4.2). • 

Let us apply the lemma to W(>..) and W(>.). 

PROPOSITION 4.2. Let T,B: H-+H and T,B: N-+N be as before. Then 

(i) T- 1A and T- 1 A have the same zero or imaginary eigenvalues; 

(ii) Z>.(T- 1A) = Z>.(T- 1A) for all zero or imaginary>.; 

(iii) Assumptions (I) to (IV) of Section 2 are fulfilled for T and B if and only if 

they are fulfilled for T and B. 

Proof: Observe that W(>.) and W(>.) are Fredholm operators for all zero or imaginary >. 

(including A=oo). Thus Ker W(>.) = Ker W(>.) C H, and therefore T- 1A and T- 1 Jl 

have the same zero or imaginary eigenvalues with the same multiplicities. If 
-1 h 0 EZ>.(T A) for some imaginary >., then there exists a sequence {h1'" .. ,hn} c }{ 

such that 

(JI->.T)hn = 0. 

This implies 

W(I/>.)h0 0. 

Working backwards and applying Lemma 4.1 one finds eventually that h0 EH, which 

settles (ii). 

Obviously, assumptions (I), (II) and (III) of Section 2 are fulfilled for T and B if 

and only if they are fulfilled for T and B. Furthermore, 

Suppose (IV) applies to T and B. Then z 0 has a closed complement Z 1 in }{, 

which is invariant under T-l A. Put z 1 =Z 1 nH. Then z 1 is closed in H and invariant 

under T- 1A, while z 0nz1 ={0} and Z0 +Z1 is dense in H. Since dim Z0 <oo and z 1 is 

closed in H, also Z0+Z1 is closed in H and therefore z1 is a closed complement of z0 
in H. 

Conversely, suppo~e (IV) applies to T and B. Then z0 has a closed complement 
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z1 in H which is invariant under T- 1A. If we set Z1=Z~}(. then z1 is closed in H 

and invariant under T- 1 Jl, while Z0 +Z 1 is dense in }(. Since z 0 has finite 

dimension and Z 1 is closed in }(, we must have Z0+Z 1 =H. However, repeatedly using 

( 4.5), one finds that the codimensions of z1 in H and Z 1 in }( coincide. This in turn 

implies that 

whence z 0nz 1 ={0}. Hence, Z 1 is a closed complement of z0 in }(. • 

Proposition 4.2 permits us to apply the construction of Lemma 2.3 with the same 

choice of f3 for T, B and T, B. Below, Q+ denotes the maximal projection associated 

with T. 

THEOREM 4.3. Let T,B:H-+H and T,B:}(-+}( be as before. Then the boundary value 

problem (2.8)-(2.9) in H is uniquely solvable for all <p + EQ+(H), if and only if the 

boundary value problem 

(TI/J)'(x) -JII/J(x), O<x<oo, 

II,P(x)ll = 0(1) (x-+oo) 

* in}( is uniquely solvable for all <p+fQ+(}(j. 

Proof: The problems are equivalent to the Wiener-Hopf equations 

Joo 1 
1/J(x) - }((x-y)BI/I(y)dy = exp{ -xT- }cp +' 

0 

and 

Joo * 1 * 1/J(x) - }( (x-y)BI/J(y)dy = exp{-xT- }cp+' 
0 

O<x<oo, 

* respectively, where }( (x) is the propagator function as1>0ciated with T. In the 

regular case (which then is regular for both T, B and T, b), both convolution 
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equations are Fredholm operator equations on L00(H)~ and L00{}i)~, respectively. 

The theorem then is immediate from Lemma 3.1. In the singular case (for T, B as well 

as T, B) one performs a reduction to corresponding regular cases with one and the 

same /3. • 

5. Nonregularity of the collision operator 

In the analyses of both the integral form and the integrodifferential form of 

the abstract kinetic equation, the regularity condition {2.1) has played a crucial role. 

As a result, one might be led to conjecture that it is a necessary condition for the 

existence theorems and for the equivalence theorems posed in this and the previous 

chapters. In fact, this is not the case, as we shall demonstrate in this section. Such 

a generalization is important to treat kinetic models with collision kernels which may 

violate the regularity condition, for example, Boltzmann models in gas dynamics [218] 

and radiative transfer and neutron transport equations with arbitrary L1 -scattering 

kernels (cf. Sections IX.1 - IX.4). Ideally, one would like to remove the regularity 

condition for all collision operators of the form A=I-B with B compact. Although the 

ref!ults presented here are for B trace class, the abstract approach we shall outline 

appears to give hints on how one might obtain a generalization to B compact. 

We will start the section by introducing notions connected with the tensor 

product of Banach spaces [17 5, 176, 307]. Then we will investigate the invertibility of 

the full line convolution operator by considering it as an element of an algebra of 

Wiener type. We will utilize the notion of a bisemigroup (see Section IV.4), which is a 

pair of complementary strongly continuous semigroups acting to the left and right, 

corresponding to the left/right half space problems which have been the theme of the 

stationary theory in this monograph, and will obtain the desired existence proofs by 

proving a theorem on the perturbation of bisemigroups for "weakly" integrable kernels. 

We refer to [127,129] for additional details. 

* * Let X and Y be Banach spaces and X , Y the dual Banach spaces. By X®Y 

we denote the algebraic tensor product consisting of all finite linear combinations 

LXi®yi with X· EX, y. E Y. A norm a on X®Y is called a reasonable cross norm if 
1 1 .. * 

a(x®y)S llxllx IIYIIy for all xeX, yeY, and if x ®y is a functional on the normed 

* * * * space (X®Y,a) for all x eX , y cY with functional norm less than or equal to 
* * llx llx* lly lly*· A reasonable cross norm a on X®Y is called uniform if a((A®B)v) S 
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IIAIIIIBIIa(v) for all AtL{X), BtL{Y) and HX0Y. If X and Y are Banach algebras 

(even C* algebras), in general a cross norm will not be a Banach algebra norm. 

However, if i<CL(X) and \!!CL(Y) are Banach subalgebras, then a uniform norm a on 

X0Y induces a cross norm a on i<0\!! via 

which is a Banach algebra norm. 

We will be interested in the least reasonable cross norm II • II c' called also 

the c -tensor product, A -tensor product or injective tensor product norm, and the 

greatest reasonable cross norm II · llrr' called also the rr-tensor product, 1-tensor 

product or projective tensor product norm. By definition 

* * * * !lull c sup {I (x 0y )(u) I llx II, lly 11~1} ( 5.1) 

n n 
!lull = inf { I llx·ll llyill : u= I x.0y.}. 

1r i=1 I i=1 I I 
(5.2) 

The injective tensor product X0 c Y is the completion of X0Y with respect to II • II c, 

and similarly the completion with respect to II • llrr is called the projective tensor 

product, denoted X0 rr Y. For u t X0Y and any reasonable cross norm a one has 

!lull 0 ~a(u)~llullrr. It is straightforward to show that the cross norms c and rr 

are uniform, which implies that e and 7r are Banach algebra norms. 
* Consider a function f:IR-+X from the real line to a dual Banach space. We will 

say that f is weak-* integrable (with respect to Lebesgue measure on IR) if the scalar 

valued function < f( • ),x > is in L 1 (IR) for all xt X. 

* LEMMA 5.1. Let X be a Banach space and f:IR-+X be weak-* integrable. Then the 

map X-.1 1 (IR) given by x-+< f( · ),x > is a bounded operator. 

Proof: We wish to apply the Closed Graph Theorem. Suppose {xn}~= 1 converges to x 

m X and < f( · ),xn > converges to some function 'P( •) m 1 1 (IR). Choose a 

subsequence xn(i) so that <f(t),xn(i)>-+<p(t) pointwise a.e. Obviously, for almost every 

t t 1R we have <f(t),xn(i)>-+<f(t),x>. Hence 'P( • )=<f( · ),x>. • 

* * From this lemma we may conclude that there is an element x in X such that 

</,x> = J <f(t),x>dt for all xtX. This element / will be denoted J f(t)dt and is 
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called the Gelfand integral of f. We also have that if f is weak-* integrable then 

llfll =sup {ll<f(·),x>ll 1 : xe~, llxiiSl} (5.3) 

is a finite number. We will call it the weak-* L1 norm or the Gelfand norm of f. 
* * * Thus the space w L1 (R,X ) of all weak-* integrable functions from R to X is a 

normed space with the Gelfand norm. Clearly we can identify the algebraic tensor 
* * * product L1 (IR)®X with a subspace of w L1 (R,X ). Also the Gelfand norm (5.5) 

coincides with the E -norm. We may see then that the closure of the weak-* 
• integrable functions is precisely L1 (R)® EX . Unlike the case of weak or weak-* 

integrable functions, the space L1 (X)~00 of Bochner integrable functions is complete. 

It coincides with the projective tensor product L1 (R)® ""X and the 11"-norm is the 

Bochner norm. On the other hand, an application of the uniform boundedness principle 

shows that in the spaces of bounded or bounded continuous functions, weak and strong 

notions coincide: wL00(R,X)=L00(X)~00 and wC(R,X)=C(X)~00• 

Consider a Hilbert space H. Recall that every trace class operator C on H can 

be written in the form C=~i:laiei(·,fi), where {ei} and {fi} are orthonormal systems 

of vectors in H and ai are positive numbers, the singular values of C, which are 

summable. If A is any bounded operator, tr(AC) = ~ i : 1 ai(Aei,ei)· We denote the 

trace norm on K 1 (H), the trace class operators, by II • II (1)' to differentiate it from the 

II • 11 1 norm on L1 (R), and have 

The finite rank operators on H can be identified with H®H. It is easy to see that the 

E -norm is the usual operator norm, so H® EH = K(H), the compact operators on H, 

and the 11"-norm is the trace norm, so H®""H = K1(H). Moreover, viewing them as 
* * Banach spaces we have K1 (H) ... (K(H)) and (K1 (H)) = L(H), the bounded operators 

on H (cf. [142)). For future reference we note that every element of the tensor 

product L1 (R)®L(H) induces a bounded operator on L00(R)® EH by 

n m n m 
[ ~ f.(t)®V.J( ~ g.®w.) = ~ ( ~ (f.•g.(t))®V.w.) 
i = 1 1 1 j = 1 J J i = 1 j =1 1 J 1 J 

for fiEL1(R), gjEL00(R), ViEL(H) and wjEII. 

Let T be an injective self adjoint operator on H with resolution of the identity 

u, and define the pNpagator function N(x)h = Ju(S)E(t,x)u(dt)h for all hEH, 
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where E(x,t) = It l- 1exp{-x/t} for xt>O and E(x,t) = 0 for xt<O. We wish to 

construct the projections P ± and the corresponding semigroups from the solutions of 

the full line convolution equation 

1/J(x) - Jco ){(x-y)BijJ(y)dy = w(x). (5.4) 
-co 

LEMMA 5.2. Let B be a trace class operator on H. Then the convolution operator 

(Lij!)(x) = I co 

-co 
){(x-y)BijJ(y)dy 

is a bounded operator from L (H)co into C(H)co . 
oo -oo -oo 

Proof: Let us first consider the case when Bh = <h,g>f for certain f,gtH of unit 

norm, and consider an arbitrary vector e t H of unit norm. 

!/! l Lco(HJ':'co we have 

<(Lij!)(x),e> = Jco <){(x-y)f,e><I/J(y),g>dy. 
-co 

In a straightforward way we obtain the estimate 

Then for all 

Taking the supremum on both sides with e ranging over the vectors of unit norm and 

using the previous lemma, we get 

Next, let us suppose that Bh = ~i = 1 ')'i<h,gi>fi, where {fi}'i = 1 and {gi}'i = 1 

are orthonormal sets in H and b i}'i = 1 is a nonincreasing sequence in £ 1 of 

nonnegative numbers. Then 

co 
~ 'l'·llf.llllg.llll¢11 

i= 1 I I I co 

where II B II ( 1) is the trace norm of B. 

In order to prove that L IS a bounded operator as a map from Lco(H)'::'co into 
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C(H)00 , we approximate B in the trace norm by a sequence of trace class operators -co 
{Bn};=1 satisfying the regularity condition (2.1). (Such an approximation is construct.ed 

in the proof of Theorem 5.5.) Since the regularity condition is sufficient to guarantee 

that L maps L (H)00 into C(H)00 , we may conclude that L has the same co -oo -oo 

property for any trace class operator B. • 

We will prove shortly that the operator I-L is invertible if and only if T- 1 A 

does not have zero or purely imaginary eigenvalues. This will be accomplished using the 

generalization by Bochner and Phillips to noncommutative Banach algebras of the theory 

of Fourier integrals and maximal ideals by Wiener and Gelfand. We shall give a brief 

summary of this theory. 

Let Z and 1 be Banach algebras with unit. Assume that Z IS commutative. By 

Z®1 we denote the algebraic tensor product consisting of finite sums ~:Z/i· 

Evidently this is an algebra. Because both Z and 1 have a unit, we may assume that Z 

and 1 are inside Z®1, and, moreover, Z will be in the center of Z®1. Next 

suppose that Jl is a Banach algebra with unit e, such that Z®1 is dense in Jl and 

the norms on Z and 1 coincide with the norms induced on Z and 1 as subspaces of 

J!. Every multiplicative functional <p:~4:: induces an algebra homomorphism ~:Z®1-+1 

via ~(~:Z/i) = L<p(zi)fi. Following (149] we call the algebra Jl a Z®1 -algebra 

if. all the induced homomorphisms ~ are bounded operators from Z®1 with the 

J! -norm to 1. Therefore we can extend each induced homomorphism to a Banach 

algebra homomorphism ~:.11-+1. 

Wiener (391) proved the following important lemma, which was crucial in the 

proof of his Tauberian theorems. 

LEMMA 5.3. (Wiener) Let f be a function from the unit circle T to the complex 

numbers 4:: and suppose f(z) is invertible for every zt T, i.e., f:T-+4:: \ {0}. Then if f 

has an absolutely convergent Fourier expansion, so does 1/f. 

The above lemma was one of the first testing grounds for the maximal ideal 

theory for commutative Banach algebras developed by Gelfand (132, 134]. Gelfand's 

proof was extremely short and elegant compared with the proof of Wiener. Bochner 

and Phillips obtained a substantial generalization of Wiener's Lemma ([45), also (4, 149]). 

Roughly speaking they changed the scala.r" from the field of complex numbers to a 

noncommutative Banach algebra by tensoring the commutative Wiener algebra with the 

noncommutativc: algebra. 
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Theorem 5.4. (Bochner-Phillips) Let A be a Z0l -algebra. An element a f A has a 

left, right or two-sided mverse m A if, for each induced homomorphism <1>, the 

element <l>(a) f l has a left, right or two-sided inverse, respectively. 

Let us define a norm II u II a on ill 0 = L1 (IR)0L(H) to be the operator norm of 

u fill 0 viewed as a bounded operator on L00(IR)0 6 H, and consider a multiplication on ill 

induced by convolution in L1 (IR) and operator multiplication in L(H). One sees readily 

that II • II a is a reasonable cross norm on ill = L1 (IR)0 aL(H), and, even more, is a 

Banach algebra norm. In fact, the submultiplicativity and the bound llull ::;;llull 
* ~ rr 

for u fill 0 are evident. Suppose that ¢ f{L 1 (IR)) =L00 (IR) and <p f{L(H)) with 

II¢ II 00 =II <p II= 1. Since L1 (IR) contains an approximate unit {uk}k= 1 satisfying 

ukfL00(1R)nL 1(1R), llukll 1=1 and l~mllf*uk-fll 1 =0, one has, by Fubini's Theorem, 

¢(f *Uk) = Joo ¢(t) Joo f(s)uk(t-s)dsdt = Joo uk( -t) Joo f(s)¢( -(t-s))dsdt 
-oo -oo -oo -oo 

n 
where uk(t)=uk(-t) and fP(t)=¢(-t). 

obtain 

Therefore, for I f.0V. f L1 (IR)0L(H), we 
i = 1 I I 

n n 
l(¢0<p)( I f.0V.)I ::;;sup{ll I (f.V.h)ll :hER, llhll=l}::;; 

i=l I I i=l I I 

n n 
::;; I im sup {II I uk(f·*fli)V.hll : hfH, llhll=l}::;; II I f.®V.II , 

k i=l I I i=l I I a 

and II · II a is a reasonable cross norm. 

Writing I for identity in L(H) and CeL1 (IR) for L1 (IR) with an identity adjoined, 

we will define Z = (CeL1 (IR))01 and 'A the completion of (CeL1 (IR))0L(H) with 

respect to the norm 

n 
II I (13.+f-)0V.II'A 

i=l I I I 

n n 
11 1. I= 119iViiiL(H) + II I f.0V.II . i=l I I a 

Then II • II 'A is a Banach algebra norm and 'A 

multiplicative functionals on Z are precisely 

1s a Z0L(H)-algebra. Indeed, the 

<I>A (j9ef( • )I)=f(A) for A fiR and 

<1>00(/9ef( · )I)=/9, where 

compute (for A fIR) 

represents the Fourier transform. Thus, we may 
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n n At At 
114>,( L f.V.)II =sup {II L (e f.(t)•e- )V.hll: h€H, llhll=1} ~ 

"i=111 i=l I I 

n 
~sup {II L (f.(t)•g(t))V.hll : h€H, g£L (IR), ilhll=llgll =1} ~ 

i= 1 I I oo oo 
n 

~ II L f.V.II . 
i= 1 I I a 

According to the Bochner-Phillips Theorem 5.4, it is necessary and sufficient 

for the unique solvability of Eq. (5.4) on L00(H('00 that the values of its symbol be 

invertible elements of the Banach algebra !\. For the !at ter to be true it is necessary 

and sufficient that the symbol 

W(>.) = I - Joo ex/>.){(x)Bdx 
-oo 

of Eq. (5.4) be invertible for all extended imaginary >.. Since W(>.) 

(T->.)- 1(T->.A), it is necessary and sufficient for unique solvability that T- 1A does 

not have zero or purely imaginary eigenvalues. 

We recall now the notion of a strongly continuous bisemigroup E(t) on a Hilbert 

space H, and maintain the notation of Section IV.4. 

projections 

s-lim(±E(t)) 
±tJO 

In particular, the bounded 

are the separating projectors of the bisemigroup, and we will denote by S the generator 

of E(t). We will also write E(t;S) and exp{-tS} for the bisemigroup generated by S. 

In the case that S generates a decaying semigroup one observes that II± are the 

maximal positive/negative spectral projectors for the operator S, i.e., u(SII±) c 

{>. €CC : ±Re>.~o}. 

For an angle 0 < (} ~11' I 2 we denote sectors about the real ax1s by r (} ± 

with and Let us assume that 

S is a spectral operator of scalar type (see Section XIII.2; also [105], [109] vol. III) on 

a Hilbert space H with spectral measure dE(>.), i.e., 

s I >.dE(>.). 

u(S) 
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Assume also that a(S)cf rr/ 2_ 0 for some 0<0 1<rr/2 and that zero is either in the 

resolvent set or in the continuo~s spectrum of S. It is immediate to check that S is a 

generator of a strongly decaying analytic bisemigroup of angle at least () 1, with 

separating projectors given by the spectral projectors II± =1:( a(S)n{±Rez~O}). If 

S - 1 is a bounded operator, the bisemigroup is exponentially decaying. 

We wish to establish sufficient conditions so that a perturbation Sx=SA will 

still generate a bisemigroup. Besides the assumptions on S made above, suppose also 

that a(Sx) is contained m a sector about the real axis and that B = 1-A is trace 

class with Ker A = {0}. 

THEOREM 5.5. If S is a spectral operator of scalar type with a(S) and a(SA) 

contained in a sector about the real axis and zero in the resolvent set or continuous 

spectrum of S, and if B = 1-A is trace class with Ker A = {0}, then Sx generates an 

analytic bisemigroup Ex(t) with separating 

E(t)-Ex(t) and II± -II~ are compact. The 

If a(S) has a gap at zero (i.e., s- 1 is bounded), 

projectors II~. For any t dR \ {0}, 

bisemigroup Ex(t) is strongly decaying. 

then Ex( t) is exponentially decaying. 

Proof: Consider the operator valued function k(t)=SE(t)B defined for t d~ \ {0}. 

We claim that k € L 1 (IR)® aL(H). Indeed, let us write 

k(t)h I 
J::e~tAdl:(A)Bh, 

-J Ae-tAd~(A)Bh, 
-oo 

t>O, 

t<O, 

let B = Ii = 1 s/i( • ,ei), with {ei}'i = 1 and {fi}'i = 1 orthonormal families and {si}'i = 1 

the singular numbers, and denote the trace norm IIBII(l)=Ii= 1si. For 

gEL,)H):'00, llgll 1 =1 and hEH, we have 

00 4 
I (Bg(t-r),l:(A)h) I ~ I I ~s.l (h .. ,l:(A)h .. ) I, 

i = 1 j = 1 I IJ IJ 

where 
. /2 

h··=h+(-1)1 e. for j=1,2,3,4. 
IJ I 

Therefore, by Fatou's Lemma and Fubini's 

Theorem, 
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oo 4 Joo 2 L L J4s. diiE(X)h .. ll . 
i = 1 j = 1 I 0 IJ 

( 5.5) 

Similarly, we obtain 

-t drt Xe-r>.ld(Bg(t-r),E(X)h)l ~ 
-oo -oo 

oo 4 Jo 2 L L J4s. diiE(X)h .. ll 
i=1 j=l I -oo IJ 

( 5.6) 

By (5.5) and (5.6), we get 

Jo Jo x iik•gll E ~sup{- dr Xe-T ld(Bg(t-r),E(X)h)l + 
t ER -oo -oo 

Hence, likll a ~ 4IIBII(l)" 

Now consider kn(t) = SE(t)Bn, where Bn = L~ 1s.f.( • ,e.) IS a finite rank I= I I I 
approximate of B. By the above argument, we have also 

for each gEL00(H)':'00, llgiiE=l. Since }{(·)=SE(•)EL1(1R)®EL(H) by an easy 

calculation (cf. [118]), there exists {up)}j = 1 cL1 (IR)®L(H) such that 

ir}{(·)-u.(·)ll.,-+0 as j-+oo. Define k· (t)=u.B. Then J ~ J,n J n 

ll(u.B )•giiE ~ sup {sup ~ s-J00 dr I (g(t-r),e.)(u.(r)f.,h) I /llhll} ~ 
J n t E R h E Hi = 1 1 -oo 1 J 1 

n 
~ sup_L silluJ·IIE = IIBnll(l)lluJ.IIE' 

tEIRI=l 

and so k. E L1 (IR)® L(H). A similar estimate gives J,n a 

n 
ll(k. -}{( • )B )•gil., ~ sup { L s-ll((u.-}{)f.,h)il 1 /ilhll}. 

J,n n ~ h E H i = 1 1 J 1 

Therefore, kj,n approaches kn as j-+oo in the topology of II· lla' whence 

k E L 1 (IR)® aL(H). 

Next, let us consider the convolution operator, 
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(L,P)(t) = Joo k(t-s),P(s)ds, 
-oo 

n L (H)00 . From the assumptions on B it follows that the symbol W(>.) = 

-S(S:>.)--1~ = (S->.)- 1(Sx->.) has a bounded mverse on the extended imaginary 

x1s. We can apply the Bochner-Phillips Theorem to conclude that the operator 1-L 

invertible with inverse I+L x, where 

(L x,P)(t) = Joo k x(t-s),P(s)ds, 
-oo 

and k x! L1 (IR)0 aL(H). 

We claim that Ex(t)h=(I+Lx)E(t)h, for h!H and ttlR\{0}, is the bisemigroup 

enerated by Sx First let us check that Ex(t) defined above is a bisemigroup. Fix 

some s>O and h!H and define 1/>(t)=Ex(t+s)h if t>O and ,P(t)=O if t<O. When 

>0 we have 

(1-L),P(t) = Ex(t+s)h- J00k(t+s-r)Ex(r)hdr 
s 

= (1-L)Ex(t+s)h + r k(t+s-r)Ex(r)hdr, 
-oo 

mce for r<s we have t+s-r>O and k(t+s-r)=E(t)k(s-r), while for r>s we have 

I=E(t)k(s-r). We can rewrite the above as 

(1-L),P(t) = E(t+s)h + E(t)LEx(s)h = E(t)(E(s) + LEx(s))h 

l'herefore, 1/>(t)=Ex(t)Ex(s)h for t>O. When t<O we have 

(1-L),P(t) = E(t)r k(s-r)Ex(r)hdr = E(t)(E(s) + LEx(s))h = E(t)Ex(s)h. 
-oo 

Combining the two cases and recalling the definition of 1/>(t), we get 

Ex(t)Ex(s)=Ex(t+s) for t,s>O and Ex(t)Ex(s)=O for t<O, s>O. 

It is easy to see that Ex(t) is strongly continuous and bounded. To check that 

1:+11:=1, note that convolutions are smoothing, hence the jump of Ex(t) at t=O is 

equal to the jump of E(t) at t=O, i.e., 

E( +O)h - E( -O)h (11+ +11_)h h. 
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Therefore Ex(t) is a bounded strongly continuous bisemigroup. 
X -By assumption, u(S )cr1r 12 _ 02 for some 0<0 2<1r/2. Taking a double sided 

Laplace transform, we get immediately 

(Sx-.>..)- 1h = Jco e.>..tEx(t)hdt, Re.>..=O, .>..,.o, hfH. 
-co 

Hence Sx is the generator of Ex(t) and II~ are positive/negative spectral projectors for 

sx. 

If cp€[0,0), where 0=min{0 1,o 2} then all the above applies as well for 

and eicpsx, i.e., eicpsX is the generator of a bounded bisemigroup, SO SX 

generates a bounded analytic bisemigroup of angle at least 0 (cf. [213], Theorem IX 

1.23). 

We will show next the compactness of E(t)-E(t)x, and consequently of 

IIx -II Set ~ (t)= It 11 /nx1_ ](t), where X[ b] is the characteristic function ± ± n n,n a, 
of the interval [a,b]. Denote Bn =~n(S)B. Obviously SE( • )Bn is a Bochner integrable 

function. On the other hand, using the functional calculus for S and the dominated 

convergence theorem, we get that ll(~n(S)-I)hll->0 as n->co for every hfH, hence 

ll(~n(S)-I)CII->0 as n->co for every compact operator C. Now, B can be written as 

B=CD, where C is compact self adjoint and D is trace class. Indeed, denote by u 

the sum of the singular numbers si and by u n the partial sums. Choose a strictly 

increasing sequence of natural numbers {k(r)} such that u-uk(r)~3-ru for r=1,2, .... 

Setting ci=2-r and di=2rsi for k(r-l)<i~k(r), the desired operators are 

C=Lc/i(·,fi) and D=Ld/i(·,ei). Note that IIDII(l) = Ldi ~ 3u = 3IIBII(l)" 

Then we will have that ll(~n(S)-I)BII(l) ~ IIDII( 1 )11(~n(S)-I)CII ..... 0 as n->co. From 

before we have 

II Jco k(t-s)Ex(s)dsll ~ const.IIBII(l)• 
-co 

Let E~(t) denote the bisemigroup generated by S(I-Bn). We have then that 

E(t)-E~(t) is compact for any n by Bochner integrability. From this and the above 

considerations we may conclude that E(t)-Ex(t) is compact. 

Because D((Sx)- 1)=D(S- 1) is dense, zero is either in the resolvent set or in the 

continuous spectrum of Sx, and hence Ex is strongly decaying. If the operator S has a 

gap at zero, then it is immediate that E(t), and hence k(t), is exponentially decaying. 

It then follows [134] that kx(t) will be exponentially decaying, implying the exponential 

decay of Ex(t). • 
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In effect, Theorem 5.5 provides for the unique solvability of the boundary value 

problem (2.8)-(2.9). Let us assume that the operator T is injective and self adjoint on 

the Hilbert space H, and that A is accretive with B = 1-A finite rank and Ker A = 

Ker(A+A *) = 0. With S=T- 1 the separating projectors II~ corresponding to the 

analytic bisemigroup generated by Sx =T- 1 A are precisely the complementary projections 

P ± associated with the transport operator K=T- 1 A. The unique solvability of the 

boundary value problem 1s equivalent to the invertibility of the operator 

V=Q+P + +Q_P _. The existence of the albedo operator E=V- 1 follows from the 

accretiveness assumption by the argument presented Section IV.4 for nonsymmetric 

collision operators. 

COROLLARY 5.6. For every <p + tQ+ D(T) the boundary value problem (2.8)-(2.9) has 

a unique solution 1/i(x)=exp( -xT- 1 A)E<p +' which is decaying at infinity and is square 

integrable m x. 

decaying. 

If T is a bounded operator, then the solutions are exponentially 

These results may be extended to collision operators with nontrivial kernel 

satisfying Ker A = Ker(Re A) by a decomposition of the type introduced in Chapter 

III. For details see [129]. 



Chapter VIII 

ALBEDO OPERATORS, H-EQUATIONS AND REPRESENTATION OF SOLUTIONS 

1. Albedo operators and H-equations: the regular case 

In the previous chapters we have defined the albedo operator, which specifies 

the full boundary value of the solution of a half space problem in terms of partial 

range boundary data. In this section we shall construct, under the general assumptions 

of Section VII.2, the albedo operator in terms of certain special functions. These 

functions generalize the H-functions,. which were first extensively studied by 

Chandrasekhar [89]. 

The method we are about to describe was introduced m transport theory by 

Burniston, Mullikin and Siewert [58] for two group neutron transport. with isotropic 

scattering. It was applied to one speed neutron transport with degenerate anisotropic 

scattering by Mullikin [27 4] and generalized to a large class of multigroup type models 

by Kelley [216]. An abstract approach presented by van der Mee [366] will be the 

basis of the present and the next section. 

The first part of the construction can be carried out for general convolution 

equations on a half line (see [139, 141]). It was only m a rather late stage of the 

development of convolution equations theory that Krein [227] observed the connection 

with H-functions. For certain scalar Wiener-Hopf equations, this connection was 

already thoroughly analyzed by Busbridge [61]. 

Let us consider a (real or complex) Banach space X, and let ktL1 (L(XJ)':00. 

According to Theorem VII 1.1, if the symbol 

W(>-.) = I - J"" ex/).. k(x)dx 
-oo 

for Re A =0 has a right canonical factorization, then for every w f Lp(XJ'Q 

(1~p~oo) and for every w t C(X)~ the Wiener-Hopf equation 
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1/>(x) - r k(x-y)lj>(y)dy = w(x), O~x<oo, 
0 

(1.1) 

has a umque solution 1/> E Lp(X)~ , or correspondingly 1/> f C(X)~, which 1s given 

by 

1/>(x) = w(x) + Joo 1(x,y)w(y)dy, O~x<oo. 
0 

(1.2) 

PROPOSITION 1.1. The resolvent kernel 1(x,y) satisfies 

( 1. 3) 

where ReJl~O, Rev~O, 8 ( ·) is the usual 8 -function, and 

for Re >-=0 is a right canonical factorization of W(>.)-l 

Proof: Let us solve Eq. (1.1) with ,right hand side w(x)=e-x/vh, where Rev>O and 

h f X. Then its solution 1j> satisfies 

which is the left hand side of Eq. (1.3) acting on the vector hEX. Using the 

Wiener-Hopf method explained in Section VII.1 and the factorization of W(>.), we 

obtain the Riemann-Hilbert problem 

The right hand side we simplify to JlV(Jl-v)- 1Hr(Jl)h. As the solution we find 

J00eYIJllj>(y)dy = ~H (-JJ)H (v)h 
0 Jl-V t r ' 

H ( Jl) -H ( v) 
r r h 

Jl- v ' 
JO ey I Jllj>(y)dy = JlVHr(Jl)-1 

-oo 

which implies ( 1. 3 ). • 
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In the next theorem we give a simple application. Let T be an injective self 

adjoint operator and B a compact operator on a Hilbert space H satisfying the 

regularity condition 

3a>O: Ran B c Ran IT I anD( IT 11+a). (1.4) 

Put A = I-B, and suppose that T- 1 A does not have zero or imaginary eigenvalues (the 

* regular case). Choose a closed subspace IB:::JRanB , and let 1r:H->IB and j:IB->H be 

operators such that 1r j ts the identity on IB and j1r the orthogonal projection of H 

onto lB. As in Chapter VII we define the dispersion function A(:>..) by 

A(:>..) = I - Ioo 

-oo 
( 1.5) 

By Theorem VII 3.2, the dispersion function has a right canonical factorization 

A(:>..)- 1 = u;(-:>..)H;(:>..) for Re :>..=0, and the boundary value problem 

(Tlf>) '(x) = -Alf>(x), O<x<oo, ( 1.6) 

cp +' ( 1.7 a) 

ll!f>(x) II = 0(1) (x->oo) (1.7b) 

has a unique solution in H for every cp + { Q+[D(T)]. 

THEOREM 1.2. Let u( •) be the resolution of the identity of T, and !f>(x) the 

unique solution of (1.6)-(1.7). Then the boundary value !f>(O) = E+cp + is given by 

where E+ is the projection of H onto Ran P + along Ran Q_. Here u(dJl) is 

integrated over ( -oo,O) and u(dv) over (O,oo). 

Proof: According to Theorem VI 3.4 problem (1.6)-(1.7) is equivalent to the 

Wiener-Hopf equation 
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oo T-1 
1/>(x) - J N(x-y)B!f>(y)dy = e-x <p +' O~x<oo. 

0 

Using Bjrr=B and putting X(y) = rr!f>(y), we obtain 

T-1 Joo 
!f>(x) = e-x <p + + N(x-y)BjX(y)dy, 

0 

where 

oo T-1 
X(x) - J rr N(x-y)BjX(y)dy = rre -x <p +' O~x<oo. 

0 

The latter Wiener-Hopf equation IS uniquely solvable (on an appropriate space of 

H-valued functions), because its symbol A(X) has a right canonical factorization. In 

fact, with the help of the representations 

N( -y) -t -co 
( 1. 9a) 

and 

-1 
-xT Q 

e + (1.9b) 

one obtains 

Applying Theorem 1.1, this gives 

Changing the order of integration (allowed because of Fubini's theorem applied to the 

multiple integrals obtained by computing (E +'P +,h)) we obtain 

0 00 

E <p = <p - J J u(dJl) x 
+ + + -co 0 
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x.!. Bj[J00dy J00dz eYIJle-z/v{o(y-z)+')'(y,z)}]rru(dv)cp+' 
Jl 0 0 

where u(d~t) is integrated over ( -oo,O) and u(dv) over (O,oo). One may now use 

(1.3) to obtain the boundary value (1.8). • 

In Section 4 we shall give several applications of formula (1.8). We notice that 

A JO Joo + + E <p = <p + u(d~t) __1!:_ BjH,(-~t)H (v)rru(dv)cp 
+ + + -oo 0 v- P. .. r + 

1s a bounded operator on H which leaves invariant the domain of T and s~tisfies TE+h 

= E+Th for hfD(T). Evidently, E+ is the projection of H onto Ran P + along Ran 

Q_. 
Let us derive the analogs of Chandrasekhar's H-equations. For this purpose, we 

normalize our factors by requiring H;(o+)=H;(o+)=l. 

THEOREM 1.3. We have the coupled non-linear integral equations 

(1.10) 

(1.11) 

These functions are the only bounded strongly measurable functions from (O,oo) into 

L(H) satisfying Eqs. (1.10) and {1.11) whose inverses extend to functions analytic on 

the open right half plane and continuous on its closure. 

Proof: Premultiply {1.3) (with Jl,V replaced by -t,z) by t- 1rru{-dt)Bj and 

integrate over {O,oo). Then 

= Joo Joo dx Joo dy e -x/te -y /z{-rru{ -dt)Bj{ o {x-y)+'l'(x,y)}. 
0 0 0 

Performing the t-integration at the right, one finds 

foo __.!.._t rru{ -dt)BjH~(t)H+(z) 
0 z+ z r 
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J
oo oo 

= dx J dy 7rN(-x)Bj{h(x-y)+')'(x,y)}e-y/z. 
0 0 

In terms of the solution W z(x) of the Wiener-Hop£ equation 

w (x) - Joo N(x-y)Bw (y)dy = e-y/zi, 
z 0 z 

one gets 

which equals wz(O)-I. But also (cf. Section VII.1), 

W (0) = Joo e-x/z{8(x)+I(O,x)}dx = I + J 0 ex/z £ _(x)dx = H;(z), 
z 0 -oo 

which establishes ( 1.11 ). 

On the other hand, we may postmultiply (1.3) (with Jl,ll replaced by -z,t) by 

t- 11ra(dt)Bj, integrate over (O,oo) and perform the t-integration. We find 

J
oo Joo oo 
0 z!tH;(z)H;(t)1ra(dt)Bj = 0 dy J 0 dx{8(x-y)+l(x,y)}e-x/z7rN(y)Bj. 

The expression between square brackets is the solution of the equation 

<I> (y) - Joo <I> (x)1r){(x-y)Bjdx = e-y/zi 
z 0 z 

(cf. [141]; for infinite dimension see [117]). Hence, 

<I> z(O) - I. 

However (cf. Section VII.1), 

which establishes (1.10). 

In order to establish the uniqueness part of this theorem, let H; and H; 

be two bounded strongly measurable functions from (O,oo) into H that satisfy Eqs. 

(1.10) and (1.11). Obviously, the right hand sides of these equations are analytic on 
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the open right half plane and continuous on the closed right half plane (with co 

included), while H;(o+)=H;(o+)=I. Equations (1.10) and (1.11) imply that their 

right hand sides are invertible for all but finitely many Re z~O (see after the proof 

of Theorem 2.2 for details). Then, writing f(z) = H;(z)- 1H;(-z)- 1, we have, for 

all but finitely many Re z=O, 

Writing 

one finds 

+ z s:s: (z+t)- 17ru(-dt)BjH;(t)t(u+t)- 1H;(u)7ru(du)Bj + 

+ z s: s: u(t+u)- 17ru( -dt)BjH;(t)(z-u)- 1H;(u)7ru(du)Bj. 

By analytic continuation Eqs. (1.10) and (1.11) hold true for imaginary z. Then, 

since A(z)=7r{l-z(z-T)- 1B}j. Hence, H;(z) and H;(-z) are factors appearing in 

a right canonical factorization of A(z)- 1 and which satisfy H;(o+)=H;(o+)=l. Thus 

they are unique. • 

Finally, let us discuss a possible Banach space generalization. Since Theorems 

1.1 and 1.2 rely on the resolution of the identity of T, it would seem that one must 

assume, in addition to the hypotheses of Section VI.6, that T is a scalar-type spectral 

operator. This means that T should admit the representation T = J tu{dt), where 

u( ·) is a suitable (non-orthogonal) projection valued measure. For an account of the 

theory of spectral operators we refer to the monographs of Dunford and Schwartz 
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[I09] and Dowson [I05]. Similar remarks on Banach space generalizations can be made 

with regard to Sections 2 and 3 of this chapter. 

2. Albedo operators and H-equations: the singular case 

In the previous section we derived a formula for the albedo operator appearing 

in the solution of half space problems. We restricted ourselves solely to the regular 

case, where T-I A does not have zero or imaginary eigenvalues. Here we shall drop this 

assumption and adopt the hypotheses (I) to (IV) of Section VII.2. Generally, E + =EQ+ 

is replaced by the projection of H onto Ran PI,+e N+ along Ran Q_, where N+c z0 
for 

-I z0 = e Z;>.,(T A). 
Re>-.=0 

Assuming the decomposition 

Ran PI + Ell N + E& Ran Q_ = H, 
' 

we seek to construct the projection E+. 

(2.I) 

There is one ob'lious strategy to compute E+. Let us take a complement N _ of 

N+ in Zo, and an operator /3 on Zo without zero or imaginary eigenvalues, which IS 

reduced by the decomposition N+ eN_ Zo and which satisfies a(/3 I N±)c 
{±AEC: Re >-.>0}. We then replace A by A/3 = TriP 

0 + API, where Po 
and PI are the complementary projections with ranges z0 and ZI, respectively (see 

Lemma VII 2.3). Then E+ is the projection obtained from the albedo operator for the 

regular half space problem with T and A replaced by T and A /3' and Theorems 1.2 

and 1.3 provide E + and generalized H-equations. 

The above procedure for finding E+ utilizes, of course, a modified dispersion 

function 

for Re A=O and B,a = I-A.B. The usual applications m transport theory, however, 

are based on the (unmodified) dispersion function 
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A(>.) I - >.rr(>.-T)- 1Bj. 

We would like to study the abstract problem, utilizing the latter dispersion function 

also. In this respect we are thwarted by a considerable lack of theory of Wiener-Hopf 

equations. Existing theory is developed for the case when the symbol of the equation 

(i.e., A(>.)) has a Wiener-Hopf factorization. In the singular case, this is no longer 

satisfied. Nevertheless, the equations derived in Section 1 make sense for singular 

cases, if H; and H; are suitably defined. We shall give an ad hoc proof of 

Theorems 1.2 and 1.3, by using the factorization results of Section VII.3 for singular 

cases. 

THEOREM 2.1. Assume the decomposition (2.1), and let E+ be the projection of H 

onto Ran P l,+ eN+ along Ran Q_. Then E + is given by Eq. {1.8), provided H; 

and H; are the factors in the factorization of W(>.)- 1 given by 

(2.2) 

(2.3) 

Here E+ is the unique bounded projection satisfying TE+ 

Proof: First we compute, for cp+ tQ+[D(T)] and J-1>0, 

where v(I-E+)(T-vA)-l has an analytic continuation to the right half plane. Using 

vB = (v-T)+(T-vA), one finds 

s:~~~J.IH;(v)rru(dv) = rrT(T-J-1)-lQ+ - rr(I-E+)T(T-J-1)-lQ+ 

1rE + T(T-J.~)- 1Q+' 

and hence 

{2.4) 
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Substituting (2.2) we obtain 

Noticing Jl(T-JlA)- 1E+ has an analytic continuation to the right half plane, we obtain 

with the help of (2.4). Next, it should be observed that B=I-A and A!Ran E+]=Ran 

E+. Thus, the right hand side allows the following simplification: 

Further simplification is obtained by using the identity 

which follows directly from the intertwining relation TE + =E + T on D(T). We get 

which finally establishes Eq. (1.8). • 

Next we shall derive Eqs. (1.10)-(1.11). 

THEOREM 2.2. Assume the decomposition (2.1), and let E+ be the projection of H 
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onto Ran P 1 e N along Ran Q . ,+ + - Then the functions defined by Eqs. (2.2) and 

(2.3) satisfy the generalizations (1.10) and (1.11) of Chandrasekhar's H-equations. 

Proof: Let us consider the right hand side of Eq. (1.10), where Re z;;o:o. Inserting 

(2.2) one finds 

where t(I-E )(T-tA)- 1 extends to an analytic function in the right half plane. Using + 
Eqs. (2.4) and (VII 3.8), the expression simplifies to 

Next, substituting (2.3) in the right hand side of Eq. (1.11), one obtains 

= I - z1l'(z-T)- 1Q_Bj + z J0 (z-t)- 11l'O'(dt)(tB)(T-tA)- 1E+Bj, 
-co 

where t(T-tA)- 1E+ has an analytic continuation to the left half plane. With the help 

of Eqs. (2.4) and (VII 3.9), we obtain the simple expression 

which completes the proof of the theorem. • 

The uniqueness problem for the solution of the generalized H-equations (1.10) 

and (1.11) is far more complicated for the singular case than it is for the regular case. 

The mam reason is that though H~(z)- 1 and H;(z)- 1 must be analytic in and 

continuous up to the boundary of the right half plane, this no longer holds for H~(z) 
and H;(z) themselves. Starting from bounded strongly measurable solutions H~, 
H;:(O,oo) ..... L(H), the right hand sides of Eqs. (1.10) and (1.11) must be analytic in 

and continuous up the boundary of the right half plane. Because of the condition that 

B is a compact operator satisfying (1.4), the right hand sides are compact perturbations 
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of the identity and approach the identity uniformly as z-+0 from the right half plane. 

Then, according to the analytic version of the Fredholm alternative, the right hand 

sides are invertible for all but finitely many Re z~O. (Observe that the continuity 

extends to oo, when approached from the right half plane.) For all but finitely many 

imaginary z we repeat the last part of the proof of Theorem 1.3 and obtain 

H;(z)- 1 H~(-z)- 1 A(z) for Re z=O. Note that on requiring analyticity of 

H;(z) and H~(z) in the open right half plane, these functions may still have poles 

at imaginary points of non-invertibility of A(z) and may still be O(zn) for some n~O 

on approaching oo from the right half plane. It is not at all clear how physical 

considerations should lead to uniqueness. Uniqueness might be obtained, for example, by 

specifying the principal parts at the imaginary points of non-invertibility of A(z), by 

specifying operator polynomials P J'(z) and P r(z) such that 

I im IIH;(z)-P i'(z)ll o, 
Z-+oo,Rez~O 

I i m IIH+(z)-P (z) II = o, 
Z-+oo,Rez~O r r 

and by requiring analyticity in the open right half plane. For these principal parts 

and polynomials we refer to statements (a) and (c) at the end of Section VII.3. 

3. Reflection and transmission operators and X-and Y -equations 

In this section convolution equations theory on finite intervals is applied to the 

integral version, 

lj>(x) - r )((x-y)B!j>(y)dy 
0 

w(x), O<x<r, 

of the abstract finite slab problem (see Sections V.l and V.2). 

(3.1) 

Unfortunately, 

convolution equations theory on finite intervals is less advanced than the corresponding 

half line theory of Wiener-Hopf equations, and most of the results have been given for 

finite dimensional spaces. We are able, therefore, to give proofs for some of the results 

only for finite dimensional Banach spaces. We shall rely on Section VI.2. 

The following result has been proved in a finite dimensional context by Gohberg 

and Heinig ([140], Lemma 1.1). Our proof, which applies to the infinite dimensional 
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problem, will be different. 

PROPOSITION 3.1. Let k f L1 (L(X)) ~ T be compact operator-valued. 

operator 

(L,P)(x) = r k(x-y),P(y)dy 
0 

IS compact on the spaces Lp(X)~ (l~p~oo) and C(X)~. 

Then the 

Proof: Since the measurable step functions are dense in L 1 (L(X))~T' and on both of 

the above function spaces the norm of L is bounded above by the L1-norm of k(x), it 

suffices to consider measurable step functions only. We can, in fact, get a further 

simplification by assuming the existence of a measurable subset E of (- T, T) and a 

compact operator K in L(X) such that 

I K0 
, x eE 

k(x) 
, x~E. 

Let U be a bounded subset of one of the function spaces Lp(X)~ or C(X)~ on 

which we seek to prove the compactness of L. Then, for all ,P f U, 

(L,P)(x) K J ,P(x-y)dy 

E 

IS continuously dependent on xE[O,r] (cf. Proposition VI 2.2). Notice that for every 

Xf [0, T] the set {L ,P(x) : ,P f U} is relatively compact in X, because K is a compact 

operator on X and {J ~ ,P(x-y)dy : 1{1 f U} is bounded in X. Furthermore, the family of 

functions {L 1{1 : 1{1 f U} is equicontinuous on [0, T ]. As a consequence of As coli's 

theorem ([385], Theorem 14.24), the set {L,P 1{1 E U} IS relatively compact in C(X)~. 
Because C(X)~ IS continuously embedded Ill LP(X)~, this set IS also relatively 

compact Ill LP(X)~ (l~p~oo). Hence, L IS a compact operator on both of the above 

function spaces. • 

The above proposition implies that the convolution equation 
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t{l(x) - r k(x-y)t{l(y)dy = w(x), O<x< T, 

0 
(3.2) 

where k f L1 (L(X)) ~ T 1s compact operator-valued, has the characteristics of a 

Fredholm integral equation. Moreover, one immediately derives from Lemma VII 4.1 that 

the number dim Ker(I-L) = codim Ran(I-L) is the same for all solution spaces 

(1~p~oo) and C(X)~. 

The next theorem gives representations of the solutions of Eq. (3.2). It was 

proved by Gohberg and Heinig [140] in a finite dimensional setting, and generalizes the 

scalar result of Goh berg and Semen 5 ul [ 151]. The theorem has been known in 

radiative transfer for scalar even kernels (see [61, 340]). 

THEOREM 3.2. Assume that Eq. (3.2) is uniquely solvable. Then the unique solution 

has the form 

t{l(x) = w(x) + r ")'(x,y)w(y)dy, O<x< T, 
0 

where the resolvent kernel 'l'(x,y) is given by either of the expressions 

or 

")'(x,y) = £ +(x-y) + r[£ +(x-z)£ _(z-y)-m_(x-z-r)m+(z-y+r)]dz, x>y, 
0 

X 

'l'(x,y) = £ _(x-y) + I [£ +(x-z)£ _(z-y)-m_(x-z-r)m+(z-y+r)]dz, x<y, 
0 

T 
")'(x,y) = m+(x-y) + I [m_(x-z)m+(z-y)-£ +(x-z+r)£ _(z-y-r)]dz, x>y, 

X 

T 

")'(x,y) = m_(x-y) + J [m_(x-z)m+(z-y)-£ +(x-z+r)£ _(z-y-r)]dz, x<y. 
y 

The operator functions £ ± and m± are the unique solutions of the equations 

£ +(x) - r k(x-y)£ +(y)dy = k(x), 
0 

£ ( -x) - IT£ ( -y)k(y-x)dy = k( -x), 
- 0 -

m+(x) - r m+(y)k(x-y)dy = k(x), 
0 

(3.3) 
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m_(-x) - J: k(y-x)m_(-y)dy k( -x), 

for O<x<r. 

Proof: The proof can be given by direct substitution of one of the expressions for 

')'(x,y) in Eq. (3.3), changing the order of integration in the double integrals obtained 

and applying the integral equations for .£ ± and m± together with Eq. (3.2). Although 

the proof in [140] is given for a special type of kernel k and the result obtained there 

is extended to general k by approximation, such approximation generally cannot be 

repeated in an infinite dimensional setting, and a direct computation is necessary. • 

From the two expressions for ')'(x,y) we get the useful identities 

.£ +(x) = 'Y(x,O), .£ _( -y) = 'Y(O,y), (3.4) 

m+(r-y) = 'l'(r,y), m_(x-r) = 'Y(x,r). (3.5) 

The next result goes back to Ambarzwnian [7] for radiative transfer with 

isotropic scattering (see also [89, 340, 342]). For a large class of scalar even kernels 

the result was found by Busbridge [61]. In a finite dimensional setting it was misstated 

in [140], but correctly proved by Dym and Gohberg [110]. A new proof of the scalar 

result, with a generalization to integrodifferential equations of convolution type, is due 

to Sakhnovich [323]. As the presentation in [110] is quite inaccessible to our present 

purpose, we prefer to give a full proof, which, in fact, repairs the incorrect proof in 

[140]. 

THEOREM 3.3. Assume that Eq. (3.2) is uniquely solvable. Then 

r dyr dz e-(r-y)/~e(r-z)/v{8(y-z)+'l(y,z)} 
0 0 

= ~Y~(~)Y+( -v)-X:(~)X-( -v)}, 
~-v s r s r 
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r dy r dz eYII'e(r-z)lv{8(y-z)+1(Y,z)} = 
0 0 

T 
Y;(l') = e-TIIl + re-(r-y)ll'.t+(y)dy, x;(~t) =I + I e -y I ~'.t +(y)dy, 

0 0 

221 

x;(~tl =I + r e -y I ~'.t ( -y)dy y+(l') = e-T/1' + r e -( T -y)l l'.t_( -y)dy, 
0 - ' r 0 

X~(l') =I+ re-YIIlm (-y)dy, Y-(1') = e-T/1' + re-(r-y)ll'm (-y)dy, 
0 - .I 0 -

T 
Y;(~t) = e-TIIl + re-(r-y)ll'm+(y)dy. x;(~tl = I + I e-YII'm+(y)dy, 

0 0 

Proof: We shall make use of one of the ancillary results of [140), namely that the 

vector function 

dx,y) =I im (1(x,y)- l(x-t,y-t))lt 
E--+0 

satisfies the convolution equation 

dx,y) - r k(x-z)dz,y)dz = k(x).l (-y) - k(x-r)m+(r-y), 
0 -

and at the same time satisfies the equality 

dx,y) = .I +(x).t_(-y) - m_(x-r)m+(r-y). (3.6) 

Starting out as in the proof of the corollary of [140], we have for Re~£<0 and 

Rev>O the identity 

1-exp[-e(-p-1+11-1)) ITdyiTdz eYII'e-zlv{8(y-z)+')'(y,z)} = 
€' 0 0 

= ff dy r dz eYI~te-zlv{8(y-z)+1(Y,z)} + 
0 0 
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+ 1. dy dz eY ~'e-z 11{-6(y-z)-'Y(y-E,z-E)} JT+E JT+E I I 
E E E 
T IT I 1 IE JT+E I I - tJ dy dz ey/pe-z 11{'Y(y,z)-'Y(y-E,z-E)} + t( - )eY ~'e-y 11 dy + 
E E 0 T 

+ f<JT dyJE dz + JE dyJT dz- JE dy JE dz)ey/pe-z/ 11 'Y(y,z) + 
0 0 0 0 0 0 

1 JT+E JT+E JT+E JT+E JT+E JT+E y/ JJ -Z/II + E( dy dz - dy dz - dy dz)e e x T T E T T E 
X 'Y(y-E,z-E), 

where the z-integration has been performed in all terms involving 6(y-z). Thus, 

~ JT dyJT dz ey/pe-z/v{6(y-z)+'Y(Y,Z)} = 
JJII 0 0 

- rdyrdz ey/pe-Z/IIdy,z) + (1-exp(T(+.--im + fex/p'Y(x,O)dx + 
0 0 r 0 

+ JT e-y/ll 'Y(O,y)dy - JT ex/pe-T /II 'Y(X,T)dx - JT eT /pe-y/ll 'Y(T,y)dy. 
0 0 0 

Utilizing (3.6) and the identities (3.4) and (3.5), one finds 

which establishes the first part of the proof. The other parts can be proved 

analogously. • 

We now apply the previous results to the convolution equation 

f/l(x) - r Jl(x-y)B,P(y)dy = w(x), O<x< T, 
0 

(3.7) 

where 

The convolution equation (3.1) then is equivalent to the boundary value problem 

(T¢)' (x) - - (1-B),P(x), O<x< T, (3.8) 



VIII. ALBEDO OPERATORS & I-I-EQUATIONS 223 

I imiiQ .,P(O)-Q hll x10 + + 
0, (3.9a) 

I imiiQ .,P(r)-Q hll 
xjr - -

0, (3.9b) 

provided h f D(T) (see Theorem VI 3.3). Let us choose a closed subspace 113 containing 

* Ran B and operators j:II3---+H and rr:H-+113 such that rrj is the identity on 113 and jrr 

1s the orthogonal projection of H on to lB. Then the solution has the form 

.,P(x) = w(x) + r J.l(x-y)BjX(y)dy, O<x<r, 
0 

(3.10) 

where X(x) = rr.,P(x) satisfies the convolution equation 

X(x) - r rrJ.I(x-y)BjX(y)dy = rrw(x), O<x<r. 
0 

Whenever Eq. (3.1) is uniquely solvable, we can, as m Chapter V, define 

reflection operators R ± r and transmission operators T ± r by the equations 

.,P(O) (3.11a) 

7{1( T) (3.11b) 

where 

0. (3.12) 

These equations define R ± r and T ± T uniquely. Applying the previous theorem to the 

kernel k(x) = rrJ.I(x)Bj and adopting the notation previously introduced in this 

section, we obtain 

THEOREM 3.4. Let Eq. (3.1) be uniquely solvable. Then 
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T+r = e-rT-lQ+- s:s:v~Jl u(dJl)Bj[Y;(Jl)X~(v)-X;(Jl)Y;(v)]11"u(dv), 

= Q - ro J 0 v~Jl u(dJl)Bj[Y;(Jl)Y~(-v)-X;(Jl)X;(-v)]11"u(dv), 
- 0 -oo 

R 
-T 

0 0 
T 

-T + J J ~X 
-oo -oo Jl 

All these operators are bounded. 

Proof: Let us write 1/1(0) and 1/1( T) in the form (3.10), where 

X(y) = 11"w(y) + r 1(y,z)11"w(z)dz. 
0 

Subsequently, use (3.7) and the spectral representations (1.9) m order to reduce the 

proof to a simple application of the previous result. • 

COROLLARY 3.5. The reflection and transmission operators are invariant on D(T), and 

may also be represented as 

and as 

-1 
+ PoJV Q+' 

T 

-rT-1A N-1llfFk 1 k -1 
T = [P_ P + E -T (T- A) P ]V Q , 

+T + e + k=O . 0 T + 

R 
-T 

[ +e-rT- 1Ap+ N- 1 (-r)k 1 k - 1 
= p _ + E -T!-(T- A) P0]V , Q_, 

k=O . T 
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-1 
T 

-T + P0]V Q_, 
T 

where r(x,y) is the resolvent kernel of Eq. (3.1) and N 1s the maximum length of 

Jordan chains in z0(T- 1 A). 

Proof: The first representation is immediate, since the reflection and transmission 

operators are defined by (3.11) and (3.12) and the solution of (3.1) can be expressed 

in the right hand side using the resolvent kernel. Using the compactness and Bochner 

integrability of f(O,y) and f(T,y) (cf. Section VII.1) one may prove that R±T-Q± 

and T ± T -exp{ =F T T- 1 }Q± are compact operators. 

The second representation of the reflection and transmission operators is 

obtained by using the projections and semigroups introduced in Section VII.2. 

Premultiplying Eqs. (3.8) and (3.9) by P +' P _ and P 0 and solving the corresponding 

two boundary value problems, we find 

-1 -1 
,P(x) = [e-xT Ap + + e( T -x)T Ap 

where (T- 1A)NP0 =0 and <pEH. (Compare with Section V.2.) 

expression in Eqs. (3.9) we obtain V T<p=h, where 

Substituting this 

The unique solvability of Eqs. (3.8) and (3.9) and the compactness of 1-V T (implied 

by the compactness of P ± -Q± and P 0) lead to the invertibility of V T' 

defining equations (3.11) and (3.12) for the reflection and transmission operators 

The 

now 

imply the claimed rep res entation. 

leaves invariant D(T) and TV T VTT on Clearly, V T 

suitable invertible operator. We may then conclude that R±T 

invariant D(T), while 

TR±T R±TT, 

TT±T T±TT, 

A 

on D(T) for R±T and T±T suitable bounded operators. 

A 

D(T) for V T a 

and T ± T leave 

(3.13a) 

(3.13b) 

We note that 

representations for the latter operators are easily found by replacing v /(v-p) by 
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p./(v-p.) in the formulas of Theorem 3.4, as a straightforward application of 

(3.13). • 

Next we shall derive nonlinear integral equations relating the functions X~, 
Y~, x: and Y:. For radiative transfer with isotropic scattering such equations 

were found by Ambarzumian [7] and extended to a larger class of radiative transfer 

problems by Chandrasekhar [89]. For scalar even kernels they were studied by 

Bus bridge [61]. A full proof of their solvability for all subcritical (c< 1) and critical 

(c=1) one speed transport problems is due to van der Mee [363], who also studied such 

scalar equations in general (see [361]). 

THEOREM 3.6. The functions 

integral equations 

± xf' Y~, X~ and y± 
r 

x;(z) =I+ zJ: t!z(X;(z)X;(t)-Y~(z)Y;(t)}11'u(dt)Bj, 

satisfy 

Y;(z) = e-r/z- zJ: t~z(Y;(z)X;(t)-X~(z)Y;(t)}11'u(dt)Bj, 

X~(z) = I + z I: t! z 11'0'( -dt)Bj{X;(t)X~(z)-Y~(t)Y;(z)}, 

Y;(z) = e-r/z- zi00 t:z11'u(-dt)Bj{X;(t)Y;(z)-Y~(t)X;(z)}, 
0 

X~(z) = I - z I: t! z (X~(z)x;(t)-v;(z)Y~(t)}11'u( -dt)Bj, 

Y~(z) = e- T /z - z Joo t ~ z (Y~(z)X;(t)-X;(z)Y;(t)}11'u( -dt)Bj, 
0 

x;(z) =I - z s: t!z 11'u(dt)Bj{X~(t)X;(z)-Y;(t)Y;(z)}, 

Y;(z) = e-r/z- zi: t:z11'u(dt)Bj{X~(t)Y;(z)-Y;(t)X;(z)}. 

the nonlinear 

Proof: All eight formulas can be proved in the same manner as Eqs. (1.10) and (1.11). 

In fact, the proof of Theorem 1.3 contains a procedure to derive (1.11) and a procedure 

to derive (1.10). If we now denote the right hand sides of the four equations 

appearing in the statement of Theorem 3.3 by I, II, III and IV, respectively, and replace 

p., v by a suitable choice among ±t and ±z, the procedure to derive (1.10) or (1.11) 
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± ± y± 
y f' xr and r' will reproduce the above equations for X~, 

employ Eqs. (3.4) and (3.5), the definitions ± ± ± 
of xf' yf' xr' and 

We have to 

y± m the 
r 

statement of Theorem 3.3, and the following convolution equations: 

k( -y) + r k( -x)l(x,y)dx = "Y(O,y), 
0 

k(x) + r "!(x,y)k(y)dy = "Y(x,O), 
0 

IT 
k(T-y) + k(T-x)l(x,y)dy 

0 
"!( T ,y), 

IT 
k(x-T) + 

0 
')'(x,y)k(y-T)dy = "!(x,T), 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

where k(w) = 1r N(w)Bj. Equations (3.14) to (3.17) are easily derived and can, in 

fact, be found in [140]. 

We exhibit in Table 1 the substitutions and auxiliary equations to be used in 

deriving each of the integral equations. This concludes the proof. • 

Unknown Procedure Starting Eqn. Substitution Auxiliary Eqn. 

x+ 
.R (1.10) I Jl=-z,v=t (3.15) 

y+ 
.R (1.10) I I Jl=z,v=t (3.15) 

x+ (1.11) Jl=-t,v=z (3.14) r 
y+ (1.11) IV Jl=-t,v=-z (3.14) 

r 
X~ ( 1 . 1 1 ) I I I Jl=z,v=-t (3.17) 
y-

.R (1.10) IV Jl=-z,v=-t (3.17) 

X (1.10) I I I Jl=t,v=-z (3.16) 
r 

yr ( 1 . 11 ) I I Jl=t,v=z (3.16) 

TABLE 1. Derivation of Integral Equations for X- and Y -Functions 

We finish this section by observing the well-known symmetry relations 
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which hold for the analytic continuations of the functions to the Riemann sphere with 

zero removed. All these functions are, in fact, entire in 1 I J.l of order at most T. 

They satisfy 

I im uv;(J.l)-e-T I J.liii 0, 
J.l-+O,ReJJ:<!::O 

4. Linear H-equations, uniqueness properties and constraints 

In the first three sections we have expressed albedo, reflection and transmission 

operators in terms of generalized H-, X- and Y -functions, which satisfy nonlinear 

integral equations. In the present section we study uniqueness properties of solutions 

of H-equations. Since nonlinear integral equations usually are inconvenient for this 

purpose, it is preferable to reduce them to non-homogeneous linear equations. Then 

uniqueness can be studied by determining the number of linearly independent solutions 

of the corresponding homogeneous linear equation. For the H-equations of Section 1 

(the regular case) one can simply use the Wiener-Hop£ factorization of the dispersion 

function to derive such linear equations. For the corresponding singular case the 

procedure is more involved, but its implementation is still possible. Once linear 

equations have been obtained one may impose constraints to single out the solution of 

interest. This was first done by Mullikin [272] for certain scalar X- and Y -equations. 

Another advantage of linear equations is their amenability to accurate numerical methods, 

such as the collocation method (called FN-method) introduced by Siewert and Benoist 

[331]. In the present section we shall restrict ourselves to H-equations. 

Let us start with the regular case where T- 1 A does not have imaginary 

eigenvalues, and exploit the right canonical Wiener-Hop£ factorization 
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( 4.1) 

Substituting this into the nonlinear integral equations {1.10) and {1.11) we get 

{4.2) 

( 4.3) 

The advantage is that we obtain linear equations, in which H; and H; are uncoupled. 

The disadvantage is that it is not entirely clear how to formulate Eqs. {4.2) and {4.3) 

for z ftr{T)n[O,oo) and Zf a( -T)n[O,oo), respectively. Indeed, in the formula {1.8) for 

the albedo operator we need H;(z) and H;{z) for these values of z, and we need to 

be able to define A{z) for z f a{T). For this reason we assume that T is bounded, 

a(T) has finitely many connected components, T is absolutely continuous with 

Radon-Nikodym derivative ~Jl), and rr~tt)Bj is uniformly Holder continuous on a{T), 

except for finitely many jump discontinuities. Let I: denote the set of points of a(T) 

which are neither boundary points nor imbedded eigenvalues of a(T). Then I: is an 

open subset of the real line. As the dispersion function is given by 

A(z) 

we find 

{see [276] for the finite dimensional theory). In fact, the limit is uniformly Holder 

continuous on compact subintervals of I:. The symbol P indicates a principal value 

integral is to be taken. As an abbreviated notation we shall write 

>- ( t) I im Y2{A{t+ic) + A( t-ic)} =I - tP J rr~( ll )Bj dtt, tfi:. 
c 1 0 a(T) - Jl 

An obvious replacement for Eqs. {4.2) and {4.3) now is the pair of equations 
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( 4.4) 

(4.5) 

where E± u(±T)n(±E)n(O,oo) and tEE±. These singular integral equations 

cannot be solved using the standard methods presented in the monographs of 

Muskhelishvili [276], Gohberg and Krupnik [143] and Prossdorf [311] (possibly with 

infinite dimensional generalization to rank B = oo), because >.(±t) usually is not 

bounded on E±. We shall instead follow procedures inspired by the work of 

Mullikin [271, 272]. We shall again restrict ourselves to H-equations only. 

THEOREM 4.1. In addition to the general hypotheses of this section, let the following 

assumptions be fulfilled: 

(i) For t E En(O,oo) (resp. tEEn( -oo,O)) the limiting values 

I im A(t±iE) = >.(t) ± i1rt{1ril{t)Bj} 
ElO 

are invertible operators. 

(ii) For every tE(u(T)\E)n[O,oo) (resp. tE(u(T)\E)n(-oo,O]) there is a 

neighborhood ut oft such that IIA(z)- 1 11 is bounded on Ut\IR. 

Then for regular cases, where T- 1A does not have imaginary eigenvalues, the nonlinear 

H-equations (1.10) and (1.11) as well as the linear H-equations (4.4) and (4.5) have a 

unique bounded uniformly Holder continuous solution satisfying the constraints 

and 

ok0I + t 0P J E (p-t0)-(k+1)H;(J.1)7rA(p)Bjdp 

+ 
0, k=0,1, ... ,p-1, 

0, k=0,1, ... ,p-1, 

respectively. This unique solution is analytic in and continuous up to the boundary of 
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the right half plane and has invertible values there. If T- 1 A is not regular, then 
more than one solution satisfying the above constraints exists, but all of them are 

analytic and invertible on the open right half plane and meromorphic at all A for 
which 1 I A is an imaginary eigenvalue of T- 1 A. Uniqueness is obtained if the principal 

parts of H;(l I z) (resp. H;(l I z)) at the imaginary eigenvalues of T- 1 A are specified. 

Proof: Let us replace Eqs. (4.2) and (4.3) by their continuations 

( 4.6) 

(4.7) 

where zfu(T)n[O,oo) (resp. zfu(-T)n[O,oo)). Assuming uniform Holder continuity of 

H; and H; on u(T)n[O,oo) and u(-T)n[O,oo), we stipulate H; and H; for 
zfu(±T)n[O,oo) by 

Putting z=t±iE for tt:E+ (resp. tt:E_) and taking the limit as E! 0, we get 

where we have used condition (i). Writing 

I im H+(t±iE) = k(t) ± i.t(t), 
E 10 r 

we obtain 

(4.8) 

(4.9) 
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[
A ( t ) 

[k(t) J'(t)] 
-1rt ( 1r~( t )Bj) 

""t ( 1r ~( t ) B j ) ] 

A ( t) 

[ I-tPJE(t-p)- 1H;(p)1r~(p)Bjdp], 
"" t H+ ( t ) ( ""~ ( t ) B j ) r 

where the right hand side is a row vector and the matrix is the invertible operator 

~[I ii][A(t)+i1rt(1r~(t)Bj) 0 ] [I -ii]· 

-ii I 0 A(t)-i1rt(1r~(t)Bj) ii I 

The above row vector can, in fact, be written as [H;(t) A(t)H;(t)1rt(1r~t)Bj)] 
(see Eq. (4.4)), and therefore k(t)-H;(t) and J'(t)=O is a solution. Condition (i) and 

the above representation of the 2 x 2 matrix operator imply that this solution is unique. 

Hence, 

Similarly, we find 

Thus H; and H; have analytic continuations to the right half plane, except possibly 

for singularities in the set (u(T)\E±)n[O,oo) and for poles at the zeros of A(z). The 

Laurent series of H;(z)A(z) and A( -z)H;(z) at a zero t 0 of order p in the open 

right half plane are given by 

H+(z)A(z) = I + E t 0(z-t0)k PJ (p-t0)-(k+l)H+(p)1r~p)Bjdp. 
r k=O E r 

+ 

As a consequence of the constraints, the right hand sides have zeros at t 0 of 

order at least p. Therefore, H; and H; are analytic at t 0. We have proved so far 

that H; and H~ are analytic on the open right half plane, except possibly at points 

in the set (u(T) \E±)n[O,oo), with continuous boundary values at any imaginary z 

which is not a zero of A(z) (i.e., such that 1/z is not an eigenvalue of T-1A). 
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Let us consider the analytical behavior of H+ and H+ at the finitely many ; r 
points of the set ( u(T) \ ~ +)n(O,oo). Since H+ and H+ are uniformly Holder r ; 
continuous on u(±T)n[O,oo), these points cannot be poles. So they are either 

essential singularities or points of analyticity. Let us rewrite Eqs. (4.6) and (4.7) as 

follows: 

H+(z)[I- zi 1r~(Jt)Bjdp]A(z)- 1 = 
r ~ z-p 

I H (p)-H (z) 1 
= [I + z r r 1r~(p)Bjdp]A(z)- , 

~ p-z ( 4.10) 

A(-z)- 1[1- zi 1r~( -J.t)Bjdp]H+(z) = 
~ Z-Jl ; 

1 I H;(Jl)-HI(z) 
A(-z)- [I + z 1r~(-p)Bjdpj. 

~ p-z ( 4.11) 

According to condition (ii), for every t E (u(T) \~)n(O,oo) (resp. 

tE(u(T)\~)n(-oo,O)) there is a neighborhood Ut of t and an E>O such that 

A(z)- 1 is bounded on Ut \IR. Thus the right hand sides of the above equations are 

bounded on ±Ut. However, [I-J~ 7r~(z±_ij)Bidpr 1 is a meromorphic operator 

function on the open right half plane ~th continuous extension to the closed right half 

plane. Thus, both of the functions H; and H; must be meromorphic on all of the 

open right half plane, which establishes their analyticity at the above points. 

Postmultiplying Eq. (4.10) by A(z) and premultiplying Eq. (4.11) by A(-z), we 

get 

H+(z)[I- zi 1r~(J.1)Bjdpj =I+ zi Hr(p)-H,r(z)1r~Jl)Bjdp, 
r ~ z-p ~ p-z 

+ 

H1 (p)-H1 (z) 
...::... __ Jl __ -z-=-- 1r ~- Jl )Bjdp. 

Note that I-z J ~(z-p)- 1 7r~±p)Bjdp tends to I for z-+0 along the right half plane. 

Further, notice that, by the uniform Holder continuity of H; a.nd H;, the right hand 

side tends to I for z-+0 along the right half plane. Hence, 

I im IIH;(z)-III o, 
z-+oo,Rez~O 



234 BOUNDARY VALUE PROBLEMS IN ABSTRACT KINETIC THEORY 

I im IIH+(z)-III = o. 
z-+oo,Rez~O r 

The behavior of H~(z) and H~(z) as_ z approaches the finite imaginary line from the 

right is most easily seen from Eqs. (4.8) and (4.9). If z0 .-o is not an imaginary zero 

of A(z), then obviously H~(z) and H~(z) have analytic continuations at z=z0. If 
z0 .-o is an imaginary zero of A(z) (or, alternatively, if 1/z0 is an imaginary eigenvalue 

of T- 1 A), the functions H;(z) and H~(z) are meromorphic at z=z0 and one should 

specify the principal parts of their Laurent series in order to single out H~ and H~ 
among the solutions of Eqs. (4.4) and (4.5). This is most conveniently done by imposing 

suitable constraints on H~ and H~. 
For the behavior of H~(z) and H~(z) at co we use the boundedness of T and 

repeat the argument for the finite imaginary zeros of A(z). • 

This result has many applications in radiative transfer and neutron physics. 

Most research in this area, especially the earlier work, has been obtained for scalar 

dispersion functions of the form 

u[-1,1], 

1 
where 1/>(J.I)~O and c=2 J 1/>(p)dp:S:l. Following the work of Crum [95] on the 
H-equation (also treated in° (89]), Chandrasekhar (89] constructed solutions of the X
and Y-equations (some of them for c<1, all of them for c=1), asswning one (physical) 

solution. Busbridge (61] first established the existence of H-, X- and Y-functions and 

determined all solutions of the H-equation (for the latter, also (63]). Mullikin (271] 
constructed all solutions of the X- and Y -equations and isolated the physically 
relevant solution using linear constraints under the above assumptions [272]. Van der 

Mee (363] extended these results to anisotropic one-speed neutron transport with 
c:S:l. 

We have proved Theorem 4.1 under the major restriction that T is bounded. 

Note that, on dropping the boundedness of T, one worsens the behavior of H~(z) and 

H~(z) for z-+oo, while the remaining part of the proof still goes through. Conditions 

(i) and (ii) are technical conditions, which imply that the symbol of the associated 

singular integral equation has invertible values. For one speed neutron transport with 
degenerate anisotropic scattering these conditions were proved to be satisfied by Garcia 

and Siewert [130]. In multigroup neutron transport one can easily construct models in 

which these conditions are violated. In many applications it has been usual to assume 
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these conditions explicitly or tacitly, for mathematical convenience rather than physical 

content. Indeed, for a variety of problems, it is not known whether or when conditions 

(i) and (ii) are fulfilled. 

5. Adding method 

In this section we shall represent solutions in the interior of the spatial domain 

by exploiting identities existing between reflection and transmission operators for a 

medium of thickness T and reflection and transmission operators for the constituent 

media of thicknesses T 1 and T 2, with T = T 1 + T 2. 

Let us consider a self adjoint injective operator T on the Hilbert space H, and a 

collision operator A = 1-B which is a compact perturbation of the identity satisfying 

the range condition (1.4}. We shall assume that the finite slab problem 

(TI/!} '(x) -AI/J(x), O<x<T, (5.1) 

(5.2a) 

Q_I/J(T) Q_ip, (5.2b) 

1s uniquely solvable for every 'P f D(T)cH. As we have seen in Sections V.4 and Section 

3 of this chapter, we may write the solution at x=O and at x=T in the form 

where R±TQ+=T±TQ+=O for reflection and transmission operators R±T and 

T±T' It has been shown m Section 3 that the equivalence of (5.1)-(5.2) to a 

convolution equation with compact operator kernel implies that the operators R ± T 

Q± and T±T - exp{+TT- 1}Q± are compact. 

Consider Eqs. (5.1}-(5.2} for three values ofT, namely, T 1,T 2 and 

T = T 1 + T 2. The adding method gives a procedure for computing the reflection and 
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transmission operators R ± and T ± from the operators R ± , T ± , R ± , T T T 1 T 1 T 2 
and T ± T • Thus the reflection and transmission properties of the constituent 

layers xt10,T 1) and xf(O,T 2) are used to obtain the reflection and transmission 

operators of the combined layer x t (O,T 1 +T 2). In the special case T 1 =T 2, where 

the constituent layers are equal, this method is called the doubling method. Note that 

when applying these methods one assumes implicitly the unique solvability of (5.1)-(5.2) 

for T=T 1, T 2 and T 1+T 2 . 

As we shall see shortly, the adding method requires the computation of an 

inverse operator, which can be expressed as a Neumann series whose convergence may 

be proved in general. For many specific models the adding method can be implemented 

fairly easily on a modest computer for many specific models, by iterating the equivalent 

integral equation 

for thin layers T 0 < < 1 and repeatedly applying adding. As a result, one obtains 

R±T and T±T for T=T 0, 2T 0 , 3T 0, ... ,and from these operators the solution 

,P(x) with T=nT 0 for x=O, T 0 , 2T 0 , ... , (n-1)T 0, nT 0. One thus accomplishes a 

spatially discrete representation of the solution. 

The doubling method was first applied by Peebles and Plesset [302] to the 

scattering of -r -rays. The earliest systematic application to a large class of radiative 

transfer problems is due- to van de Hulst [356, 357] and was extended to polarized 

light problems by Hansen [185] and Hovenier [199]. Comprehensive discussions of the 

method, focused on numerical applications, have been given by Hansen and Travis [186], 

van de Hulst [357], and de Haan et al. [100] A different approach to the adding 

method, stemming from the theory of compartimental systems, was expounded by 

Ribari~ [318]. Using positive cones in L1-spaces, he derived the dependence of the 

albedo operator for a system on the albedo operators for its constituent subsystems. 

Let us derive the adding equations. To this purpose we first introduce the 

transfer (matrix) operator ST, closely related to the albedo operator of [318], by 

ST 
= [s~+ s-+ 

T 
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Here t/J is the unique solution of Eqs. (5.1) and (5.2). We have the equalities 

s++ 
T <p 

T- T <p, 

It is then clear that S -exp{-r ITI- 1} is a compact operator. 
T 

237 

(5.3) 

( 5.4a) 

( 5.4 b) 

(5.5a) 

(5.5b) 

THEOREM 5.1. Suppose that Eqs. (5.1) and (5.2) are uniquely solvable for two 

constituent 

r=r 1+r 2. 

layers with r = T 1 and T = r 2, as well as for the combined layer with 

Then the operators (1-s+-s-+) and (1-s-+s+-) are invertible, and 

we have the adding equations 
T1T2 T2T1 

s++ 
T 

s++(I-s+-s- +l - 1 s ++, 
T2 T1T2 T1 

(5.6) 

s+- s+- + s++(I_s+-s-+)- 1s+-s-- (5. 7) T T2 T2 T1 T2 T1 T2' 

s-+ s-+ + s- -(1-s-+s+-)- 1s-+s++ (5.8) T T 1 T1 T2 T1 T2 T1' 

ST s- -(1-S- +s+-)- 1s- -. 
T1 T2T1 T2 

(5.9) 

Proof: Straightforward application of the definition (5.3) to the constituent layers with 

<p ± =Q± <p gives the identities 

( 5.10) 

Q_ t/J(O) ( 5.11) 
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Q+T/I(r) = s~;Q+T/I(r 1 ) + s~~'P_, (5.12) 

s;+Q+T/I(r 1) + s;_-tp , 
2 2 -

(5.13) 

whence 

(5.14) 

(5.15) 

These last equations imply 

s++'P + s+-s--
r 1 + T T tp -' 1 2 

(5.16) 

(5.17) 

If (1-s+-s-+) and (1-s-+s+-) were not invertible, then s+- and s-+ 
T1 T2 T2 TJ T1 T2 

being compact would imply that Eqs. l5.16) and (5.17) have more than one solution. 

This would imply in turn that Eqs. (5.1) and (5.2) for the combined layer 

T = T 1 +T 2 have more than one solution, thereby contradicting the asswnption of 

unique solvability. Indeed, there would be unique solutions of the finite slab problem 

on (0, T 1) with boundary data {O,Q_ f/1( T 1)} and the finite slab problem on ( T 1' T 2) 

with boundary data {Q+ f/1( T 1},0}. Since TT/1 would then be continuously differentiable 

at x=T 1, it would yield a solution of Eqs. (5.1}-(5.2) with zero incoming data, whence 

Q± T/1( T 1}=0 and the contradiction follows. Therefore, one may eliminate 

Q+T/I(r 1) and Q_Tjl(r 1) from (5.10)-(5.13) using (5.16) and (5.17) and obtain Eqs. 

(5.6)-(5.9). • 

The nonzero eigenvalues of the compact operators 

coincide, and their resolvents are related as follows: 

We also have the identities 
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(5.18) 

(5.19) 

as one easily computes. 

In numerical applications the inverse operators appearing m (5.6)-(5.9) are 

usually computed by expansion as a Neumann series. In doing so, Eqs. (5.6)-(5.9) are 

cast in the form 

00 
g++ ~ s++(s+-s-+)ns++, (5.20) T n=O T 2 T 1 T 2 T 1 

g+- s+-
00 

+ ~ s++(s+-s-+)ns+-s--, (5.21) T T2 n=O T 2 T 1 T 2 T 1 T 2 

s-+ 
T 

s-+ + 
T1 

00 

~ s--(s-+s+-)ns-+s++ 
n=O T 1 T 2 T 1 T 2 T 11 

(5.22) 

s--
T 

; s--(s-+s+-)ns--. 
n=O T 1 T 2 T 1 T 2 

(5.23) 

When applied to radiative transfer m planetary atmospheres (cf. Sections IX.1 

and IX.2), these expansions are easily interpreted physically. For a layer with (optical) 

thickness u and incident fluxes <p + and <p ' s;+ <p and s~- <p describe the light 

directly transmitted from the top (x=O) to the bottom (x=u) and the light directly 

transmitted from the bottom (x=u) to the top (x=O), respectively. The incident light 

reflected at the top is represented by s~+ <p and the incident light reflected at the 

bottom by s+-<p. Then the expansion (5.20) can be read in the following fashion. u 
The light transmitted from x=O through both layers to the opposite side at 

x=r=r 1+r 2 is the sum, for n=0,1,2, ... , of the light transmitted through the first 

layer, subsequently undergoing n pairs of events consisting of reflection by the top of 

the second layer and back reflection by the bottom of the first layer, and finally 

transmit ted through the second layer. The other expansions allow similar physical 

interpretations. We may therefore call these expansions multiple interface reflection 

expansions. The adding equations are generally derived using multiple scattering 

arguments, without resorting to a convergence proof of these expansions, although 

numerical convergence has been studied in some detail (cf. [100, 357]). We shall provide 

a general convergence proof, drawing on ideas used for the polarized light transfer 

problem [368]. 
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THEOREM 5.2. Let H be a Banach lattice, and suppose the operators F(T) and B=I-A 

are positive, in the lattice sense, for all nonnegative real continuous functions F. If 0 

< T 1 + T 2 < T c' where T c is the critical slab width, 

T c = inf{r f{O,oo) (5.1)-(5.2) are not uniquely solvable}, 

then the multiple interface reflection expansions (5.20)-(5.23) converge in the norm 

topology. 

Proof: If T = T 1 + T 2 f{O, T ), then clearly the operators S , S and S are C r 1 r 2 T 
well-defined. Since they depend analytically on T 1, T 2 and T ( cf. Section VIII.3), 

the compact operators s+-s-+ and s-+s+- depend analytically On T 1 and T 2 In r 1 r 2 r 2 r 1 
the region Dc={(r 1,r 2): 0<r 1+r 2<rJ Then each eigenvalue Xk(r 1,r 2) IS 

separately analytic for ( T 1, T 2) ED c' except for algebraic branch points ( cf. Theorem 

VIII.S of [213]). 

The nonnegativity of solutions of (5.1)-(5.2) for nonnegative <p and (5.3) imply 

that the operators s+-s-+ and s-+s+- are positive in the lattice sense if r 1 r 2 r 2 T2. 
( T 1, T 2) ED c· Therefore, tne spectral radius r( T 1' T 2) is an eigenvalue of both 

operators and is separately continuous for (r 1,r 2)EDc (cf. Theorem I 4.2). Since 

r( T 1, T 2) vanishes as T 1 ..... o with T 2 fixed, or as T 2 ..... o with T 1 fixed, and since 

r(r 1,r 2)=1 would contradict the invertibility of (I-s+-s-+), we must have 
Tl T2 

r(rl'r 2)<1 for every (rl'r 2)EDc. Hence, the expansiOns (5.20) and (5.23) 

converge in the norm topology if T 1 + T 2 E (0, rc). • 

THEOREM 5.3. Suppose H is a Hilbert space and A is positive self adjoint. If 

0< T 1,r 2<oo, then the multiple interface reflection expansions (5.20)-(5.23) 

converge in the norm topology. 

Proof: Observe that the operator ST is well defined (cf. Section V.l). Next, observe 

that (R +a +R -a -I) is a self adjoint strict contraction on HT, i.e., on the completion 

of D(T) with respect to the inner product 

(IT I h,k). 
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By virtue of (5.18) and (5.19), s+-g-+ and s-+g+- are strict contractions on 
r 1 r 2 T2. TJ 

Q+[HT] and Q_ HT, respectively, and therefore thetr l coinciding) spectral radii are 

strictly less than one. To prove that this statement remains true on Q±[H], we 

consider 

where §±±:Q+[H]->Q [H] and §±+:Q [H]->Q [H]. These operators 
A T -1 ± T + ± 
S T -exp{- T IT I - } compact and have the intertwining properties 

satisfy 

ST[D(T)] c D(T), (5.24a) 

TS h 
T 

s T Th, h f D(T). (5.24b) 

As a result of (5.24) and their compactness we have 

Finally, using 

s+-s-+ and 
T 1 T 2 

Proposition II 3.1 applied to all their integer powers, one may show that 

s-+g+- have spectral radii on Q [H] and Q [H] that are strictly less T2 T1 + -
than one. • 



Chapter IX 

APPLICATIONS OF THE STATIONARY THEORY 

1. Radiative transfer without polarization 

2. Radiative transfer with polarization 

3. One speed neutron transport 

4. Multigroup neutron transport 

5. The Boltzmann equation and BGK equation in rarefied gas dynamics 

6. A Boltzmann equation for phonon and electron transport 

1. Radiative transfer without polarization 

A good approximation to the mathematical description of radiative transfer 

processes in planetary atmospheres is to consider the atmosphere as a medium that is 

plane parallel and invariant under arbitrary translations in horizontal directions. 

Although one excludes in this way processes such as zodiacal light where the light is 

incident at small angle with the planetary surface, it permits the study of the most 

important radiative phenomena. As position coordinate in the vertical direction one 

frequently employs the optical depth, T, which is defined as minus the antiderivative of 

the extinction coefficient "e(z) as a function of vertical position z: r=J';'~ee(z)dz. 
At the top of the atmosphere we set T =0, while T coincides with the optical thickness 

b at the bottom, i.e., at the planetary surface. When considering a stationary radiative 

transfer problem, sunlight is thought to be incident at the top T =0, and "reflection" 

(more precisely, a combination of genuine reflection and true absorption) of light takes 

place at the bottom T =b. Sometimes one also accounts for radiation emitted by the 

surface and by sources within the atmosphere. In any case, the physical quantities of 

interest are the specific intensity and the state of polarization of the light at any 

position and in any direction, as a function of incident radiation at the top (and 

sometimes at the bottom), reflection properties of the bottom and internal sources. In 

this section we shall only discuss radiative transfer models in which polarization of 
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light is neglected. The quantity of primary interest then is the (specific) intensity. In 

the next section we shall discuss more general models that account for polarization 

phenomena. 

Let us consider a (vertically) homogeneous atmosphere, i.e. an atmosphere in 

which single scattering events do not depend on vertical position. On single scattering 

a fraction of the light, the albedo of single scattering af(O,l], undergoes true scattering. 

As a function of the scattering angle 0 t[O,rr] between the incident and the scattered 

beam of light, with () =0 representing forward and () =rr representing backward 

scattering, the fraction of light scattered is described by a probability distribution, the 

phase function a1 ( () ), which 1s nonnegative and measurable and satisfies the 

normalization condition 

1. (1.1) 

If one uses polar coordinates vt[O,rr] and <p€[0,2rr) to indicate direction and writes 

u=-cosv, with u>O in the direction of increasing optical depth T, one may derive 

the equation of radiative transfer 

1 2rr 
u/ri(r,u,<p) + l(r,u,<p) = 4arrJ_ 1 J 0 a1(9)1(r,u,<P)d<Pdu + S(r,u,<p), (1.2) 

where 0 < T < b, with boundary conditions 

I(O,u,'P) D(u,'P) (1.3) 

1 2rr 
I(b,-u,<p) = .!.J J GR. (u,u,<p-<P)I(b,u,<P)d<Pdu + D(-u,<p) 

7l" 0 0 g 
(1.4) 

for u>O. In these equations the various quantities have the following meaning: 

(i) I( T ,u,<p) is the specific intensity as a function of the optical thickness T 

and the direction (u,<p). Similarly, S( T ,u,<p) accounts for internal sources, and 

D(u,<p) and D( -u,<p), with u> 0, is the incident radiation at top and bottom, 

respectively. 

(ii) The scattering angle () is related to the direction (u,<P) of the incident light 

and the direction (u,<p) of the singly scattered light, by 

cos() cosvcosv' + sinvsinv 'cos( <p-eP), (1.5) 
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where u=-COSI/ and u=-COSI/ '. 

(iii) Rg(u,u,<p-cP) is the reflection function of the ground. 

always satisfies the property of reciprocity symmetry 

and m most applications mirror symmetry 

and obeys the energy bound 

J1J211" o ~ .!. UR (u,u,<p-<i')d(<p-<P)du ~ 1. 
,. 0 0 g 

It IS nonnegative, 

( 1.6) 

( 1. 7) 

(1.8) 

The integral expression m (1.8), which is bounded by 1, is called the plane albedo of 

the planetary surface. From the above it is clear that the corresponding total 

radiative fluxes, obtained by integrating the specific intensities with respect to direction 

using the measure I u I d<pdu, are finite. 

In order to obtain more explicit information about the solutions of the equation 

of radiative transfer, one usually resorts to Fourier decomposition. We first write the 

expansion 

I( r ,u,<p) 
00 

I0( r ,u) + 2 E Im( r ,u)cosm<p, 
m=l 

(1.9) 

and analogously for S( r ,u,<p), D(u,<p) and D( -u,<p). For the reflection function we have 

the expansion 

Rg(u,u,<p-cP) = R 0 (u,u) + 2 E Rm(u,u)cosm(<p-cP). 
g m=l g 

(1.10) 

As a result we obtain the "component" equations of radiative transfer 

(1.11) 

where 0< r <b, with boundary conditions 
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(1.12) 

(1.13) 

Here we have defined 

(1.14) 

and note the formula for the expansion coefficient 

(1.15) 

For m=O the functions Im( T ,u), Sm( T ,u), Dm(u) and Dm( -u) are nonnegative, while this 

need no longer be the case for m~l. The energy bound (1.8) now takes the form 

(1.16) 

In the case of an atmosphere of infinite optical thickness (b=co), the basic 

boundary value problem is less complicated to formulate, since the incoming sunlight can 

never reach the planetary surface and therefore reflection by a bottom surface is out 

of the question. Inste~d one imposes a growth condition on the solution as T-->oo. 

Thus we endow the equation of transfer (1.2), where 0< T < b=co, with the boundary 

conditions 

I(O,u,cp) = D +(u,cp), u>O, {1.17) 

I i m sup II I( T, ·, •) II < co. ( 1.18) 
T-->oo 

with the sense of the norm to be specified. Analogously the Fourier component 

equation (1.11), where 0< T <b=co, is endowed with the boundary conditions 

(1.19) 

I im sup IIIm(r,·)ll <co. (1.20) 
T-->oo 
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Another problem in semi-infinite geometry originates from the study of stellar 

atmospheres. In 1921 E.A. Milne [265] proposed a model for the transfer of light in a 

stellar atmosphere, which consisted of computing the outgoing radiation of the star from 

the flux coming from its interior. True absorption and internal sources were assumed 

absent, i.e. a=l. Generalizing beyond Milne's originally isotropic scattering problem to 

general anisotropic scattering, we obtain the boundary value problem 

I(O,u,<p) = 0, u>O, 

1 211' 
I i m I I UI( T ,u,,P )d,Pdu 
T-+oo -1 0 

(1.21) 

(1.22) 

- F/4rr, (1.23) 

where O<r<b=oo and F is a given positive constant, the radiative flux at large 

optical depth. 

So far we have restricted ourselves to a brief description of the physical 

background and the mathematical formulation of radiative transfer problems. For more 

detailed information we refer to the classical monograph of Chandrasekhar [89], which 

still is relevant to present day radiative transfer, as well as to the more recent 

monographs of Sobolev [340, 342], which mainly deal with invariant imbedding 

techniques, and van de Hulst [357], which contains a thorough discussion of numerical 

work. 

Let us now introduce the functional· formulation which will enable us to apply 

the existence and uniqueness theory of the previous chapters. Let 0 denote the unit 

sphere in IR3, and let ws(u,<p)tO. Here the Cartesian coordinates of w are 

(1-u2)Y2cos<p, (1-u2)Y2sin<p and u. By L (0) we denote the (real or complex) 
p 

Banach space of measurable functions on 0 endowed with the Lp -norm 

I1 I21l' 1/p 
llhll = [ lh(u,<p)lpd<pdu] , 

p -1 0 
1:Sp<oo, (1.24a) 

or 

llhll = ess sup lh(u,<p)l. 
00 (u,<p)tO 

(1.24b) 

Then L2(0) is a Hilbert space with inner product 
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1 21T -
(h,k) = I I h(u,cp)k(u,cp)dcpdu. 

-1 0 

On Lp(O) we define the bounded linear operators 

(Th)(u,cp) = uh(u,cp), 

lh(u,cp), 
(Q±h)(u,cp) = 

0 ' 

±u>O, 

±u<O, 

(Ah)(u,cp) = h(u,cp) - a(Bh)(u,cp), 

I1 I21T 
(Bh)(u,cp) = 411T _ 1 0 a1 (0)h(u,~)d~du, 

1 21T 
(Rh)(u,cp) = #I I UR (u,u,cp-~)h(u,1T-~)d~, 

-1 0 g 

(Jh)(u,cp) = h( -u,1r-cp), 

and the vectors 

I( T )(u,cp) = I( T ,u,cp), 

S( T )(u,cp) = S( T ,u,cp). 

We then obtain the boundary value problem 

Q_I(b) = RJQ+I(b) + Q_D. 

247 

(1.25) 

(1.26) 

(1.27) 

(1.28a) 

on Lp(O) if b<oo. For the half space problem b=oo, (1.28a) would be supplanted by 

I i m s up II I( T) II < oo. (1.28b) 
T-+oo 
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On L [-1,1] we obtain boundary value problems of exactly the same form (apart p 
from upper indices m), if we define the bounded linear operators 

(Tmh)(u) = uh(u), 

(Q~h)(u) 
±u>O, 

±u<O, 

1 
(Bmh)(u) = Y2 J pm(u,u)h(u)du, 

-1 

1 
(Rmh)(u) = 2J Rm(u,u)h(u)du, 

-1 g 

(Jmh)(u) = h( -u), 

and obtain analogues of (1.26)-(1.28) for lm(r) with Sm(r) as source term. Note that, 

in writing A=I-aB, we have departed somewhat from the convention of the previous 

chapters, in which we denoted A=I-B. It is convenient in the next several sections to 

distinguish the albedo of single scattering a in this fashion. 

It is clear that on the Hilbert space L2(0) the operators T, A and B are self 

adjoint, that T has spectrum [-1,1] which is absolutely continuous, and that Q+ and Q_ 

are the orthogonal projections of 1 2(0) onto the maximal T-positive and T-negative 

T-invariant subspaces. On Lp(O), I:s;p<oo, the operator T is a scalar-type spectral 

operator (cf. [105, 109]) and Q+ and Q_ are complementary projections onto the 

maximal subspaces which are T-invariant and on which T has restrictions with 

nonnegative and nonpositive spectrum, respectively. On L (0), 1:s;p:s;oo, J is an p 
isometry having the identity operator as its square; we shall call such an operator an 

inversion symmetry. It satisfies the identities 

JT = -TJ, (1.29a) 

JQ± = Q"'J, (1.29b) 

JA AJ, (1.29c) 

JB BJ, (1.29d) 

JR RJ, (1.29e) 
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where the last identity follows from the reciprocity symmetry (1.6). If the mirror 

symmetry (1.7) is satisfied, IT I R will be self adjoint on L2(0). 

The following result is due to Vladimirov ([377], Appendix XII.8). A new proof 

is given for the form of the eigenfunctions, suggested by E.J.G. Thomas. 

LEMMA 1.1. The operator B is compact on all of the spaces L (0) (1~p<oo). A 
p 

complete set of eigenfunctions consists of the spherical harmonics Y~(v,<p) satisfying 

m ( -1 m BY£= 2£+1) (3fYf, £=0,1,2, ... , m=-f,-£+1, ... ,£, (1.30) 

where 

(1.31) 

with P f( cos II) the usual Legendre polynomial of degree f. 

Proof: If R is a pure rotation m three dimensional space, then B commutes with the 

invertible isometry (URh)(w) = h(R(w)), wd1. The operators UR form a compact 

group of invertible isometries on L (0) which IS (group theoretically) isomorphic and 
p 

(topologically) homeomorphic to the unitary group S0(3) of pure rotations on JR 3. Let 

Ym( ) = (- 1)m[2f+1 !f-m~ ![Y2 im<pPm( ) f v,<p 411' f+m ! e f cosv 

be the spherical harmonics, where 

Then the (2£+1) dimensional subspace of Lp(O) spanned by the vectors Y~, where 

m=-f,-£+1, ... ,£, is an invariant subspace for all of the operators U R' Moreover, 

the matrix representations of the restrictions of U R to this subspace with respect to 

the basis {Y~ : -f~m~f} form a unitary group, which IS an irreducible 

representation of 80(3) of dimension 2£+1 (see [393]). It is then clear that B leaves 

invariant the subspace spanned by Y~, m=-f,-£+1, ... ,£, and that the restriction of 

B to this subspace has a matrix with respect to the basis {Y~ : -f~m~f} 

which commutes with all of the matrices from the above irreducible unitary 

representation. As a consequence of Schur's lemma (cf. [393]), we have 
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BY~ = (2.1+1)- 1 ,8 .t' Y~, m=-.t', ... ,.t, .1=0,1,2, ... , 

for certain constants ,8 .t' that do not depend on m. 

harmonic Y~ is proportional to the Legendre 

and therefore 

which implies 

However, for m=O the spherical 
.t' 

polynomial P .t'(u)=(-1) P .t'(cosv) 

Next we deal with the compactness statement of the theorem. If a1 IS a 

continuous function of cosO on [-1,1], then the estimate 

I (Bh)(w 1)-(Bh)(w2) I ~ 411!" J I a1 (w 1 • w)-a1 (w 2 • w) I • I h(w) I dw 
0 

m combination with the uniform continuity of the function (w,w)->a1 (w. w) from 

OxO into C[; gives the boundedness of B as an operator from L1 (0) into the 

Banach space C(O) of continuous functions h:O->CC with supremum norm; we then have 

However, by the Weierstrass approximation theorem we can approximate a1 by 

polynomials uniformly in cosO on [-1,1]. Since a1 is a polynomial and therefore a finite 

linear combination of Legendre polynomials, the operator B has finite rank. Thus B is 

compact as an operator from L1 (0) into C(O). Since C(O)cLP(O)cL1 (0), 1 ~p<oo, 

in the sense of continuous imbeddings, the operator B is compact on all of the spaces 

Lp(O) whenever a1 is continuous on [ -1,1]. However, the continuous functions on 

[-1,1] are dense in L1[-1,1]. Moreover, we easily prove that IIBhll ~llhll and 

11Bhll 1 ~11hll 1 , where M=¥.1J~ 1 1a1 (0)Id(cos0)=1 (cf. (1.1)). 
00 Hence~ by 

interpolation, II Bh II p::5:MII h II p' 1 ::5:p~oo. Using these bounds, the density of the 

continuous functions in L1[-1,1] and the compactness of B on Lp(O) if a1 is 

continuous, we obtain the compactness of B on L (0), 1~p<oo. • p 
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As a consequence of the nonnegativity of a 1 ( ()) and the normalization condition 

(1.1), we easily find ,8 0 =1 and -(2.1+1)<,8 .1<(2.1+1) for .t;;:>:l. If we consider the 

real spaces L (0), 1:<;;p:<;;oo, and C(O) as Banach lattices, then the operators B, p 
IT I, Q+' Q_ and R are positive operators, provided R is bounded on the space 

under consideration. (As a result of ( 1. 8), R is bounded on L00(0).) Let us consider 

the operators 

u>O, 
(1.32) 

u<O, 

where O:<;;x<oo, and define 

(JI(x)h)(u,<p) ! -1 -x/u lui e h(u,<p), 

0 ' 

xu>O, 
(1.33) 

xu<O, 

where o,.x dt Then both of the families of operators (1.32) are analytic 

semigroups, which are defined on Q±[Lp(O)] and have -JI(±x) restricted to Q±[Lp(O)] 

as their strong derivatives. It is easily seen that the operators defined by (1.32) and 

(1.33) are positive (in the lattice sense) and that Jl(x) is related to T as the 

propagator function introduced in Section VI.3. Similar notions can be introduced with 

respect to Tm by restriction. 

LEMMA 1.2. Let a 1 EL [-1,1] for some r>l. Then B:L (0)-+L (0) is bounded. . r p pr 

This lemma, which is a straightforward consequence of Theorem 1(2.X) of [206], 

follows directly by application of Holder estimates, and leads to the following useful 

result. 

LEMMA 1.3. Let a 1 ELr[-1,1] for some r>l. Then 

B[LP(O)] c IT I a[LP(O)], O<a<(r-1)/pr. (1.34) 

Proof: By virtue of Lemma 1.2, B is a bounded operator from L (0) into L (0). 
P pr 

As one easily shows, 
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IIITI-ahllp = flul-aplh(w)IPdw ~ 
p 0 

~ [ll u ,-apr/(r-1)dw] (r-1)/r [ll h(w) I prdw] 1/r 

[ 4 11" )(r-1)/rllhllp 
1-(apr/(r-1)) pr· 

Therefore, if O<a<(r-1)/pr, the operator IT 1-a is bounded from L (0) into pr 
Lp(O). Hence, in this case IT I -a B is bounded on Lp(O) and (1.34) holds 

true. • 

As a result we retrieve Feldman's observation (cf. (116]) that 

(1.35) 

if a1 tLr(-1,1] for some r>l. 

We shall now state a number of results on the existence and uniqueness of 

solutions of the radiative transfer problems outlined above. To the extent that they 

are formulated in an L2 -setting, they are applications of the theory presented in 

Chapters II, III and V. In this case we have to distinguish between phase functions 

a1 tLr(-1,1] with r>1 where all results can be stated in L2(0), and phase functions 

a1 tL1(-1,1] where a larger Hilbert space is introduced because of a breakdown of the 

proof in L2(0). For phase functions a1 tLr(-1,1] with r>1, we may apply the theory 

of Sections Vl.6 and VII.4 and obtain existence and uniqueness results in Lp(O), 

1~p<oo. It is not known whether these results, both the ones in L2(0) and the 

ones in Lp(O), extend to a1 tL1[-1,1] in general. 

We shall first consider the elementary problems (1.2)-(1.17)-(1.18) and 

(1.21)-(1.23). We put 0+ ={w=(u,<p)tO : u~O}. 

THEOREM 1.4. Let 1~p<oo, 0<a~1 and a1 tLr(-1,1] with r>l. Let S( T ,u,<p) 

satisfy the Holder continuity condition 

(1.36) 

for some 0<')'<1 and all O~r 1 ,r 2 <oo, as well as the growth con~ition 
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(1.37) 

Then for every D+tLP(O+) there exists a unique solution I(r,u,<p) of the equation 

of transfer (1.2) for r f{O,oo) with boundary conditions (1.17) and (1.18). More 

precisely, there exists a unique continuous vector function I:[O,oo)-->Lp(O) such that T1 

is differentiable for T f{O,oo) in the strong topology of Lp(O) and the following 

equations are satisfied: 

(TI) ' ( T) -AI( T) + S( T ), O<r<oo, (1.38a) 

D+' (1.38b) 

I im sup III(r)ll < oo. 
T-->oo p 

(1.38c) 

THEOREM 1.5. Let 1:-::;p<oo, and let a 1 tLr[-1,1] with r>l. Then for every F there 

exists a unique solution I( r ,u,<p) of the Milne problem (1.21)-(1.23). More precisely, 

there exists a unique continuous 

differentiable for T t (O,oo) m the 

equations are satisfied: 

(TI) ' ( T) -AI(r), O<r<oo, 

1 211" 
I i m J J ul( T ,u,<f> )d<f>du 
T-->oo -1 0 

vector 

strong 

-F/411". 

function I:[O,oo)-->1 (0) p 
topology of 1 (0) 

p 

such that TI is 

and the following 

( 1.3 9a) 

(1.39b) 

(1.39c) 

The proofs of these results follow directly from an analysis of the kernel of A. 

Since the eigenvalues of B are the numbers {3 .t'/(2.1+1), .t'=0,1,2, ... , which belong to 

(-1,1) for .t'~1, while a:-::;1, the operator A will be positive self adjoint on L2(0). 

In fact, since A+aB 1s the identity, A is strictly positive self adjoint on L2(0) for 

0<a<1, and has the one dimensional kernel of constant functions if a=l. However, we 

have (TP 0,P 0)=0 in the inner product of 1 2(0) while Ker A=span{P 0}. Thus for p=2 

Theorems 1.3 and 1.4 follow as applications of Theorems II 2.7 and III 2.2. The 

extension of these results to all 1:-::;p<oo can be proved using Sections Vl.6 and VII.4. 

If one only assumes a 1 t11[-1,1], analogs of the above theorems can be proved on the 

Hilbert space of functions on 0 which are square integrable with respect to the 
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weighted measure I u I dcpdu. That is to say, if H=L2(0), then this Hilbert space 

is the space HT introduced in Section 11.3 and these more general results are 

applications of Sections 11.3 and 111.2. 

Next, let us consider the boundary value problem (1.26)-(1.28). If the surface 

reflection operator R is bounded on Lp(O), we can state an existence and uniqueness 

result in Lp(O), 1Sp<oo. Since it is easily seen that Eqs. (1.6)-(1.8) imply 

I J u(Rh)(w)h(w)dw I S J u I h(w) I 2dw, 
0 0 

we have, as an application of the results in Section V.4, the following theorem. 

THEOREM 1.6. Let 1Sp<oo, and let a1 ELr[-1,1] with r>l. Let R be bounded on 

L2(0) and LP(O), and let S( T ,u,<p) satisfy the Holder continuity condition 

for some 0<')"<1 and all 0ST1'T 2Sb. Then for every DELP(O) there exists a 

unique solution of the boundary value problem (1.26)-(1.28). 

If a1 ELr(-1,1) with r>1, we can prove quite easily that the solutions 

I( T ,u,cp) of the above problems are nonnegative if the internal source term 

S( T ,u,<p) and the incident radiation D(u,<p) are nonnegative. Let us illustrate this fact 

for Eqs. (1.2)-(1.17)-(1.18). As a consequence of (1.35), we may write the problem in 

the integral form 

0< T <co, ( 1.40) 

where we have used the definitions (1.32) and (1.33). Consider the Banach space 

Lq(Lp(0))0 of strongly measurable Lq -functions 1Sp<oo, 

1SqSoo. Then we may write Eq. (1.40) in the form 

I-aLI=w 
co ' 

(1.41) 

with L00:Lq(LP(0))0-+Lq(LP(0))0. 
spaces Lq(Lp(0))0 for O<a< 1. 

It is clear that 1-aL is invertible on the 
00 

Moreover, L00 is a positive operator on Lq(Lp(0))0 
in the sense that it leaves invariant the reproducing and normal cone of nonnegative 
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functions in this space. As a consequence of Theorem I 4.2, its spectral radius must 

belong to the spectrum, and therefore r{L 00):<=;;1. We may then iterate Eq. {1.41) for 

0 <a< 1 and conclude that the unique . solution is nonnegative. For a= 1 the reasoning 

necessary to prove nonnegativity of the solution is more involved and will be omitted. 

For the boundary value problem {1.26)-{1.28) we can prove nonnegativity of the 

solution for 0<a::<=;;1 using a similar iteration argument. 

Existence and uniqueness of solutions for the equation of radiative transfer has 

been proved for many special cases in various degrees of mathematical preciseness, 

sometimes for the integrodifferential form and sometimes for the integral form of the 

equation. For this reason it is not easy to give a fair account of the history of these 

results. Therefore we shall restrict ourselves to some major developments. 

For isotropic scattering {a1 ( (} )=1) the existence and uniqueness issue for the 

equation m integral form was settled by Hopf [196] and Busbridge [61]. In 

integrodifferential form we mention the later developments by Case [68] and van 

Kampen [372]. Their singular eigenfunction approach was made rigorous by the work of 

Larsen and Habetler [239, 241], and Hangelbroek and Lekkerkerker [180, 181, 184]. 

Using the integral form of the equation of radiative transfer, the asymptotics of 

solutions were studied in great detail by Maslennikov {for a1 tL2[-1,1], cf. [259]) and 

Feldman {for a1 tLr[-1,1] with r>1, cf. [116]; also for general a1 tL1[-1,1], cf. [118]). 

Relying on cone preservation methods Nelson [281] showed subcriticality to imply unique 

solvability. In integrodifferential form half range completeness and orthogonality 

results have been given by many authors, although aspects of these works have 

frequently been heuristic (see [70, 233, 263] for references). Using the abstract 

formulation of the previous chapters, existence and uniqueness of solutions were proved 

by Beals [32] in the weighted Hilbert space 12{0, I u I dud<p). As to existence and 

uniqueness results in Lp{O), we mention the work of Hangelbroek {O<a<1, a1{0) 

polynomial, p=2, cf. [182]) and van der Mee {O<a::<=;;1, a1 tLr[-1,1] with r>1, 1:<=;;p<oo, 

cf. [359, 360]). Existence and uniqueness theorems that account for reflection by the 

planetary surface have been given by Greenberg and van der Mee {same assumptions, 

p=2, cf. [164]; 1:<=;;p<oo, appearing as a special case of the results for polarized light 

transfer). 
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2. Radiative transfer with polarization 

In this section we shall analyze in detail the existence and uniqueness properties 

of the solution of an equation of transfer for polarized light. Contrary to the 

unpolarized light case, the solution is not a scalar function, the (specific) intensity 

I( T ,u,tp), but a four-vector I ( T ,u,tp) which specifies the intensity and state of 

polarization of the light. As a result the theory is considerably more involved than 

the theory presented in Section 1. 

The intensity and state of polarization of a beam of light can be characterized 

completely by using four polarization parameters, I, Q, U and V, which are the 

components of the Stokes vector I ={I,Q,U,V}, after G. Stokes [344] who first 

introduced these parameters m 1852. According to the (equivalent) conventions of 

Chandrasekhar [89] and van de Hulst [358], the Stokes parameters I, Q, U and V are 

specified as follows: 

(i) I is the specific intensity of the beam, which is nonnegative. 

(ii) P=(Q2 +U2 + V2)~ /I is the degree of polarization of the light. If P=O, we 

have natural (i.e., completely unpolarized) light. For P=l we have completely 

polarized light. For O<P<l the light is partially polarized. As a result we 

have 

(2.1) 

Every Stokes vector I ={I,Q,U,V} can be written as the sum of a beam of 

natural light with Stokes vector {I-(Q2+U2+V2)~,0,0,0} and a beam of 

completely polarized light with Stokes vector {(Q2+U2+V2)~,Q,U,V}. 
(iii) P .~=(Q2+U2)~/I denotes the fraction of the light that is linearly polarized, 

while Pc= lVI /I denotes the fraction of the light that is circularly 

polarized. Linear polarization occurs if V =0, circular polarization if Q=U=O, 

and elliptic polarization if both (Q2 +U2)~ and V are non-zero. 

(iv) Right-handed polarization (when looking in the direction of propagation) occurs 

if V>O, while left-handed polarization occurs if V<O. 

(v) If (Q2+U2)~>0, i.e. if the light is neither natural nor circularly polarized, 

the orientation of the major semiaxis of the polarization ellipse in space is 

specified by the fraction U /Q. 
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For further details we refer the reader to the textbooks of Chandrasekhar [89] and 

Van de Hulst [358] and the article of Hovenier and van der Mee [201]. 

The equation of transfer of polarized light was first formulated by 

Chandrasekhar [89] for Rayleigh scattering and later by Ku~ ~er and Ribari~ [234] 

in general, and has the form 

a urrl(r,u,<,o) + l(r,u,<,o) 

J1 J211" 
= 4a?r _ 1 0 Z(u,u,<,o-~)l(r,u,~)d~du + S(r,u,<,o), (2.2) 

where 0< T <b. The phase matrix Z(u,u,<,o-~) is given by the product 

(2.3) 

of two rotation matrices of the type 

1 0 0 0 

0 cos 2a s 1 n 2a 0 
L(a) 0 -Sill 2a cos 2a 0 

0 0 0 1 

and the scattering matrix 

b 1 (0) 0 

F(O) = 
a 2 (0) 0 

0 a 3 (9) (2.4) 

0 -b2(0) 

The quantities u=-cosv and u=-cosv ', O~v,v ',0 < 1r, on the one hand and the angles 

<p, ~. u 1 and u 2 on the other hand are related by the equations 

cosO cosv cosv' + smv sinv' cos(~-<,o), 

cosv-cosv' cosO 
SlllV' SiniJ 

(2.5a) 

(2.5b) 
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cosv'-cosv cos9 
COS0'2 = SlnV SinO (2.Sc) 

where sinu 1 and sinu 2 have the same sign as sin( sO-<p ). It turns out (cf. [201]) 

that for 0<sO-<p<1r (resp. 7r < sO-<p< 2 7r) the quantities sO-<p, 0'1 and 0'2 

(resp. <p-sO, -0'1 and -0'2) form the angles and 9, v and v' (in both cases) 

the opposite sides of a spherical triangle. On inspection the phase matrix satisfies the 

following symmetry relations [197]: 

(i) Reciprocity symmetry: 

Z( -u,-u,sO-<p) ... PZ(u,u,<p-sO)P (2.6) 

(ii) Symmetry with respect to the equatorial plane: 

(2.7) 

(iii) Reflection symmetry with respect to the meridian plane of incidence: 

Z(u,u,sO-<p) = DZ(u,u,<p-sO)D, (2.8) 

where P=diag(1,1,-1,1) and D=diag(1,1,-1,-1). As a consequence we have 

Z(u,u,sO-<p) = QZ(u,u,<p-sO)Q, (2.9) 

where Q=diag(1,1,1,-1) and tilde above a matrix denotes transposition. For physical 

reasons one demands that the scattering matrix and the phase matrix leave invariant 

the vectors I ={I,Q,U,V} satisfying (2.1). We also have the normalization condition 

(1.1). 

We may now write down the complete analogs of the boundary value problems of 

Section 1. On the ground reflection matrix we have to impose the symmetry relations 

[197, 198] of reciprocity symmetry, 

(2.10) 

and mirror symmetry, 
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( 2.11) 

and the energy conservation law that the plane albedo does not exceed unity, 

1 211' 
o :5; ~ J J U!Rg(u,u,rp-,P)] 11 d(rp-,P)du :5; 1, (2.12) 

0 0 

where [R] .. denotes the (i,j)-element of a matrix R. For finite optical layers we get 
IJ 

the analog of problem (1.2)-(1.4), which is Eq. (1.2) with boundary conditions 

I(O,u,rp) = D(u,rp), u>O, (2.13) 

1 211' 
I(b,-u,rp) = lJ J UR (u,u,rp-,P)I(b,u,,P)d,Pdu + D(-u,rp), u>O. 

11' 0 0 g 
(2.14) 

For semi-infinite media we again consider two boundary value problems: (i) the equation 

of transfer (2.2) with boundary conditions 

I(O,u,rp) = D+(u,rp), u>O, (2.15) 

I im sup III(r,•,·)ll < oo; ( 2.16) 
T --+oo 

and (ii) the :Milne problem 

a 
u(TT I ( T ,u,rp) + I ( T ,u,<p) J1 211' 

( 1 I 411') J Z( u,u,rp-p) I ( T ,u,,P )dpdu, 
-1 0 

{2.17) 

I{O,u,rp) = 0, u>O, {2.18) 

1 211' 
I im J J ul(r,u,,P)d,Pdu = -{F/411') {1,0,0,0}. 
T--+oo -1 0 

{2.19) 

On writing 

l{r,u,rp) lc0 (r,u) + 2 ~ [Icj(r,u)cosjrp + lsj(r,u)sinjrp], 
j=1 

Z(u,u,rp-,P) Zc0 (u,u) + 2 ~ [ zci( u,u)cos{j( rp-,P)} + zsi(u,u)sin(j( rp-,P )}], 
j = 1 
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and analogous expansions for S( r ,u,lp), D(u,lp) and D +(u,lp), we accomplish a Fourier 

decomposition of the above boundary value problems into a problem for I co( r ,u) and 

problems coupling Icj(r,u) and Isj(r,u) for j~l. As a result of (2.8) and (2.11) we 

have the symmetry relations 

and 

R~ j (u,U) = DR~ j (u,u)D, 

R: j (u,U) = -DR: j (u,U)D. 

If we now put 

we obtain the pair of component equations 

(2.20) 

and 

(2.21) 

where 
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and 

If We write ZC0 (u,u), zCj(u,u) and zsj(u,u) in block matrix form with square blocks of 

matrix order 2, we have, as a result of the above symmetry relations, 

~ c j a ' 
zcj [zocjs ] 

[ ~ s j a 

(s=symmetric, a=antisymmetric), and similarly for R~ 0 (u,ii), R~ j (u,ii) and R: j (u,u). 

If we now write I ={I,Q,U,V} for each indexed four-vector I, we get 

0 { co( ) co } Y ( r ,u) = I r ,u , Q ( r ,u), 0, 0 , 

(2.22) 

and, for j;?:l, 

(2.23) 

The ground reflection matrix corresponding to Eqs. (2.20) and (2.21) IS constructed m 
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the same way as the phase matrix Wj(u,u) of the component equation. 

For j=O the equations (2.20) and (2.21) are equations with two-vector functions 

as solutions. Their kernels zCOS(u,U). and zCoa(u,U) satisfy the symmetry relations ( cf. 

(2.6), (2. 7), (2.22)) 

zCOS(u,u) = zcos(u,u) = zCOS( -u,-u) (2.24) 

and 

(2.25) 

where E=diag (1,-1). For j~1 we have the symmetry relations (cf (2.6), (2.7), (2.23)) 

~(u,u) == qNj(u,u)Q, (2.26a) 

Wj(u,u) = ~( -u,-u)D, (2.26b) 

where j~l. Following the work of Ku~ ~er and Ribari~ [234) yielding the j=O 

case and complex component equations, the complete decomposition in terms of real 

component equations was derived by Siewert [329). Here we have essentially followed 

the treatment by Hovenier and van der Mee [201). Explicit representations of 

zcos(u,u), zcoa(u,u) and Wj(u,u) can be found in [201, 329). 

For the case when, as a function of cosO, a1 ELr[-1,1) for some r>1, a complete 

existence and uniqueness theory for the boundary value problems (2.2)-(2.13)-(2.14), 

(2.2)-(2.15)-(2.16) and (2.2)-(2.17)-(2.18)-(2.19) has been presented by van der Mee 

[365). His analysis was based in part on the observation by Germogenova and 

Konovalov [136) that on the Banach space L~ 4 ) (0) of Lp -functions I : O-+R 4, where 

n is the unit sphere in three-dimensional space, the subset 

is a (reproducing and normal) cone. This observation paved the way to the application 

of cone preservation methods to the integral form of the boundary value problem (cf. 

Section 1.4). Earlier the application of the same technique to the "eigenvalue equation" 
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(2.27) 

as implemented by Germogenova and Konovalov [136] and Kuzmina [235, 236], led to 

valuable information on the position of eigenvalues of the characteristic equation (2.27). 

In this section we shall restrict ourselves to the component equation with phase 

matrix zcos(u,u), which has the form 

(2.28) 

On the Banach space L~ 2 l[-1,1] of measurable functions Icos:[-1,1]-+G::2 with 

LP-norm 

f1 1/p 
[ {I Icos(u) I P + I qcos(u) I P}du] , 

-1 
1:!>p<oo, 

and 

lllcosll =max { sup llcos(u)l, sup IQcos(u)l}, 
00 -1:!>u:!>1 -1:!>u:!>1 

we define the bounded linear operators 

±u>O, 

±u<O, 

1 
(Bicos)(u) = ~J zcos(u,U)Icos(U}du, 

-1 

1 
(RI cos)(u) = 2 J UR cos (u,u) Icos(u)du, 

-1 g 

and the vectors 
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As a result we obtain vector-valued differential equations with boundary conditions for 

each of the radiative transfer problems. 

The operator B can be proved compact on all spaces L ( 4 l (0), but a complete p 
description of its eigenvalues and eigenfunctions is more difficult to give. The analyses 

of Germogenova and Konovalov {[136], where a1 fL 1[-1,1]), and Kuzmina {[235, 236], 

where a1 fL 2[-1,1]), gave results in terms of equations involving complex polarization 

parameters and the results we need must be derived from theirs. Siewert [329] and 

Hovenier and van der Mee [201] provided, for scattering matrices F(9) for which 

a1 {9), {l±cos9)- 2(a2(9)±a3(9)), a4{9), (sin9)- 1b1 (9) and (sin9)- 1b2{9) are 

polynomials in cos 9' analytical expressions for zCOS(u,u), zcoa(u,u), and Wj{u,u) for 

j~1, but they did not relate them to the spectral structure of the integral operator 

in the equation of transfer. All of the expansions appearing in these expressions make 

use of the generalized spherical functions of Gelfand and Shapiro {[135], also [133]; the 

reader should be aware of the sudden convention changes and many printing errors in 

these works), which were first applied to polarized light problems by Ku~ ~ er and 

Ribari~ [234]. 

Let us consider the Legendre polynomials and associated Legendre functions 

p J'(u) 1 ( d )J'(u2_ 1)J', 
2J'{J'!)Uu 

P~(u) (1-u2)j/ 2(-fu)jP J'(u), 

where J'~j~O, and the special functions {cf. [329]) 

R~(u) = 

= ....,!._, (J'+j)! ( 1 -u2)j/2[1+upj-~, j+2(u) + 1-upj+~, j-2(ul] 
2J+1[(J'-2)!{N2)!]~ 1-u .1-J 1+u .1-J ' 

T~{u) = 
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where t'~j~2 and P~,B (u) is a Jacobi polynomial (see [34 7[ for its definition and 

maJor properties). 

conditions 

These functions satisfy the orthogonality and normalization 

1 
J _1 P i'(u)P r(u)du 

2 
2i'+ 1° i'r' 

J 1 0 0 2 l£±..iJJ 
_ / ~(u)P: (u)du = 2 i'+ 1 ( i' ~ j ) ! 8 i'r' 

J~ 1 [R~(u)R:(u) + T~(u)T:(u)]du 2}+ 1 
l~±ill 8 
(7"=JT1 i' r' 

( 1 [R~(u)T:(u) + T~(u)R:(u)]du = 0, 

as one easily computes from Eqs. (182), (183), (A12), (A13), (A21) and (A22) of [201]. 

One may also introduce the special functions (cf. [329, 330]) 

R"(u) = ''4 [ (t'-2)! (t'+2)! ]112(1- 2)P2, 2() 
" 7< i' ! u e _ 2 u , i'~2, 

where 

THEOREM 2.1. Let a1 EL 1[-1,1]. The operator B has the separated form 

(2.29) 

and both this and the analogous operators Bu where the summation IS from i'=O to 

i'=L, are compact operators satisfying l im IIB-B1 11 =0 on 1p )[-1,1]. Here the 
0 1-;-+oo 

operators BL are finite rank approximatiOns of B. The expansion coefficients or i'' 

,B i' and "'i' are given by 
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f3o = 1, 

[ ~!l_! ]~J 1 2 7; = (£+~) (7+2Ti _1 b1(1J)P ;(cosiJ)d(cosiJ). 

The operator B is self adjoint on L~ 2 )[-1,1], A=1-aB has its spectrum on the 

interval [1-a,1+a) and 1-a is a simple eigenvalue of A. 

Proof: Let us expand the elements of the scattering matrix F(IJ) as follows: 

co 

E 6 fp ;(cosO), 
£=0 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 

where it is assumed that a1 eL2[-1,1] as a function of cosiJ. Since F(IJ) leaves 

invariant the set of four-vectors satisfying (2.1), a simple application of this rule to 

the vectors {1,±1,0,0}, {1,0,1,0} and {1,0,0,1} gives the inequalities (cf. [125, 201, 234]) 

and 
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As a result, all of the elements of F(O) are 1 2-functions of cosO if this is the case 

for a1 (0). The expansions (2.30)-(2.35) then follow as a simple consequence, in view 

of the various orthogonality and completeness properties. We easily find the formulas 

for a e· f3 e· and "Y e· with f3o=1 resulting from (1.1), while 

and 

Using 

1 
8 e = (e+Y2) I a4(0)P e(cosO)d(cosO), 

-1 

e 0 = e 1 = o, 

[ ~]V:J1 2 e e = -(e+Y2) (7+2Ti 2 _ 1 b2(0)P e(cosO)d(cosO) 

~ 0 = ~ 1 = o, 

[ U_::_lli ] Y: J 1 2 2 ~ e = -(e+Y2) (7+2Ti 2 _ 1 {a3(0)Re(cos0)+a2(0)T e(cosO)}d(cosO). 

the above expansions and the addition formula for generalized spherical 

(cf. [133, 135]; unambiguous formula in [201], Eq. (A24)) we may derive 

00 [P,(u) 0 l [p' 1' l [P,(fi) 0 l· zcos(u,fi) l: 
l=O 0 Re(u) "'~e ae o Re(O.) 

00 [P,(u) 0 l 
[' l 

_,'] [P,(fi) 0 ]. zcoa(u,fi) l: 
l=O o Re ( u) ee oe o Re(fi) 

and, for j~l, 

p ~ ( u) 0 0 0 

wi(u,fi) E fe-~r 0 Ri(u) -T~(u) 0 

Ri(u) 
X 

l=j l+J ! 0 -T~(u) 0 

0 0 0 p ~ ( u) 

functions 

(2.36) 

(2.3 7) 
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f3e "~e 0 0 P~(u) 0 0 0 

"~e rxe 0 0 0 Rlfu) -Tlfu) 0 
X 

-Tlfu) Rlfu) 
(2.38) 

0 0 ~ e -ee 0 0 

0 0 ee se 0 0 0 P~(u) 

As a result we obtain (2.29) and the analogous formulas for the other components of 

the equation of transfer. If one only assumes a1 fL 1[-1,1] as a function of cosO, we 

may replace the elements of the scattering matrix F(O) by the approximates a}, a~, 
a~, a~, bt and b~, which are given by (2.30)-(2.35) with the summation running up 

to e =L. For these approximates one then derives (2.36)-(2.38) with the summation 

up to l=L. Now let PL be the projection of L~ 4 l[-1,1], 1~p<oo, onto the linear 

span of the vectors (P e,O) and (O,Re) with l~L along the closed linear span of the 

vectors (P e,O) and (O,Re) with l~L+l. Then the projections PL converge strongly 

to the identity on L~ 2 l[-1,1], and BL =PLB is the operator given by (2.29) with 

summation up to l =L. Since, as we shall see shortly, B is a compact operator, we 

have L~!IIB-BLII =0 on L~ 2 )[-1,1]. 

It remains to establish the compactness of B and the positive selfadjointness of 

A. It is easily seen, using Lemma 1.1, that on the Banach space L~ 4 ) (0) of 

measurable functions I:O--+C4 for 1~p<oo the operator 

with the phase matrix Z(u,u,<p-~) satisfying (2.3), is compact. In fact, if we write 

Btotal in matrix form with respect to the decomposition of L ( 4 ) (0) into four copies 
p 

of Lp(O), we obtain 

B 
a1 D12 D13 0 

Btotal D21 D22 D23 D24 

D31 D32 D33 D34 

0 D42 D43 B 
a4 

where Be' with c being one of the elements of the scattering matrix, is an operator of 

the type to which Lemma 1.1 relates. Moreover, D12, D13, D21 , D31 , D42 , D43 , D24, 
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D34 , D22 , D23 , D32 and D33 are integral operators, whose respective kernels are given 

by b 1 (O)C 1, -b1 (IJ)S 1, b 1 (IJ)C2, b 1 (IJ)S 2, -b2(0)S 1, -b2(1J)C 1, -b2(1J)S 2, 

b2(1J)C 2, C2a2(1J)C 1-S 2a3(1J)S 1, -C2a2(1J)S 1-S 2a3(0)C1, S2a2(1J)C1 +C2a3(1J)S 1, 

and -S 2a2(1J)S 1 + C2a3(1J)C 1. Here Ck=cos2ak and Sk=sin2ak for k=1,2, where 

a 1 and a 2 are given by (2.5b) and (2.5c). Thus the compactness of these additional 

. 'l b . d . L 1 1 H Btotal . If operators IS east y o tame usmg emma . . ence, 1s a compact operator. 

we restrict Btotal to the subspace of L ( 4 ) (0) consisting of all four-vectors I 
p 

{I,Q,U,V} such that I and Q do not depend on <p and U and V vanish almost 

everywhere, and identify this subspace with L~ 2 )[-1,1] in the natural way, we obtain 

the operator B, which must then be compact. In a similar way one proves the 

compactness of the integral operators related to the other component equations. 

Following [202], one easily proves that 

(2.39) 

and 

(2l+1)A[~e] = -a1e[:eJ + (2f+1-aael[~e]· (2.40) 

Since B is self adjoint on L~ 2 )[-1,1] (see (2.29)), it suffices to show that all of the 

matrices 

have their eigenvalues in the interval [(2£+1)(1-a), (2l+l)(l+a)] with (2l+l)(l-a) 

only occurring as a (simple) eigenvalue if e =0, in order to prove that A= l-aB has its 

spectrum in [1-a,1+a] with 1-a as a simple eigenvalue. Indeed, let us suppose that 

( 2.41) 

for some >.<0, and let c be the minimum of those constants satisfying 
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We first compute (cf. (2.39)-(2.41)) 

which is a vector {Icos,qcos} satisfying Ieos~ I Qcos I ~0. Hence, 

() 1->-.a () 1->-.a () cP0 u + -a-pP~_ u ~ 1-a-qR~_ u I, 

which in turn implies 

As a result of the minimality requirement on 

a/(1->-.a)~1, which contradicts >-.<0. Hence, 

numbers on the interval [(2i+1)(1-a), co). 

(2.42) 

c and the nonnegativity of c, we get 

all eigenvalues of M£ are nonnegative 

In fact, for l~1 the equality ~ign in 

(2.42) can only hold true for at most finitely many u£[-1,1], and so for l~1 we 

have a/ ( 1->-.a)> 1. For l =0 the matrix M£ reduces to 

which has a simple eigenvalue at 1-a with corresponding eigenvector {1,0}. We may 

therefore conclude that 1-a is a simple eigenvalue of the positive self adjoint operator 

A=1-aB with eigenvector {1,0}. Finally, since B leaves invariant the positive 

(reproducing and normal) cone of vector functions Icos={Icos,Qcos} on L~ 2 )[-1,1] 

satisfying Icos(u)~ I Qcos(u) I ~0 for u€[-1,1], the spectral radius of B belongs to the 

spectrum of B (see Theorem I 4.2). Since B is self adjoint having 1 as its largest 

eigenvalue, we have u(B)c[-1,1] and u(A)c[1-a,1+a]. • 

As a corollary of the above theorem we see that A=l-aB is strictly positive 

self adjoint for O<a< 1, and positive self adjoint with simple zero eigenvalue for a= I. 

For a=1 the eigenvector {1,0} satisfies the identity 

whence Ker A is neutral with respect to the indefinite mner product [h,k] 

(Th,k). 
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Before presenting some existence and uniqueness results for the polarized light 

equation, let us prove a lemma which represents energy conservation and allows the 

reflection operators to be taken in HT without boundedriess assumptions. For a vector 

Icos={lcos,qcos} we shall write lllcosll =(llcoslp+IQcoslp) 1 /P, where 1~p<oo. 
p 

LEMMA 2.2. The operator ITIR is self adjoint on 1~ 2 )[-1,1], and 

(2.43) 

Proof: If we transfer the symmetry relations (2.10) and (2.11) for the ground 

reflection matrix to the Fourier components appearing in the expansion 

we obtain the symmetry relations for the component R~ 0 (u,u), i.e., 

PR~ 0 (u,u)P, (2.44a) 

(2.44b) 

For the other components we obtain 

(2.45a) 

DR~ j (u,u)D, (2.45b) 

(2.46a) 

(2.46b) 

From (2.44) we obtain 

R~ 0 (u,fi) = [R; o s ( u ' fi) o l' 
0 Rcoa(u,fi) 

g 

where 
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R c o s (u,u) = :R c o s (A ) g g u,u' 

with E=diag(1,-1}. Hence, by definition, the surface reflection operator R has the 

property that ITIRis self adjoint on 1~ 2 )[-1,1]. 
On defining the unitary operator U on L~ 2 )[-1,1] satisfying 

(Uis}(r) = ~[ 1 
..j2 1 

(U-1 Is)( T) = ~ [ 1 
..j2 -1 

-~] Is(r), 

~) Is(r}, 

we see that URU- 1 leaves invariant the cone of L~ 2 )[-1,1] consisting of all vectors 

{Ix,Iy} with Ix~O and IY~O, while Rg(u,u) is transformed into the kernel 

with R .. =R .. (u,u) = [R (u,u)J. .. Defining R = URU- 1 and using the positivity estimates IJ IJ g IJ 

(2.4 7} 

a straightforward estimat~ yields 

1 - 1 1 
I f u(RI )(u) • I (u}du I ~ f f uu{(R11(u,u)+R22(u,u)) + 

0 0 0 

x {( I I(u) I 2 + I Q(u) I 2)( I I(u) I 2 + I Q(u) I 2 )}~dudu. 

On using the estimate (2.4 7}, Schwarz's inequality and the dissipativity condition (2.12}, 

we obtain 

1 - Jl 2 IJ u(RI)(u)·I(u}dul ~ uiii(u)il 2du. 
0 0 

Hence, by the unitarity of U, we have (2.43). • 

We conclude this section with a number of existence and uniqueness results for 
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the component equation (2.28). When formulated in L~ 2 )[-1,1] and for phase functions 

a 1 ~ Lr[ -1, 1] with r > 1, these results are direct applications of the theory of Chapters 

II, III and V. When formulated in L( 2 )[-1,1] with 1~p<oo and for phase functions 
p 

a1 ~Lr[-1,1] with r>1, they can be derived from the corresponding results in the 

L2-setting using Sections VI.6 and VII.4. 

THEOREM 2.3. Let 1~p<oo, and let a 1 ~Lr[-1,1] with r>l. Let Scos(r,u) satisfy 

the Holder continuity condition 

for some 0<1<1, where O~r 1 ,r 2 <oo, and let the growth condition 

be satisfied. Then for every D+cos~L~ 2 )[-1,1] there exists a unique continuous vector 

function lcos:[O,oo) .... L( 2 )[-1,1] such that Tlcos is differentiable for T f(O,oo) 
p 

in the strong topology of L~ 2 ) [ -1,1], and which satisfies the component equation of 

transfer (cf. Eq. (2.28)) 

and the boundary conditions 

I im sup II Icos(r)ll < oo. 
p 

T->OCJ 

THEOREM 2.4. Let 1~p<oo, and let a 1 ~Lr[-1,1] with r>l. Then for every F there 

exists a unique solution Icos(r,u) of the Milne problem (2.17}-(2.19). More precisely, 

there exists a unique continuous vector function Icos:[O,oo) .... L( 2 )[-1,1] such that 
p 

Tlcos is differentiable for r f{O,oo) in the strong topology of L( 2 )[-1,1] and the 
p 

following equations are satisfied: 



274 BOUNDARY VALUE PROBLEMS IN ABSTRACT KINETIC THEORY 

Q+ I cos(O) = 0, 

I . J1 ~Ieos( ~)d~ 1m u r,u u = 
T-+oo -1 

-(F/411') {1,0}. 

THEOREM 2.5. Let a1 fLr[-1,1] with r>1, and let R be bounded on L~ 2 )[-1,1] and 

L ( 2 ) [ -1,1]. Let Scos( r ,u) satisfy the Holder continuity condition p 

for some 0<!<1, where 0$;r 1,r 2$;b. Then for every DcosfL~ 2 )[-1,1] there exists 

a unique solution of the boundary value problem 

If a1 fLr[-1,1] with r>1, the solution Icos(r,u) satisfies the condition 

Ieos( r ,u) ~ I Qcos( r ,u) I, if the internal source term Scos( r ,u) and the incident 

radiation Dcos(u) satisfy such a condition also. 

3. One speed neutron transport 

When neutrons move through a plane parallel reactor medium with constant 

speed, the stationary transport of neutrons may be modeled by the time independent 

one speed neutron transport equation. If one also assumes the absorption, scattering 

and fission processes for a single neutron to be independent of position (i.e., if the 

medium is assumed homogeneous) and delayed fission is neglected, the equation describing 

the transport of neutrons is given by (cf. Section 1.1) 

p. M(x,w) + tf>(x,w) = (c/41l')J0 p(w·w)tf>(x,w)dw + q(x,w). (3.1) 

Here x f (o,r) is the position variable measured perpendicular to the surface and r 

is the thickness of the medium, both measured in units of neutron mean free path. The 
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direction of the neutrons is indicated by points w on the unit sphere 0 in three 

dimensional space, where ( 0 ,tp) denote the usual spherical coordinates of w t 0 and 

therefore w=(sinOcostp, sinOsintp, cosO). We have (} =0 in the direction of 

increasing x and (} =7r in the direction of decreasing x, while J.l=cosO. As a 

consequence, if the slab medium is thought vertical, then J.1 is positive if the neutron 

has its velocity component to the right. The positive number c is the average number 

of secondary neutrons per collision. True absorption dominates if c< 1, there is 

conservation of the number of secondary neutrons if c=1, and multiplication by fission 

dominates if c>l. The redistribution function p(t) describes the probability distribution 

for the scattering of neutrons as a function of the scattering angle (i.e., the angle 

between the directions of incidence and scattering). Therefore, p( t) is nonnegative 

and measurable and satisfies the normalization condition Y2 J ~ 1 p(t)dt = 1. The 

unknown function .,P(x,w) is the neutron angular density as a function of position x 

and direction w, and therefore must be nonnegative and measurable. The function 

q(x,w), which describes the internal neutron sources, must likewise be nonnegative and 

measurable. 

The boundary conditions to be imposed specify the angular densities of incoming 

neutrons. For a finite slab medium (0< T <co) we demand that 

.,P(O,w) = tp(w), J.l=cosO >0, (3.2a) 

.,P(r,w) tp(w), J.l=cosO <0, (3.2b) 

so that one function, tp(w), describes the angular densities of incoming neutrons at 

both surfaces. It is clear physically that one should assume tp(w);;::o. For a half 

space medium ( T =co) we demand that 

.,P(O,w) J.l=cosO >0, 

limsupJ I.,P(x,w)IPdw<co. 
X-+oo 0 

Again, one assumes 'P +(w);;::o. 

On applying Fourier decomposition we may write 

.,P(x,w) 
co 

¢ 0(x,J.I) + 2 E .,Pm(x,J.I)cosmtp 
m-1 

(3.3a) 

(3.3b) 

(3.4) 
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and similarly for q(x,w), 'P(w) and 'P +(w), and derive the component equations 

with boundary conditions 

for finite slabs, and 

for half spaces. The scattering kernel pm(JJ,JJ) is given by 

For m=O all functions involved are nonnegative, but this need no longer be the case 

for m~l. 

Mathematically the one speed neutron transport equation with the above 

boundary conditions coincides with the equation of transfer of unpolarized light with 

non-reflective boundary conditions. This identification IS realized by identifying 

position x and optical depth T, slab thickness T and optical thickness b, phase 

function a1 (w. w) and redistribution function p(w. w), albedo of single scattering a 

and number of secondaries per collision c, and (specific) intensity I( T ,u,'P) and angular 

density ,P(x,w), respectively. In radiative transfer problems, however, the albedo of 

single scattering a is confined to the interval (0,1], whereas in neutron transport the 

number of secondary neutrons per collision, c, is an arbitrary positive number which may 

well exceed unity. As a result, the existence and uniqueness theory for the underlying 

boundary value problems in one speed neutron transport does not differ from the 

analogous theory in radiative transfer, provided cf(0,1]. For c>1 neutron transport 

displays phenomena that do not have parallels in radiative transfer. Among them one 

has the existence of a critical value c0( T )> 1 for the number of secondaries per 
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collision, with non-uniqueness of stationary solutions at c=c0 and non-existence of 

nonnegative solutions for c>c0. These are non-existence and non-uniqueness results 

alien to radiative transfer. For the literature of neutron transport theory we refer to 

the textbooks of Davison [98] and Williams [394], which use Wiener-Hop£ type 

techniques, Case and Zweifel [70], which particularly emphasizes eigenfunction expansion 

methods, and Duderstadt and Martin [108], which contains a relatively up-to-date 

review of neutron transport theory. For the underlying nuclear reactor physics we 

refer to Bell and Glasstone [38] and Zweifel [406]. 

Let us introduce the functional formulation to be used in this section. As in 

Section 1, we let Lp(O) be the (real or complex) Banach space of measurable functions 

on 0 endowed with Lp -norm, and define on Lp(O) the operators 

(Th)(w) = Jlh(w), 

[
h(w), 

0 ' 

(Ah)(w) = h(w) - c(Bh)(w), 

(Bh)(w) = 4~ J p(w. w)h(w)dw, 
0 

as well as the vector-valued functions 

.,P(x)(w) .,P(x,w), 

q(x)(w) q(x,w). 

We then obtain the boundary value problem 

(T.,P)' (x) -A.,P(x) + q(x), 0< x< T, 

Q_.,P(r) Q_<p, 

(3.5a) 

(3.5b) 

(3.5c) 
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for finite slabs of thickness T, and 

(T1/>)'(x) -A,P(x) + q(x), O<x<oo, (3.6a) 

(3.6b) 

lim supii,P(x)ll < oo, 
X-+oo p 

(3.6c) 

for half spaces. On Lp[-1,1] we may formulate similar boundary value problems if we 

define the operators 

(3. 7) 

!h(Jl), 

0 l 

(3.8) 

(3.9) 

and the vector-valued functions 

In one speed neutron transport, reciprocity symmetry leads to the existence of an 

inversion symmetry J satisfying (1.29a}-(1.29d), namely the operator defined by 

(Jh)(w)=h(-w). Similar properties hold for the operator (Jmh)(Jl)=h(-Jl), where 

now all of the operators bear the subscript m. 

On the Hilbert space L2(0) the operators T, A and B are self adjoint, T has 

absolutely continuous spectrum [-1,1] and Q and Q are the orthogonal projections of + -
L2(0) onto the maximal T-positive and T-negative T-invariant subspaces. On Lp(O), 

1::0S:p<oo, T is a scalar-type spectral operator (cf. [105, 109] for the definitions). As 
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IS clear from Lemma 1.1, B is a compact operator on L (0), 1~p<oo with the 
p 

spherical harmonics as a complete set of eigenfunctions. We denote by 0(0) the (real 

or complex) Banach space of continuous functions h:O--.<C endowed with the supremum 

norm. 

For r=2 the next result is due to Maslennikov [259]. Our proof was inspired 

by the argument of the proof of his Theorem 4(iii). 

PROPOSITION 3.1. Let 1~p<oo, and let pfLr[-1,1] for some r>l. Then for some 

mf IN the operator Bm maps Lp(O) into 0(0). Also, for every nonzero nonnegative 

function h f L (0) there exists n fIN such that 
p 

Proof: It follows directly from Lemma 1.2 that B maps L (0) 
m 1 p 

consequently, that B - maps Lp(O) into Lprm-1(0). However, 

application of the Holder inequality, i.e., the estimate 

I(Bh)(w)l ~ 4\.[Jp(w·w)rdw]11 rllhllr/(r-l)' 
0 

(3.10) 

into L (0), and, pr 
a straightforward 

implies that B maps Lr I (r- 1 )(0) into L00(0). Since there IS a sequence of continuous 

functions P(nf[-1,1]--+IR satisfying 

and the estimate 

holds true, we have, in fact, B[Lr /(r- 1 )(O)JcO(O), and consequently Bm[Lp(O)]cO(O) 

for prm- 12::r/(r-1). 

If r>1, then some iterate has the property that it maps L2(0) into 0(0), i.e., 

that it is a Hilbert-Schmidt operator. In view of Lemma 1.1, all iterates Bm of B have 

the form 
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(Bmh)(w) = irr J pm(w • w)h(w)dw, 
0 

where pm(t):-:?:0 and J: 1pm(t)dt=2. Hence, for some iterate Bm we must have 

where f3r; is the expansion coefficient f3 .£ defined for the redistribution function 

pm(t). Then, smce P 0(t)=1, 1±P.£(t)::?:O, and therefore J: 1pm(t)(1±P.£(t))dt>0 

for .£:-:?:1, we have I f3r;l <2£+1 for .£:-:?:1, whence 

(} = sup {(2£+1)- 1 1 f3r: I : £=1,2,3, ... } f [0,1). 

For n:-:?:2 we obtain for the kernel of the iterate Bmn: 

Now choose 0<E<1, take LdN such that 

E (U+1)- 1[f3r;J2 < Y2E, 
£=L+1 

and take N such that 0N<Y2E /L(L+2). Then for n>N we have immediately 

L oo 
I en(t) I :s; E (U+1)0n + E (2N1)n/ 2[(2N1)- 1,Br;Jn ·I P f(t) I :s; 

£=1 £=L+1 

:s; ~ (2N1)0n + E [(2N1)- 1(,Bm) 2]n/ 2 :s; 
£=1 £=L+1 .£ 

L oo N L 
:s; E (U+1)0n + E (U+1)- 1[,Br;J 2 :s; (} E (2.£+1) + Y2E < E, 

£=1 f=L+1 £=1 

h I i m mn( ) 1 ·f 1 · [ 1 1] w ence n-+oo p t = um orm y m t on - , . Thus some iterate Bmn has a kernel 

pmn(t) which IS strictly positive and satisfies 11-pmn(t) I <Y2E for every 

t€[-1,1]. This immediately gives (3.10) and the proof is complete. • 

The above proof implies that, for pELr[-1,1] with r>1, Bn converges to the 
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operator (B. . h)(w) ISOtropiC 411T J oh(w)dw. Physically, this means that the 

redistribution of neutrons tends to behave isotropically after a large number of 

collisions. 

For O<c:~a. when the reactor medium is nonmultiplying, the existence and 

uniqueness theory of the relevant boundary value problems coincides with the existence 

and uniqueness theory for transfer of unpolarized light, if reflection by the planetary 

surface is neglected. For these results we refer to Section 1. 

In nonmultiplying media neutron transport with isotropic scattering leads in the 

Hilbert space H=L2[ -1,1 J to the uniquely solvable half space problem (3.6). The 

subscript m=O in the notation of (3.7)-(3.9) will be dropped for the isotropic 

operators, p 0 (Jl,JJ) = 1, and we define the vector e(Jl) = 1 and denote by u( r) the 

resolution of the identity associated with the self adjoint operator T: 

( u( r )f)(Jl) [ 
f(Jl), 

0 ' 

JlErn[-1,1], 

JJErn[-1,1]. 

Let us observe that B has the one dimensional range of constant functions. We put 1B 

= span{e}, identify IB with C and define 1r:H-+IB and j:IB-+H by 

1 
(1Tf)(Jl) = Y2 J f(Jj)dp, 

-1 

where of £C. The dispersion function can now be expressed as a scalar function on 

IB by 

J 1 1 
A(z) = 1 + Y:lcz (t-z)- dt. 

-1 

The function is analytic on the Riemann sphere cut along [ -1,1 J and is even and 

nonzero along the imaginary axis. It allows a unique Wiener-Hopf factorization 

A(z)- 1 = H(-z)H(z) 

for Re z=O, where H(z) is analytic on the Riemann sphere cut along [-1,0], continuous 

and nonzero on the closed right half plane, analytic at oo for O<c< 1 and having a 

simple pole at oo for c=1 (cf. [63] for the original result of Busbridge; also [61]). 
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Using this factorization we find 

and 

This is a well-known expression, which is already retrievable from the work of 

Chandrasekhar [89] and has been derived many times since. 

Let us give some more details on the way in which the albedo operator 1s 

derived from Eq. VIII (1.8). For small intervals dJJC(O,l) and dtc( -1,0) we compute 

where X JI(JJ)=l for JJEJI and X JI(JJ)=O for JJEJI. Finishing the substitution of 

the above data in VIII (1.8), we obtain for JJ<O the desired representation. 

Next we substitute all data in the H-equation VIII (1.10) or VIII (1.11). For 

either of these one obtains the same equation, namely 

This is the famous Chandrasekhar H-equation ( cf. [89]). 

If we consider instead neutron transport with anisotropic scattering, an equation 

for transport may be obtained by averaging over azimuthal angle. Writing P i?(JJ) for 

the usual Legendre polynomial and assuming f 0 =1, O<c~l, and 

leads to the uniquely solvable half space problem (O~x<oo, -l~JJ~l): 
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J1 2 
11/l(x,p) I dp = 0(1) (x->oo). 

-1 

We have terminated the expansion in Legendre polynomials in the scattering term above; 

this is ref erred to as the degenerate anisotropic neutron transport equation. It should 

be noted that the nonnegativity of the redistribution function is often lost on 

truncation. Although this does not affect the unique solvability of the above boundary 

value problems, it was shown by Feldman [ 119] that one may truncate the expansion 

and at the same time modify the coefficients in such a way that the truncated 

redistribution functions are nonnegative, converge to the untruncated redistribution 

functions in L1[-1,1], and conserve the wellposedness of the boundary value problems. 

Let us study this problem in the Hilbert space H = L2[-1,1] and introduce the 

operators 

(Tf)(p) pf(p ), 

(Bf)(p) 

l f(p), 

0 ' 

±p;?:O, 

±p<O. 

Let IB be the linear span of the (Legendre) polynomials of degree equal or less than 

L, let j:IB-+H denote the natural imbedding, and put 

rrf 
L 2¥'+1 
I: - 2- (f,P i')P ¥'" 

i'=O 

The Legendre polynomials are eigenvectors of B with eigenvalues cf i'. The dispersion 
L function, in matrix representation with respect to the basis {Pi'} i'=O of IB, is 

now computed to have the form 

for zE£[-1,1]. There are unique functions Hi' and Hr which are analytic and continuous 

up to the boundary of the closed right half plane and assume invertible values there, 

such that 
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for Re z=O. For 0< c< 1 these functions are analytic at oo, but for c=1 they have a 

simple pole there. The albedo operator is found to be given by 

1 L L 
(E<p+)(l-') = Y:Jcf _v E E (2j+1)f.[H..(-I-')H (v)J .. P.(I-')P.(v)<p+(v)dv, 

0 v-I-' i =0 j =0 1 " r 1J 1 J 

for -1~1-'<0. We also find the coupled H-equations 

-1 J1 1 L . 
[H..(z) J.k = o.k- Y:Jcz -t E (2J+1)fk[H (t)J .. P.(t)Pk(t)dt, 

" 1 1 0 z + j =O r 1J J 

1 J1 1 L .. 
[H (z)- ].k = o.k- Y:Jcz -+t E (-1)I+J(2i+1)f.[H..(t)J.kP.(t)P.(t)dt. 

r 1 1 0 z j =O J " J 1 J 

The above identities were derived by Mullikin [27 4]. Note that it is also possible to 

express the albedo operator in scalar H-functions, which appear as the determinants of 

H.t and Hr' and polynomials which are obtained by solving linear equations whose 

coefficients involve moments of the scalar H-functions. This was first done in general 

for 0<c<1 by Busbridge [61] and improved and extended for 0<c~1 by Pahor [296] 

and Ku~ ~er and McCormick [233]. For most purposes, the latter results are more 

expedient than the ones derived above, but their derivation requires more elaborate 

analysis. 

Let us consider next the integral form of the boundary value problem: 

!/l(x)- cf){(x-y)Bijl(y)dy = dx), O<x<r~oo. 
0 

For finite slabs the internal source term q(x,w) is taken to satisfy 

!f I q(x,w)-q(y,w) I Pdw]1 /P ~ M I x-y I "1, O~x,y~r, 
0 p 

for some 0< "/ < 1, when using an Lp -setting, and the right hand side is given by 
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l e-x/~~(~) + Jx~-1e-(x-y)/~q(y,~)dy, 

e(r-x)/~~(~) : JT~-1e-(x-y)/~q(y,~)dy, 
X 

For half spaces one assumes the condition 

[J I q(x,w)-q(y,w) I Pdw]1 /P ~ M I x-y 1 1 , O~x,y~oo, 
0 p 

for some 0</<1, as well as the conditions 

J I q(x,w) I Pdw = 0(1) (x-+oo), 
0 

J 00x[J lq(x,w)IPdw]1/Pdx < oo, 
1 0 

when using an Lp -setting, and the right hand side is given by 

~ (x,w) l e-x~~~+(~) + s:~-1e-(x-y)/~q(y,~)dy, 

- J ~-1e-(x-y)/~q(y,~)dy, 
X 

285 

~>0 

~<0. 

Details of the equivalence of the boundary value problem and the integral equation, 

which is valid if pfLr[-1,1] for some r>1, can be found in Chapter VI. 

As in Section VI.2 we define, for 1~q~oo and 1~p<oo, Lq(Lp(O))~ to be the 

(real or complex) Banach space of all strongly measurable functions T/;:(a,b)-+L (0) 
b p 

which are bounded with respect to the L -norm and C(L (0)) to be the Banach 
P P a 

space of all bounded continuous functions from [a,b] into Lp(O), endowed with the 

supremum norm. One may then show (cf. Section VI.2) that on all of the spaces 

L (L (0)) 0T and C(L (0)) 0T, r E (O,oo], the convolution operator q p p 

(L T/;)(x) = JT )((x-y)BT/;(y)dy 
T 0 

IS bounded, where the propagator function )((x) has the form 
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(){(x)h)(J') !IJ'I- 1 e-X/J'h(w), 

0 ' 

XJ'>0 

XJ'<O, 

Moreover, for r E (O,oo) the operator L r is compact. In fact, all of these properties 

follow using the integrability estimate (1.35). 

PROPOSITION 3.2. 

r> 1. Then, for 

Let 1~p<oo, 1~q~oo and O<r<oo, and let pELr[-1,1] for some 

every nonnegative function 1/IELq(Lp(O))~ (resp. 1/IEC(Lp(O))~), 
there exist n d-1 and a,p >0 such that 

0 < a ~ (L ~,P)(x)(w) ~ p < co. (3.11} 

Proof: By Lemma 1.2, B maps Lp(O) into Lpr(O). Moreover, as in the proof of Lemma 

1.3, one may show that ll){(x)BII = 0( I xI a- 1) (x-+0), where O<a<(r-1)/pr. Again 

applying Lemma 1.2, but this time to the integral operator with kernel ll){(x-y)BII on 

Lq(O,r), r finite, one gets 

for suitable m=m(p,q,r) d-1. 

In order to establish (3.11}, take a nonnegative function hE C(C(O))~ and 

identify C(C(O))~ with the Banach space C([O,r]xO) of continuous functions 

h:[O,r]xO-+C endowed with the supremum norm, using h(x,w)=(h(x))(w) for 

(x,w)E[O,r]xO. Then there exists an open interval (a,b)c(O, r) such that 

h(.x) .. o for x E (a, b). As a result we have 

(L h)(x) = Jr Jl(x-y)Bh(y)dy ,. 0, XE(O,r], 
T 0 

since otherwise Bh(y)=O and consequently h(y)=O (cf. (3.10)). So we may as well 

assume that h(x) .. o for xE(O,r]. Now observe that L~ can be naturally identified 

with the integral operator on C((O,r]xO) with kernel 
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where ,&(t)=1 for t>O and ,&(t)=O for t<O. Hence, we may choose an interval 

(c,d)c(O,r) and a constant a>O satisfying (Bmh(ym))(w) :2': a > 0 for wdl and 

y m d c,d), whence 

1 > 0, 

where ,&(c,d)(t)=1 for tf(c,d) and ,&(c,d)(t)=O for tf(c,d). On the other hand, if 

O=max{h(x,w): (x,w)E[O,r]xO}=IIhll, then 

{3 < ao, 

which completes the proof. • 

We have shown that, for a1 fLr[-1,1] with r>1, the operator 

u0 -positive on all spaces Lq(Lp(O))~ and C(Lp(O))~, q£[1,ao], pE[1,ao). 

Lr is 

Here 

u0 -positivity is defined as in Section I.4 Since the cones of nonnegative functions on 

those spaces are reproducing and normal, we may apply Theorems I 4.3 and I 4.4 and 

obtain the foil owing results. 

THEOREM 3.3. Let a1 fLr[-1,1] with r>l, 1::;;p<ao and 1::;;q::;;ao, Then for finite r 

there exists a unique critical eigenvalue c=c( T )>0 such that 

,&(x) = c r ){(x-y)B,&(y)dy 
0 

0, O<x<r, 

has a nontrivial nonnegative solution m Lq(Lp(O))~ and 

corresponding generalized eigenvector space U Ker(I-cL )n IS one 
n r 

(3.12) 

C(Lp(O)) ~· The 
C(T )-1 dimensional, 

is the spectral 

c(r)- 1. 

radius of L T and L T does not have other eigenvalues with modulus 
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THEOREM 3.4. Let a1 tLr[-1,1] with r>1, 1~p<oo and 1~q<oo. Then for finite T 

the inhomogeneous convolution equation 

1/>(x) - c r ){(x-y)B,P(y)dy = dx), O<x< T, 
0 

(3.13) 

where dx) is nontrivial and nonnegative, has the following properties: 

(i) For O<c<c(T), Eq. (3.13) is uniquely solvable on all of the spaces 

Lq(Lp(O))~ and C(Lp(O))~ and the solution is nonnegative and given by the 

Neumann series 

(ii) 

00 

1/>(x) = ~ cn(L~~)(x), O<x<T. 
n=1 

For c~c(T), Eq. (3.13) does not have nonnegative solutions on L (L (0)) 0T 
q p 

and C(LP(O))~. 

Using an argument of Mullikin [270], based on Theorem I 4.4, and an argument of 

Borgioli et al. [49], based on the analytic perturbation theory of Kato [213], we can 

prove that T-+c( T) is a strictly monotonically decreasing C00 -function from (O,oo) 

onto (1,oo). As a result, we have the existence of the strictly monotonically 

decreasing C00 -function c-+T(c) from (1,oo) onto (O,oo), which gives the "critical" size, 

T, as a function of the number, c> 1, of secondaries per collision. Let us first give 

the argument for strict monotonicity. Let 0< T 1 < T 2 <oo and let 1/> be a nonzero 

nonnegative solution of Eq. (3.11) with T =T 2. We then write 

O<x< T 1, 

where 

JT2 
w(x) = c( T 2) ){(x-y)B,P(y)dy = 0 

T1 

for some xt(T 1,T 2 ) would imply B,P(y)=O for all yt(T 1,T 2 ) and therefore 

1/>(y)=O for all yt(Tl'T 2) (cf. (3.10)). Because one cannot have 1/>(y)(w)=O for 

(w,y)tflx(T 1,T 2) if 1/> is a nonnegative eigenfunction at the critical eigenvalue (cf. 

Section 1.4; note that LT is u0 -positive), we have w(x),oO al~ost everywhere. As a 

consequence of part 3 of Theorem I 3.4 we obtain c( T 2) < c( T 1 ). To prove the 
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continuity of c( T ), we replace L T by the operator 

1 
T J }{(r(x-y))Bcp(y)dy 

0 

289 

1 1 on L (L (0)) 0 or on C(L (0)) 0 , obtained by similarity. 
q p 1 p 

Inasmuch as fr-){( T (x-y)) 

= -(x-y)T- }{(r(x-y)) and 

f lx-yi!IT- 1}{(r(x-y))BIIdy :5; Mr- 2 < oo 
0 

with M independent of x and T, the operator function r-+L 1s analytic on the open 
T 

right half plane. But then the compactness of L T and the simplicity of the eigenvalue 

c(r)- 1 of LT imply the analyticity of r-+c(r) on a neighborhood of (O,oo), which 

proves r-+c( T) to be a 0 00 -function on (O,oo). Since obviously the spectral radius of 

L IS unity, we must have I im c(r)=1, while I im c(r)=oo. 
00 T-+oo T-+0 

The monotonicity property can be used to derive the following result. 

THEOREM 3.5. Let a1 fLr[-1,1] with r>1, 1:5;p<oo and 1:5;q<oo. Then for 0<c<1 

the Wiener-Hopf equation 

,P(x) - c Joo }{(x-y)B,P(y)dy 
0 

S"(x), O<x<oo, (3.14) 

where S"(x) is nontrivial and nonnegative, is uniquely solvable on all spaces 

Lq(LP(O))~ and C(Lp(O))~, and the solution is nonnegative and given by the 
Neumann series 

,P(x) 

For 0<c:5;1, Theorems 3.4 and 3.5 yield the nonnegativity of the solution of 

the equation of transfer of unpolarized light, where reflection by the planetary surface 

is neglected (see also Section 1). For ~ (x)=O and c=1, Eq. (3.14) does not have 

nonzero solutions in Lq(Lp(O))~ or in C(Lp(O))~, and therefore the spectral radius 

c=1 of L 00 is not an eigenvalue. 

We conclude this section with some historical remarks. For the existence and 

uniqueness theory for 0<c:5;1 and its history, also relevant to radiative transfer, we 

refer to Section 1. Many of the prerequisities for the present results on critical 

eigenvalues and the non-existence of positive solutions for c> 1 can be found in the 
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monograph of Maslennikov [259]. Some of the ideas of using positivity arguments m 

order to study criticality go back to Mullikin [270]. For neutron transport In 

multiplying media, spectral results for the isotropic one speed equation were provided 

by Ball and Greenberg [21], and the boundary value problem in an abstract setting was 

studied by Greenberg and van der Mee [163] and Greenberg and Walus [167, 386]. 

4. Multigroup neutron transport 

In the present section we shall analyze the neutron transport equation under 

the same physical assumptions as in the previous section, but now we shall drop the 

hypothesis of constant neutron speed. We shall retain the remaining physical 

assumptions, such as spatial homogeneity. As a result of plane symmetry we have the 

transport equation 

v Jl*(x,v,w) + vu(v),P(x,v,w) = Joo I vu(v,v,w. w),P(x,v,w)dwdv + q(x,v,w), 
0 0 

where x f(O, T) is a position variable, I' the direction cosine of propagation, v the 

speed and w € 0 the angular direction of the neutron. The angular density 

,P(x,v,w) now also is a function of the neutron speed v. In the multigroup 

approximation the speed variable v is discretized. The complete speed interval, which 

usually is assumed bounded below and above, is written as the disjoint union of finitely 

many, N, subintervals on which the speed, the macroscopic cross section, the average 

number of secondaries per collision and the collision kernel u(v,v,w.w) are assumed 

constant. The functional dependence on the speed variable is now denoted through the 

lower indices i and j ranging from 1 to N. As a result we obtain the transport 

equation 

N 
= (1/411') E c .. J p .. (w.w),P.(x,w)dw + q1.(x,w), 

j = 1 IJ 0 IJ J 
( 4.1) 

where p .. (t)~O and Y2J 1 1p .. (t)=l. The one speed approximation then arises if IJ - IJ 
N=l. In the case of isotropic scattering we have pij(t)=1 for all i,j and the transport 

equation reduces to the equation 



IX. APPLICATIONS: STATIONARY THEORY 291 

N 
J.l&'l/; i (x,w) + u.'I/J.(x,w) = (l/47r) E C··J 1/J.(x,w)dw + q.(x,w). rx 1 1 j = 1 11 0 1 1 

(4.2) 

If we measure the distance in units of the largest mean free path among the N groups 

and order the N groups according to increasing mean free path, we obtain 

u 1 >u 2 >u 3 > ... >uN=l. The number cij then denotes the average number of 

secondaries per collision for neutrons incident from group j and scattered to group i, 

and therefore cij<::O. If one defines the NxN-matrices E, C, P(w.w) and the 

N-vector-valued functions t/l(x,w) and q(x,w) by 

[P(w.w)] .. = P· .(w.w), ( 4.3c) 
1J 1] 

one obtains the multigroup neutron transport equation in vector form, 

J.l%¥(x,w) + Et/l(x,w) = (l/47r)J O®P(w.w)t/l(x,w)dw + q(x,w), 
0 

( 4.3d) 

(4.3e) 

(4.4) 

where [A®B]jj=[A]jj[B]ij is the tensor product of the matrices A and B. As 

boundary conditions we impose those specifying the angular densities in each group for 

neutrons incident at the boundaries of the medium, i.e., 

t/I(O,w) <p(w), J.l>O, (4.5a) 

t/l(r ,w) <p(w), J.l<O, ( 4.5b) 

for T <co, and 

( 4.6a) 

I im llt/l(x,· )II = 0, (4.6b) 
X-+oo 



292 BOUNDARY VALUE PROBLEMS IN ABSTRACT KINETIC THEORY 

for T=oo. For physical considerations, [cp(w)]i' [cp +(w)]i' [q(x,w)]i and [tb(x,w)]i 

must be nonnegative, since all of ~hese quantities represent angular densities for 

neutrons within group i. 

Let us introduce the functional formulation. For 1~p~oo, we let H~ denote 

the Banach space of all measurable functions h:O~N endowed with the weighted 

Lp-norms 

and 

N 
llhll =[ :E u.J lh.(w)IPdw]11P, gp<oo, 

p i =1 1 0 1 

llhll = max u.{ess suplh.(w)l}, 
00 1~i~N 1 W€0 1 

We define the operators T, B=I-A, Q+' Q_ and J by 

(Bh)(w) = (1/41r):E- 1 J C®P(w.w)h(w)dw, 
0 

(Jh)(w) = h( -w), 

[ 
h(w), 

(Q±h)(w) = 
0 ' 

±JA>O, 

±J.I<O, 

and the vector-valued functions tb(x) and q(x) by 

tb(x)(w) ... tb(x,w), 

q(x)(w) = q(x,w). 

We then obtain the boundary value problems (4.4)-(4.5) for finite slabs and (4.6)-(4.6) 

for half spaces. The operator J is an invertible isometry satisfying the properties 

(1.29a)-(1.29d) of an inversion symmetry. On H~ the operators T, Q± and J are self 

adjoint, T has absolutely continuous spectrum [-1,1] and Q+ and Q are the orthogonal 
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projections onto maximal T-positive and T-negative T-invariant subspaces. On H~, 
1:5;p<oo, T is a scalar-type spectral operator (cf. [105, 109]). As a consequence of 

Lemma 1.1, B is a compact operator on H~. Moreover, denoting 

Y~(9,cp)oik' .t;::o, w=(9,cp), 

we have 

where 

(3 ~' j = (.1+!4) I~ 1 Pij(t)P .l(t)dt, 

[B .thj = (3 ~ ' j. 

In matrix form this reads 

Thus the eigenvalues of the compact operator B are the eigenvalues 

A .1 2, ... ,A .IN of the matrices (2.1+1)- 1r.t, .1=0,1,2, ... , with 
' ' 

The corresponding eigenvectors E~(w) are given by 

[E~ (w)]· = [E ,. ]-Y~( 9 ,cp), 
~ ' s 1 ~ ,s 1 • 

where 1:5;s:5;N, w=( 9 ,cp) and r.i e .I =A .I sE .t s· In this way one indicates a 
~~ ' J 

complete set of eigenvectors of B in Hp, where "completeness" signifies that they span 

a dense subset of HNP for 1:5;p<oo. It should be observed that A A and e .I do 

not depend 

Q i 'j =0 
~'.1 ' 

on m. 
.. ,s . ,s 

In the case of isotropic scattering we have (3 b' J =1, 

so that the (nonzero) eigenvalues of B are the eigenvalues 

of the matrix I:-1c with corresponding eigenvectors E 0° (w) 
' s 
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s=l,2, ... ,N. 

For later use we introduce eN as the Banach space of continuous functions h:O-+d::N 

with the norm inherited from HN. 
00 

The operators B and A are self adjoint only in the case of symmetric multigroup 

models, where p .. (t) = p .. (t) and [C] .. = [C] .. , 
IJ Jl IJ Jl 

l~i,j~N. Generally, scattering 

processes from groups having fast neutrons tend to dominate scattering processes from 

groups having slow neutrons, so that in most realistic situations one has a nonsymmetric 

multigroup model. 

In the case of isotropic scattering one studies the half space problem 

(O~x<oo) 

a~ N JI J1 i (x,p) + u.~.(x,p) = Y:! ~ C.. ~.(x,Jj)djl, -l~p~l, 
OX I I j = 1 IJ - 1 J 

r 1 2 
J I ~i(x,p) I dp 0(1) (x-+oo), 

-1 

on the Hilbert space H of N-tuples f={fi} i ~~ of square integrable functions 

fi:[-1,1]-+d::, endowed with the inner product 

N f1 -
(f,g) = ~ 0'· f.(p)g. (p)dp. 

i=l I -1 I I 

Denoting the operators T, B and Q± by the expressions 

N 1 
(Br).(p) = Y:!u :- 1 ~ c .. J f .(ilJd/l, 

I I j = 1 IJ _ 1 J 

p>O, 

p<O, 

we introduce also the resolution of the identity u( r) associated with T, given by 



( u( r )f).(JI) 
I 
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! f.(JI/0'.), 
I I 

0 

JIErn[-1,1], 

JIElrn[-1,1]. 

295 

We shall assume the existence of an albedo operator E such that (EIP+)i(JI) = 

,Pi(O,JI), 1:5:i:5:N, where~~'+ {<p+)i~ 1 . This occurs, for instance, if E- 1c 
has norm less than one, smce m this case the operator B has norm less than one (cf. 

Theorem VII 3.4). 

Let e1" .. ,eN be the orthogonal system of vectors in H, where 

* Then lB = span{e1, ... ,eN} :::> Ran B . If denotes the natural imbedding of lB into H, 

then 

is the orthogonal projection of H onto lB. 

Let us compute the dispersion function. We find 

whence 

-1 Jl dt (A(z)ek)·(JI) = o.k - Y2zu · C.k --t' I I I I _ 1 z- u[-1,1). 

Let us assume the existence of an albedo operator E and a corresponding factorization 

for Re z=O. From Eq. (1.8) we now easily derive this albedo operator in the form 

(EIP )·(JI) = <p ·(JI) +I +,1 
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(E<p +)i(J.l) = j1): v ~ J.l.E- 1CHJ'(- p)Hr(v )col[<p +,s(:s )] s ~1 dv 

for -1~p<O, where N 
col[<ps] s = 1 IS the column vector with entries <p1, ... ,<pN. 

We also find the coupled set of H-equations 

Formulas of the above type have been derived previously by Burniston et al. [58] for 

two group equations, by Bowden et al. [57] for the general N-group equation, and by 

Kelley [216] in a somewhat more abstract setting. A spectral analysis of the 

multigroup transport operator was carried out by Greenberg [156] for symmetric 

scattering kernels, and by Kaper and Lekkerkerker [210] more generally. 

Using the theory of Chapter VI one may prove the finite slab and half space 

problems (4.4)-(4.5) and (4.4)-(4.6) to be equivalent to a convolution equation of the 

type 

where 

1/l(x) - r Jl(x-y)B1b(y)dy 
0 

dx), O<x<r, 

[(Jl(x)h)(w)h lui lpl- 1 e-ui x/p[h(w)] i, 

0 ' 

(4.7) 

xp>O, 

xp<O, 

1s the propagator function and dx,w) is nonnegative whenever the incoming data vector 

<p(w) (resp. <p +(w)) and the internal source term q(x,w) are nonnegative. In 

fact, for finite slabs and uniformly Hi:ilder continuous functions q:[O,r]-+HN, we have p 

[dx,w)]. = e -uix/ ll[<p(w)]. + Jx u.p- 1e -ui(x-y)/ ll[q(y,p)].dy, J.l >0, 
1 1 O 1 I 

and 
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For half space and bounded uniformly Holder continuous q:[O,oo)-+H~ satisfying 

J7x II q(x) II pdx<oo we have a similar formula, where T, cp(w) for f.J >0 and cp(w) 

for 1-1<0 are replaced by oo, ""+(w) and 0, respectively. The equivalence of Eq. (4.7) 

and the corresponding boundary value problem holds true if Pij f Lr[ -1,1) for some 

r>1 and all 1~i,j~N, since in this case B[H~)c IT I a[H~) for O<a<(r-1)/pr (cf. 

Lemma 1.3}. As in Section Vl.2, we now introduce the Banach spaces L (HN)b of 
N q p a 

strongly measurable functions t/,l:(a,b)-+Hp such that II t/.1( ·)II p f Lq(a,b), and the Banach 

space C(HN) b of continuous functions from [a, b) into HN, endowed with the L -norm 
p a p q 

and the supremum norm, respectively. We define 

(L t/.l)(x) = JT N(x-y)Bt/.l(y)dy, O<x<r, 
T 0 

(4.8) 

which is a bounded, and if T is finite, a compact operator on Lq(H~)~ and on 

C(HN) 0r, provided p .. fL [-1,1) for some r>1 and all 1~i,j~N. The convolution 
p lJ r 

equation (4.7) may then be written in the vector form (1-LT}t/.1 = r .. 

THEOREM 4.1. Let 1~p<oo, and let Pi/Lr[-1,1) for some r>1 and all 1~i,j~N. 

Then either the spectral radius r(L T) always vanishes, or it is a continuous, strictly 

monotonically increasing function from (O,oo) onto (O,r(L )), which is a d"' -function 
00 

except at a discrete set of algebraic branch points ri f (O,oo). In particular, if the 

norm of B does not exceed (resp., is less than) unity, the convolution equation ( 4. 7) is 

uniquely solvable on the spaces Lq(H~)~ and C(H~)~ for finite (resp., infinite) r 

and the unique solution t/.l(x,w) is nonnegative whenever the right hand side r (x) 1s 

nonnegative. 

Proof: For finite T we introduce the operator 

A J1 (L cp)(x) = T N(r(x-y))Bcp(y)dy, 
T 0 

0<x<1, 

on the spaces Lq(H~)~ and C(H~)~, which is similar to LT, depends analytic~lly 
on T on the open right half plane and is compact. The spectral radius r(LT) 

coincides with r(LT) and 

(in !at tice sense) of LT. 

ts an eigenvalue of LT, as a consequence of the positivity 

Using analytic perturbation theory ([213), Theorem VI 1.8), 

we see that the eigenvalues of LT (or LT) are locally analytic functions of T on the 

open right half plane, except for a discrete, finite or countably infinite, set of algebraic 

branch points. Hence, r(L ) is a continuous function of T on (O,oo), which is a 
T 
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0 00 -function except for a discrete set of branch points. 

If r(LT) is constant and nonzero in a neighborhood of T0 E(O,oo), let 

a,b E (O,oo) be the branch points of r(LT) nearest . to the left and right of T 0, 

respectively. (If there are no branch points to the left or right, we take a=O or 

b=r(L00), respectively). Then r(L T) is analytic on a neighborhood of (a, b) and 

therefore constant. Analytically continuing r(LT) around a and b, we see that there 

are eigenvalues constant in T on intervals (a-E,a] and [b,b+E) which cannot exceed 

r(LT) on these intervals. Thus r(LT) is constant in Ton intervals a-E<T~a 

and b~r~b+E. Since r(LT) is monotonically nondecreasing in T and I im 

r(LT)=O, the continuity of r(LT) as a function of T implies the existence of ~>8 
such that r(L )<r(L ) for T t(O,o). However, on going down from T0 t(O,oo) 

T TQ 

until one reaches (0,6), one passes through at most finitely many branch points. Thus 

r(LT)-r(LT ) for some T t(O,o), which is a contradiction. Hence, r(LT) is 

continuous agd strictly monotonically increasing in T. 

Finally, as the spectral radius of L00 does not exceed the norm of B (cf. 

Theorem VII 3.4), we have r(LT)<IIBII for finite T. Hence, if IIBII<1 or if IIBII~1 

and r<oo, Eq. (4.7) is uniquely solvable on all spaces Lq(H~)~ and C(H~)~. A 

simple Neumann series expansion implies the positivity of this unique solution for 

nonnegative r(x,w). • 

In the previous section the notion of u0 -positivity of linear operators leaving 

invariant a cone in a Banach space was sufficient to derive all criticality type results. 

For multigroup neutron transport an extension of these ideas is needed, since the 

relevant operators are not always u0 -positive. We shall exploit irreducibility, i.e., the 

non-existence of closed invariant nontrivial ideals. 

THEOREM 4.2. Let 1~p<oo, and let PijELr[-1,1] for some r>1 and all 1~i,j~N. 

Then LT is irreducible on at least one (and hence all) of the Banach spaces 

Lq(H~)~ and C(H~)~, if and only if B is irreducible on H~. 

Proof: If B is reducible on H~, there exists a closed ideal I in H~ satisfying 

{O}""I""H~ and B[I]cl. However, as H~ is isomorphic to Lp(Oe ... eO), where N 

copies of 0 have been taken, there exist subsets D1 and D2 of positive measure of 

the direct sum Oe ... eO such that D1 nD2=4», D1 UD2=0e ... e0, 

B[Lp(D1)]cLP(D1). Now consider the closed ideal Iq of Lq(H~)~ consisting of all 

functions ,P:(O,T)-+Lp(D1) in this space. Then B,P(y)ELP(D1) for yt(O,T) and 
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therefore, using the diagonal nature of the propagator function, one obtains 

)l(x-ylB'I/>(yl t L (D 1l, whence L 1/> d . A similar argument applies to the space 
p T ~ 

C(H~l~· Thus LT is reducible on Lq(Hpl~ and C(H~~· 
Conversely, let L be reducible on L (H loT. If Iq is a closed ideal in 

N T q ~ N 
L (H l~ such that L [I Jci and {o},.I ,.1 (H l~, put I =IqnLP(Hpl~ if q~p, qp Tqq Jfqp p 
and let I be the closure of I in L (H l ~ if q~p. Then I IS a closed ideal in 

N P q PP N P N 
L (H loT such that L [I Jci and {o} .. I .. 1 (H loT· However, L (H )T can pp TPP ppp ppO 
be identified with L ((Oe ... eOl x(O, T )), where N copies of 0 have been considered. 

p 
Thus there exist subsets E 1 and E 2 of (Oal ... eOlx(O,Tl of positive measure such that 

E 1 nE2 = ¢>, E 1 uE2 =(Oe ... eOl x(O, T l and L T [LP(E1)]cLP(E1 l· 

Consider the closed ideal I={h d : h does not depend on x} of HN. For 
p p 

constant 1/>(xl=h we have 

whence Bh t I as a consequence of the fact that 

IT )l(x-ylBhdzy t I , 
0 p 

is a positive multiplication operator. Hence, I is a closed ideal of H~ satisfying B[I]ci. 

The same conclusion, with the same ideal I as a result, IS obtained by considering 

C(H~l~· 
Next observe that an invariant closed ideal Iq cannot lead to a set 

E 1c(Oe ... eOlxZ with Z and (O,Tl\Z having positive measure, since on choosing 

nonnegative t/J from this ideal one gets 

(L t/J)(xl = IT )/(x-ylBt/J(yldy 0 
T 0 

for x E£ Z and therefore BtjJ(y l=O. But if Ker B contained nonzero nonnegative 

vectors, B would be reducible. Otherwise, t/J(yl=O, which contradicts Iq ,.{0}. 

Now, if I=HN, I will contain all constant functions. Then I will contain all 

functions in L (HN} 0T ~nd therefore I =L (HNloT, which is a con~radiction. Thus 
00 p q q p 

I .. H~, and B is reducible. • 

It is immediate from the above proof that the invariant closed ideals of LT 
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in 

measurable 

and 

subsets 

have the form Lp(D1)e ... eLP(DN), where D1, ... ,DN are 

and thus it is clear that there IS a one-to-one 
N correspondence between the closed invariant ideals of B across different spaces Hp, 

where 1 ~p<oo. In particular, if B is irreducible on one of the spaces H~, with 

1~p<oo, then L is irreducible on all of the spaces L (HN)~ and C(HN)~. 
T N N q p p 

Since the spaces Lq(Hp)~ and C(Hp)~ are Banach lattices and LT IS 

compact if T is finite, we may apply Theorem I 4.5 and obtain the following result. 

THEOREM 4.3. Let 1~p<oo, and let Pi/Lr[-1,1] for some r>1 and 1:5:i,j~N. 

Then for finite r, and for 0<c1 <c2 < ... the finite or countably infinite set of 

numbers c for which (I-cL T )h=O has a nonzero positive solution, the convolution 

equation 

tb(x) - c r ){(x-y)Btb(y)dy 
0 

r(x), O<x<r, 

where c~O and ' € Lq (H~) ~ is nonnegative, has a nonnegative solution h, if and 

only if 

r (r(x), l<p(x) I )dx o 
0 

for every <p€Lq, (H~, )~ such that 

Here q' =q/(q-1), p' =p/(p-1) and 

* IT * (L <p)(x) = B ){(y-x)<p(y)dy. 
T 0 

for some c.~c and n€IN. 
I 

In particular, if O~c<c 1 , Eq. (4.10) has a unique solution, which is nonnegative. 

Let us consider the case in which B is irreducible. Then L T is irreducible on 

all Banach spaces of interest. The peripheral spectrum, which is the set 

{t € u(L ) : It I =r(LT)}, consists of the (algebraically) simple eigenvalues 
k T 

c r(LT), k=1,2, ... ,m, where c IS a primitive mth root of unity ([324], Theorem V 

4.4). In that case r(LT) can be continued to an analytic function on the open right 

half plane and therefore r(L ) is a aoo -function of T. The corresponding eigenfunction 
T 

is nonnegative and there are no other eigenvalues of LT to which correspond 

nonnegative eigenfunctions ([324], Theorem V 4.2 and part (ii) of its corollary). As a 

result of Theorem 4.4 we have the following corollary. 
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COROLLARY 4.4. Let 1:5;p<oo, and let p .. EL [-1,1] for some r>1 and all 1:5;i,j:5;N. 
IJ r N T 

Let B be irreducible. Then, for finite T and nonnegative ~ E Lq(Hp) 0 , the 

convolution equation 

1/l(x) - r ll(x-y)B1/I(y)dy 
0 

dx), O<x<r, ( 4.9a) 

has a unique solution which 

solutions if r(LT)=1 and 

IS nonnegative 

~ (x)=O, and 

if 

no 

r(LT)< 1, a one dimensional subspace of 

nonnegative solutions if r(LT)=1 and 

dx)!EO, or if r(LT)>l. 

In order to guarantee the absence of "competing" eigenvalues ekr(L T) with 

1:5;k:5;m-1, one could, for instance, require LT to be u0 -positive. 

prove that it is sufficient to demand that B be u0 -positive. 

One may then 

Finally, if T =oo, then Corollary 4.4 can be generalized m the following 

fashion. 

COROLLARY 4.5. Let 1:5;p<oo, and let PijELr[-1,1] for some r>1 and all 1:5;i,j:5;N. 

Let B be irreducible. Then for nonnegative ~ tL (HN)""0 , the convolution equation 
q p 

1/l(x) - I"" ){(x-y)B1/I(y)dy = dx), O<x<oo, 
0 

( 4.9b) 

has a unique solution which IS nonnegative if II B II< 1, and does not have nonnegative 

solutions if r(B) > 1. 

Proof: According to Theorem 4.2, r(L 00):5;IIBII. Also, by Theorem 4.3, L00 is 

irreducible. Now choose finite T with r(LT)>l. If Eq. {4.9b) has a nonnegative 

solution 1/l(x) while r(B)>1, write 

T I"" 1/l(x) - I ll(x-y)B1/I(y)dy = dx) + ll(x-y)Bt/l(y)dy, 
0 T 

O<x<r, 

which contradicts the previous corollary and establishes the present result. • 

Let us conclude with some general comments about these problems. First we 

should notice that we have not been able to prove in general that r(L00)=r(B), 

which would considerably strengthen our results. This statement is known to hold true 
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for many specific kinetic models. For an extensive class of multigroup equations on a 

slab with a collision operator satisfying a u0 -positivity condition, Borysiewicz and 1-fika 

[51, 52] argued that there IS a unique critical eigenvalue parameter c which is 

independent of the Lp -setting. The unique solvability of the multigroup half space 

problem with isotropic scattering for r(E- 1 C)< 1 was established by Bowden et a!. [57] 

in L2 and Greenberg and Sancaktar [159] in Lp, l<p<oo, using a factorization result 

published by Mullikin [273]. The latter results generalize previous two group results 

established by Siewert and Shieh [332] and Burniston et al. [58] Under the assumption 

of isotropic scattering and strict positivity of some iterate of the matrix E- 1c, 
Mullikin and Victory [275] have derived the above consequences of the irreducibility of 

B, such as Corollaries 4.4 and 4.5, and the strict continuous increase of the spectral 

radius of L T as a function of T. They also carried out a bifurcation analysis and 

obtained an asymptotic expansion for the critical eigenvalue. 

5. The Boltzmann equation and BGK equation in rarefied gas dynamics 

The distribution of molecules of a gas can be described by the Boltzmann 

equation. The equilibrium distribution, which is the Maxwell velocity distribution, is one 

of the solutions of this nonlinear integrodifferential equation. There are a variety of 

possible approaches to obtain a linearized equation, depending upon which aspects of the 

gas dynamics are to be maintained in the linearized model. Linearized Boltzmann 

equations will be the topic of the present and the next section. 

Much of this section will be devoted to the linearized BGK equation, which is 

the linearized Boltzmann equation arising from the BGK model of the nonlinear 

Boltzmann equation. This model was first proposed by Bhatnagar, Gross and Krook 

[43], and Welander [388]. If we write the nonlinear Boltzmann equation as 

Bf + t: af en: ... ·rx Q(f,f), (5.1) 

where t denotes time, e velocity and X position, and Q(f,f) is the nonlinear collision 

term, then the BGK model consists of replacing the quadratically nonlinear collision 

term Q(f,f) by a different, but still nonlinear, collision term J(f), which retains some of 

the qualitative and average properties of Q(f,f). In particular, the collision term J(f) 

has the special form 
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J(f) "''[<P(€) - f(€)], (5.2) 

where the collision frequency "'t may depend on t and x, and <P(€) is the equilibrium 

(Maxwellian) distribution with the same density, velocity and temperature as the gas 

having the distribution function f(€). Thus J(f) expresses the tendency of the gas to 

approach equilibrium. The nonlinearity of the collision term is exhibited by the fact 

that the density, velocity and temperature parameters in <P(€) are themselves 

functions of f. (For a discussion of some of the mathematical intricacies of the BGK 

equation, cf. [157].) 

The BGK collision term has the property 

a=0,1,2,3,4, (5.3) 

where the functions "'t are the (elementary) collision invariants "'fo=1, 
q 2 2 2 

("1 1,"'1 2,"'1 3) = e, "1 4 = I e I = ("1 1) +("1 2) +("1 3) . As a matter of fact, in the 

unmodified Boltzmann equation one has 

J "'t aQ(f,f)d€ = 0, a=0,1,2,3,4, 

which represents conservation of mass, the three components of momentum, and energy, 

respectively. 

To derive the linearized BGK equation, one makes the Ansatz f=f 0 (1+eh) for 

f 0 a Maxwellian distribution, and obtains the integrodifferential equation 

£..!!. + "·ah at .. ax 
4 

v[ ~ "'t ("'t ,h)-h], 
a=O a a 

(5.4) 

where the collision invariants are normalized by ("'t a•"'~ /3)=8 a/3' a,/3=0,1,2,3,4, 

and 

(g,h) (5.5) 

It can then easily be proved that 

4 
Lh v[ ~ ("'t ,h)-h] 

a=O a 
(5.6) 
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is symmetric with respect to the inner 
4 

product (5.5) and satisfies (h,Lh)~O and 

Ker L = { E c "' : c e 4::}. a a a 
Th;rtgeory of (linearizations of) the Boltzmann equation in rarefied gas dynamics 

has been treated in the two monographs of Cercignani [83, 84]. In particular, these 

monographs discuss the BGK model, the linearization procedure and the application of 

the Case-van Kampen eigenfunction method to the linearized BGK equation. The 

physical background in the kinetic theory of gases is discussed in the books of Kogan 

[222], Chapman and Cowling [92] and Ferziger and Kaper [121]. 

In the present section we discuss the existence and uniqueness theory for a 

variety of time independent BGK equations. Let us define (2RT0)1 12 as the unit of 

speed and v- 1(2RT0)112 as the unit of length, where T 0 is the temperature of the 

gas at equilibrium and R is the constant appearing in Boyle's law for ideal gases, and 

let us adopt one dimensional geometry with invariance of the macroscopic properties of 

the gas on rotation about the x-axis and symmetry with respect to the y-z plane, i.e., 

(€ 1,h)=O. Eq. (5.4) may then be written 

e 1~ + t/l(x,e 1) = 

= 11"-~Joo {1 + 2(€~-~)(~~-~) + 2€1~1}t/l(x,~1)e-~~ d~1. 
-oo 

(5. 7) 

A variant of this equation was studied in Section III.3. Note that the normalization 

2RT0 =1 leads to the :Maxwell flux exp{-€ 2}, differing from the convention of Section 
III.4, but generally employed in rarefied gas dynamics. 

Writing 

one obtains (cf. [73, 83, 84]) the coupled system of equations 

+ 
X 

(.'>.Sa) 
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and 

(5.8b) 

the uncoupled equations 

(5.8c) 

for i=2,3, and the trivial equation 

(5.8d) 

whose solutions are the functions 

(5.9) 

with A(€) orthogonal to the collision invariants 1 a' a=0,1,2,3, with respect to the 

inner product ( 5.5 ). 

Equations (5.8a) apd (5.8b) describe heat transfer effects and may be written 

1+Y:J(e2-Y2l(e2-Y2l 

%(~2-Y2) 

where t/J is the vector {¢0,¢ 1} and e 1 has been relabeled e. Eqs. (5.8c) model 

shear flow in the y- and z-direction, respectively. We will write them as 

In connection with the above equations a number of physically interesting 

boundary value problems can be considered. The Kramers problem or slip-flow problem 

consists of determining the velocity distribution of a gas filling the half space x>O 
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bounded by a physical wall and whose z-component of the mass velocity has a gradient. 

along the x-axis tending to a constant as X-+oo. Repeating the linearization of t.he 

nonlinear BGK equation about a Maxwellian with a translational velocity proportional to 

x in the z-direction, and also assuming diffuse reflection by the wall, one is led to the 

shear flow equation (5.11) for xE(O,oo), with boundary conditions 

0, e E{O,oo), (5.12a) 

1 im {IP(x,e)/x} = -k.e, (5.12b) 
X -+co 

where k is a positive constant (cf. [73, 83, 84]). 

Plane Poiseuille flow, i.e., the flow of a gas between two parallel plates at x=O 

and x=r induced by either a density gradient or a temperature gradient parallel to 

the plates in the z-direction, as well as plane Couette flow, i.e., the flow of a gas 

between parallel plates induced by moving them with opposite velocities parallel to the 

z-axis, can both be modeled by one of the equations (5.8c) to describe the shear flow 

effects or Eqs. (5.8a)-(5.8b) to describe the heat transfer effects, where x E (0, T) 

and, in the case of Poiseuille flow, an inhomogeneous term is added. The boundary 

value problem for shear flow then consists of the integrodifferential equation 

eM + ,P(x,e) = 11"-~soo e-~ 2 ,P(x.~)d~ + q(x,n 
-co 

(5.13) 

where x E{O, T ), with boundary conditions 

<p(e). e>o, (5.14a) 

~J~< T ,e) (5.14b) 

In the case of a Poiseuille flow one has q(x,e)=~k for fixed k>O and <p(e)=O; for 

Couette flow one has q(x,e)=O and <p(e)=~sgn(e)u, with U the speed of the moving 

plates. 

In both the Kramers and the Couette/Poiseuille problems, it IS possible to treat 

reflective boundary conditions. Introducing the scattering function E(~--+e), 

~ <0< e, satisfying the conditions (similar to the conditions III ( 4.2) - III ( 4.4), with 

attention to the difference in normalization of RT0) 
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(5.15) 

Jco E(~-+€)d€ = 1, ~ <0, 
0 

( 5.16) 

(5.17) 

one may replace (5.12a) for the Kramers problem by 

!/1(0,€) = 

0 
= a¢(0,-€) + ,8 J I~ /€ I exp{€ 2 -~ 2}E(~-+€)!/I(O,~)d~, 

-co 
(5.18a) 

where € t (O,co) and a and ,8 are accommodation coefficients satisfying a,,B"<!:.O 

and a+,BSl. For a=O and ,8=1 one has diffuse reflection, and for a=1 and 

,8 =0 (completely) specular reflection. In a similar way one may replace the boundary 

conditions (5.14b) for the Couette and Poiseuille problems by 

(5.18b) 

where € E{O,co) and E±(±~-+€) are possibly distinct scattering functions satisfying 

the requirements (5.15)-(5.17). 

Hitherto we have discussed linearized BGK equations for single species gases 

with one degree of freedom. For random mixtures of different species of gases the 

nonlinear BGK equation is somewhat more complicated. A linearization for binary gas 

mixtures was obtained by Cavalier and Green berg [71]. One arrives at the coupled 

system of two integrodifferential equations 

ah 1..4.... Jco 2 € rx(x,€) + }; h(x,e) = 7r-··u h(x,~)exp{-~ }d~, 
-co 

(5.19) 

where 

(5.20) 
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(m/m* ).%a] 
* * ' f3 -a 

(5.21) 

and a second copy of the same coupled system, as well as the coupled system of four 

integrodifferential equations 

where 

8h e rx(x,e) + Eh(x,e) 

= 71"-% Joo [J+Q(e)L(~)]h(x,~)exp{-~ 2}d~, 
-co 

J 

L(eJ 

f3 0 0 0 

0 0 

0 0 
0 0 

e 
2 e -% 

0 

0 

0 0 

0 0 

0 f3 

0 

1 

0 

0 

* 

0 - (m/m * )l4e 

0 0 

1 e2-l4 

0 e 

(5.22) 

(5.23) 

(5.24) 

and Q( e) is a matrix function with entries which are quadratic polynomials in e. 
* * * Here m and m are the masses of the molecules and a, a , f3, f3 are nonnegative 

parameters relating to their interaction. The various boundary value problems 

formulated above for a gas of single species can now be formulated for the binary 
system. 

Cercignani [7 3] first obtained the solution of the Kramers problem (5.11)-(5.12) 

using the Case-van Kampen method of singular eigenfunction expansion. He extended 

the analysis to incompletely diffusing walls for the case {3=0 [77], to plane Couette 

flow [76], and to plane Poiseuille flow [75], as well as to the analogous heat transfer 

problem [7 4]. Kriese, Chang, Siewert and Thomas solved the reflective boundary value 

problem (5.11)-(5.18) with {3=0 [350], the Kramers problem [232] and two variations of 
the Kramers problem [333] for heat transfer using singular eigenfunction expansion. An 
application of the theory of generalized analytic functions to kinetic models with 
velocity dependent collision frequencies has been given by Cercignani [78, 79]. In the 
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wake of developments toward more rigorous treatment of such problems, Kaper [207] 

solved the slip-flow problem for shear flow using the spectral method; the required 

eigenfunctions had been obtained also by Bowden and Garbanati [55] by resolvent 

integration. Using the abstract theory of Beals [32] a class of boundary value problems 

encompassing Couette and Poiseuille flow were solved by Kaper [208]. The solutions 

were expressed in analogs of the X and Y functions of radiative transfer by van der 

Mee [361]. Using resolvent integration Bowden and Cameron [54] analyzed the Kramers 

problem for heat transfer. On neglecting reflection, the existence and uniqueness 

results follow trivially from abstract kinetic equations theory (cf. [32, 160], for 

instance}. When accounting for incompletely diffusing walls, these results follow from 

the theories given by Maslova [260] and van der Mee and Protopopescu [369], and from 

new results of Section V.4. 

It was conjectured by Cercignani [85] that various BGK component equations, 

linearized about a drifting Maxwellian, would cease to have solutions if the drift 

velocity would reach or exceed a critical value corresponding to the speed of sound. 

This was subsequently proved by Arthur and Cercignani [15] using resolvent integration 

for an equation related to (5.7}. Employing reduction to a Riemann-Hilbert problem 

and solving the latter explicitly, Siewert and Thomas obtained the same result as well 

as analytical solutions for this and similar equations with drift [334, 335]. Greenberg 

and van der Mee [162] established an abstract framework which allows one to derive 

non-existence results in terms of easily computable parameters for a large class of 

models including those abeve. 

Cavalier and Greenberg [71] applied resolvent integration to the coupled equation 

(5.19} and obtained the solution in terms of Wiener-Hopf factors of a dispersion matrix. 

An equivalent expression for the solution at x=O in terms of an explicit evaluation of 

the albedo operator will be derived shortly. 

We shall now apply the abstract theory of Chapters III, V, and VII to study 

several of the models outlined above. Consider first the shear flow equation (5.11} or 

(5.13}. Let us introduce the Banach space Hp of complex measurable functions on 

(-oo,oo} bounded with respect to the weighted Lp-norm 

Joo 2 ]1/p 
llhll = [11'-~ lh(€}1Pexp{-€ }d€ , 

p -co 
1Sp<oo, 

the operator 

(Th}(€} €h(€}, (5.25a} 
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where 

Ico 2 
D(T) = {htH : I €h(€) I Pexp{-€ }d€<co}, 

p -co 

the operators 

±€>0, 

±€<0, 

and the vector e( €) = 1. Let us also define the operators 

Y: Ico . 2 (Bh)( €) = 7!"- 2 h(~)exp{- ~ }d~, 
-co 

(Jh)(€) = h(-e), 

(R±h)(€) = a±h(€) + .B±fco I~ 1e I exp{€ 2 -~ 2)}L:(-~-+€)h(~)dt 
-co 

(5.25b) 

(5.25c) 

and R = R+Q+ +R_Q_, where L: equals L:±(=F~-+±€) in the finite medium situation and 

L:(±~-+=F€) for half spaces. We obtain the vector-valued differential equation 

(T1/J)' (x) = -A1/J(x) + q(x), O<x< r~co. (5.26) 

For the Kramers problem we impose the boundary conditions 

Q+ 1/.1(0) = RJQ_1/J(O), (5.27a) 

I im {1/J(x)/x} = -ke, ( 5. 2 7 b) 
X -+co 

q(x) = 0. (5.27c) 

On the other hand, for Couette and Poiseuille flow, we impose the boundary conditions 

(5.28a) 

(5.28b) 

One then easily obtains Ker A = span{e} {constants}, and Z0(T-l A) 
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= span {1,e}, where (Te,e)=O m H2. Let us introduce the Banach space H T of 
p, 

complex measurable functions on ( -oo,oo) bounded with respect to the norm 

(5.29) 

where 1:<0;p<oo, and the sesquilinear form 

(h,k)T = rr-YzJoo I~ I exp{-~ 2}h(~)k(~)d~. 
-oo 

(5.30) 

Then H T is the completion of D(T)cH with respect to (5.30) and the operators T, p, p 
Q+, B, A and J can be extended from their restrictions on D(T) to H T· For 

h;Q+[H TJ and kfQ+[H T], p- 1+q- 1 = 1, we estimate p, p, q, 

I (Rh,k)T I :-::; 

1 

:-::; a+llhllp,TIIkllq,T + ;7+rr-Y2[J:J:~exp{-~ 2}E(-~-+~)Ih(~)lpd~d~ rp X 

1 

X u:J: ~exp{-~ 2}E(-~-+O I k(~) I qd~d~ rl :-::; 
1 

:-::; a+llhllp,TIIkllq,T + ;7+rr-Y2 [I:~exp{-~ 2}1h(€)1Pd€]p x 

1 

x [I: ~exp{-~ 2 } I k(e) I qd~ ]q =(a+ +;J+)IIhllp,TIIkllq,T" 

Here we have used ( 5.15 )-(5.17) as well as the Holder inequality. Thus R is a 

contraction, and if a++/7+<1 even a strict contraction, on H T" As a consequence p, 
of condition (5.16) we find Re=(a+ +/7 +)e and therefore 

IIRIIH = r(R)H 
p,T p,T 

(5.31) 

For the finite medium problems, one must allow for different accommodation coefficients 

at each wall, namely a+ and ;7 + for the wall at x=O and a and ;7 for the 
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wall at x= T. One obtains, in this case, the estimate 

IIRIIH = r(R)H T ~max {a+ +(3+, a_ +(3_}. 
p,T p, 

(5.32) 

It is easily shown that for 1~p<oo and 0<a<(1/p), 

(5.33) 

We may therefore obtain existence and uniqueness results on Hp if R is bounded on Hp. 

On H2,T such a boundedness assumption is not necessary since R is bounded on H2,T. 

THEOREM 5.1: If R=O, then the slip-flow problem (5.26)-(5.27) is uniquely solvable 

for all k. The solution has its values in each of the Banach spaces H and H T' p p, 
where 1~p<oo. !f a+ +(3 + <1, then the slip-flow problem (5.26)-(5.27) is uniquely 

solvable for all k. A If a+ +(3 + =1, then the slip-flow problem (5.26)-(5.27) does not 

have solutions for k~O, and has a one dimensional space of solutions, namely the 

constant functions, if k=O. 

bounded on Hp and H2. 

In all cases the solution space is H2 T' and also H if R is 
' p 

Proof: As shown in Chapter III, the solutions have the form 

where <po eM_,R=[Ker(Q+ -RJQ_)$Ran PP +]nZ0(T- 1 A) satisfies <po=<p _ -<pp for 

unique vectors <p eKer(Q+-RJQ ) and <p eRan PP . If a++f3+=r(R)<1, then - - p + 
M_ R is a maximal strictly negative subspace of z0(T- 1A)=span{1,e} with respect to 

' 
[h,k]=(Th,k) and thus one dimensional. On the other hand, if a+ +(3 + =1, we easily 

see that ee Ker(Q+ -RJQ_), while (Q+ -RJQ_)Te=(I+R)TQ+ e~O, whence 

Ker(Q+ -RJQ_)= span{e}={constants} and M_ R=span{e}. However, since one would 

then have ,P(x)=<p0 , the problem is not sol;able for k~O and nonuniquely solvable 

for k=O. • 

THEOREM 5.2. Let 1~p<oo, and let R be bounded on Hp and H2. Suppose, for 

O~x,y~r, 
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Joo 2 e-e I q(x,e)-q(y,e) I Pde ~ Ml x-y I 'IP 
-oo 

for some ")' f (0,1) and Mt (O,co). Then the boundary value problem (5.26)-(5.28) is 

uniquely solvable on Hp whenever max{ a++ {1 +'a_+ fi_}< 1 is satisfied. If 
a+ +fi +=a_ +fi _ =1, then the solution whenever existing is nonunique, and the 

constant functions satisfy the boundary value problem for cp(e)=O and q(x,e)=O. 

If p=2 and q(x)=O, the boundary value problem (5.26)-(5.28) is uniquely solvable on 

H2 whenever max{ a+ +fi +'a_ +fi_}< 1, and nonuniquely solvable (when solvable) if 

a+ +fi +=a_ +fi_ = 1. The constant functions satisfy the boundary value problem 

for cp( e)::O. 

The methods of Sections VIII.1 and VIII.2 may be used to construct the albedo 

operators. Consider, for example, the half space problem (5.26) on H2 with boundary 

conditions 

,P(o,e) = cp +(e), o~e <co, 

Jco 2 e2 
I ,P(x,e) I e- de = 0(1) (x-+oo). 

-co 

We denote by u(r) the resolution of the identity associated with the unbounded self 

adjoint operator T, 

{ f ( 0' 
(u(r)f)(el = 

0 ' 

e E T n ( -co, co) , 

e ~ T n ( -oo , oo) . 

For IB we take Ran B = span{e}, identify B with G:: and define 7f:H-.IB and j:IB-.H 
by 

Jo A2 
-f -~ f(A) -v dA 1r = 1r v e v, 

-co 

where e t G::. The dispersion function is a scalar function on 1B of the form 

0 2 
A(zl = 1 + 11"-~J (t-z)- 1e-t dt, 

-co 

which is analytic outside the real line with continuations from either side through the 
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real axis. It has a double zero at oo imbedded in the continuous spectrum of T. On 

the imaginary line it is continuous with A(±iO)=l. Using Muskhelishvili's theory of 

singular integral equations (see [276]) applied to the function A(z)(l-z- 2) without 

infinite zeros, we easily prove the existence of a unique function H(z) such that 

H( -z)H(z) for Re z=O, which is analytic in the open right half plane, 

continuous in the closed right half plane and satisfies zH( z) = 0( 1) ( z-+oo, Rez~O ). 

As in the example of isotropic neutron transport, a direct substitution of the data in 

(VIII 1.8) yields 

This expression is readily found in the work of Cercignani [73]. Substitution m the 

H-equation (VIII 1.10) or (VIII 1.11) yields the integral equation 

Next, let us consider the BGK equation for heat transfer (5.10), which one may 

write in the matrix form 

where 

€ ~ + lb(x,€) = 11"-~(€) Joe Q(~)lb(x,~)exp{-~ 2}d~, 
-co 

[ 
(%)¥2( € 2 -¥2) 

(%)¥2 

1 

0 

(5.34a) 

(5.34b) 

and tilde above a matrix denotes transposition. Introducing the spaces H ( 2 ) and 

H ( 2 f as the .I -direct sums of two copies of Hp and H T' respectively, p and the p, p ~ 

operators and vectors 

{ 
h(O, 

0 ' 
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(5.35) 

(Jh)(el = h(-eJ, 

[~], 

we consider the half space problem 

(Tt/1)' (x) = -At/l(x) + q(x), O<x<oo, (5.36) 

Q+ t/1(0) = RJQ_ t/1(0) + Q+<p +' (5.37a) 

I im {t/l(x)/x} = -k 1 e 1 - k 2 e 2. (5.37b) 
X-->oo 

and the finite slab problem 

(Tt/1) '(x) = -At/l(x) + q(x), O<x<r, (5.38) 

( 5.3 9a) 

Q_t/l(r) = RJQ+t/l(r) + Q_<p· (5.39b) 

where we restrict ourselves to specular reflection with accommodation coefficients a± 

at the finite boundaries, i.e., R=a + Q+ +a_ Q_. 

THEOREM 5.3. If a+Af[0,1), ;he slip-flow problem (5.36)-(5.37) with q=O is 

uniquely solvable for all k) and A k 2. If a+ =1 (specular reflection), the problem does 

not have solutions unless k 1 = k 2 = 0, in which case it has a two dimensional space 

of solutions, namely the linear span of collision invariants e 1 and e 2. The solutions 

have their values in all of the spaces H( 2 ) and H( 2 T) for 1$p<oo. p p, 

Proof: By virtue of (5.34) and (5.35) and the orthonormality in H(~) of {e 1,e 2}, 
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it IS immediate that Ker A={e 1,e 2}, z0(T- 1A)=span{e 1,e 2,Te 1,Te 2} with 

(Te 1,e 1)= (Te 2,e 2)=(Te 1,e 2)=0. Then one may repeat the proof of Theorem 

5.1, observing that the maximal strictly negative subspaces of z0(T- 1A) with respect 

to [h,k]=(Th,k) are two dimensional. We conclude in noting that, for a+ =1, 

{e 1,e 2}cKer(Q+ -RJQ_) while Te 1 and Te 2 do not belong to Ker(Q+ -RJQ_). • 

THEOREM 5.4. Let lSp<co. Suppose that, for OSx,yST, 

Jco 2 
exp{-(e) }llq(x,e)-q(y,e)ll~de S Mlx-yi 1 P 

-co 

for some 1 € (0,1) and M€ (O,co). For such a source term the boundary value problem 

(5.38)-(5.39) is uniquely solvable on H(;), if max{a+,a_}<l. If a+ =a_ =1, then 

the solution whenever existing is nonunique and two solutions of the same problem 

differ by a function of the type t/.l(x,e)=c1 e 1(e)+c2 e(e). 

Proof: The only relevant issue beyond what is immediate from Section V.4 is the 

solution of Eqs. (5.38)-(5.39) for q(x,e)=O, cp(e)=O and a+ =a_ =1. For such a 

solution t/J(x) we have Y:!(I-J)t/.1(0) € Ran Q_ and Y:!(I-J)t/.1( T) € Ran Q+' which imply 

Jt/.I(O)=t/.1(0) and Jt/J(T) = t/J(T). For ST = exp[-TT- 1A] we get 

whence t/.1(0) € Ker A and likewise t/.1( T )=S T t/.1(0) € Ker A. 

h =Jh € Ker A, and the proof is complete. • 

Hence, t/.l(x)=h with 

A similar result can be proved for H~ 2 f if one assumes, for OSx,yST, 
' 

Jco I e I exp{-( e)2}11 q(x,e)-q(y,e) II~ de S M I x-y I 21 
-co 

for some 1 €(0,1) and M€(0,co). 

Finally, let us discuss the binary gas problem (5.19) on the Banach spaces 

H( 2 ) and H( 2 f· We define the operators 
p p' 
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(Bh)(~) = 11'-Y2E- 1D J'"' 
-oo 

It is straightforward to compute Ker A = span{ e }, where 

e = Lm*~m)Y2 ]-

It IS also obvious that diag((m*)Y2, mY2)Ndiag((m*)-Y2, m-Y2) is self adjoint on H~ 2 ) if 

N is any of the operators T, Q±, B and A. On computing I-E- 1D one obtains a 

matrix with zero determinant and trace 2, whence on symmetrization A becomes positive 

self adjoint on H( ~) with span{;} as its kernel, where 

(T;,;) = 11'-Y2J00 ~ 11;(~)11 ~ exp{-~ 2 }d~ = 0. 
-oo 

Hence, defining the inversion symmetry 

(Jh)(~) = h(-e), 

and the surface reflection operator 

the theory of Chapters III and V applies. 

THEOREM 5.5. If a+f[O,l), the slip-flow problem for binary gas mixtures 

Tl/1' (x) -Al/l(x), O<x<oo, (5.40) 

Q+ 1/1(0) = RJQ_l/1(0), (5.41a) 

I im {1/l(x)/x} = -ke (5.41 b) 
X-+oo 

IS uniquely solvable for all k. If a+ =1 (specular reflection), the problem does not 

have solutions for k .. o and has a one dimensional manifold of solutions, namely the 
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multiples of e, if k=O. 

and H ( 2 f for 1~p<co. 
p' 

The solutions have their values m all of the spaces H ( 2 ) p 

THEOREM 5.6. Suppose that, for O~x,y~r, 

Jco 2 
exp{-(€) }llq(x,€)-q(y,€)11 ~d€ ~ Ml x-y I '"YP 

-co 

for some '")' E(0,1), ME(O,co), and 1~p<co. 

binary gas mixtures 

Then the boundary value problem for 

Ttb'(x) = -Atb(x) + q(x), O<x<r, (5.42) 

(5.43a) 

Q_tb(r) = RJQ+tb(r) + Q_cp, (5.43b) 

is uniquely solvable on H(;) if max{a+' a_}<l. If a+ =a_ =1, then the solution 
whenever existing is nonunique and two solutions differ by a function of the type 

tb(x,€)=ce(€). 

The proofs of these theorems follow those of Theorems 5.3 and 5.4. Let us 
turn to the construction of the albedo operator for the half space problem 
corresponding to Eq. (5.40) on H~ 2 ) along with boundary conditions 

2 Jco 2 2 E 1!/I·(X,J.I) I e -p dp = 0(1) (x->oo). 
i =1 -co 1 

Rather than utilize the similarity transformation diag((m*)~, m~), it is convenient to 

study this problem on the Hilbert space H of pairs C = col(f 1,f 2) of measurable 
functions fi:( -co,co)~, endowed with the inner product 

The resolution of the identity of T has the form 
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EerniR, 

e~rniR, 

EerniR, 

e~rniR. 

Let e 1,e2 be the orthonormal system of vectors in H, for which 

let j:IB-+H be the natural imbedding, and define 1f:H-+IB by 

* 
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Then IB = span{e1,e2} ::J Ran B . The dispersion function, in matrix form with 

respect to the basis {e1,e2} of IB, is now easily computed. It is given by 

Corresponding to the albedo operator there is a factorization of the dispersion matrix 

A(z)-l = Hf(-z)Hr(z) for Re z=O, where Hf and Hr are analytic and continuous up 

to the boundary of the closed right half plane and assume invertible values there; the 

most singular behavior allowed is that zH.Ii'(z) and zHr(z) are bounded as z-+oo along 

the right half plane, while Hi'(z) and Hr(z) are not. The albedo operator is easily 

found using Eq. (VIII 1.8), and reads 

for -oo<e<o. A coupled set of H-equations appears of the form 

The above expressions are equivalent to the half space solution formulas obtained by 
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Cavalier and Greenberg [71]. 

We have presented several models derived from linearization of the nonlinear 

BGK equation about a Maxwellian distribution. The BGK monel has some undesirable 

characteristics (e.g., transport coefficients are not correctly represented) and much 

effort has been spent in studying more general models. One way to generalize the 

linearized BGK equation was proposed by Gross and Jackson [17 4], and consists of a 

systematic procedure for improving the model by adding a finite sum of rank one 

operators to the linear collision operator, corresponding to projection along additional 

eigenfunctions. For example, the eigenfunctions for the complete collision operator of a 

gas of Maxwell molecules have been calculated explicitly by Wang Chang and Uhlenbeck 

[387]. By expanding the collision operator into a series of these eigenfunctions, Eq. 

(5.4) may be replaced by the equation 

(5.44) 

where liN is a collision frequency, the inner product (5.5) was used, and the functions 

( t/lj) j ~O form an orthonormal set with respect to (5.5). The linearized BGK equation 

arises as a special case if one chooses N=4, the collision invariants for the ,P ., >. -=0 
J J 

for OSjSN and vN=v. Analogous finite rank approximative linearized equations 

with speed dependent collision frequencies v=v( I e I) have also been studied. This 

procedure can be followed for linearized Boltzmann equations of other types, provided 

the collision operator has a complete set of eigenfunctions. Such models are covered by 

the abstract theory of the previous chapters. 

By expanding the solution of the nonlinear Boltzmann equation as f(x,e ,t) = 

f 0(€)(1+Eh(x,€,t)), where £0 is the equilibrium solution (the Maxwell velocity 

distribution), and retaining terms of order e, one arrives at the linearized Boltzmann 

equation 

8h + 1: 8h 
Ft ... ·rx -(Lh)(x,e ,t), (5.45) 

where for homogeneous media L is a symmetric nonnegative operator on the Hilbert 

space of square integrable functions of velocity e weighted by the Maxwellian factor 

f 0(€), i.e., the Hilbert space of functions h:R3 -+C endowed with the inner product 

(5.5). The linear operator L is given by 

(5.46) 
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Here € and e are the outgoing velocities in a two-molecule interaction, h,h*,h' and 

h * are the functions h(.) evaluated at arguments e' e' e ' and e ' ' where 

e ' =e -n(V cos 0) and e ' =e +n(V cos 0 ), n is a unit vector m the direction of the 

change in the incoming velocity e '' (i and e are the polar and azimuthal angles 

specifying the direction of the relative velocity V =€ -e measured from n, and the 

kernel B( (i ,V) contains the specific dynamics of the intermolecular interaction. 

For some interactions the kernel B is of particularly simple form. For inverse 

power law intermolecular potentials of the form U(r)-ar -s with a >0 (repulsive force) 

and s>O, we have B(O,V) V'f3(0), where i=(s-4)/s, V=IVI, j3(0)-0 as 

0-->0 and j3(0J-(i-OJ-(s+2)/s as 0-->rr/2. For a gas of hard spheres of 

diameter a>O, the kernel is given by B(O,V) = u 2Vsin0cos0. 

Because B( (i ,V) has a nonintegrable singularity at (! =Y2rr, which reflects 

the contribution of grazing collisions, it is customary to cut off the effect of such 

collisions and thus to modify B( (! ,V) in such a way that the singularity at (! =Y2rr 

either disappears or becomes integrable. Two cut-off procedures are commonly used. 

Angular cut-off was introduced by Grad [155] and consists of putting B(O,V)=O for 

00 <0:5:Y2rr. Radial potential cut-off was introduced by Cercignani [80] and 

consists of the assumption that the two- body interaction has finite range a: the 

potential vanishes identically if the two molecules are out of range. Both of these 

cut-offs have the effect of making the collision frequency v(€) finite, where 

A particularly interesting case arises when the rarefied gas interacts with an equilibrium 

distribution (cf. [84]). Then the collision operator may be written as L = v-K = 

v-K2+K1, with 

K 1h = ~ JJR 3J:f0(eJh(eJB(o,v)dode, 

2rr rr 
K 2h = ~JJR3 J 0 f 0 f0(eJh(eJ[B(O,V)+B(Y2rr-o,v)JdOdede, 

and Eq. (5.45) becomes 

ah + ;: ah 
Ft \, ·rx -v(€)h(x,e,t) + (Kh)(x,e,t). (5.47) 
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Under asswnptions of time independence and plane parallel syrrunetry, the 

linearized Boltzmann equation (5.4 7) becomes 

E ~(x,e) + h(x,e) = -v(e)h(x,e) + (Kh)(x,e), x ax (5.48) 

where H(O,r), €= I e I and Ext(-oo,oo). 

Let us consider the case when the collision frequency depends only on the 

speed € = I e I and is bounded away from zero. This IS a property shared by 

Maxwell molecules (s=4) and hard intermolecular potentials (s>4) with cut-off. 2 Using 

physical units yielding the equilibriwn Maxwellian distribution 1r - 3 I 2e- E , we 

introduce the Hilbert spaces H and HT of measurable functions h:IR 3 ..... q:; bounded 

relative to the respective norms 

and 

We define the operators T, Q±, A and J by 

(Th)(€) = V"TTI-E xh(e), 

(Ah)(€) = v(€)- 1(Lh)(€) h(€) - vTrr(Kh)(€), 

We shall asswne that v(€)- 1K is bounded on H, and that the five-fold degenerate 

eigenvalue of A at zero is isolated. These properties are always satisfied for hard 

potentials (s~4) with cutoff [66, 155]. Since A IS bounded on H, positive and 

Fredholm, the existence and uniqueness theory can be developed in HT ( cf. Section 

IIL3). On observing that J anticorrunutes with T and corrunutes with A, we define a 

surface reflection operator Ron HT satisfying IIRhiiT~IIhiiT 
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THEOREM 5.7. Under the assumptions indicated above, for all functions 'P € HT 

there exists a unique solution in HT of the linearized Boltzmann equation (5.48) on a 

finite slab x f (0, r ), which satisfies the boundary conditions 

h(O,€) (RJQ_h(O))(€) + 'P(€), e x>O, 

For specular reflection h(x,€)=a+be 2+cey+dez 1s a solution of the 

corresponding homogeneous problem, and therefore for this case non-uniqueness is clear. 

As a consequence of Proposition III 4.1 and Corollary III 4.3 we have 

THEOREM 5.8. For all functions 'P + € Q+[HT[ there exists at least one solution in HT 

of the linearized Boltzmann equation (5.48) on the half space x f(O,oo) which satisfies 

the boundary conditions 

h(O,€) 

I i m s up II h ( x) II T < oo. 
X->oo 

If II RQ+ II T< 1, there 1s a one dimensional manifold of solutions to the corresponding 

homogeneous problem. 

Guiraud [177, 178], Maslova [260, 261] and Bardos et a!. [24] have shown 

wellposedness of the boundary value problem for the linearized Boltzmann equation m 

H, under conditions which restrict the intermolecular potential to "hard potentials." In 

general, regularity conditions such as III (2.12) will fail. As indicated in Section VII.4, 

regularity restrictions have been removed for (modified) collision operators which are 

trace class perturbations of the identity operator, and it is hoped that those methods 

may be extended to compact perturbations of the identity. 
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6. A Boltzmann equation for phonon and electron transport 

The transport of phonons in crystalline solids and electrons in metals and 

semiconductors is often described by the so-called relaxation time approximation. On 

considering the electron scattering case, suppose an electron is accelerated by a 

constant electric field directed along a metal or semiconductor strip. Sooner or later, 

by running into an impurity or for some other reason, the electron will lose its drift 

velocity. The above approximation then consists of the assumptions that (i) there is a 

characteristic time interval between successive collisions, the relaxation time T, (ii) the 

electron comes to a complete stop on collision and "forgets" its previous motion, and (iii) 

the probability of a collision in an infinitesimal period dt equals (dt)/ T, whence 

P(t)=e-t/r is the probability of collisionless travel over a period t and J~tP(t)dt=r 
is the expected free travel time of an electron. This approximation can be expected to 

break down near boundaries, where surface scattering becomes important. For the 

description of electron diffusion in metals and semiconductors and phonon transport in 

crystalline solids we refer the reader the textbooks on solid state physics, such as the 

monographs [217, 404, 405]. 

In spite of the expected inaccuracy of the relaxation time approximation near 

boundaries, this method has been used frequently, even when treating boundary effects 

(see, for instance, [288, 321] and references therein). A linearized Boltzmann equation 

intended to remedy the unreliability of the relaxation time approximation near 

boundaries was derived by Nonnenmacher and Zweifel [289]. In their derivation they 

assumed the existence of a quasi-equilibrium distribution function, valid far from the 

boundaries, which has the form 

A 1 
f0 (z,k) = (exp[(c(k)->.)/T(z)]±1)- . (6.1) 

Here c (k) IS the electron or phonon energy as a function of the wave number 

k=lkl, >. is the chemical potential and T(z) is a local temperature (c(k)=li.vk, 

>.=0 for phonons; c(k)=li. 2k 2 /2m=mv 2 /2, >.,.o for electrons, with 27rli.=h 

Planck's constant, v the phonon/electron velocity, m the electron mass). For phonons 

which obey Bose-Einstein statistics we take the minus sign, for electrons which are 

subject to Fermi-Dirac statistics we take the plus sign in Eq. (6.1). By substitution of 

f = r0{1+h}, with f0 (z,k,w) = f0( I k-k 1 1 ), into the linearized Boltzmann equation, 

they arrived at the equation 
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Jl~(x,w) + cr(z,k,w)h(x,w) = I 0 o-(z,k,w--+W)h(x,w)dw, (6.2) 

where Jl =cos(} is the direction cos me of propagation and the angular direction w is 

parametrized using the polar angle (} and the azimuthal angle <p. k 1 accounts for 

the flow of particles induced by the electric field (for electrons) or the temperature 

gradient (for phonons), which lies in the positive z-direction. We also have 

Here /1=sin0cos<p corresponds tow, similarly /1' corresponds tow, K(w·w,k) 

is the elastic scattering frequency which yields the collision frequency v 0, and 

A A2 
f 1 = 'Y ± { c(k)f 0 /mT(z)}exp{( c(k)->-)/T(z)}, 

with 'Y ± =1 for electrons, 'Y ± =2 for phonons. 

On inspecting (6.2), one observes that the longitudinal (parallel to the electric 

field or the temperature gradient) position variable z and the wave number k appear in 

the equations as parameters, different values of which remain uncoupled. Thus in the 

remainder of this section we shall not explicitly display any z or k dependence. 

Let H be the Banach space of measurable functions h:O-+<C which are p,o-
bounded with respect to the norm 

where 1~p<oo. We define the operators T, Q±, B, J and R by 

(Th)(JL,'P) 17 ( /', 'P) h(JL,<p), 

(Jh){JL,<p) h( -JL,<p+7r), 

!h(JL,<p), 

0 ' 

±JL>O, 

±JL<O, 
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1 211" 
(Bh){JJ,cp) = 0' ( ), cp) I -1 I 0 u(W-+w)h(jj,,P)d,PdjJ, 

The integro-differential equation (6.2) then reads 

Th '(x) -Ah(x), O<x<d, (6.3) 

where de (O,oo] is the thickness of the metal or semiconductor strip (perpendicular to 

the electric field or the temperature gradient) and (strong) differentiation is applied 

with respect to x. We consider the (partial) specular reflection boundary condition, 

given by 

(6.4) 

For semi-infinite metal or semiconductor strips ( d=oo), which may be thought of as the 

large thickness limit of a finite strip, one may impose the condition 

I im sup lih(x)ll < oo. (6.5) 
X -+co 

If d is finite, one may have (another) accommodation coefficient ad at the surface 

z=d, and impose the boundary condition 

Q_h(d) = RJQ+h(d) + Q_cp. (6.6) 

LEMMA 6.1. Let K(w · w)!II!O be nonnegative, and assume J: 1 K(t)dt<oo and 

for some 8=8(x,k)e(O,l). Then B has spectral radius one and Ker A consists of 

the constant functions. 

Proof: We clearly have 

0 S ~(1-8)K(w·w) S u(W-+w) S ~(l+o)K(w·w), (6. 7) 
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whence [cf. (7.4)] 

1 
0 < ~(1-.S)J K(t)dt 

v -1 

1 
a(w) :::; ~(1+8)J K(t)dt 

v -1 
(6.8) 

IS strictly positive, and therefore T is bounded on H if 1:s;p<oo. As a p,O' 
consequence of the bound J 1 K(t)dt<oo and (6.7)-(6.8), the operator B can be 

proved u0 -positive on H and 1compact on H (cf. Proposition 3.1 and Lemma 1.1). p,a p,a 
Hence, the spectral radius of B is positive and is an algebraically simple eigenvalue with 

corresponding positive eigenfunction, while there is no other eigenvalue with the same 

modulus corresponding to a positive eigenfunction (cf. Theorem I 4.3). One easily 

computes that the constant functions belong to Ker A, where A=I-B, and therefore 

Ker A consists of the constant functions only. • 

For symmetric scattering kernels satisfying the reciprocity condition 

a(CHw)=a( -w-+-w), we conclude that A 1s positive self adjoint with one 

dimensional null space Ker A=span {;}, where (T;,;)=O. The existence and uniqueness 

theory of the boundary value problems (6.3)-(6.4)-(6.5) and (6.3)-(6.4)-(6.6) then is a 

straightforward application of the theory of Sections III.2 and V.2. 

THEOREM 6.2. Let a(CHw)=a(w.....W)=a( -w----w). Then there exists a unique 

solution of the boundary value problems (6.3)-(6.4)-(6.5) and (6.3)-(6.4)-(6.6) on H T' 
p, 

1:s;p<oo, if 0 :::; a 0 < 1 and 0 :::; ad < 1 for the finite strip, 0 :::; a 0 < 1 

for the semi infinite strip. For a 0 =ad=1 (finite strip) or a 0 =1 {semi infinite strip) 

the solution when it exists is nonunique. 

Proof: It should be observed that, for hfH2 , ,a 

(1Tih,h)2,a = llhii~,T' 

We may therefore apply the HT-theory of Chapters III and V, smce the norms 

for a finite strip, 

for a semi-infinite strip, 

satisfy the requirements necessary for unique solvability. The above nonuniqueness 



328 BOUNDARY VALUE PROBLEMS IN ABSTRACT KINETIC THEORY 

statement is straightforward. • 

To compute the albedo operator for the half space problem with R=O, it IS 

convenient to rewrite the (incoming flux) boundary value problem as 

8h (cos 0 )a-x(x, 0 ,<p) + ~( 0 ,<p )h(x, 0 ,<p) 

1 J1 J27r ~ ~ ~ = -4 ~ (O,,P)h(x,O,,P)d,Pd(cosO), 
7r -1 0 s 

J
1 J27r ~ ~ ~ 2 ~ 

~(O,,P)~ (O,,P) I h(x,O,,P) I d,Pd(cosO) = 0(1) (x->oo), 
-1 0 s 

where ~=u(w) and are measurable functions satisfying 

~ ;?! ~s ;?! e > 0. We also impose the regularity condition 

J
1 J 2 7r ~ 2a ~ 2a 1 A A 

3a>O: (cosO)- ~(O,,P) - ~ (O,,P)d,Pd(cosO) 
-1 0 s 

< 00 (6.9) 

and the reciprocity conditions 

:E(IJ,<p) = :E(IJ+7r,7r-<p), 

We first introduce 

and rewrite the problem as follows: 
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1 ~ J1 J21T A ~ A A = 4irf(O,cp) 2 _ 1 0 f(O,q,) 1/>(x,O,q,)dq,d(cosO), 

,P(O,O,cp) = l'+(O,cp), cosO~O, 

J1 J21T A 2 A 

I 1/>(x,O,q,) I dq,d(cosO) = 0(1) (x-+oo). 
-1 0 

On the Hilbert space H = L2[-1,1] we relabel the operators T, B and Q± and define 
the vector p by 

(Tf)(O,cp) = E( U ~ ~) f(O,cp), 

(Bf)(cosO) = P ( :~cp) f t1T p(O,q,)f(O,q,)dq,d(cosiJ}, 
-1 0 

l f(O,cp), 
(Q+f)(O,cp) = 

0 ' 

p(O,cp) = f(O,cp)~. 

cos0>0, 

cosD<O, 

We denote the resolution of the identity associated with T by 

l_f(D,cp), 
(u(r)f)(D,cp) = 

0 ' 

cosO/E(D,cp) E r, 

cosO/E(O,cp) 1£ r. 

Let us observe that B has the one dimensional range of scalar multiples of p. We 

put lB = span{p} identified in a natural way with C and define 7r:H-+IB and 
j:IB-+H by 

J1 J21J' A A A 

7rf = p(O,cp) p(D,q,)f(D,q,)dq,d(cosD) x 
-1 0 

[J1 J21T A 2 A ]-1 x I p(O,q,) I dq,d(cosD) , 
-1 0 

where € E C. For the dispersion function we find the scalar expression 
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A(z) = 1- 4Z1fJ"" f J 2 1f(z-t)- 1 c5(t-cosO/~(O,cp))r(O,cp)dcpd(cosO)dt 
-oo -1 0 

r1 r21f A A A A 

1 + -4z J J [~ (I} ,cp)/( cos I} -z~( 0 .~))]d~d( cos 0 ). 
1f -1 0 s 

This function is analytic on the Riemann sphere cut along a bounded subset of the real 

line, is even, and has a zero at infinity if and only if ~( 0 ,<p) = ~s( 0 ,<p) almost 

everywhere; if this condition is fulfilled, the zero at infinity has multiplicity two. 

Hence, using the regularity condition (6.9) and the evenness of A(z), one easily proves 

the existence of a unique function H(z), analytic on the open right half plane, 

continuous on its closure, and having at most a simple pole at infinity, such that 

A(z)- 1 = H(-z)H(z) for Re z=O. In terms of the original boundary value problem, we 

now obtain for the albedo operator the formula 

A 1 J1 J21f A Y: A A 1 (Ef+)(O,<p) = 41r 0 0 r(O,cp) ~~(IJ,<p)cosO-~(O,cp)cosOr x 

x ~( 0 ,<p)H( -cos()/~(() ,<p))H(cos 0 /~(0 ,cp))f +(0 ,cp)(cos 0 )d<pd(cos 0) 

for cos() <0. From VIII (1.10) or VIII (1.11) we obtain the H-equation 

1 z J1 J21f A A 1 A A A A H(z)- = 1 - -4 (cosO+z~(O,~))- H(cosO /~(O,cp))~ (O,cp)dcpd(cosO). 
1f -1 0 s 

Under more restrictive hypotheses and for azimuthally-independent ~ and ~s' this 

expression was derived before by Williams [395] using the classical Wiener-Hopf method. 

Employing the Banach space theory of Chapters VI and VII and assuming that 

I 1 1K(t)rdt<oo for some r>1, one may prove Theorem 6.2 for the spaces H - ~a 

where l:Sp<oo. In nonsymmetric cases the theory is more complicated, since no 

selfadjointness assumptions can be applied. However, in this case one can adapt the 

reasoning of the proofs of the multigroup results Theorem 4.1 and Corollary 4.5 to 

prove that Eqs. (6.3)-(6.4)-(6.5) are uniquely 

I: 1 K(t)rdt<oo for some r>1 and a 0 =ad=O. 

solvable on H p,u (1:Sp<oo), if 



Chapter X 

INDEFINITE STURM-LIOlMLLE PROBLEMS 

1. Kinetic equations of Sturm-Liouville type 

In this chapter we shall discuss in some detail partial differential equations 

associated with self adjoint Sturm-Liouville boundary value problems with indefinite 

weights. An example of such an equation is the Fokker-Planck equation for Brownian 

motion, 

li v ax(x,v) i!..!l!. 81/1 2(x,v) - vrv(x,v), av v 
(1.1) 

whe~e v IS a velocity variable and x is a position coordinate. Boundary conditions are 

provided both with respect to the position coordinate and the velocity variable. This 

equation was first used by Fokker [122] and Planck [309] to describe the Brownian 

motion by a particle of relatively large mass immersed in a fluid. Like the (time 

independent) Boltzmann equation, this Fokker-Planck equation describes the stationary 

state of the system at the macroscopic (or kinetic) scale. For such systems one no 

longer assumes that the interactions only involve two particles at the same time, as is 

done consistently for the Boltzmann equation, but rather that a large number of 

particles interact simultaneously. Transport processes in such media may be described 

by separating off the long range many body interaction via a so-called self consistent 

approximation, and treating the residual Coulomb interaction via a stochastic model. If 

the interactions are weak, one can m fact expand the Boltzmann collision term in 

orders of the interaction potential and obtain the Fokker-Planck collision term. Since 

the resulting equation appears as the limit case of weak intermolecular potentials and 

large mass, the Fokker-Planck collision operator essentially describes grazing collisions 

in which the variation of the momentum of the observed particles is small, whence the 

dissipation mechanism is exhibited as a diffusion in momentum space. 

More generally, we wish to study equations of the form 
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(1.2) 

where Jl ranges over an open subset . I of the real line, and the real valued function 

w(p) changes sign on I. The equation will be endowed with forward-backward spatial 

boundary conditions in half space geometry, 

1/>(0,p) <p +(Jt) for those Jl where w(p)>O, (1.3a) 

111/>(x, ·)II 0(1) or o(l) (x->oo). (1.3b) 

m an appropriate Hi! bert space setting. In addition, all solutions 1/>( x,p) are required 

to satisfy certain self adjoint boundary conditions. Formally, separation of variables of 

the type 1/>(x,p) e- X.xy(p) then leads to the Sturm-Liouville boundary value 

problem 

-[(py ')' - qy] X.wy (1.4) 

with the same self adjoint boundary conditions. For this reason we refer to these as 

indefinite Sturm-Liouville problems. We shall present an analysis along lines followed 

by Beals [34] in order to settle existence and uniqueness issues, and then we shall 

study the representation of solutions and discuss several applications. 

Let us denote by H the Hi! bert space L2(I,dp) of square integrable Lebesgue 

measurable complex-valued functions, with norm and inner product denoted by II • II 
and ( •, • ). We suppose that I is an open subset of IR and that the indefinite weight 

w:I-+IR has the following properties: 

(i) I± = {Jt d : ±w(p)>O} are nonempty finite umons of open intervals, and 

10 = {Jt d : w(p)=O} has finite cardinality, 

(ii) w is continuous on I+ Ul _, 

(iii) In a neighborhood of each sign change Jlo d of the weight w there is a 

c1-function m satisfying w(p) sign(p-p0) I p-p0 I am(p) with a>-¥2 

and m(p 0) .. o. 

In addition we assume that the functions p:I-+IR and q:I-+IR satisfy 

(iv) p is locally absolutely continuous and strictly positive on I, 
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( v) q is continuous on I. 

Finally, let us denote by D1 the linear subspace of functions htH that are 

absolutely continuous on I and whose (almost everywhere defined measurable) derivatives 

h' satisfy plh' 1 2 tL 1 (I,d~t) and qlhl 2 tL 1 (I,d~t). For h,gtD1 we define the 

sesquilinear form 

(1.5) 

Then we assume the existence of a linear subspace DcD1 containing the compactly 

supported c1 -functions on I and a finite dimensional subspace N0cD with the following 

properties: 

(vi) 

(vii) 

(viii) 

(ix) 

(wh,wh) ~ c(h,h) A for some constant c and all h t D such that h.LN0 in H, 

(h,h)A ~ 0 for all htD, 

(h,h)2'" = 0 for all htN0, 

llhll ~ c(h,h)A for some constant c and all htD such that h.LN0 in H. 

These last assumptions will be utilized to impose the necessary self adjoint boundary 

conditions on (1.2). 

We will now show that the boundary value problem (1.2)-(1.3) may be written 

as an abstract kinetic equation 

(Tt/l)'(x) = -At/l(x), O<x<oo, 

Q+ 1/1(0) = 'P +' 

111/l(x)ll = 0(1) or o(l) (x-+oo), 

and thus is subject to the results of the previous chapters. On H we define the 

(possibly unbounded) self adjoint operator T with D(T)={htH whtH} by (Th)(Jt) 

= w(~t)h(~t) for Jt d. The orthogonal projections Q+ and Q of H onto maximal 

T -positive and T -negative T -invariant subs paces have the form 

[ h(~t), 
0 ' 
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The definition of A is somewhat more involved. Let us define on D the inner 

product 

(h,g) 1 = (h,g) A + (h,g). (1.6) 

We denote by HA the completion of D with respect to this inner product. By virtue 

of the finite dimension of N0 and condition (ix), HA is continuously and densely 

imbedded in H. Let H_A be the dual of HA with respect to H. If we extend the 

inner product (1.5) to HA' we may realize an operator A0 from HA into H_A by (A0h,g) 

= (h,g)A for h,gEHA. We now define D(A)={hEHA : A0hEH} with A=A0 on D(A). 

Using the Friedrichs' representation theorem for symmetric bilinear forms [213] and 

(i)-(ix), we have the following lemma. 

LEMMA 1.1. The operator A0:HA -+H_A is a contraction, and the operator A is positive 

self adjoint on H. 

LEMMA 1.2. The operator T- 1 A with domain {hE D(A) AhET[HA]} is closed with 

respect to the HA -topology. 

Proof: Consider a sequence {hn}';'= 1 in D(A) satisfying Ahn=Tkn for some knEHA' 

as well as llhn-hiiA-+ 0 and llkn-kiiA-+ 0. By assumption (vi), T acts as a bounded 

operator from HA into H, and so we have i1Ahn-Tkll = IITkn-Tkll -+ 0. Because of 

Lemma 1.1 we have IIA0hn-A0hiiH.A -+ 0, and therefore A0h=TkET[HA]cH. We thus 

conclude that hE D(A) and Ah E T[HA]. • 

The proof of Lemma 1.2 used the fact that T:HA -+H 1s bounded. This 

boundedness further implies the condition 

Z0(T- 1A) = ~ Ker(T- 1A)n c D(T) 
n=1 

for the zero root linear manifold, since D(A)cHA cD(T). Such a condition (for T 

unbounded) was assumed in Chapters III and IV. Under the additional assumption that 

T acts as a compact operator from HA into H_A, the operator T- 1 A on HA has compact 

resolvent and its spectrum is discrete. This is satisfied, in particular, if the operator A 

has compact resolvent, since in this case the natural imbedding of H into H_A is 



X. INDEFINITE STURM-LIOUVILLE PROBLEMS 335 

compact. 

The next result is an adaptation, due to Beals [34], of a lemma proved by 

Baouendi and Grisvard [22] and extended to the Fokker-Planck model (1.1) by Beals 

and Protopopescu [3 5]. 

LEMMA 1.3. There exist bounded linear operators X and Y on HA satisfying 

( 1. 7 a) 

* IT IX YT (1.7b) 

* on HA' with Y the adjoint of Y in H. A similar result holds with Q m place of Q+. 

Proof: Suppose first that I+ =(O,oo) and I_=( -oo,O). Let <p:JR--.<[; be a C 1-function 

of compact support satisfying <p(0)=1, and put 

(Xh)(JL) 

where t 1 and t 2 are two distinct positive numbers and a 1 and a 2 are to be selected. 

If X is not to introduce a jump at JL =0, we must require 

(1.8) 

In order that the equalities (1.7) hold true, we must have 

* (Y h)(>..) 

where 

g-(JL) = -w(JL)Iw(-t·JL). 
J J 

By assumption there 1s an interval (-c,c) on which w(JL)=sign(JL) I JL I am(JL) for 

some c1-function m(JL) with m(O) .. o and a> -¥2. This implies 
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If we now choose the numbers t 1 and t 2 such that t 1 E and t 2 E do not belong to 

the convex hull of the (compact) support of cp(J.I), the functions g1 and g2 will be 

continuously differentiable on an open interval containing the support of cp(J.I). As a 

result, cpg1 and cpg2 are continuously differentiable up to J.I=O. We then have 

(Yh)(J.!) 

In order that Y map HA into HA' we must require 

(1.9) 

Because of the regularity assumption on w(J.!) near J.!=O, it is possible to solve Eqs. 

(1.8) and (1.9) uniquely for t 1 and t 2, since the determinant of the system is 

The general case is easily proved using a C1-partition of unity. Let (Ui)i d be 

an open cover of I consisting of open intervals Ui such that w(J.!) changes sign on Ui 

at most once. Let (cpi)id be a C1-partition of unity subordinated to the cover 

(Ui)id (cf. [385) for its existence). This means that each function cpi is a 

nonnegative C1-function on I with its support contained in Ui such that for every 

J.!€I we have cp1·(J.I)¢0 for only finitely many i, while E cp-(J.I) 1, J.!d. . I I 

For every id we construct the operators Xi and Yi on HA of 1 flle above type, as if 

the weight function changes sign in Ui. (The latter occurs at most once.) We then 

define 

(Xh)(J.I) 

(Yh)(J.I) = E cp-(J.I)(Y.h)(J.!), 
i d I I 

which satisfies the lemma. • 
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As discussed in detail in Chapters III and IV, there exists a strictly positive 

self adjoint operator A ;3 which has the same domain as A and coincides with A on a 

subspace of finite co-dimension (in D(A), HA and H). Moreover, the completion of D(A) 

with respect to the positive definite inner product 

(1.10) 

-1 
coincides with H A and the operator S ;3 = A ;3 T is compact and self adjoint on H A 

(relative to (1.1 0)). We then define P + and P _ to be the ( •, •) A -orthogonal 

projections of HA onto maximal s 13 -positive and negative 8,8-invariant su/spaces. Let 

HT denote the Hilbert space of measurable functions h:I-+<C which are bounded m the 

norm 

and let ( •, · )T denote the corresponding mner product on this space. Define Hg to 

be the completion of HA with respect to the inner products 

. -1 
(h,k)8 = (A/3 T(P + -P _)h,k)A,a' (1.12) 

which are equivalent for· different ,8. The projections Q+ and Q extend continuously 

from D(T) to orthogonal projections on HT, and likewise the projections P + and P 

extend to H8. 

The next result is due to Beals [34]. 

THEOREM 1.4. The mner products ( •, · )T and ( •, • )g are equivalent on HA and 

therefore HT"'Hs. 

Proof: Given g=A ~ 1 TP + h where h £ H A' we define 

{ -1 } -1 exp -xT A,B A,a TP +h' OS:x<oo. 

Then ,P(x)-+0 in HA -norm as x-+oo, 1/> is HA -continuously differentiable on (O,oo) and 

HA -continuous on [O,oo), while T,P '(x) = -A,a1/>(x), O<x<oo. Introducing the bounded 

operators X and Y on HA via Lemma 1.3, we obtain the estimate 
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IIQ+glli- ~ IIQ+glli- + IIXQ_glli- = (IT I Xg,Xg) = - J:-~x( IT I Xl/l(x),XI/I(x))dx 

= -2J00
( IT I XI/I', Xl/l)dx = -2 J 00(TI/I ',YXI/I)dx = 2 J 00(A,ai/I,YXI/I)dx ~ 

0 0 0 

J
oo 2 Joo 2 T- 1A 2 ~ c Ill/lilA dx = c (e- X .8 g,g)A dx = ~cllgll s· 
0 .8 0 .8 

Likewise, using Lemma 1.3 with Q+ replaced by Q_, we obtain IIQ_glli ~ ~cllgll § 
for g = A_8 1TP +h t HA. Similar estimates can be obtained if one replaces P + by 

P _, yielding a constant d instead of c. Hence, on using all four estimates we find 

where m is some constant. Since A(3 1T[HA] is dense in HA' we conclude HscHT. The 

converse inclusion follows from the proof of Theorem II 4.5, since HA cD(T). • 

The existence and uniqueness theory for abstract kinetic equations may now be 

applied. Since an eigenfunction h of A at the eigenvalue >. satisfies the homogeneous 

second order differential equation (1.4) with p(p)>O and w(p)=l for J.l d, every 

eigenvalue of A has multiplicity at most two. In most cases of interest the 

multiplicities of these eigenvalues are, in fact, one. This is certainly true in the case of 

separated boundary conditions [94], since this imposes a linear constraint on the 

eigenfunctions. Throughout the remainder of this chapter we will assume that Ker A is 

either trivial or one dimensional, i.e., dim N0~1. 

We have as a consequence of Theorems III 2.2 and III 2.3 the following result. 

THEOREM 1.5. If Ker A - {0} or if Ker A = span{<p0} with (T<p0,<p0) ~ 0, 

there exists a unique solution of the differential equation 

Tt/1 '(x) = -AI/I(x), O<x<oo, (1.13) 

with boundary conditions 

(1.14a) 

I im sup 111/.>(x)IIT < oo. 
X-+oo 

(1.14b) 
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This solution satisfies 

3tf; lKer A, 3M,r>O: llt/J(x)-t/J liT$ Me-rx_ 
00 00 

(1.15) 

On the other hand, if Ker A = {0} or if Ker A = span{cp0) with (Tcp 0,cp0 ) < 0, 

there exists a unique solution of the differential equation ( 1.13) with boundary 

conditions 

( 1.16a) 

I im llt/J(x)IIT 
X -+co 

0. (1.16b) 

This solution satisfies 

3M,r>O: llt/J(x)IIT s; Me-rx. (1.17) 

In the next several sections we shall present methods to compute the albedo 

operator for an indefinite Sturm-Liouville problem. Some work in this direction was 

already done by Pagani [291, 292, 293, 294, 295], Beals and Protopopescu [35, 36], 

Kaper et a!. [209], and Marshall and Watson [257], using techniques from the theory of 

partial differential equations and employing special functions to arrive at (the equivalent 

of) the albedo operator for various simple models. However, no general procedure was 

given. Recently, two general methods were employed by Klaus et a!. [220] (announced 

in [219]). The first method relies on eigenfunction expansions and the solution of the 

resulting integral equation. The second method consists of the derivation of an 

equivalent integral equation, which can be solved by Wiener-Hopf factorization. In 

Section 2 we shall present the first method. The second method will be pursued in 

Sections 3 and 4. 

2. Half -range solutions by eigenfunction expansion 

In this section we shall construct solutions of the boundary value problem 

(1.6)-(1.7) by an eigenfunction expansion method. 

assumptions of the previous section. 

We con"tinue the notation and 
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Following Chapter III, HA may be decomposed as HA = z0(T- 1A)eZ1, and this 

decomposition reduces the operator T- 1 A. We will write P for the projection of HA 

onto z1 along Z0(T- 1 A), which extends to H8. On Hs let us define the projection P + 

as follows: P +f = P +f if Ker A={O} or if Ker A=span{cp0} with (cp0,cp0)<0; P +f = 

P +f + (1-P)f if Ker A=span{cp0} with (Tcp0,cp0)>0; and P +f P +f + 

{(f,TtP0)/(cp0,Ttt>0)}cp0 if Ker A=span{cp0} with (cp0 ,cp0 ) = 0. In the last case we 

choose tt> 0 in such a way that AtP0 =Tcp0 and (Tt/> 0,tt>0)=0; as a result we then have 

(cp0,TtP0)=(At/>0,tt> 0)>0, P +<p0 =cp0 and P +t/> 0 =0. In all three cases the unique 

solution tP of the boundary value problem described in Theorem 1.5 can then be 

represented as 

where E + is the projection of HT on to the range of P + along Q_[HT]. Following the 

conventions of the previous chapters we may write E+ =EQ+' where E is the 

appropriate albedo operator. 

LEMMA 2.1. The vectpr g=Q_E+<p + is the unique solution in Q_[HT] of the equation 

(2.1) 

Proof: One easily calculates that g=Q_E+<p + satisfies Eq. (2.1): 

Conversely, if g is a solution of Eq. (2.1) in Q_[HT], then 

Q_(g-P +(cp ++g)) = g-K+cp + +K_g = o, 

and thus there exists t/> + l Q+[HT] satisfying 
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result we have g=Q_E+<p +' • 

We may compute E+ in principle by solving Eq. (2.1) and putting 

(2.2) 

Let us assume T:H A --+H ~ is compact. Since A~ 1 T is then compact, self adjoint and 

injective on HA' it has a complete HA -orthonormal set of eigenfunctions {cp.B}~=-oo 
(where n =0 1s skipped m the numbering) satisfying A fJ'P~ = A~ T<p~ with 

(cp~,cp!) A .8 = 8 nm and 

... :5; A~ 3 :5; A~ 2 :5; A~l <0<A~ :5; A~ :5; >.~ :5; .... 

The eigenfunctions form a complete orthogonal set in HS, with normalization 

(2.3) 

We also have the orthogonality relation 

(2.4) 

Under the conditions of the oscillation theorem for eigenvalues of 

Sturm-Liouville differential operators [94], the eigenvalues are simple. However, the 

multiplicity of the nonzero eigenvalues of A will not play a role in the construction. 

Note that if a non-strictly positive Sturm-Liouville operator A is modified to obtain 

A{J, only the multiplicities of finitely many eigenvalues and eigenfunctions will be 

affected. 

In order to specify Eq. (2.1) further, we use the identity (cf. Section II.4) 

(f,g)s = (f,(2V -I)g)T = ((Q+ -Q_)f,(P l,+ -P 1,_)g)T, 

where {f,g}cP[HsJcHS!';!HT. As a consequence we obtain, for Ker A={O}, 

K h 
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If Ker A"'{O}, we also consider .>. 0 =0 and Ker A=span{cp0}. We then obtain 

the same formulas if (Tcp0,cp0)<0 and formulas corrected by one term if 

(Tcpo,'Po)~o. 

COROLLARY 2.2. Let g=Q_E+cp+ and assume T:HA-+H~ is compact. Then: 

(i) If Ker A={O} or if Ker A=span{cp0} with (Tcp0,cp0)<0, then 

(ii) If Ker A-=span{cp0} with (Tcp0,cp0)>0, then 

(g,TQ_cpo) 
g + n;O .>.n(g,Q_cpn)TQ_cpn + ('Po, Tcp0 ) Q_cpo 

(cp+,TQ+cpO) 
= E .>.n('P +'Q+cpn)TQ_cpn + ( cp Tcp ) Q_'Po· 

n>O 0' 0 

(iii) If Ker A=span{cp0} with (Tcp0,cp0)=0, then 

(g,TQ_?/>o) 
g + n;O .>.n(g,Q_cpn)TQ_cpn + ('Po, T!jl 0 ) Q_cpo 

(cp+,TQ+,PO) 
= n;O.>.n(cp+,Q+cpn)TQ_cpn + (cp0 ,T!jl 0 ) Q_'Po· 

3. Reduction to a modified Sturm-Liouville problem 

In the present and the next section we shall present a second method to 

compute the albedo operator for Sturm-Liouville diffusion problems. We restrict 

ourselves to Sturm-Liouville operators on intervals l=(a,b) with domains D which lead 

to separated boundary conditions of Neumann-Dirichlet type. That is to say, if p(x) 

extends to a continuous strictly positive function and q(x) to a real continuous function 

at each finite endpoint a,b (regular endpoints), then the Sturm-Liouville operator A is a 

self adjoint operator on H with boundary conditions 

cosag(a) - p(a)sinag' (a) ... 0, (3.1) 
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cos,Bg(b) - p(b )sin,Bg' (b) 0, (3.2) 

for certain a,,B e[0,1r). If one of the endpoints is singular, then the corresponding 

boundary condition is replaced either by a limit condition as 11 approaches the 

endpoint (limit circle case) or by no endpoint boundary condition (limit point case). If 

both endpoints are singular, one may consider two subproblems on (a,c) and (c,b), where 

the boundary condition at an arbitrary intermediate point ce(a,b) has the form 

g(c)cos')' - p(c)g' (c)sin-y 0 (3.3) 

for any 1 f[0,1r). One may then distinguish between the limit point case and limit 

circle case at each of the singular endpoints of the respective subintervals (a,c) and 

(c,b). For a thorough treatment of these boundary conditions we refer to [18, 94, 195]. 

The resolvent for any of these Sturm-Liouville operators is given by 

1 1 Jll Jb [(A->.)- f](ll) = w(x-y{!/>(II,A) ',O(v,>.)f(v)dv + ';'(11,>.) ,P(v,>.)f(v)dv}. 
a II 

Here 

W(>.) - P(ll){'l'' (11,>-)1/>(11,>-) - '1/J '(II,A)'JO(II,>.)} (3.4) 

and the functions <p and '1/J are nontrivial solutions of the eigenvalue equation 

(Ah)(11) = Ah(11 ), II d, (3.5) 

locally square integrable and satisfying the boundary condition at a and b, respectively. 

These functions are both analytic on the open upper and the open lower half plane, 

and hence the resolvent operator can be analytically continued to the open upper and 

lower half planes and an open subset of the real line. The (simple and real) 

eigenvalues of T- 1 A then appear as simple zeros of W( >. ). 
Next, let us explain the ramifications of decomposing the Sturm-Liouville 

operator into a problem on (a,c) and a problem on (c,b). Let X(ll) be a non-trivial 

solution of Eq. (3.5) on (a,b) that satisfies the boundary condition (3.3). The 

resolvents of the Sturm-Liouville operators on (a,c) and (c,b) have the respective forms 
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A 1 1 JIJ I c [(A[>.)- f](JJ) = W (:X) (X(JJ,X) <p(v,>.)f(v)dv+<p(JJ,>.) X(v,X)f(v)dv}, 
£ a IJ 

where 

and 

A 1 1 JIJ Jb [(Ar->.)- f](JJ) = W (:X) [1/J(JJ,X) X(v,>.)f(v)dv + X(JJ,X) 1/J(v,>.)f(v)dv}, 
r c 1J 

where 

Writing 

(3.6) 

and using the formulas 

(3.7a) 

(3.7b) 

obtained by substituting (3.6) into the formulas for the Wronskian expressions W £ and 

wr' we finally get 

-1 A -1 Wr(>.) Jc 
[(A-X) f -(A;->.) f](JJ) = -w ( X)W( :X) <p(JJ,X) <p(v,>.)f(v)dv, 

£ a 

where JJt(a,c) and ftL2(a,c), and 

where IJ€(c,b) and feL 2(c,b). Thus if>. belongs to the resolvent set of all three 

Sturm-Liouville operators and A denotes the direct sum of the Sturm-Liouville 

operators on L2(a,c) and L2(c,b) (viewed as an operator on L2(a,b)), we have, for 
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[(A-A) - 1f -(A-A) - 1 f](ll) 

W~(A)Wr(A) Jb 
= - W( )\) k(Jl,A) k(v,A)f(v)dv, 

a 

[W~( A) - 1'P(Jl, A), 

Wr(A)- 1!/I(Jl,A), 

Jlda,c), 

JlE(c,b). 

Hence, the difference of the resolvents is an operator of rank one. 

345 

(3.8) 

(3.9) 

If A is positive self adjoint with spectrum u(A)c{O}u[ e ,co) for some e >0, it 

is possible to choose the constant 7 in condition (3.3) in such a way that the resulting 

operator A is strictly positive self adjoint. Let us normalize · X(x,A) by requiring 

X(Jl,A)=p(c)sin7 and X' (Jl,A)=cos7. We then easily derive the identities 

W ~(A) = +p(c){p(c)sin7<p' (c,A)-cos7<p(c,A)}, 

Wr(A) = -p(c){p(c)sin7.P '(c,A)-cos7!/l(c,A)}, 

from (3.6) and (3. 7) and the derivative of (3.6) with respect to Jl (Cor A real and 

W(A) .. o), and observe that W ~(A)=Wr(A)=O implies W(A)=O. The latter then 

implies the existence of unique and distinct 7 ~=7 ~(A) and 7r=7r(A) in [0,11') 

satisfying W ~(A)=O for 7=7 ~(A) and Wr(A)=O for 7=7r(A). This in turn gives 

the existence of an interval of values of 7 where W ~(A)Wr(A)W(A)- 1 >0 and an 

interval of values of 7 where W ~(A)Wr(A)W(A)- 1 <0. On inspecting (3.8) it is evident 

that we may choose 7 in such a way that 

for an interval of values of 7. If A is positive with isolated (simple) zero eigenvalues, 

then W(O)=O, W ~(o) .. o and Wr(o) .. o, except for the unique 7=7o satisfying the 

equality <p' ( c,O)p(c)sin7 0 <p(c,O)cos7 0. Under the conditions of the usual 

oscillation theorems we have <p(Jl,o) .. o for Jld and therefore 7 0 E(0,1r). If we 
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exclude "~o from this interval, we find an interval of ')' (the same or a smaller one) 

where u(A)c(O,oo). Hence, under these conditions the constant ')' m condition (3.3) 
~ 

can be chosen so as to make A strictly positive. 

THEOREM 3.1. Let us consider a weight function w(ll) on (a,b) with finitely many sign 

changes at c1" .. ,cN (a<ci < ... <cN<b). Let A be positive with zero as an isolated 

eigenvalue, or strictly positive, and if Ker A,,.{o}, assume that the zero eigenfunction 

does not have zeros in (a,b). At the sign changes ci, ... ,cN let us add boundary 

conditions of the type 

~ ~ ~ 

and obtain strictly positive Sturm-Liouville operators A0,AI•;·•AN o~ t~e res~ective 

subintervals (a,ci),(ci,c2), ... ,(cN,b). Then the direct sum A A0eAI e ... eAN is 

strictly positive self adjoint on H. If the Sturm-Liouville operator A is strictly 

positive, then C = A -IT -A -IT is a bounded operator on HT of rank N. 

Proof: The proof follows easily by induction on N if the weight function is bounded. 

First we construct A.0 by using Eq. (3.8) for c=ci. On (c 1,b) we further split up the 

Sturm-Liouville operator obtained at c=c2 and apply (3.8) again. After N steps we 
~ ~ 1 ~ 1 

have constructed A0, ... ,AN and (A-A)- -(A->.)- is an operator of rank N for 

A~ u(A)Uu(A) u(A)Uu(A0)u ... Uu(AN). If the weight function w(ll) IS 

bounded, then C(>.) = {(A->.)- 1-(A->.)- 1}T (>.~u(A)Uu(A)) is bounded on HT' If 

the weight function w(ll) is unbounded, it must be unbounded near a,c 1, ... ,cN or b. Let 

cp(Jl) be a positive C00 -function on I with compact support within I\ {c1' ... ,cN}. For 

each of the functions kj(Jl,A), A~ u(A)Uu(A), constructed in (3.9) the function 

cp(~t)kj(Jl,A) is continuous and has compact support on which w(ll) is bounded; 

thus, 

Since (1-cp(Jl))kj(Jl,A) is continuous on (a,b) and satisfies the boundary conditions 

(or local square integrability), w(Jl)=O( l~t-cj I aj) (Jl-+cj) for some aj>-112, and 

D(A)cD(T), one may show that the function (1-cp(Jl))k.(~t,>.) is square integrable on I 

with weight I w(ll) I. Hence, C(>.) = {(A->.)- 1-(A-J>.)- 1}T· is a bounded operator 

on HT, and has rank N if A~ u(A)Uu(A). • 
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As a result of the above theorem, the operator T 1 =A - 1T is bounded on H and 

compact if A has a compact resolvent. Also, T 1 commutes with the projections Q± 

defined by 

lh(p)' 

0 ' 

±w(p)>O 

±w(p)<O. 

I~ we denote by HA=D(A~) the completion of D(A) with respect to (·,·)A= 

(A·, • ), then T 1 is self adjoint on HA, Q+ and Q_ are HA -orthogonal projections 

onto maximal T 1 -positive and negative T 1 -invariant subs paces and IT 1 I =A - 1 IT I 

IS the HA -positive absolute value of T 1. Thus, 

A 1 
(h,k)T = (IT 1 1 h,k)A = (A- IT I h,k)A = (h,k)T. 

1 
(3.10) 

Also, defining A1 =A - 1 A as an HA -positive operator, we have 

and, if Ker A={O}, 

(3.11) 

Hence, the Sturm-Liouville diffusion equation on HT"'Hs has precisely the same solutions 

as the modified problem 

T 1 1/J '(x) = -A1 1/J(x), O<x<oo, (3.12) 

tp +' (3.13) 

111/J(x)IIT = 0(1) or o(1) (x-+oo), (3.14) 

and the uniqueness properties of the latter problem can be described by Theorem 1.5. 

We have thus obtained the problem (3.12)-(3.14) of the same type and with the same 

solutions as the original one, but now the resolven ts of T-1 A and T1 1 A have a rank 
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N difference. As we shall see, it is exactly this rank condition which guarantees a 

further reduction to a matrix integral equation and factorization. 

4. The integral form of Sturm-Liouville diffusion problems and factorization 

In this section we shall reformulate the modified Sturm-Liouville problem 

(3.12)-(3.14) as an integral equation of convolution type, which for strictly positive 

Sturm-Liouville operators A will be solved by factorization. Throughout we assume A 

strictly positive, but at the end of this section we will indicate how this assumption 

may be relaxed in order to keep at least a part of the results. We shall need the 

following technical assumption: 

(4.1) 

A 1 -1 where I T 1 I =A- I T I and I A T I are the absolute values of the operators T 1 
and A - 1T with respect to the inner products ( •, •) A and ( •, •) A' respectively. In 

the appendix of [220] one may find sufficient conditions for (4.1) to be true. We shall 

exploit the estimates 

Ill T 1 1 a)( 1(x)IIH = 0( I xI a- 1) (x-+0), 
T 

IIIA- 1Tia-1exp{-xT- 1A}P+IIH = O(lxla-1) (x-+0), 
T 

where )( 1 (x) is the propagator function, defined by 

I +T1 1 exp{-xT1 1}Q+' 

-1 { -1} -T1 exp -xT1 Q_, 

O<x<co, 

-co<x<O. 

( 4.2a) 

(4.2b) 

LEMMA 4.1. Suppose that tp + EQ+[HT]. Then the vector function rp(x)= 

T- 1Aexp{-xT- 1A}E+~~'+ is the unique solution of the integral equation 

d Jco rp(x) + <IX 0 )( 1 (x-y)Crp(y)dy = )( 1 (x)rp +' O<x<co, (4.3) 
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satisfying J;erxll'P(x)IITdx<oo for some r>O. 

Proof: Using (4.1) and (4.2) one easily proves that for every E:S:x<oo 

(4.4) 

so that J ~){ 1 (x-y)C'P(y)dy IS an absolutely convergent Bochner integral for 

O<x<oo. We compute 

for O<x<oo, where we have used the identity Q+E+ =Q+. By differentiation and 

using 1/J '(x)=-'P(x), we get ( 4.3). 

Conversely, since J7erxii'P(x)IITdx<oo for some r>O, we may put 1/J(x) = 

J~'P(y)dy, integrate (4.3) and obtain 

oo T-1 
f/l(x) - J ){ 1 (x-y)C'P(y)dy = e-x 1 'P +' O<x<oo, 

0 

where the integral term is strongly differentiable for xE(O,oo). Let us write 

Ti f/l(x) = r T 1 e -(x-y)Tl 1 Q+ C'f'(y)dy - Joo T 1 e -(x-y)Tll Q_ C'f'(y)dy + 
0 X 

2 -xT- 1 
+ T 1 e 1 'P +' 

(4.5) 

Because of the estimate ( 4.4) and dominated convergence (for Bochner integrals; cf. 

[401)) we may differentiate this equation in the following manner: 

whence 
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-xT- 1 
-e 1 <p +' O<x<oo. 

On adding (4.5) and (4.6) we obtain 

T 1 !/> '(x) - C<p(x) + 1/>(x) = 0, O<x<oo. 

By virtue of 1/>'(x)=-<p(x) and T 1+C=A- 1T, this m turn implies (3.12). 

(4.5) we conclude 

which gives (3.13). • 

( 4.6) 

Using 

(4.7) 

Let C t denote the HT-adjoint of C, i.e., C t = (Q+ -Q_)C(Q+ -Q_). Let j 
t 

denote the natural imbedding of Ran C into HT, and 1r the HT-orthogonal projection 
t t 

of HT onto Ran C (as an operator rr:HT-+Ran C ). Then j and 1r are adjoints 

and Cjrr = C. These operators can be used to obtain a reduction of order similar to 

that in Section VII.4. Putting dx)=rr<p(x), we obtain 

O<x<oo, ( 4.8) 

where 

( 4.9) 

We then have J;erxlldx)lldx<oo for some r>O. Conversely, if dx) is a solution 

of Eq. (4.9) satisfying J;erxll dx)lldx<oo for some r>O and <p(x) is given by (4.8), 

we may premultiply ( 4.8) by 1r and subtract the resulting equation from ( 4.9), whence 

dx)=rr<p(x). Substituting the latter in (4.8) and employing (4.7) we get (4.3). 

Hence, Eq. (4.3) is equivalent to the system of equations (4.8) and (4.9), but the latter 

are formulated on the finite dimensional space Ran Ct. Next, let us transform (4.9) 

into a Riemann-Hilbert problem, which we shall then solve by factorization. Using (4.4) 

it is not difficult to establish that the vector J0rr)( 1 (x-y)Cjdy)dy is (strongly) 

differentiable for x f( -oo,O). Let us put 
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d Ioo ~ (x) = -rx 0 1r J1 1 (x-y)Cj ~ (y)dy, -oo< x< 0. 

Since dx)=7rcp(x)=7rT- 1Aexp{-xT- 1A}E+cp+ and (4.1) IS satisfied, we have 

J 'Qerx II~ (x) II dx<oo and therefore 

for some s>O. We may define the Laplace transforms 

A I±oo A ~±(A) = ± e xdx)dx, 
0 

(4.10a) 

(4.10b) 

(4.10c) 

where ReA =0. Using the formula 

Ioo A A 0 - A oo Ioo A 
e xf '(x)dx = [e xf(x)] + [e xf(x)] + - A e xf(x)dx, 

-oo x=-oo x=O -oo 

we obtain the Riemann-Hilbert problem 

[I-Ak(A)]~ +(A) + ~_(A) = w(A), ReA=O. ( 4.11) 

This problem must be solved using (4.10) and a factorization of the dispersion function 

LEMMA 4.2. For Ker A={O} the dispersion function 

( 4.12) 

allows a factorization of the form 

( 4.13) 

where the factors satisfy the following conditions: 
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(i} H .i'(z), H .i'(z)- 1, Hr(z) and Hr(z)- 1 are continuous on the closed right half 

plane (except at infinity) and analytic on the open right half plane. 

(ii) H .1(0+) and Hr(o+) are the identity operator, where the limits at z=O are 

taken from the closed right half plane. 

(iii) IIH.i'(z)ll, IIH.i'(z)- 1 11, IIHr(z)ll and IIHr(z)- 1 11 are all of order o(z) as 

z-+oo, Rez~O. 

If the dispersion function has two factorizations of the type (4.13) with the factors 

satisfying the properties (i)-(iii), then the factorizations are related by the formulas 

H~ 2 )(z) = (I+zD)H~ 1 )(z), 

where D2=0 and for i=1,2 the expressions IIH)i )(z)DII, IIH)i )(z)- 1DII, IIH( i )(z)DII 

and IIH~ i ) (z)- 1DII vanish as z-+oo from the closed right half plane. r 

Proof: The operator function ( 4.12) can be factorized using Theorem VII 3.1, where 
X -1 . -IT A=T 1, D=Cj, Cl:= -1r, lll=l and A =A-IIJill CI:=T 1 +CJ1r =A . Then E t =EQ+ 

is a bounded projection on HT whose range P +[Hg] is invariant under A x=A- T and 

whose kernel Q_[HT] is invariant under A=T 1. As a result we find the factorization 

(4.13), where 

( 4.14) 

( 4.15) 

( 4.16) 

( 4.17) 

It is easily seen that the factors (4.14)-(4.17) have property (i). Properties (ii) 

and (iii) follow from the Spectra.! Theorem. Indeed, if S is a. strictly positive self 

adjoint operator, then for every vector h we have 
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I im II~(~-S)- 1 hll 0. 
~-+O,Re~::o;o 

Using similar reasoning one may show that, for all wf(O,'!:!rr), IIA(z)ll o(z) and 

IIA(z)- 1 11 = o(z) as z->oo with l'l:!rr-argzl::o;w. 

Finally, if the dispersion function has two factorizations of the type ( 4.13) 

(denoted by superscripts (1) and {2)), put 

It then is evident that F{z) and F(z)- 1 are entire functions satisfying IIF(z)ll=o(z2) 

and IIF(z)- 1 11 =o(z 2) as Z->oo. Using Liouville's theorem and property (ii) one obtains 

F(z)=I+zD and F(z)- 1 =1-zD, where D2 =0. • 

In the case when the weight w(J.I) has more than one sign change, the 

factorization (4.13) may be nonunique. However, this does not affect the form of the 

(unique) albedo operator. 

Using a factorization of the type {4.13) we reduce the algebraic equation (4.11) 

to the Riemann-Hilbert problem 

H,.(->-.)- 1 ~+(>-.) + H (>-.)~ (>-.) = H (>-.)w(>-.), Re>-.=0. .., r - r {4.18) 

LEMMA 4.3. The Riemimn-Hilbert problem (4.18) has precisely one solution ~ of the 

following type: 

(i) ~ ±()..) IS analytic in the open left/right half plane and continuous on the 

closed left I right half plane, 

(ii) 

(iii) 

I i m ).. ~ +(>-.) exists as ).. approaches infinity from the closed left half 
)..->oo 
plane, 

I im )..c~ (>-.) exists for all 0<c<1, as ).. approaches infinity from the 

~~d righ ~ half plane. 

This solution of the Riemann-Hilbert problem (4.18) leads to a unique solution of the 

boundary value problem (3.12)-(3.14). 

Proof: Put h = I im ).. ~ (>-.) as ).. approaches infinity from the closed left/right 
± A->oo ± 
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half plane. Then the conditions on H .I and Hr imply 

I im H (X)~ (X) = 0. 
X-+oo, Re X~O r -

From ( 4.10c) we also have 

A 

lim Xw(X) = -<p+' 
X-+oo,ReX=O 

I im H (X)~(X) = 0. 
X-+oo, Re X=O r 

Given a Holder continuous function h(X) on the extended imaginary line satisfying 

fi(±ioo)=O, we can find unique functions fi±(X) that are analytic on the open 

left/right half plane, are continuous on the closed left/right half plane and satisfy 

fi±(ioo)=O (when approached from the appropriate half plane) such that h(X) = 

h+(X) + h_(X) for ReX=O (cf. [276]). We therefore obtain 

As a consequence of Lemma 4.3, these formulas do not depend on the particular choice 

of H .I and Hr. 

Finally, the solution of problem ( 4.11) is given by 

ReX=O. 

To obtain this we have employed the expression 

From this and the estimate IIHr(z) II-O(z 1-a) (z-+oo, Rez~O), the properties (i), (ii) and 

(iii) are clear. • 
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THEOREM 4.4. The albedo operator is given by 

(4.19) 

where cp + f Q+[HT] and u 1 ( •) is the resolution of the identity of T- 1 A. 

Proof: Choose cp + fQ+[HT] and some factorization of the type ( 4.13). Then 

(4.20) 

The right hand side of (4.18), with A=IJ, can be written as 

= H (I')Joo-v_1l"U (dv)cp =Joe v!Hr(v)- Hr(v)-Hr(l')l u1(dv)cp+' 
r 0 v-IJ 1 + O V-JI V-JI 

whence 

( 4.21) 

The identity (4.19) now follows immediately from (4.20) and (4.21). • 

When specialized to the situation that A -IT is compact on HA and w(IJ) has 

one sign change (i.e., w(IJ)<O on (a,c) and w(I')>O on (c,b)), Theorem 4.4 is particularly 

straightforward. Let us denote by {>..n}n and {cpn}n th~ eigenvalues and corresponding 

eigenfunctions of T- 1A, where o .. nfZ and (Acpn,cpm)=onm· Similarly, let us denote by 
-1~ 

{~ } and {l/1 } the eigenvalues and corresponding eigenfunctions of T A, where 
n n ~ n n 

o .. nfZ and (A!Jin,!Jim)=onm' and we continue the convention 



356 BOUNDARY VALUE PROBLEMS IN ABSTRACT KINETIC THEORY 

We then have 

(·'· ·'· ) I 1-1 8 '~'n•'~'m T = ~n nm' 

and therefore {I ~ n I ~,Pn}n is an orthonormal basis in HT. Similarly, 

{I Xn I ~<pn}n is an orthonormal basis in P(H8). If we now define k(JJ)=k(JJ,O) 

by (3.9) and put kn =(k, I ~ n I ~,Pn)T, kn =(k, I Xn I ~<pn)8 , o .. n E l, then the 

regularity assumptions k E IT 1 I a(HT) and Pk E I S 1 I a(H8) are satisfied if and only if, 

for some 0<a<1, 

E I ~ I 2a I k I 2 < oo, 
O¢nEZ n n 

( 4.22a) 

E I X I 2a I k I 2 < oo. 
O¢nEl n n 

(4.22b) 

In the appendix of (220) it has been shown that these conditions are satisfied for 

w(p)=sgn(JJ) I pi 7 , which will cover applications to electron scattering and the 

Fokker-Planck equation, among others. 

THEOREM 4.5. Let A be strictly positive, let T:HA -+H_A be compact with w(p) 

having one sign change at cE(a,b), and suppose (4.22} hold true. Then the albedo 

operator is given by the expression 

for J1 E(c,b), and 

00 00 ~ ~ 
-Z E E -m n k k ; r I ,. I~-'· ( ) ~ - ~ -m ngmgn <p +n > -m '~" -m I' 

n=1 m=1 -m n 

for JIE(a,c), where Z = W;(O)Wr{O)/W(O)IIklli, g! "" H;(-~ -n>• g~ Hr(~ n) 

and <p+n (<p+,l~ni~,Pn)T, and where H;(z) and Hr(z) are the unique 

functions appearing in the factorization 
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H (z)- 1H..(-z)- 1 = 1 + z E {~ (~ -z)- 1 1k 1 2 -~ (~ -z)- 1 1k 12}. r ,. n n n -n -n -n 
n=1 

These factors have the following properties: 

(i) H_,(z), H_,(z)- 1, Hr(z) and Hr(z)- 1 are continuous on the closed right half 

plane (except at infinity) and analytic on the open right half plane. 

(ii) H_,(o+) = Hr(o+) = 1. 

(iii) IH_,(z)l, IH_,(z)- 1 1, IHr(z)l and IHr(z)- 1 1 are all of order o(z) as 

z-+oo, Rez~O. 

Proof: The uniqueness of the factorization ( 4.23) is a direct consequence of Lemma 4.3 

if there is only one sign change. Let k(J.t) be the function in (3.9) (with >. =0) and 

put W=W _,(O)Wr(O)/W(O). Then j is the imbedding of the one dimensional space 

spanned by sgn(J.t)k(J.t) into L (a,b), while 1r IS the projection 7rf 

llkll.f 2 J~J.tf(J.t)k(J.t)dJ.t with llklli = hlw(J.t)k(J.t)2 1dJ.t. We compute 

A(z) = 1 + zW E {~ (~ -z)- 1 1k 1 2 -~ (~ -z)-1 1k 12}. 
n= 1 n n n -n -n -n 

We now obtain 

which reduces to the above expression for E +" • 

Let us consider the special case when 'P +(J.t)= I ~pI ~1/>p(J.t) for some n dN. 

Then 'P +n = o np' as a result of the orthonormality of the functions 

{ls"ni~,Pn}O,.nt:Z in HT. We obtain, for J.tt(c,b), 

Clearly, we must have 

00 

c2 - E I s" -m 
P m=1 ~ -~ -m p 
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and therefore ~ k grC = 0(1) {i'-+oo). p p p p 
Next, let us consider the special case when I=( -d,d) is a (finite or infinite) 

interval symmetric about the origin and the weight and· Sturm-Liouville operator satisfy 

the conditions w( -Jt) = w(Jt) and (Af)(Jt) = (A sgn(Jt)f)( -Jt). The eigenvalues and 

eigenfunctions will then satisfy both ~ -n =- ~ n and 1/> -n(Jl) =1/>n(- Jl ), whence 

k(-Jt)=-k(Jt) and gi' =gr =g . In this case we obtain the simplified expressions n n n 

A(z) 2 00 2 2 -1 1 + 2z W r; ~ (~ -z ) 
n=1 n n 

and 

for Jl f ( -d,O). Here we have the summability condition (where g >0) 
n 

Finally, let us consider the case when A is pos1t1ve with isolated (simple) zero 

eigenvalue. We denote by S 1 the bounded inverse of the restriction of T- 1 A to P[HgJ, 

and define C by C = (S 1-A - 1T)P, which is a bounded operator on HT of rank at 

most N. We must replace the regularity assumption (4.1) by the conditions 

By construction, the function <p(x) T- 1 Aexp{-xT- 1 A}E+<p +' O<x<oo, has its 

v.alues in P[HT]eKer A. We may then repeat the proof of Lemma 4.1 and the 

derivation of (4.8) and ( 4.9), with the adaptation that 1/>(x)-1/>(oo) J~<p(y)dy 
(and similarly for dx)). We then obtain the Riemann-Hilbert problem ( 4.11) as a 

result. The existence proof for the factorization of the dispersion function, Lemma 4.2, 

will fail, however, in this case. It is not clear whether for this case the albedo 

operator can be written in the form (4.19). 
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5. The Fokker-Planck equation 

As we have noted m Section 1, the Fokker-Planck equation first arose in the 

study of Brownian motion. Its applicability, however, goes far beyond this problem, and 

includes electron diffusion m an external field, chemical reaction models, 

Ornstein-Uhlenbeck processes, lasers and superionic conductors. The reader interested 

in the solution methods for, and the physical applications of, the Fokker-Planck 

equation is referred to the monographs of Risken [320] and van Kampen [372], and the 

articles of Chandrasekhar [88] and Chen Wang and Uhlenbeck [93]. Recently, there 

appears to be renewed interest in computing certain aspects of the solution of the 

stationary Fokker-Planck equation related to the boundary layer solutions, density 

profiles near the wall, validity of Fick's law, etc. (cf. [59, 60, 187, 262, 351]) 

Let us recall the Fokker-Planck equation 

where x €(0, r) is a position coordinate and v €( -oo,oo) is the velocity variable. In 

order to adopt the framework of the previous sections, we consider the auxiliary 

diffusion problem 

aw D 2 vrx(x,v) = av2 + o.~-1,4v ),P(x,v), 

which reduces to ( 5.1) using the relationship 

2 
,P(x,v) = e -JAv ~(x,v). 

O<x<r, vdR, (5.2) 

(5.3) 

We introduce the Hilbert space H=L2(R,dv) and the multiplication operator 

(Th)(v) = vh(v), 

as well as the positive self adjoint operator 

(5.4) 

with domain D(A)={f fH : pf' absolutely continuous, (pf ')' fH}. (The differential 
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operator A is limit-point at both singular endpoints -co and +co; as a result one does 

not have to impose additional boundary conditions on A.) It is easily seen that A has 

discrete spectrum with eigenvalues n=0,1 ,2,... and eigenfunctions exp( -v 2 I 4)Hn(v IJ'i), 
where 

1s the Hermite polynomial of degree n (cf. [1}; 22.6.21 & 22.5.18). Thus A has a 

nonzero kernel spanned by the vector cp0(v)=exp( -!4v2) and, in the usual inner product 

of H, (Tcp0,cp0)=0. 

Now one may see that this problem satisfies the assumptions of Theorem 1.5. 

As Ker A = span{cp0} with (Tcp0,cp0)=0, we have immediately the following theorem 

(cf. [35}). 

- 2 THEOREM 5.1. For every cp+tL2(1R+,Ivlexp{-\.1!v }dv) there exists a unique solution 

of Eq. (5.1) satisfying ~(x, •) t L2(1R, I vI exp{ -!.1!v2}dv) with boundary conditions 

~(O,v) = :P+(v), O<v<co, (5.5a) 

Jco \.1!V2 - 2 
lim sup lvle- 11/l(x,v)l dv <co. 

X---+cx> -oo 
(5.5b) 

Using results from Section 111.4, it is also possible to analyze the boundary value 

problem (5.1) with reflective boundary conditions 

~(O,v) = :P +(v) + a~(O,-v) + 

Jco 2 - 2 lim sup I vI exp{-\.1!v } 11/l(x,v) I dv 
X->oo -co 

where the scattering function satisfies 

E(v-+v) ~ 0, v<O<v, 

Jco E(v-+v)dv 
0 

1, v<o, 

O<v<co, (5.6a) 

< co, (5.6b) 

(5.7) 

(5.8) 
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As a result of the reciprocity condition (5.9), the surface reflection operator 

2 o s (Rh,h)T s (a+,B)IIhiiT, 

361 

(5.9) 

where we have used (5. 7) and (5.8). The details of this estimate can be found in 

Section VII.5. Hence, if a,,8';20 and a+.8<1 (medium with absorbing wall), Eq. (5.1) 

with boundary conditions (5.6a) and (5.6b) is uniquely solvable. For a,,8";?.0 and 

a+.8=1 there always exists a solution, which may be nonunique (as it is, for 

instance, for a=1 and ,8=0). We thus recover results obta.,i.ned by Beals and 

Protopopescu [35, 36]. (A redundant condition needed for the existence of solutions 

was removed in [369].) 

Let us compute the albedo operator following the method of Section 2. We note 

that the unique vector 1{.1 0 satisfying A!{.I0 -;=T<p0 and (T!{.I0 ,!{.1 0)=0 is given by !{.10(v) 

= v exp{ -J,4v2}. Using the normalization properties of Hermite polynomials, one sees 

that the functions 

for n EN, satisfy the normalization condition 

with >. 0 =0 and >. ±n 

given by the equations 

and 

1, 

±n~. The albedo operator E related to Eq. (5.1) is then 

O<v<oo, 

-oo<v<O, 
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0 
(27r)~(v) + I exp{-~v2}K_(v,v)g(v)dv 

-co 

where 

6. Electron seattering 

As a second application we consider the equation 

a,p a 2 a,p 
~'rx(x,p) = Fii((1-p )Fii), (6.1) 

where xt(O,r) denotes position and p t[-1,1] the direction cosme of propagation. 

The equation was derived by Bothe [53] to describe electron scattering. A formal 

solution, using eigenfunction expansion, was given by Bethe et al. [42]. Using a 

variational method, without recourse to the functional analytic approach presented 

herein, Beals [31] proved the existence of a unique solution of Eq. (6.1) with 

appropriate boundary conditions for finite T and justified its expansion m 

eigenfunctions. For T =co this result is also due to Beals [34]. Different proofs were 

given by Kaper et al. [209] and Degond and Mas-Gallic [99]. The result can be 

formulated in the following fashion. 

THEOREM 6.1. For every <p + E L2([0,1], lp I dp) there exists a unique solution 

1/J(x, •) tL2([-1,1], lp I dp) of Eq. (6.1), which satisfies the boundary conditions 

1/J(O,J.I) = 'P +(p), 0:5:p~a. (6.2a) 

1/J(x,p) = 0(1) (p-->±1), (6.2b) 

lim sup f lp I • 11/>(x,J.I) 12d1.1 < co. (6.2c) 
X -->co - 1 

Proof: The differential operator 
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1s limit-circle at both endpoints -1 and +1, and thus its domain is taken to consist of 

functions which remain bounded as Jl-+± 1, along with ·the usual smoothness requirements 

(see [109], Ch. XIII; also [115]). It is then clear that A is positive selfadjoint, and that 

it has a discrete spectrum consisting of the numbers n(n+1), n=0,1,2, ... , with the 

Legendre polynomials P n(Jl) as the corresponding eigenfunctions. Also, Ker A = 

span{<p0} with 'Po(~t)=l. If we define (Th)(Jt) = ~th(Jt) in order to apply Theorem 

1.5, we have (T<p0,<p0)=0, and the unique vector '1/! 0 satisfying A'I/!0 =T<p0 and 

(T'I/! 0 ,'1/! 0)=0 1s given by 'I/Jo(~t)=Y2Jl. 

fulfilled and the result follows. • 

The assumptions of Theorem 1.5 are clearly 

The albedo operator E may be written explicitly in terms of a set of 

eigenfunctions, using either the method of Section 2 or that of Section 4. For the 

method of Section 2 we have to solve the eigenvalue problem 

For the method of Section 4 we have to solve the eigenvalue problem 

(or the related problem on (-1,0) with boundary condition as Jt-+-1 and <; n replaced 

by - <; n). In both cases there is a discrete spectrum of simple eigenvalues. We have 

to satisfy the normalization conditions 

n fIN, 
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with ... <~_2<~_1<0<~1<~2< ... Since the differential equation has regular 

singular points at J.l=±1 with equal and vanishing exponents, the eigenfunctions 

'Pn(J.I) and ,Pn(J.I) can be analytically continued to entire functions that do not 

vanish at J.l=±l. The point at infinity is an irregular singular point. 

It is not known if the eigenvalues and eigenfunctions can be obtained in terms 

of known special functions. The best results in this direction are due to Veling [374], 

who derived the following asymptotic formula: 

4 2 2 -2 >.n = {r(~) /96?r }{12?r(n+Y2) - 5 + O(n )} 

This formula provides a reasonable (within 2 decimal places for n=3 and within 4 

decimal places for n=33) approximation of the actual eigenvalues. 



Chapter XI 

TIME DEPENDENT KINETIC EQUATIONS: METHOD OF CHARACTERISTICS 

1. Introduction 

Time dependent linear kinetic equations arise in a number of diverse applications 

in biology, chemistry and physics, as well as in various other modeling problems. Due to 

a tradition deeply rooted in classical mathematical physics and reinforced by the 

successes of quantum mechanics, such time dependent problems were initially attacked 

using the eigenfunction method. Yet, this method met with a relative lack of success, 

due to the nonnormal nature of the operators occurring in these kinetic problems, and 

it was supplanted by the semigroup approach, which for decades became the dominant 

method of time dependent kinetic theory. Despite its virtues, the semigroup approach is 

somewhat indirect, and is not naturally suited for treating linear evolution problems 

with time dependent operators, phase spaces and boundary conditions. This chapter 

will be devoted to an approach to these problems based on the method of 

characteristics. 

The deterministic nature of the phenomena described by this type of equation, 

like most time dependent evolution equations in classical physics, leads naturally to the 

concept of a well posed initial value problem. The mathematical principle that guides 

the proper formulation of such problems is that there should be one and only one 

solution for every initial state and that the solution should depend continuously on the 

initial state. 

For any fixed value of the variable t, certain functions of the other variables, 

the so-called phase space variables, describe an instantaneous state of the physical 

system. These functions will be denoted by u, which .is regarded as a vector in a 

function space X. As time elapses, the vector u=u(t) moves through X describing a 

trajectory which corresponds to the evolution of the system. The linearity of the 

problem, the completeness of its mathematical description and the physically relevant 

normalization of its solutions, all of which derive from basic physical requirements, 

select certain Banach spaces as the natural framework for the mathematical description 
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of the evolution of the system. 

Time dependent linear kinetic equations describe vanous physical, chemical or 

biological phenomena, such as the evolution of neutral or charged fluids under conditions 

of rarefaction, interaction and closeness to equilibrium, the evolution of planetary or 

stellar atmospheres under conditions of single scattering and polarizability, the diffusion 

of reactants in solutions, and the growth of cell populations. An extensive literature is 

available, presenting various realizations of these equations for different geometries and 

boundary conditions. These realizations include the neutron transport equation, 

equations of radiative transfer, Bhatnagar-Gross-Krook (BGK) related equations in 

rarefied gas dynamics, the linearized Boltzmann equation with various intermolecular 

potentials, the Fokker-Planck, Landau-Balescu and linearized Vlasov equations, and 

equations modeling growing cell populations, reaction diffusion processes, traffic flow, 

etc. 

We consider here a general time dependent kinetic problem for a distribution 

function u depending on position x, velocity €, and time t in the form 

&T(x,€,t) + (Au)(x,€,t) = f(x,€,t). (1.1) 

The independent variables (x,€ ,t) take values in a set ~. which is called the phase 

space of the problem. Sometimes this is referred to as the Boltzmann or reduced phase 

space, as opposed to the Gibbs phase space used when considering the Liouville equation. 

A typical (but not the most general) situation occurs when ~ can be written as the 

Cartesian product of the space, velocity and time domains. The term Du/Dt gives the 

total time derivative along the trajectory, and is defined by 

Du au au au au 
'[)t = at + € ·ax + a·ae - at + Xu - Yu, (1.2) 

where in the definition of the operators involved the separate terms in (1.2) may not 

make sense independently. The acceleration a=a(x,€ ,t) describing the total force acting 

on particles in the system is composed of two contributions. The first contribution 

stems from an exterior force field satisfying the laws of Newtonian dynamics. The 

second one 1s of intermolecular origin and would in principle introduce nonlinearities. 

Usually, this contribution 1s either neglected or approximated via so-called 

self -consistent or stochastic schemes, and modeled accordingly. Thus, the force will be 

considered here as external and given, in such a way that the problem will remain 

linear. For technical reasons we also consider it to be local in space, velocity and time. 
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This locality condition excludes from our description nonMarkovian transport processes 

and many realistic plasma problems. 

Even for a::O, the first order partial differential operator of hyperbolic type, 

E • -/x, is rather complicated, since, in general, the two variables X and E decouple 

only for one dimensional geometries (in position and velocity). Otherwise, the vector 

E ¢0 defines a characteristic direction at each position X, and E • * IS 

interpreted as the directional derivative of U with respect to X in the direction of E. 

An extra complication anses from the singular nature of the operator E • -Jx; the 

characteristic direction is not defined for E =0. The collision term Au describes the 

change of u due to scattering, absorption, fission and similar events. This term is not 

essential for the "transport" nature of the equation (1.1), which is induced by the 

operator Y. Traditionally, transport theory has been the study of processes 

characterized by mean free paths which are much longer than the distance over which a 

collision takes place (dilute systems), such as neutron transport, radiative transfer, and 

rarefied gas dynamics. It is in such systems that the transport nature of the equation 

dominates the collision and single scattering processes. 

In addition to the evolution equation, supplementary conditions must be specified 

on the boundary of the phase space. This amounts to specifying initial and boundary 

conditions which account for the initial state of the system and the "incoming fluxes". 

Thus, in a possibly time dependent region !\ and velocity domain V t one seeks a 

solution of the initial- boundary value problem 

g.r(x,E ,t) + (Au)(x,E ,t) = f(x,E ,t), ( 1.3a) 

( 1.3 b), 

where X f 0 0 and E f V O' and 

u_(x,E,t) = (Ku+)(x,E,t) + g(x,E,t), (1.3c) 

where (x,E)ED_ and O<t<T. Here the initial distribution u0, the internal source f, 

and the incident flux g are given, D _ (resp. D +) is the (possibly time dependent) part 

of the phase space boundary corresponding to the incoming (resp. outgoing) "fluxes", u± 

denotes the restriction of u to D ± and K is an operator describing boundary processes 



368 BOUNDARY VALUE PROBLEMS IN ABSTRACT KINETIC THEORY 

such as absorption, partial and/or diffuse reflection, etc. In general, the operators A 

and K depend on time. We shall assume them to be local in time. 

In this chapter we shall provide a quite general treatment of the basic questions 

of existence, uniqueness, dissipativity and positivity for the abstract time dependent 

kinetic problem (1.3), without special assumptions on the geometry, the boundary 

conditions, or the exact form of the operators. By direct analysis it will be shown 

that the problem (1.3) is well posed in the space of Lp -functions, 1~p< -, and in 

the space of bounded measures on phase space, under general and rather mild 

assumptions. 

Historically, the L2-setting was chosen for mathematical convenience, although 

the interpretation of u as a one particle distribution function or an intensity makes the 

L1-setting physically more relevant. As observed by Vidav [375], the argument of 

physical relevance applies with perhaps even more force to the space of bounded 

measures. In particular, this space allows one to consider pointlike sources and 

distributions and unidirectional beams of particles and radiation. Yet, Vidav found the 

space of measures to be inconvenient for technical reasons, and worked in the 

mathematically more convenient Lp -setting. Later, Suhadolc and Vidav [346] did include 

measures in their analysis, using the semigroup approach, but they encountered some 

technical complications not appearing when using the L -setting. For example, the . p 
domain of the generator is not dense in the space of bounded measures. It will turn 

out that the trajectory approach is well suited for spaces of bounded measures (see 

Section 6). 

Most of the existence and uniqueness results for time dependent linear kinetic 

equations were obtained by semigroup or spectral methods, well suited when the 

acceleration a, the operators A and K and the domains 0 and V are independent of 

time. Time dependent operators and domains were considered only occasionally, limited 

to particular situations and dealt with by pe.rturbation methods within the semigroup 

framework (cf. Belleni-Morante and Farano [40], Palczewski [297] and Wenzel [389]). 

On the other hand, the trajectory method on vector fields was traditionally applied to 

Liouville evolutions in the Gibbs phase space of the system (cf. Schnute and Shinbrot 

[326] and Marchioro et al. [256]), but almost neglected for evolutions in the Boltzmann 

phase space. We note, however, Reed [316, 317], who applied Kato's "evolution equation 

method" (cf. [215]) to a neutron transport problem. Some years later, Bardos [23] 

undertook a rather systematic study of Boltzmann-like kinetic equations with 

acceleration term, using methods from the theory of first order hyperbolic equations. 

Recently, Babovsky [20], Asano [17] and Ukai [353] used the trajectory method for 
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different concrete situations connected with the nonlinear Boltzmann equation. A 

unified formulation m a general abstract setting has been given by Beals and 

Protopopescu [37], which we will follow closely. 

2. The functional formulation 

Let ~ be an open subset of IRn X IRn X (O,T) with boundary a~. Let y be 

a real vector field on ~ of the form 

a a a a 
y = T 'Of= at+ e 'ax+ a(x,e,t)•{'jf, (2.1) 

where <; =(t,x,e) 1s a vector in IR 2n+l and a 1s assumed to be Lipschitz continuous on 

the closure I; of ~ (in IR 2n+l). We shall write X e ·h + a(x,e,t)·h· 

Let p be the Borel measure on ~ given by 

dp(x,e ,t) \ 
dx dp(e) dt, 

dx de dt, 

a - 0, 
(2.2) 

a ;E 0, 

where p(e) is a positive Borel measure on IRn such that all bounded Lebesgue 

measurable sets have finite p -measure. The difference between the two definitions in 

(2.2) stems from the fact that for a=O the vector field acts only on the variables t 

and x, while e remams an independent variable. This situation creates a certain 

freedom in choosing the measure dp. Throughout we shall impose the following two 

conditions on Y: 

(i) 

(ii) 

Y is divergence free: 

Each integral 

region of ~. 

curve 

n 
2.: 

j=l 

of the vector field Y - a X + at remams m a bounded 

We do not require ~ to be convex. Simple, and typical, examples of ~ have the 

form 

~ 0 X v X (O,T),(2.3) 
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where 0 is open in IRn and V is a finite union of balls or open spherical shells in 

IRn. The divergence free condition (i) on the vector field Y is satisfied for most of 

the commonly considered force fields (for example, the Lorentz force a(x,€ ,t) = E(x,t) 

+ € xB(x,t)). Such an assumption is related to Liouville's theorem in statistical 

mechanics, which expresses the conservation of the measure Jl under the dynamical 

flow in the absence of collisions. Certain results for non-divergence free fields can be 

found in [23]. 

The second condition on the vector field, which leads to the unique solvability 

of the system of differential equations 

dx 
as ¥s = a(x,€,t), dt 

as 

* * * 

1, (2.4) 

with initial condition (x(s ), €(s ), t(s )) f ~ and (x(s), €(s), t(s)) extended over the 

maximal s-interval for which the curve lies in ~ (an interval of length at most T), 

implies that no trajectory reaches infinity in finite time. Obviously, this condition is 

trivially satisfied if ~ is bounded. It 1s satisfied also if the vector-valued 

the bound la(x,€,t)l ~C(l+lxl+l€1). Indeed, acceleration a(x,€ ,t) satisfies 

let f(x,€,t)=l+ I X 12+ I e 12. On an integral curve, this bound and the Schwarz 

inequality imply 

Gronwall's inequality then yields I f(s) I ~ I f(O) I exp(C1 s), whence 

Therefore f remains bounded for bounded time on any integral curve. 

Under the above assumptions, each integral curve of Y defined on a maximally 

extended interval (s0 , s1) will have a limit at s0 and a limit at s1, each lying in a~. 

Referring to these as the left and right endpoints, respectively, we define the Borel 

sets D± c a~, where D- (resp. D+) is the set of all left (resp. right) endpoints 

of integral curves of Y. (In the next section we shall prove that the sets D± are 

indeed Borel sets). In general, these sets are not disjoint and do not exhaust a~. 

However, if a~ is piecewise c1, both D+ n D- and a~ \(D+ u D-) are negligible, in 

the sense that the union of all associated integral curves in ~ has Jt-measure zero 



XI. TIME DEPENDENT EQUATIONS: CHARACTERISTICS 371 

(see Section 3 ). 

We will show in Section 3 that there are umque positive Borel measures v ± 

on D± such that the Green's identity 

J YvdJt 

I; 

IS valid for every v in a space <I> of test functions. To see what this means in a 

representative example, suppose I; has the form (2.3) with V=IRn and that Y has the 

form (2.1). Suppose n has a piecewise c 1 boundary an. At a point X of a c 1 

section, let n(x) denote the unit outer normal and set 

c± {(x,e) tan x v: ±e·n(x) > o}, 

Dt = {(x,e,t) : (x,e) € n x V}. 

Then, writing A "' B if v ±(AUB \AnB) 0, one has 

n- .. [C _ x (o,T)] u n0, 

Moreover, if du denotes the surface measure on an, then 

[ 
le·n(x) ldu(x)dp(e)dt 

dxdp(el 

where dp(e) is to be replaced by de if ajl!iQ. 

on c± X (O,T) 

on D0 u DT, 

(2.5a) 

(2.5b) 

In the general case, when I; does not have the form (2.3), we introduce 

decompositions of n± into spatial and temporal pieces as in (2.5): 

D± = {(x,e,t)tD± : O<t<T}, (2.6a) 

(2.6b) 



372 BOUNDARY VALUE PROBLEMS IN ABSTRACT KINETIC THEORY 

whence D- = D U D0 and D+ = D + U DT' If u belongs to the (real) function space 

Lp(E,dtt), l~p<oo, it may be considered in the usual way as a distribution of the 

form 

<u,v> - I uvdjt, HC'Q(E), 

E 

where C'Q(E) is the space of all infinitely differentiable functions on E that vanish 

on the boundary. We shall replace this space of test functions by larger ones cf>0 

and cf> (to be specified in the next section) satisfying C'Q(E) c cf> 0 c cf>. The 

distributional derivative is defined in the usual way by the formula 

<Yu,v> -<u,Yv>, vfcf>0. 

If u and Yu belong to L (E, dtt), we shall define a trace for u as a pair of functions p 
u± in L 1 (D±, dv±) such that the extended Green's identity is valid: p, oc 

<Yu,v> + <u,Yv> = I u+vdv+ - I u-vdv-

D+ D 

for all vfcf>. The precise definition of the space L I (D±,dv±) will be given m p, oc 
the next section. Corresponding to the decomposition (2.6) of D±, we decompose the 

measures and the traces as follows: 

+ v 10 , 
T 

Then we have 
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Let us now consider a nonnegative Lebesgue measurable function h on ~~ which 

1s Lebesgue integrable on all bounded Lebesgue measurable subsets of ~~ and two 

bounded linear operators J:L (~,dJL )--+L (~,dJL) p p and K:L (D+,dv+)--+L (D ,dv ), p p - -
I:s;p<oo, with the following properties: 

(i) For every bounded continuous function r of t alone we have J(ru)=rJu and 

K(ru)=rKu. 

(ii) TU =Ju and KU =Ku, where the bar denotes complex conjugation. 

The boundedness condition on J excludes from our analysis such transport processes as 

electron scattering in metals or Fokker-Planck type diffusion for which the collision 

operator A is a second order differential operator of Sturm-Liouville type. Assumption 

(i) above excludes processes which are nonMarkovian in time (nonlocality m space is 

allowed), while assumption (ii) will allow us to consider these problems in both real and 

complex Banach spaces. 

We shall call -X the free streaming operator, -(X+h) = S the streaming 

operator and B = S + J the (full) transport operator. The operator -A = -h + J 

will be called the collision operator. 

With the previous notation, definitions and assumptions we shall study the 

following abstract time de-pendent linear kinetic problem: 

Yu + hu - Ju f on~~ (2.7a) 

(2.7b) 

u = Ku+ + g_ on D . (2.7c) 

The initial condition (2.7b) and the boundary condition (2.7c) can be written with 

K=(O,K):L (D+,dv+)--+L (D-,dv-) as the single equation p p 

We shall seek the solutions of this initial- boundary value problem in a linear space Ep. 

For all I:s;p<oo we shall denote by E the space of functions utL (~,dJL) such p p 
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that (Y+h)u belongs to Lp(E,dJJ) and the traces u± of u belong to Lp(D±,dv±). In 

the next section we shall introduce all our function spaces more rigorously and prove 

the existence of a trace for every solution of the probfem (2. 7). Sections 4 and 5 are 

devoted to the wellposedness and positivity properties of this problem, while in Section 

6 this problem is analyzed on the space of bounded measures on E. 

3. Vector fields, function spaces, and traces 

In this section we shall consider a general setting which includes the vector 

field of interest. We shall assume E is a 0 00 manifold with piecewise 0 1 boundary, 

embedded in IRd. (It will be evident that the regularity assumption on the boundary 

8E may be relaxed so long as endpoints of integral curves of Y which are both left 

and right endpoints may be considered as distinct boundary points.) E is assumed to 

be equipped with a positive Borel measure JJ for which bounded Lebesgue measurable 

sets have finite JJ-measure. Let Y be a Lipschitz continuous vector field defined on E 

which extends Lipschitz continuously to E and does not vanish at any point of the 

closure. The vector field Y is assumed to be real and divergence free with respect to 

JJ, m the sense that 

J YvdJJ 

E 

o, (3.1) 

Here c!(E) IS the space of continuously differentiable functions defined on E having 

compact support in E. Given a point y0 t E, there is a unique maximal integral curve 

for Y passing through y 0, specified by 

fs.y(s) = Yy(s), y(O) = y0. 

Since Y is Lipschitz continuous on E, the integral curves of Y do not intersect. By the 

length of this curve, we mean the length of the maximal s-interval over which the 

curve remains in E. Note that {f=-1 implies that the length of an integral curve is 

the travel time rather than the arc length. We shall further assume: 

Every maximal integral curve for Y m E has a length bounded by a fixed finite 
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constant T and has left and right limits. 

Since Y IS nonvanishing on I:, the limits are points of 8I:. Moreover, smce Y IS 

Lipschitz continuous up to 8L:, each boundary point is a left (res p. right) limit of at 

most one integral curve. 

Let D- (resp. D+) be the subset of 8I: consisting of all left {resp. right) 

endpoints of maximal integral curves for Y in I:. As already noted, smce 8L: is 

piecewise continuously cliff eren tiable, the union of all integral curves which intersect D + n 

D- has p-measure zero. This is a consequence of Sard's theorem [101, 280]. Indeed, 

arguing as in [23], we remark that the trajectories that meet a point of 8I: where the 

unit normal either does not exist or is discontinuous form a set of Lebesgue measure 

(and hence p-measure) zero. Consider a fully C1-portion C of the remainder of 

8L:, and define, for x ~ C and s ~ IR, <p(x,s) as the point obtained from x by moving 

on the trajectory passing through x to the right over a "distance" s. On choosing a 

local coordinate system on x ~ UcC, we easily derive that the Jacobian of <p(x,s) 

vanishes if and only if x~D-nD+. According to Sard's theorem, the set of such 

<p(x,s) must have Lebesgue measure (and hence p-measure) zero, which settles the 

Issue. Thus it will follow from Proposition 3.2 below that D+n D- has 11±-measure 

zero. 

The above argument also shows that D-nD+ is a Borel set if 8I: is piecewise 

c1. This property of D± in fact IS true m general. We may represent I: in the 

following way. Given a point x ~ D- there is a unique integral curve with x as its left 

endpoint. If the length of this curve IS denoted by f(x), where O<f(x)~T, the 

curve may be parametrized by points of the interval (O,f(x)). Thus we obtain the 

identification 

{3.2) 

Let us first notice that D- and D+ are Borel sets and i'(x) is a Borel function of 

position. Indeed, consider a Borel set MeL: that contains exactly one point from every 

trajectory. Such a set can be constructed as follows. Take a countable dense subset 

N of I:, and, for every x~N, an open neighborhood Ux and a Borel set MxcUx 

containing at most one point from every trajectory. The latter is possible, because the 

vector field does not vanish within I:. Put 
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Then L: can be writ ten as the umon of neighborhoods U , where n d.J, while 
xn 

00 j -1 
u {M \ u T }. 

j =2 xj i =1 xi 

Since the distance from x tM to the boundary when moving along the trajectory to 

the right I left is upper semi continuous, it is clear that D± are Borel sets and .t(x) IS 

a Borel function, which proves the assertion. Hence, the identification (3.2) represents 

a measure preserving transformation between Borel algebras and implies the 

correspondence Y "" -Js. Also we will abuse notation and make the identifications 

The above identifications will be used consistently throughout this section. As a result 

the bounded (measurable) subsets of L: are exactly the (measurable) subsets of sets of 

the form 

{(x,s) XEE, o<s<..i?(x)}, 

where E is a bounded (measurable) subset of D-

We shall now define the test function space ~ as the space of all Borel 

functions v on L: with the following properties: 

(i) v is continuously differentiable along each integral curve (but not necessarily 

even continuous in other directions). 

(ii) v and Yv are bounded. 

(iii) The support of v is bounded and there is a positive lower bound to the 

lengths of the integral curves which meet the support of v. 

It is clear from the boundedness of Yv and the continuous differentiability of v along 

trajectories that every VE~ can be extended to be continuous at the endpoints of

each integral curve. We shall then define the test function space ~O as the subspace 

of ~ for which the functions have limit zero at the endpoints oLeach integral curve. 



XI. TIME DEPENDENT EQUATIONS: CHARACTERISTICS 

LEMMA 3.1. There are unique positive Borel measures 11 ± on o± such that 

I YudJl 

E 

I ud11+- I ud11-, ue~. 
o+ o-

377 

(3.3) 

Proof: We shall prove this lemma first for a class of functions u that are linear along 

trajectories. We will next establish the lemma for functions u that are finite linear 

combinations of products of functions in C! (E) and bounded Borel functions that are 

constant on each trajectory. The information thus obtained will be used to prove 

Lemma 3.2. With the help of this lemma we will then complete the proof of the 

present result. 

Let us suppose that E 0 is a bounded subset of D- such that i'(x)<:>:o >0 for 

x e E0. Suppose that w is a bounded Borel function defined on the set 

E = {(x,O) x e E0} u {(x,i'(x)) : x e E0}. 

We extend w by zero on the rest of D-uo+, and for xeD- we set 

w(x,s) = [l-i'(x)- 1s]w(x,O) + i'(x)- 1s w(x,i'(x)). (3.4) 

Then w belongs to ~. because of the condition i'(x)~o >0 on E0, and 

It follows that the map w -+ J E Ywdp is a bounded linear functional on the set of such 

functions. Varying E 0, we see that there are unique Borel measures 11± on D± 

such that, for every w, 

I wd11+ - I wd11-. 

o+ o-

Indeed, if E0 is a subset of D- as above and E ;-{(x,i'(x)) x e E0}, we define 

J Ywdp, 

E 

W=-XE' 
0 

(3.5) 
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J Ywdp, 

E 

where XA denotes the characteristic function of the set A. Then (3.5) is certainly 

true for positive step functions w of the type allowed. Since every nonnegative w of 

the indicated type is a monotonically increasing limit of such positive step functions, 

and v± are positive u-additive Borel measures, Eq. (3.5) is clear for all such w. 

Moreover, if w(x,.t(x))-w(x,O) is nonnegative, then Yw is nonnegative, and therefore 

v + and v are positive measures. At this point we observe that Yw 

.t(x) - 1 {w(x,.t(x))-w(x,O)}. 

It suffices to prove that J E Yvdp = 0 for all v E <)0, since every v E <) can be 

written as the sum of a function in <)0 and a function wE<) that is linear along 

trajectories. We shall give the proof for a special class Ill of functions v E <) and 

exploit it to establish Lemma 3.2, which is a decomposition of the measure JJ as the 

product of the measure v± and the arc length measure along trajectories. With this 

decomposition in hand, we will have immediately 

J Yudp = J {u(x,.l(x))-u(x,O)}dv -(x), UE <)0, 

E o-

which will complete the proof. 

Let us observe that (3.1) holds true for all vEC~(E), by assumption. This 

implies the validity of (3.1) for all v E <) of the form 

v(x,s) T (x,s)w(x), X Eo-, O<s< .t(x), (3.6) 

where T E c! (E) and w IS a bounded Borel function on D-. It should be noted 

that the compactness of the support of r implies that .t(x) is bounded below for all 

integral curves meeting the support of r, so that one indeed has v E <)0. Then (3.3) 

is true on the class 1110 of finite linear combinations of functions of the type (3.6) 

and therefore on the class Ill of sums of a function in 1110 and a function in <) that is 

linear along trajectories. We may apply the validity of (3.3) on Ill to prove Lemma 

3.2 and hence to finish the proof of the present lemma. • 

LEMMA 3.2. In the realization (3.2) we have 
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dJJ 

Proof: Consider a general we 111, and set 

I f(x) 
v 1(x,s) = - w(x,t)dt. 

s 

Then Yv 1 =w, and v 1 =0 on D+ Thus Lemma 3.1, proven above for all wew, 

together with Fubini's theorem, implies 

I wdJJ I v 1 (x,f(x))dv +(x) - I v 1 (x,O)dv -(x) I w(x,s)dv-(x)ds. 

~ D+ D- ~ 

On the other hand, putting 

s 
v 2(x,s) = J w(x,t)dt, 

0 

we get Yv 2 = w and v = 0 on D-, and therefore 

I wdJJ I v 2 (x,£'(x))dv +(x) - I v 2(x,O)dv -(x) I w(x,s)dv +(x)ds. (3. 7) 

~ D+ D- ~ 

~:::::te ::::u:esis a::ns~o~:l L:~~~::e:~s) ~~e: e ~~~;y an: e ~:~~.:::~s ~ ~:: tt:ee a:::: 

integral over ~ with respect to the product measure as well as with respect to J.l, 

which completes the proof. • 

We are now m a position to derive two important propositions on which the 

proofs of the existence theorems of the next section are based. For 1~p<oo we 

denote by L I (~,dJJ) the linear vector space of all JJ-measurable functions u on ~ p, oc 
with the property that I u I P is JJ-integrable on every bounded JJ-measurable subset 

of ~ on which f{x,s)=f(x) is bounded away from zero. 

PROPOSITION 3.3. Suppose u and (Y+h)u belong to LP(~,dJJ), l~p<oo. Then: 

(i) u has a unique trace u±. 
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(ii) If u- belongs to Lp(D-,dv-), then u+ belongs to Lp(D+,dv+), m which case 

h I u I P and I u I p-lyu are integrable and 

I lu+lpdv+ + pihluiPd~t =I lu-IPdv- + pisgn(u)lulp-l(Y+h)udJt. 

n+ I: n- I: 

Proof: Suppose first that u and Yu belong to L I (I:,d~t). Writing u=u0 +u1, where p, oc 
uo(x,s) = [1-.t(x)- 1s]u(x,s), we deduce that 

belongs to L I (I:,d~t). p, oc It follows from Lemma 3.2 that, for almost every XfD-, 

v 0 (s, ·) € LP((O,.t(x)),ds). Indeed, if v0 f L 1 (I:,d~t) and Xg denotes the p, oc 
characteristic function of a set S, then v 0 XgfLP(I:,d~t) for every S of the formS= 

O<s<.t(x)}, where the set E0cD- is bounded and .t(x) is bounded 

away from zero on E0. Hence, for every such x, 

< oo, 

whence v 0(x,.) f Lp(O,.t(x)) almost everywhere on D-, which proves our assertion. For 

such x set 

* .t(x) 
u0 (x,s) = -I v0(x,t)dt. (3.8) 

s 

Assume cp € 4> and set 

wo(x,s) = r cp(x,t)dt. 
0 



XI. TIME DEPENDENT EQUATIONS: CHARACTERISTICS 

-<(1-£- 1s)Yu,w0 > + <£- 1u,w0 > = J {-[(1-£- 1 s)uw0]~( x l + 

D 

I£(x)[ -1 -1 ] } - -1 
+ -£ uw0+(1-£ s)u<p ds dv + <£' u,w0 > = <u0,<p>. 

0 

* Thus we may identify u0 with u0 . For any Z€ ~ an integration by parts gives 

<u~,Yz> + <v0,z> = I [u~z]:~~) dv

D 

- I uo(x,O)z(x,O)dv-(x). 

D 

* 
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This shows that u0 has traces u0 =u 0( • ,0) and u~=O. The Holder inequality applied 

to (3.8) shows that u- = u(j is in L 1 (D- ,dv -). 
-1 p, oc -1 -1 

Next, put u1 =Z'(x) su, v 1 =Yu1 =£' sYu+£' u and 

(3.9) 

Taking <pl~ and putting w1(x,s)=-I:(x)<p(x,t)dt, we get w1 l~, and w1=0 on 

D+; thus (sw 1 /£(x))l~0 . As before we obtain 

* whence we may identify u1 and u 1. Thus for any Z€~ we obtain 

<u1,Yz> + <Yu1,z> = I u1(x,£(x))dv+. 

o+ 

* Hence, u1 has as its trace u!=O, uT=u 1(·,£(x)); while u+=uTlLp,loc(D+,dv+) as a 

consequence of the Holder inequality applied to (3.9). 

To prove the uniqueness of the trace we start with a function w on D- u D+ 

as m the proof of Lemma 3.1. Then we must have 
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(3.10) 

The right hand side of (3.10) is uniquely determined by w and u, and therefore u± 

are unique. 

Now suppose that u and (Y +h)u belong to Lp(E,dp), and set 

U(x,s) - u(x,s) exp{r h(x,t)dt} = u(x,s)H(x,s). 
0 

Then Yu = H(Y +h)u, so that u and Yu belong to L 1 (E,dp ). From the first part of p, oc 
the proof it follows that u has a trace. To complete the proof, we note first that a 

straightforward calculation of -< I u I P,Yv> for VE ~O implies that I u I P has the 

distributional derivative 

Y( I u I P) .. p(sgn u) I u I P-1Yu, 

which, together with I u I P, belongs to L11 (E,dp). For the former function we 
'oc 

apply the Holder inequality and the property YuELp,loc(E,dp); for the latter we have 

to repeat the reasoning of the beginning of this proof with u replaced by I u I P, 
* * * * where u0 and u1 are replaced by I u0 I P and I u1 I P, respectively. If we apply the 

Green's identity to WE~ defined as the characteristic function of the set E0 = 

{(x,s) : XEC-cD-, O<s<J'(x)}, then the identity in the statement of the proposition 

holds with D± replaced by a Borel set c± on which ;-1 is bounded, and with E 

replaced by E0. Furthermore, since u E Lp(E,dp) and (Y +h)u E LP(E,dp ), one has 

(sgn u) I u I P- 1(Y +h)u E L1 (E,dp ), and therefore its integral over E converges. 

Hence, if u- ELP(D-,dv-), then the above equation implies that u+ ELP(D+,dv+) 

and h I u I P E L1 (E,dp ). Thus we may take E as the union of such sets E0 and 

pass to the limit to obtain the identity. • 

The boundary spaces Lp(D±,dv±), which are natural for the physical problem 

involved, do not allow for stronger results than part (i) of Proposition 3.3. These can 

be obtained, however, if instead of Lp(D±,dv±) one considers Lp(D±,J'dv±), where 

the weight function J'(x) is the length of the characteristic curve. Results in this 

direction have been obtained by Cessenat (87] for a::O and Ukai (353] for a large class 

of force fields. Indeed, let u,YuELP(E,dp) for some 1~p<oo, and put q=p/(p-1). 

Following Ukai (353] we then have 
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u-(x) = u(x,s) - r (Yu)(x,s)ds, HD-. 
0 

Using the Holder inequality as well as the inequality c1 I P +d 1/ P ~ 21/ q( c+d) for 

C= I u(x,s) I p and d=sP- 1 r I (Yu)(x,s) I Pds we obtain 
0 

lu-(x)IP ~ {lu(x,s)l + s1 /q!((x) I(Yu)(x,s)IPds] 11P}P ~ 
0 

1 1Jf(x) 
~ 2p- {I u(x,s) I P + sp- I (Yu)(x,s) I Pds}. 

0 

Integrating over the interval (O,f(x)) and using that f(x)~T, one obtains 

whence 

Jf(x) p f(x) 
f(x) I u-(x) I P ~ 2p-l{ I u(x,s) I Pds + LJ I (Yu)(x,s) I PdS}, 

0 p 0 

J f(x) I u-(x) I Pdv-(x) ~ 2P- 1{11ullp + !p IIYuiiP}. 

D 

This in turn implies 

where 0=2(1 + T) and 11.11 f denotes the norm in Lp(D± ,fdv ±). A similar estimate 

holds true if D-, v- and u- are replaced by D+, v+ and u+. If the function h is 

essentially bounded on ~. we obtain the important estimate 

llu±llf ~ 2(1 + T + llhll 00)(llull + II(Y+h)ull), (3.11) 

which proves that whenever 

and htL00(~,Jl). 

The next result is an existence, uniqueness and positivity theorem for the 

solution of the initial- boundary value problem (2.7) in the absence of scattering (J =0) 

and boundary reflection (K=O). We recall from Section 2 the definition of the solution 

space E . 
p 
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PROPOSITION 3.4. Given f eLP(E,d~J) and ge Lp(D-,dv-), 1:5;p<oo, there is a unique 

function ueEP such that (Y+h)u = f in E and u- = g on D-. Moreover, if f and g 

are nonnegative, then u is nonnegative. 

Proof: Given f eL (E,d~J) and geL (D-,dv-), set p p 

u(x,s) = exp{- rh(x,u)du}g(x) + r exp{- rh(x,u)du}f(x,t)dt-
0 0 t 

= g(x) + uo(x,s). (3.12) 

Clearly, u is nonnegative if g and f are, and an integration by parts gives 

<u,(Y-h)v> + <f,v> = I u(x,.t'(x))v(x,;(x))dv+(x) - I g(x)v(x,O)dv-(x) 

D+ D-

for all v e <P. Hence, (Y +h)u=f m the distributional sense. To see that 

ueLP(E,d~J) we note that llull :5; T 1 /pllgll + llu0 11 and 

.t'(x) s 
llu0 11P :5; I I {sP- 1 I I f(x,t) I Pdt}dsdv-(x) :5; p- 1TPIIfiiP. 

0 0 
D-

The uniqueness of u given by (3.12) follows from the fact that, for almost 

every xeD-, u(x,•) must satisfy an ordinary differential equation on (O,.t'(x)) with 

given initial condition, so (3.12) is necessary. • 

4. Existence, uniqueness, dissipativity and positivity in Lp. 

In this section we shall prove the main existence, uniqueness and positivity 

results on the abstract time dependent kinetic problem (2.7). Throughout we shall 

assume partial absorption at the boundary of the physical system, i.e., we assume that 

II K II< 1. In the next section we will deal with the case II K II= 1. We begin with two 

auxiliary results. The first result will enable us to introduce a parameter >.., which 

will be chosen conveniently later on; the second will be a useful estimate. 
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PROPOSITION 4.1. The problem {2.7) has a unique solution if and only if for ).. fIR 

the modified problem 

(Y + h - J + >..)u>.. = f >.. on I:, {4.1a) 

( 4.1 b) 

( 4.1 c) 

has a unique solution. Moreover, nonnegative solutions of {2. 7) correspond to 

nonnegative solutions of ( 4.1 ). 

Proof: Set u)..(x,€,t) = e-Atu{x,€,t), f)..{x,€,t) = e->..tf{x,€,t) and g)..(x,€,t) = 

->..t ( ) B h J K e g x,€,t. ecause of t e assumption on and of locality in time, u solves 

{2.7) with data {f,g) if and only if u).. solves {4.1) with data {f ).,•g)..) .. • 

We remark that the locality of A and K in time was used here in an essential 

way. If A and K are not local m time, one cannot shift the problem in such a 

transparent way. 

PROPOSITION 4.2. Suppose u).. belongs to Ep and satisfies ( 4.1a), where >..;;::o and 

f >.. f LP{I:,dp ). Then 

Proof: If p=1, {4.2) follows from {3.7), since Yu).. 

If p>1, (3.7) gives 

{4.2) 

llu~llp + >..pllu)..llp ;5; llu~llp + pJiu)..IP- 1 1Ju)..+f)..ldp. (4.3) 

I: 

Take q=p(p-1)- 1 and use the inequality ab ;5; p- 1aP+q- 1bq for a,b;;::Q. Then with a 

>..- 1 /qiJu)..+f)..l and b = >.. 1 /qlu)..IP- 1, an integration gives 

pJiu)..IP- 1 1Ju)..+f)..ldp :S; >.. 1 -PJIJu)..+f)..lpdp + {p-1)>..Jiu)..IPdp. 

I: I: I: 
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The inequality ( 4.2) follows from this estimate and ( 4.3). • 

We shall now present the main result of this section, which answers in the 

aCCirmative the wellposedness of the time dependent problem, if the boundary operator 

K satisfies IIKII<l. The special case of IIKII=1, relating to conservative boundary 

processes, will be discussed separately in Section 5; the proof for this case requires an 

additional hypothesis as well as the weakening of the notion of solution. 

THEOREM 4.3. Suppose that J and K are bounded linear operators 

J:Lp(E,dp)-+Lp(E,dp) and K:Lp(D +,dv +)-+Lp(D _,dv _), 1~p<oo. Let us suppose 

further that K has operator norm IIKII<l. Then for any vectors fELP{E,dp) and 

g=(g_,g0) E Lp{D- ,dv-), the abstract time dependent linear kinetic problem 

Yu + hu - Ju f onE, { 4.4a) 

{ 4.4 b) 

u = Ku+ + g_ on D _, {4.4c) 

has a unique solution u in E . Moreover, there is a constant C=C{p,A,K) such that the p 
Lp_-norms of u and uT satisfy 

llull + lluTII ~ C{llfll + llgll). {4.5) 

Proof: The strategy for proving the present theorem and the next theorem {related to 

positivity of solutions) is to give a direct construction of the solution for J =0 and K=O 

and then to use a Green's identity to obtain estimates which permit passage to the 

general case by a perturbation analysis. Thus, let us consider the modified problem 

(4.1) with J=O, K=O, and X>O: 

(4.6) 

Propositions 3.4 and 4.1 imply the existence of a unique solution of { 4.6), which we 

denote by 

(4.7) 
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The inequality ( 4.2) implies 

Therefore, one has the inequalities 

( 4.8) 

( 4.9) 

(4.10) 

( 4.11) 

Next, consider the case K=O, A> IIJ II: 

(4.12) 

* * w_.e look for a solution having the form UA s)y),,g),) with fA fLP(I:,d~t), where 

f >. is to be determined. The necessary and sufficient condition for u>. to solve (4.12) 

IS 

(4.13) 

with 

( 4.14) 

Now, (4.8) implies that the operator norm satisfies liLA II~>. - 1 11JII < 1. Thus (4.13) 

has the unique solution 
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( 4.15) 

We denote the solution of ( 4.12) by u>. = T >. (f >.,g).). In particular, for f >. =0 the 

identity (4.15) and the inequalities (4.8)-(4.11), along with the norm estimate above, 

give the estimates 

+ * + + * + IIT>.(O,g>.) II = IIS>.(f>.,g>.) II = IIS>.(O,g>.) + S>.(f>.,0) II ~ 

(4.16) 

~ llg>.ll + >.- 1 + 1 /PIIf~ll ~ [1 + (>.- IIJII)- 1 11JII]IIg>.ll. 

The final case to consider is the general case 

(Y + h - J + >. )u >. = f >., (4.17a) 

(4.17b) 

where K =(O,K). Let us look for a solution of ( 4.17) having the form u>. = 
* * T >. (f >.,g).), where g). E Lp(D- ,dv -) is to be determined. The necessary and 

sufficient condition is 

( 4.18) 

so we require 

* * where M>.g>. K(T >. (O,g>.)+). The inequality (4.16) implies liM>. II < 1, 

provided >. > IIJII and [1 + (>.-IIJII)-1 11JII]IIKII < 1. The second condition can be 

satisfied because IIKII < 1. Thus, for such >., (4.17) has the unique solution 
* * u>. =T>.(f >.,g).), if the function g). in (4.18) is given by 

( 4.19) 

Finally, we convert (4.19) to a solution of the problem with >.=0 by the 

method of Proposition 4.1. This completes the proof. • 
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In most cases, kinetic equations are evolution equations for (one-particle) 

distribution functions or radiative intensities on a phase space. As such, the solution of 

a kinetic equation is supposed, on physical grounds, to be nonnegative if the data are 

nonnegative. An important exception is related to those kinetic equations, for example 

in rarefied gas dynamics, which are not written for the distributions themselves, but for 

differences between the actual distribution and an equilibrium distribution. 

We call the problem ( 4.4) positive, if the solution u is nonnegative whenever the 

data (f,g) are nonnegative. An operator L between spaces of real functions (or 

measures) is called positive (in the lattice sense) if u~O implies Lu~O (cf. Section 1.4). 

Throughout the present chapter and the next two chapters the concept of a positive 

operator will always be used in the lattice sense, and not in the sense of positive 

selfadjointness (as in Chapters II to V). 

THEOREM 4.4. In addition to the assumptions of Theorem 4.3, suppose K~O and 

suppose, for some real >. 0, >. 0I+J~O. Then problem (4.4) is positive., 

Proof: We assume that K~O, (>. 0I+J)~O, f~O and g~O. In view of Proposition 4.1 we 

may replace J by J+>. 0I and assume J~O. We now follow the proof of Theorem 4.3. 

Using Propositions 4.1 and 4.2, we obtain the positivity of the solution: 

S>. (f >.•g>.) ~ 0 if f >. ~0 and g>. ~0. 

We proceed similarly for K=O and >. > IIJ II. 
* * ( 4.12) is given by u>. =T >. (f >.•g>.) with f >. given 

The solution T >. (f >.•g>.) of 

by (4.15), while the operator 

(-LA) of (4.14) is positive. Using the positivity of J and the solution operator, we 

obtain JS,(.(O,g>.)~O if g>.~O. Therefore, if f>.~O and g>.~O, the series (4.15) 

implies fA ~o. which immediately implies UA =SA (f >.•g>.)~O. Summarizing, we have 

T >. (f :>..•g>.)~O if f >. ~0 and g>. ~0. 

Finally, we consider the general problem ( 4.17). It is evidently sufficient to 

* * prove g>.~O. But (4.19) and the positivity of K imply g>.~O. • 

Actually, in most kinetic problems the inequality >. 0I+J~O is satisfied for 

>. 0 =0, implying that the gain term is nonnegative for nonnegative distributions. 

In addition to positivity, many kinetic problems have a dissipativity property. 

In physical terms, a system is dissipative if relevant quantities are non increasing or 

actually decreafiing in time because of the general conservation laws and loss 

mechanisms: absorptive boundaries, dissipation by friction, etc. We call the problem 

(4.4) dissipative if llutll S llu0 11 for OStST whenever f=O and g_ =0. We remark 
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that this inequality makes sense since, m addition to its "traces" u0 and uT, a solution 

of (4.4) has a "trace" ut on each slice {(x,E) : (x,E,t)d:::} .. 

THEOREM 4.5. In addition to the assumptions of Theorem 4.3, suppose that for every 

u E Lp(E,dJJ ), 

J sgn(u) I u I p-l (hu-Ju)dJJ ~ 0. 

E 

Then problem ( 4.4) is dissipative. 

Proof: Suppose u e EP satisfies 

(Y + h - J)u 0, u 

The identity (3. 7) gives 

- p J sgn(u) I u I p-l(hu-Ju)dJJ + 

E 

(4.20) 

(4.21) 

Since IIKII<l, the inequality (4.20) implies lluTII~IIu0 11. The result for the 

intermediate values ut follows by replacing the time interval (O,T) by the smaller time 

interval (O,t), and using the uniqueness of the solution on the smaller interval. • 

For p=l and under the previous positivity assumption, it is sufficient to assume 

( 4.20) only for nonnegative u to obtain dissipativity. 

THEOREM 4.6. Suppose p=l and suppose that, in addition to the assumptions of 

Theorem 4.4, (4.20) holds for every nonnegative ueE1. Then problem (4.4) is both 

positive and dissipative. 

Proof: In the positive case, the preceding argument gives a suitable bound on lluTII for 
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u satisfying (4.21) and u0~o, provided (4.20) holds for nonnegative u. For p=1 this 

suffices to obtain the appropriate bound on any solution. In fact, let us write 
* ** * ** * ** u0 =u0 -u 0 with u 0 ~0, u0 ~0 and u0u0 =:0. 

* ** * "* 
Then the solution u can be written 

as the difference u=u -u , where u and u are nonnegative and 

which completes the proof. • 

5. The conservative case 

The case II K II =1 describes conservative boundary conditions. A typical example 

1s purely specular reflection, where K has the form 

Ku(x,~ ,t) u( x,cp( x,~, t ),t) 

with cp(x,~ ,t) 2(~ • n(x,t))n(x,t) and n(x,t) the unit outer normal to the 

possibly time dependent surface of 1\. 
Examination of the case II K II =1 shows that it 1s necessary, m general, to drop 

the requirement u f E in order to guarantee the existence of a solution. From a p 
physical point of view this can be understood as follows. If an integral curve of Y 

reaches the boundary at a point (x,~,t) E Dt, let it be "continued" with starting point 

(x,cp(x,~,t),t) E D_, where cp(x,~,t) is as above. Except for plane parallel domains 

and a=O, there is no finite upper bound to the number of times such continued curves 

reach the boundary in the interval 0:5:t:5:T. Thus it is possible that the "solution" of 

the kinetic problem will not belong to Ep, i.e. the trace u± will not have finite norm. 

On the other hand, if there is a finite upper bound to the number of collisions with 

the boundary, then the existence IS guaranteed for boundary conditions with IIKII=l 

and K~O, as we shall prove shortly. For a discussion of various examples with 

IIKII=1 in which the existence of a solution in E is not valid for general L -data, p p 
see the work of Voigt [380], who treats the situation Lp=L1, A=O, a=O, and K, 0 and 

V independent of time. A similar situation, but with time dependent nonlocal boundary 

conditions, has been studied by Babovsky [20], who treated reflecting walls through 

probability measures on the boundary. Interesting examples of conservative boundary 
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conditions (designed actually for the full Liouville equation rather than for a kinetic 

equation) are discussed by Schnute and Shinbrot [326]. 

Below we shall prove the existence, uniqueness and nonnegativity of the solution 

of problem (2. 7), when the boundary conditions are conservative. In the proof of 

Theorem 5.2 below we shall first take the incoming current at the boundary to be zero, 

after which we will obtain the general case by subtracting a particular solution and 

using a stability argument. We will therefore consider the abstract kinetic problem 

(Y + h - J)u f on ~' ( 5.la) 

( 5.1 b) 

u Ku+ on D . (5.lc) 

We first prove the uniqueness of the solutions of problem (2. 7). 

THEOREM 5.1. Suppose J and K satisfy the conditions of Theorem 4.3 and II K II= 1. 

Then, given ffLP(~,dJI) and g-=(g0,g_)fLP(D0,dv 0), the problem (2.7a)-(2.7c) has 

at most one solution ufE . p 

Proof: By Proposition 4.1 we may replace J by J->.I for arbitrary X>O. It is 

sufficient to show that the problem has only the trivial solution if f=O and g0 =0. 

For such a solution the identity (3. 7) gives 

= IIKux,+IIP + pJsgn(u)luxlp-lJu>.dll :S piiJII lluxiiP. 

~ 

If >. > IIJII, this inequality implies u>. =0. • 

(5.2) 

To obtain satisfactory existence results we strengthen the assumptions on the 

operators J and K and weaken the requirement on a solution. Specifically, we will 

impose the conditions K~O and >. 0I+J~O for some >. 0 f JR. The positivity condition on 

K implies that K can be extended to a larger class of functions than the (global) 
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Lp -functions. Indeed, suppose {vm}:_= 1 is a nondecreasing sequence of nonnegative 

functions in Lp(D +'dv +) with pointwise limit v. Then {K v m}:= 1 is also nondecreasing 

and has a strong limit depending only on v, so we may extend K by setting Kv = 

I im Kv . A natural procedure for trying to solve (5.1) IS to replace K by m-+oo m 
Km =amK' m=1,2, ... , where {am}:.= 1 is an increasing sequence of nonnegative scalars 

with limit 1. Then IIKmll=am<l, and thus problem (5.1) with K replaced by Km has 

a unique solution urn. 

THEOREM 5.2. Suppose the operators J and K satisfy the assumptions of Theorem 4.3 

along with the conditions K~O and >. 0I +J~O for some >. 0 e IR, and suppose 

f f Lp(~,dp) and g- =(g0,g_) f LP(D0,dv 0) are nonnegative. Let Km =amK' where 

{am}:_= 1 is increasing with limit 1, O<am<l, and let urn be the solution of {2.7) with 

K replaced by Km. Then the sequence {urn}:.= 1 is non decreasing and converges in the 

norm to a function ueL (~,dp). This function satisfies (2.7a) and has a trace p 
satisfying (2.7b) and also (2.7c) with K extended as above. Moreover, u is independent 

of the choice of the sequence {am}:_= 1. 

Proof: We shall first consider problem (5.1), where g_ =0. Let Tm(f,g) denote the 

solution of the approximate problem 

(Y + h - J)u f on~' (5.3a) 

(5.3b) 

on D . {5.3c) 

Fix m', and suppose m~m'. Let us look at the solution of (5.3) in the form 

Since K -K , 1s positive, we may (after introducing a suitable parameter A >0) 
m m * 

repeat the argument of the proof of Theorem 4.4 and obtain gm~(O,g0 ). As Tm, 1s 

positive, this gives um~um, for m~m'. In order to show that the pointwise limit of 

the sequence {um}:_= 1 belongs to Lp and is the limit in the norm, it is sufficient to 

obtain a uniform L -bound for this sequence, since it is non decreasing and positive. 
p 

Once again, we may replace J by J- >.I for >.>II J II and use (3. 7) with J replaced by 
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J->.1 to obtain 

(5.4) 

+pJ{Iu ,IP-1f,-hlu ,1P->.1u ,IP+Iu ,IP-1Ju .}d~~~ 
m," A m,A m," m,A m," 

E 

Since >.>IIJII and amiiKII<1, we have 

which, on using ab~p- 1aP+q- 1 bq with q=p/(p-1), a=llf>.ll and b=pllum)IP- 1, 

reduces to an inequality from which we easily derive 

(5.5) 

Performing a similar transformation to that in Proposition 4.1, we obtain (5.5) for 

>.=O, though with a different constant. By repeating the chain of inequalities leading 

tq (5.5) we do not get a uniform finite upper bound for {(~)±}:_ 1 , since 

{1-amiiKII}: ... 1 is not bounded away from zero; so we cannot conclude that this 

sequence converges in E . . p 
In the derivation of the rightmost member of (5.4) we have deleted the term 

-p J Eh I urn,>. I Pd,. However, if we retain this term in all of our subsequent 

estimates, we obtain a uniform finite upper bound for J Eh I urn,>. I Pd,, and therefore 

'\n,>. converges monotonically in the norm of Lp(E,hd11) to a limit, which must be u>.. 

Then the boundedness of J and the equation (Y +h+>. -J)u , =f, imply that Yu , 
m," " m," 

converges in the norm of Lp(E,dl')· The latter implies that Yu>. exists as a 

distributional derivative equal to f >. -(h+>. -J)u>.. Moreover, there is a uniform finite 

upper bound for {(um,>.)T}:= 1 as a result of (5.4); so (um,>.)T converges to u>.,T in 

the norm of Lp(DT,dvT). It is also immediate that the suprema satisfy 

• co 
Further, if {am}m= 1 . is a different sequence of scalars 

• co 
and {~}m= 1 is the 
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sequence of corresponding solutions of (5.3), the above argument shows that for a 
**oo ** * sequence {a } _ 1 satisfying a ~ max (a ,a ) and for the corresponding 

*,pl m~ **m * **m m 
solutions {urn }:= 1, we have um~um and um~um , whence uniqueness follows. 

Finally, let us consider the original problem (2.7) for arbitrary g_, where we put 

g(x,s) {1- i'(x) - 1 s }g_ (x). 

Setting u=u-g, we obtain problem (5.1) with u replaced by u, which has a unique 

solution in Lp(E,dJ.i) with traces in Lp,loc(D±,dv ±). Hence, the original problem (2. 7) 

has a unique solution in L (E,dJ.i) with traces in L 1 (D±,dv±). In order to prove p p, oc 
the nonnegativity of the latter and the monotone approximation statement of the 

theorem for this general situation, we observe that the solution of the approximative 

problems for arbitrary g are nonnegative and converge to the unique solution of the 

present problem in the strong operator topology, the latter because the approximative 

solutions of problem (2.7) differ from those of problem (5.1) by a fixed function 

g .• 

COROLLARY 5.3. Suppose that the lengths i'(x) of the integral curves of the vector 

field Y satisfy i'(x)~8, for some constant 8 >0, and let h be essentially bounded. 

Let the operators J and K satisfy the assumptions of Theorem 4.3 along with the 

conditions K~O, IIKII=1 and >-. 0I+J~O for some >-. 0 dt Then for every 

feLP(E,dJ.i) and any g=(g_,g0)eLP(D-,dv-), the problem (2.7a)-(2.7c) has a unique 

solution in Ep, which is nonnegative whenever f and g are nonnegative. 

Proof: In view of Theorem 5.2, it remains to prove that every solution u of problem 

(2.7) in the weak sense of Theorem 5.2 has its trace u± in Lp(D±,dv±). However, 

( ) ± ( ± ±) ( ) the estimate 3.11 implies that u eLP D ,.t'dv . Since 8 ~ .t' x ~ T for all 

xeD-, the result is immediate. • 

6. Existence and uniqueness results on spaces of measures 

In the previous two sections we have obtained all of the existence and 

uniqueness results in the spaces L (E,dJ.i), where 1~p<oo, assuming that the source term p 
f t Lp(E,dJ.i) and the incident flux g_ e Lp(D _,dv _). However, in many derivations in 
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neutron transport, radiative transfer, and other fields of interest to kinetic theory, one 

is accustomed to use Dirac's 8 -function to represent point sources and unidirectional 

beams. For all of these cases the bulk of the existence and uniqueness theory has 

been developed in an Lp or C space setting and is therefore not able to account 

directly for these "concentrated" data. For this reason it has been argued that spaces 

of measures, rather than Lp or C spaces, are the physically relevant spaces in which to 

formulate kinetic equations. Suhadolc and Vidav [346] were the first to study a class 

of time dependent equations on the space of bounded measures on the position-velocity 

region, though under conditions that exclude many physically interesting phenomena. 

Because spaces of measures bring about mathematical problems distinct from those in 

the L -settings, these spaces never became part of the mainstream of kinetic theory. p 
In this section we shall give a full account of the existence and uniqueness theory for 

time dependent kinetic equations in spaces of measures, however restricted to positive 

models. 

Let M(E) be the linear vector space of bounded signed Borel measures on E. 

For a positive measure v !M(E) we define its norm II vII by II vII = v(E). For a 

signed measure the definition of the norm is more involved. Given a signed measure 

v !M(E), we write v=v + -v _, where v +'v _ !M(E) are the unique positive 

* having the property that v ~v for any pair of positive measures 
* * ± ± 

such that v=v + -v _. We then define I vI =v + +v _ and put 

II vII = Ill v Ill = I vI (E) = v )E) + v _(E). 

measures 

* v ± fM(E) 

With these definitions M(E) becomes a Banach lattice, which has the following 

property in common with L (E,dJL} for l$;p<oo: 
p 

If 0$;Jll $;Jl 2~ ... ~v IS a monotonically increasing sequence of positive 

measures {I'm};= I in M(E) bounded above by some v !M(E), then there 

exists a measure Jl !M(E) such that 

lim lltt-ttmll = lim {JL(E)-Jlm(E)} 0. 
m~oo m~oo 

Another useful property of M(E) is that it contains L1 (E,dJL} as a closed Banach 

sublattice. Indeed, on choosing the fixed positive Borel measure Jl on E as in 

Section 2, we associate with every function <p!L1(E,dJ1} a measure v'PfM(E) by 
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v 'P(E) = I 'Pd/-1, E c E Borel. 

E 

Let ~ and ~O be the test function spaces defined in Section 2. We define 

the bilinear form 

<u,v> I vdu, u E M(E), VE ~. (6.1) 

E 

If u=v'P for some !pEL1(E,dl-'), we obtain 

<u,v> = I vdv 'P = I !pVd/-1 = <'P,v>, 

E E 

and therefore the form (6.1) extends the definition of the previous sections. We now 

define the distributional derivative Yu for measures utM(E) by 

<Yu,v> -<u,Yv>, VE~O' (6.2) 

in which manner we extend the previous definition of Yu. A pair of Borel measures 

u± on n± is called a trace for UEM(E), if YutM(E) and the extended Green's 

identity 

<Yu,v> + <u,Yv> = I vdu+ - I vdu-, VE~, 
n+ n-

is valid. It should be observed that one does not necessarily have u± tM(D±). 

PROPOSITION 6.1. Suppose that u and (Y +h)u belong to M(E). Then u has a unique 

trace u±, and u~O implies u±~o. If u~O and u- tM(D-), then u+ tM(D+) and 

YutM(E), while 

(6.3) 

Proof: For a given Borel subset of D- on which .t(x)-1 is bounded, let w be a 

bounded Borel function on the set 
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extend w by zero on the rest of the "disjoint" umon n-un+, and define w(x,s) as in 

(3.4). Suppose u and Yu are locally finite measures in the sense that I u I (E) and 

[I Yu I](E) are finite for every Borel subset E of E on which .t'(x)- 1 is bounded. 

We compute 

<Yu,w> + <u,Yw> = I wd(Yu) + I (Yw)du = 

E E 

Iw(x,.t(x)){.t't~) + 7[xrd(Yu)}- Iw(x,O){A~)- [1-.t'(x)- 1s]d(Yu)}. 

E E 

Since .t'(x)-l is bounded on the support of w, the latter is easily written as 

<Yu,w> + <u,Yw> (6.4) 

where w is varied over the set of all such functions. Now suppose z l <1>, and let w 

be the restriction of z to D-un+ and w its extension of the form (3.4). Then 

v~z-w l <1>0, and therefore f E YvdJl=O. Hence ( cf. (6.2)), 

<Yu,z> + <u,Yz> = {<Yu,v>+<u,Yv>} + {<Yu,w>+<u,Yw>} 

= J wdu+ - J wdu- = J zdu+ - J zdu-, 

n+ n n+ n 

and consequently u± is a trace for u. 

If u is a positive measure and if w~O on n+ and w:5;0 on n-, then the 

extension w as in (3.4) may be replaced by a sequence of extensions wm l <I> with the 

properties Ywm ~ 0, wm -+ 0 pointwise on E, and ~~t I wm I :5; C, where C is 

a fixed constant. Then (6.4) and Wml<l> imply 

<Yu,wm> + <u,Ywm> = J wdu+ - J wdu-, 

n+ D 
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which has a nonnegative limit as m-+oo. On varying w one sees that u±;?:O whenever 

u;?:O. 

Finally, suppose u;?:O and that u and (Y +h)u belong to M(E). Suppose also 

that u- is a bounded measure. In (6.4) we take w to be the characteristic function of 

a set Eo,m of the above type, where {Eo,ml;=l IS an increasing sequence of such sets 

with union D-. On writing E A ={(x,.t(x)) : x E E0 } and E ={(x,s) : XE E0 , z,m ,m m ,m 
s E (O,.t(x))} we get from (6.4) 

[(Y +h)u](E ) + u -(E0 ) = u +(E A ) + (hu)(E ). m ,m ,e,m m 

Since the left hand side has a limit as m-+oo and both terms on the right hand side are 

nonnegative and increasing in m, the measures u + and hu, and hence also Yu, are finite 

and (6.3) holds true. • 

As in Section 2, we may decompose the trace u± as u- = (u_,u0) and u+ = 

(u+,uT), in order to display the temporal part. Let ~ be the set of nonnegative 

bounded Borel measures uEM(E) such that (Y+h)u belongs to M(E) and the trace 

u± consists of bounded measures. We have the following analog of Proposition 3.4. 

PROPOSITION 6.2. Given f fM(E) and gfM(D-) with f;?:O and g;?:O, there IS a unique 

measure u in ~ such that 

(Y+h)u f on E, 

u g on D-. 

Proof: Given wE 4>, set 

.t(x) 
v(x,s) = - J w(x,t)dt. 

s 
(6.5) 

Then Yv=w and v=O on D+, while 

suplv(y)l ;5; T suplw(y)l, 
E E 

where T 1s the length of the fixed time interval. Using that f EM(E) and 
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g{M(D-), we can prove the existence of a unique U{M(L) such that 

<u,w> -I vdg - <f,v>, _w{cf>. (6.6) 

D-

Since v::;;o for w~O, one has u~O if f~O and g~O. For every v { cf> vanishing ,on 

D+ we find a function W{cf> satisfying (6.5) as well as the identity 

<Yu,v> -<u,Yv> 

whence Yu=f and u- =g. • 

-<u,w> <f,v> + I vdg, 

D-

We are now prepared to prove the existence and uniqueness results for the 

abstract time dependent kinetic problem in this measure space setting. We consider the 

bounded linear operators J:M(L)-+M(L) and K:M(D +)-+M(D _), which are again assumed 

local in time (i.e. J(ru)=rJ(u) and K(rg)=rK(g) for every bounded continuous function 

r(t) of time alone) and real. In addition, we assume K~O and (>. 0I+J)~O for some 

>-o>O. 

THEOREM 6.3. Under the assumptions above, for IlK II< 1 the problem (4.4) has a 

unique solution U{~ for each pair of nonnegative measures f{M(L) and g{M(D-). 

Moreover, there is a constant C=C(h,J,K) such that ( 4.5) holds. If, in addition, 

J(hdu-dJu) ~ 0 

L 

for every nonnegative U{M(L), then the problem (4.4) is dissipative. 

(6. 7) 

Proof: Once again one may consider the modified problem (4.1), where >->IIJII. Let 

us denote the solution u). {~ of the problem (4.1) with J=O and K=O by 

u>. =SA(f>.,g>.). On using (6.3), u~{M(D±) and u~~O we fi~d 
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where IIS>.(f>.,o)ll~>..- 1 11f>..ll. 
Next we look for the solution of (4.1) for the given J but for K=O, and seek it 

* in the form u>.. =S>.. (f ).>g).). As m the proof of Theorem 4.3 we reduce the latter 

* to a vector equation, perform an estimate and derive the unique solution f , whence 

problem (4.1) with K=O has a unique solution u>..=T>..(f>..,g>..)E~. Finally, on 
* seeking the solution of problem (4.1) in the form u>..=T>.(f>..,g>..) for general J and K 

* with IIKII<1, one again obtains a vector equation for g>., which for >. sufficiently 

large can be obtained uniquely using the contraction mapping principle. Here we use 

again II K II< 1 in an essential way. The dissipativity of the solution under the 

assumption (6.7) can be shown as in the proof of Theorem 4.6. • 

THEOREM 6.4. Under the assumptions of the the previous theorem, suppose that 

IIKII=L In addition, suppose fEM(E) and g-=(g0,g_)EM(D-) satisfy f~O and g~O. 

Let Km=amK, and let urn E ~ be the unique solution of the approximate problem 

(5.3). Then the sequence {uo);_= 1 is nondecreasing and conveJ.:ges in the norm of 

M(E) to a measure uEM(E). The measure u is independent of the choice of 

{a }00 _ 1 , satisfies (2.7a) and has a trace which satisfies (2.7b). Finally, in the sense 
mm~ 1 . 

of weak*-convergence of measures, u = 1 m K(u )+ on D . 
- m->oo m -

Proof: We first consider the initial-boundary value problem for g_ =0. As in the 

proof of Theorem 5.2 one may show that {~,>..};_= 1 is an increasing sequence of 

measures in M(E), where one once again considers the modified problem (4.1) for 

>.> IIJII, but with K replaced by Km. Using (6.3) one obtains 

(6.9) 

+ On decomposing the measures urn, >. and g). in their spatial and temporal parts and 

using that 

due to the positivity of these measures, one may rewrite (6.9) as 
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However, since K (u , )+~0 and g, _~0, we may use the additivity of the norm of 
m m," "' 

M(E) and the norm estimate II Km II =am< 1 to prove 

whence 

Hence, the measures u , and (u , )T have the uniform (in m) bounds 
m," m," 

As a consequence of these bounds and the monotonicity in m, there exist measures 

u>. EM(E) and u>. T such that 
I 

I im llu>. -urn xiiM(E) = 0, 
m-+oo ' 

Since (Y+h)~x=fx-(>.-J)um>.• we find the uniform bound 
I I 

and thus (Y+h)u>. EM(E). It is then clear that u>. satisfies (4.la) and (4.lb). 

Moreover, as in the proof of Theorem 5.2, one may show that u>. is independent of 
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he approximating sequence {am};= 1. 

The above argument does not yield a uniform bound on ll(umA)_II, and 
' 

herefore the trace uA,± need not belong to M(D ±). In order to give proper sense 

0 the boundary condition (4.1c), we have to extend the definition of K. Let us 

onsider a non decreasing sequence of positive measures {vm};=1 Ill M(D+) with 

veak*-Iirnit v. Then {Kvm};= 1 is also nondecreasing and has a weak*-limit depending 

mly on v; so we may extend K by setting 

Kv =weak*-! im Kvm, 
m-+oo 

which implies ( 4.1 c). 

Finally, one transforms the results easily to the unmodified problem (4.4), and 

then extends the result to problem (2.7) with arbitrary g_ fM(D _) as in the last 

paragraph of the proof of Theorem 5.2. • 

It IS not difficult to derive the analog of (3.11) in the M(l:) setting, and thus 

to derive the analog of Corollary 5.3. Then the essential boundedness of h and the 

estimate £(x) ;?: 8 for all x f D- allow one to extend Theorem 6.3 to the case 

where IlK II =1. 



Chapter XII 

TIME DEPENDENT KINETIC EQUATIONS: SEMIGROUP APPROACH 

1. Introduction and historical remarks 

In the previous chapter we have solved time dependent kinetic problems using 

integration along trajectories and perturbation techniques. In many applications, 

however, the phase space, the transport operator and the boundary conditions do not 

depend on time, m which case a semigroup approach is natural. In this chapter we 

shall discuss the semigroup approach in detail. Throughout we maintain the notation and 

terminology introduced in Chapter XI with minor modifications. In particular, the open 

set A C IRnxiRn specifying the position-velocity domain will now be referred to as 

the phase space of the system. (We recall that in the previous chapter L: c 

IRnxiRnx(O,T) was taken as the phase space, in order to treat time in a somewhat 

symmetric fashion with spatial and velocity variables). Similarly, Jl will be a Borel 

measure on A such that subsets of A with finite Lebesgue measure have finite 

~~-measure, v± will be appropriate Borel measures on the parts of oA 
corresponding to the outgoing (resp. incoming) "fluxes", J and K are bounded linear 

operators defined on L (A,dJL) and from L (D+,dv+) into L (D ,dv ), respectively, p p p - -
and h(x,€) is a nonnegative Lebesgue measurable function on A that is integrable on 

each subset of finite Lebesgue measure. Define 

a a 
B = -€ ·ax- a(x,€)·8€- h(x,€) + J, 

for (x,€) fAt. Then we call the vector field -X, where 

a a 
X = € 'ax + a(x,€) ·~, 

the free streaming operator, and, as before, we call S=-(X+h) the streaming operator, 

-A=-h+J the collision operator, and B=S+J the (full) transport operator. 

Let us suppose for the moment that the problem is homogeneous, i.e., there are 
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no incident fluxes at the boundary and no internal sources. 

previous chapter that the abstract Cauchy problem 

We know from the 

%[(x,e,t) (Bu)(x,e,t) on Ax(O,T), (l.la) 

u(x,e,o) on A, (l.lb) 

u (x,e,t) on D x(O,T) (l.lc) 

IS well posed in a suitable L -setting. However, in order to prove that the solution 
p 

u(t), for u0 ED(B), is continuous for os;ts;T and continuously differentiable for O<t<T, 

one has to show that the closed operator B defined on a domain of functions satisfying 

( 1.1 c) generates a c0 -sernigroup of bounded operators U( t ). For characterizations of 

generators of C0 -sernigroups we refer to Section I.3. In principle, one may show 

directly that the operator B on a suitable domain satisfies the assumptions of the 

Hille-Yosida theorem and therefore generates a c0 -sernigroup. In the present chapter, 

however, we shall exploit the analysis of unique solvability of the problem developed in 

Chapter XI in order to derive the C0 -sernigroup property. 

During the past 30 years, the application of the Hille-Yosida and Rille-Phillips 

theorems and of related perturbation results has been the main strategy in proving 

existence and uniqueness for time dependent kinetic problems of the form (1.1). An 

exhaustive bibliography Of such equations would contain hundreds of references ranging 

from engineering and physical approaches to rigorous mathematics. Virtually all the 

existence and uniqueness results have been proved for special situations: specific 

collision operators deduced from (classical or quantum) mechanics or modeled ad hoc, 

regular and stationary geometries, purely absorbing (vacuum) or specular reflection 

boundary conditions, and specific function spaces (usually 1 1 or L2). The richness of 

the literature stems from the large variety of concrete situations encountered m 

practical kinetic problems. We outline a few high points in the historical development. 

The first successful implementation of the sernigroup strategy for a kinetic 

equation was carried out in the 1950's by Lehner and Wing [245, 246] (see also [244]), 

who analyzed a neutron transport problem in 1 2 in one dimensional geometry with 

monoenergetic particles and purely absorbing boundary conditions (K=O), obtaining 

results well beyond existence and uniqueness. Jorgens [204] extended the analysis to 

three dimensional geometry with K=O. Cercignani [81, 82] studj.ed a velocity dependent 

model with more general boundary conditions, though still in 1 2. Vidav [375] assumed 
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K=O, but generalized the setting to any Lp, 1~p<oo. A more refined analysis of the 

spectral properties of the transport operator in L1 was carried out by Larsen and 

Zweifel [242] for K=O, three dimensional geometry; and rather general collision 

operators, but for a compact velocity domain V. This article contains a good review of 

the literature up to 197 4. Under the same assumptions, namely K=O and V compact, 

and with some regularity conditions on the collision operator, Shikhov and Shkurpelov 

[327] obtained existence and uniqueness results in any L as well as numerous spectral 
p 

properties of the transport operator and of the semigroup it generates. An account of 

existence, uniqueness and asymptotics in L1 with K=O and a neutron transport setting 

1s given in [190] and Chapters 11-13 of [211]. 

The linearized Boltzmann equation in the spatial domain !Rn was studied in 

detail by Arsenyev [14]. Particular considerations of this problem have resulted from 

studies of the linearized problem as a prerequisite for solving nonlinear kinetic problems 

[20, 287, 354] in the manner first proposed by Grad [154]. The extensive paper of 

Shizuta [328] contains infinite medium results in any Lp, an excellent review of 

perturbation methods, and up-to-date references. 

An external force (a;;tO) in the kinetic equation was taken into account, among 

others, by Scharf [325], Molinet [267] and Drange [107]. Drange proved existence and 

uniqueness for infinite geometry and any Lp. This analysis was extended by 

Bartholorniius and Wilhelm [28] to take boundaries into account. Many results for 

models with a force term have actually been obtained in connection with the nonlinear 

Vlasov or nonlinear Boltzmann equation (see [352] and the related work cited therein). 

Recent results of this type connected to the Boltzmann equation are due to Asano [17] 

and Tabata [349] in a Hilbert space setting. 

A careful and complete analysis of the collisionless kinetic problem, which is 

generated by € • -lx alone, under general boundary conditions in L1 is due to Voigt 

[380], who discussed thoroughly the Green's identity which is crucial for the analysis. 

Earlier generalizations of the existence and uniqueness results to three dimensional 

geometry usually overlooked difficulties related to this issue and to the case of 

conservative boundaries. We mention, among the exceptions, Guiraud [179] and Schnute 

and Shinbrot [326], who carefully assumed the existence of traces and the existence of 

global solutions for any initial configuration. By limiting the number of collisions with 

the boundary via regularity assumptions, Busoni and Frosali [64] obtained a similar result 

for € • -/x in L1 with diffuse, mixed, and purely specular reflection. Based on his 

earlier results, Voigt [381] subsequently extended his analysis to the full (Boltzmann) 

transport operator in any Lp, but only for K=O (and a=O). Similar results appeared 
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independently in a paper by Greiner [171[. 

In Section 2 we shall generalize the existence and uniqueness theorems to K,eO 

and a;eO. These results were obtained by Beals and Protopopescu [37[ m a more 

general setting, as detailed in the previous chapter. The crux of the matter IS to show 

that the streaming operator S generates a C0 -semigroup, and for this we shall rely on 

the results obtained in Chapter XI. In Section 3 we shall extend this theory to 

stationary kinetic problems in one and three dimensional geometry and derive the 

wellposedness of the time dependent counterparts of stationary problems studied m 

Chapters II, III, V and X. In Section 4 we shall develop some general properties of 

positive semigroups in Banach I at tices, and in the next section apply this to obtain 

information on the long time behavior of the solutions to time dependent kinetic 

problems. 

2. Existence, uniqueness, dissipativity and positivity in Lp 

In this section we will specialize the results of Chapter XI to the case of a 

time independent phase space, transport operator and boundary reflection law. These 

results will be reformulated in a semigroup context. We consider a C00 -manifold A 

imbedded as an open subset of IRn xiRn. Let X be a vector field on A of the form 

X 

where a 1s assumed to be Lipschitz continuous on the closure A of A, and J.l is the 

Borel measure given by dJ.t(x,O dx dp(e); here p is the Lebesgue measure on A 

if a;lf;O, but an arbitrary positive Borel measure on A such that all bounded Lebesgue 

measurable subsets of a A have finite p -measure if a::O. In addition, we shall assume 

as before that the vector field X satisfies the divergence free condition 

n a 
L: ~ a.(x,e,t) 0 

j=1 '-j J 

as well as the requirement that every maximal integral curve of X whose extension to 

the left or right is finite has a corresponding left or right endpoint belonging to 

a A' {(x,e)taA 
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We do not make any convexity assumptions on the phase space. 

The above endpoint condition on X guarantees that the solutions (x(s), e(s)) of 

the system of differential equations 

dx ds = e(s), %f = a(x,e), 

* * with initial conditions (x(s ),e(s )) l A extended over the maximal s-interval (s0,s1) for 

which the curve lies in A approaches neither infinity nor the closure of A0 = 

{(x,e)lA e=o and a(x,e)=O} in a finite s-interval. This condition IS 

automatically fulfilled, for example, if a(x,e) • e=o, since in this case -lsf I e I 2}=0 

and therefore I e I IS constant on each integral curve. As a result, 

I -~sf I xI 2} I :$; 2C I xI for some constant C on each integral curve, and the 

statement follows from Gronwall's inequality. It is important to note, here and 

throughout, that the parameter s measures the "time" along a trajectory, and not the 

arc length ( cf. Section X1.3). 

In Chapter XI we have defined the Borel sets D as subsets of the sets D± 
± a 

of left and right endpoints of maximal integral curves of Y=n+X. Since in the 

present chapter the phase space does not display any time dependence and definitions 

will be altered accordingly, we will, to avoid confusion, denote the Borel sets D ± of 

Chapter XI by D(±) and, similarly, we shall write v(±) for the boundary measures on 

D(±); we shall only need this notation briefly. Let us define the Borel sets D and 

D + as the sets of all left and right endpoints of maximal integral curves of X whose 

interval of definition is finite to the left and right, respectively. We then have the 

identities 

D(±) = D ± X (O,T), (2.la) 

dv(±) = dv ± dt. (2.1 b) 

It is immediate from the results of Section XI.3 that there are unique Borel measures 

dv ± on D ± such that the Green's identity 

I Xvdl' 

A 

I vdv + -

D+ 

I vdv_ 

D 

(2.2) 
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holds for all v! 4>. The test function space 4> in this setting IS taken to be the 

space of Borel functions v on A with the following properties: 

(i) v is continuously differentiable along each integral curve of X. 

(ii) v and Xv are bounded. 

(iii) The support of v is bounded and there is a positive lower bound to the 

lengths of the integral curves which meet the support of v. 

Here the length of an integral curve IS again the length of the corresponding 

s-interval. 

By L I (A,dJL) we p, oc 
functions on A such that 

denote 

I u I P is 

the linear vector space of 

JL-in tegrable on every bounded 

JL-measurable 

JL-measurable 

subset of A on which the length of the integral curves passing through it is bounded 

away from zero. The following existence result for the "trace" is immediate from (2.1) 

in combination with Proposition XI 3.1. 

PROPOSITION 2.1. Suppose u and (X+h)u belong to L (A,dJL), 1:;;;p<oo. p 
has a unique trace u± in Lp,loc(D ±'dv ±) such that the Green's identity 

<Xu,v> + <u,Xv> J u_vdv_ 

D 

Then u 

(2.3) 

IS valid for all V!<l>. Further, if u_!Lp(D_,dv_), then U+!Lp(D+,dv+)' in which 
case h I u I P and I u I P- 1 Xu are JL-in tegrable and 

pJhluiPdJL 

A 

J lu_IPdv_ + pJ(sgnu)luiP- 1(Xu+hu)dJL. 

D A 

(2.4) 

Let us denote by F , 1:;;;p<oo, the space of functions u!L (A,dJL) such that p p 
(X+h)u! Lp(A,djt) and the trace u±! Lp(D ±,dv ±). We consider the bounded linear 

operators J:L (A,dJL)---+L (A,dJL) and K:L (D+,dv+)---+L (D ,dv ) and define the p p p p - -
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operator BK=-(X+h-J)K to be the restriction of the transport operator B to the 
d domain F p,K={u E F p : u _ =Ku +}. As in Chapter XI, the "derivative" X=dS is 

considered as a distributional derivative along integral curves. 

We state now general existence and uniqueness results for the abstract time 

dependent kinetic problem (1.1). We pay special attention to the positivity of the 

solution and consider separately the dissipative boundary condition II K II< 1 and the 

conservative boundary condition II K II= 1. 

THEOREM 2.2. Suppose IIKII<1 and 1~p<oo. Then: 

(i) The transport operator BK generates a C0 -semigroup {U(t)}t~O on 

LP(A,dJ.I), with IIU(t)ll ~ exp{tiiJII} for t~o. 

(ii) If fA (sgnu) I u I p-l(hu-Ju)dJ.I ~ 0 for all u E F p' then BK generates a 

contraction semigroup on L (A,dJ.I). 
p 

(iii) If K~O and (>. 0I+J)~O for some >. 0 tR, then BK generates a positive 

semigroup on L (A,dJ.I). 
f p 

If J A(hu-Ju)dJ.I~O for all nonnegative utF1, then BK generates a positive (iv) 

contraction semigroup on L1 (A,dJI). 

Proof: We extend X, J, h and K to act on complex functions. By the Hille-Yosida 

th.eorem it is sufficient to show that for any >.>IIJII and any f>.tLP(A,dJI) the 

modified problem 

has a unique solution u>. E F K and that p, 

(2.5) 

(2.6) 

The argument used to prove Theorem XI 4.3 shows that (2.5) has a unique 

solution u>. E F K' provided p, 

l1+(>.-IIJII)- 1 11JII]IIKII < 1 < >.IIJII- 1. (2.7) 

Suppose>. satisfies (2.7) and u>. is the corresponding solution of (2.5). Since IIKII<1, 

the identity (2.4) applied to h+>. instead of h gives 
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A D+ D 

J(sgnuA) I uA I p-l(f A +JuA)dll :$; lluA llp-lllf A +JuA II, 

A 
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which implies (2.6). To extend the result to the range A 1 > IIJII, we choose A 

satisfying (2.7) as well as A~A 1 , and write A1=A-A 0. One sees easily that if N is an 

invertible operator and if IAoi<IIN-lll- 1, then A0I-N has a bounded inverse with 

norm 

(2.8) 

Since I A1 1 <I A0 I< IIBK -lll- 1, we may apply (2.8) to A1I-BK and get 

which is the desired estimate for part (i). Hence, BK generates the strongly continuous 

evolution semigroup of the kinetic problem (1.1). 

Suppose u0 belongs to D(BK). Then u( • ,t) = U(t)u0( ·) is a C1 -function on 

(O,oo) in the strong topology of Lp(A,dll) with values in D(BK). Thus, u is a solution 

of (XI 2.7) on E=Ax(O,T) for any T>O. Here we have extended B and K to 

functions on E and D _ x(O,T) by setting [Bf)( • ,t) = B[f( • ,t)] and [Kg)( • ,t) = 

K[g( • ,t)). Now the remaining parts of the theorem follow at once from Theorems XI 

4.4, XI 4.5 and XI 4.6. Actually, contractivity and positivity are obtained for U(t)u0 

with u0 l D(BK), but this domain is dense in Lp(A,dJ.I). • 

We mention that for positive contraction semigroups in L1, Voigt [383) provided a 

proof which extends results of the type above to a. special class of unbounded collision 

operators J. This allows for including more general scattering kernels, as, for instance, 

the so-called free gas kernel [269). 

THEOREM 2.3. Let us suppose that IIKII=l and K~O, and that (A 0I+J)~O on 
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LP(A,d~t) (1~p<oo) for some >. 0 dt Set Km=amK' where {am};= 1 1s an 

increasing sequence of positive numbers with limit 1, and let {Um(t)}t~O be the 

semigroup generated by BK . Th~n, for each t~O, Um(t) converges in the strong 

topology to U(t) and {U(t)~~O is a C0 -semigroup in LP(A,d~t) satisfying IIU(t)ll ~ 
exp{tiiJJI}. 

Proof: For each t~O, the estimate of part (i) of the previous theorem provides a 

uniform bound for the operators {Um(t)}t~o· Therefore, it is sufficient to prove the 

convergence of Um(t)u0 as m-+oo for each u0 in a dense subset of Lp(A,dJl). We may 

treat the two cases u0~o and u0~o separately, and thus reduce the problem to 

proving the convergence for uo f c~ (A), uo~o, where c~ (A) IS the set of 

c1-functions on A of compact support. The functions urn(· ,t)=Um(t)u0 are solutions 

of (XI 5.1) with f=O and g0 =u0. As shown in the proof of Theorem XI 5.2, these 

functions converge in the norm of L (A,d~t) and the convergence is uniform with respect p 
to t on bounded intervals. • 

The Hille-Yosida argument of the proof of Theorem 2.2 leads to the estimate 

where Ran (>.I-BK)- 1cF K In this proof we have used the property JIKJI<l. On p, 
the other hand, if K~O and IIKII=l, and if (>. 0I+J)~O for some >. 0 fiR, then the 

generator BK of the C0 -semigroup {U(t)}t~O also satisfies 

because of a monotone approximation argument. The same approximation argument implies 

that D(BK) = D(BK)nF K In general, we will not find Ran (>.I-BK)- 1cF K· 
~ p, p, 

However, if D(BK)cF p,K' the operator BK will still generate the semigroup {U(t)}t~O' 

even if IlK II =1 and K~O. Conversely, if BK generates this semigroup, then BK=BK 
~ 1 

and Ran (>.I-BK)- cF p,K· This situation occurs, in particular, if the lengths of the 
a integral curves of the vector field Y=a-t+X on E=Ax(O,T) are bounded away from 

zero on E (see Corollary XI 5.3). 

One cannot expect similar results in the space of bounded measures on phase 

space, where even for the simplest examples, such as A=IRxiR .and a=O, the associated 

semigroup is not strongly continuous. However, as Suhadolc and Vidav [346] pointed out, 
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under certain restrictions on J one can find a proper subspace of the original space of 

measures on which the transport operator 1s densely defined and generates a 

C0 -semigroup. Yet, the conditions on J are restrictive and are not met in most 

physically interesting situations. 

Finally, we note that once the solution of the homogeneous system {1.1) is found, 

inhomogeneous versions of the kinetic problem can be solved rather easily. Indeed, 

suppose an inhomogeneous term f{x,e ,t) is added to the right hand side of {1.1a) and 

( 1.1 c) is replaced by 

u_(x,e,t) = (Ku+)(x,e,t) + g_{x,e) on D _ x{O,T). 

Then we may extend g+ =0 on D + and g_ on D to u t Lp{A,dJl) by suitable 

interpolation along integral curves (where u=O on integral curves without endpoints and 

on closed integral curves) and consider problem {1.1) for v=u-u, where an 

inhomogeneous term f{x,e,t) appears on the right hand side of {L1a). We thus obtain 

an inhomogeneous abstract Cauchy problem with BK arising as the semigroup generator, 

which can be solved using the variation of constants formula. From the positivity 

results of Sections Xl.4 and Xl.5 it is immediate that, under the hypotheses of either 

parts {iii) and {iv) of Theorem 2.2 or under those of Theorem 2.3, nonnegative g and f 

lead to a nonnegative solution. 

3. Connection between stationary and time dependent kinetic equations 

In Chapters II to X we have developed a comprehensive theory of stationary 

kinetic equations, both abstract approaches and specific applications. In all cases we 

have considered plane parallel spatial domains of the form {O,r), where O<r:Soo, 

For this case the operator X of the previous section in the absence of external forces. 
a 

becomes X=e 1 Ox 1, where one has an ordinary {and not an inner) product of the 

velocity variable and the spatial gradient. Then one may analyze the relationship 

T-1 
between the spectral properties of the operator T and those of the operator A, in 

conjunction with the contractivity properties of K, where (Tu)(e)=eu(e) and A 1s 

the collision operator. It is not evident how one may generalize such a spectral 

approach beyond one dimensional spatial domains. On the other hand, the spectral 

approach is amenable to the derivation of closed form solutions for many concrete 
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problems. 

In this section we shall apply the time depend,ent theory of Section 2 to derive 

existence and uniqueness results for stationary kinetic equations on general 

(multidimensional) spatial domains for bounded collision operators. Afterwards, we will 

apply the stationary existence and uniqueness theory developed in the earlier chapters 

of this monograph to derive the wellposedness of the corresponding time dependent 

problem for one dimensional spatial domains which are spatially homogeneous. 

We consider first the stationary kinetic boundary value problem 

e. %-i-(x,el + a(x,e). ff(x,e) + h(x,e)u(x,el - (Ju)(x,e) 

f(x,el on A, (3.la) 

on D_, (3.lb) 

where domains and functions are assumed to have the properties indicated m Section 2. 

This may be formulated as the abstract boundary value problem 

(X + h - J)u f on A, (3.2a) 

u = Ku+ + g_ on D . (3.2b) 

In accordance with Theorem 2.2 (for IIKII<l) and Theorem 2.3 (for IIKII=l and 

K~O), we consider separately dissipative and conservative boundary conditions. 

PROPOSITION 3.1. Let l!:>p<oo, and let II K II< 1. Then there exists a unique 

solution ue F p of problem (3.2) for every f E Lp(A,dll) and g_ E Lp(D _,dv _) if and 

only if 0 E u(BK). In this case the solution is given by 

(3.3a) 

where 

U(x,el = {l-.t(x,e)- 1s}F(x,e,s) g_(x,el (3.4) 

with .l(x,e) the length of the integral curve starting at (x,e) ED_. Here 
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F(x,e ,s) is an arbitrary nonnegative bounded Borel function on A which 1s 

continuously differentiable with respect to s, whose p-th power is integrable along 

trajectories, and which satisfies F(x,e,o) = 1 on D . 

Proof: The function u belongs to L (A,dll) if g p IS m L (D ,dv ), as one sees from 
p - -

the identity dll dv ds, which follows from (2.1b) and Proposition XI 3.2. 

Moreover, (u)_ =g_ and (u)+ =0. Thus utFP 1s a solution of problem (3.2) if and only 

if v=u-u is a solution of the vector equation 

which yields the proposition. • 

Suitable choices for F(x,e,s) are F(x,e,s) = 1 if i'(x,e) is bounded above on 

A, and F(x,e ,s)=e -s in general. These choices for F(x,e ,s) are adequate to prove 

the existence of a unique stationary solution, but, as we will see shortly, one must make 

a different choice to prove positivity for positive data. 

An analogous proof for conservative boundary conditions gives the following 

result. Note that in this case one may not conclude that the solution u is contained in 

FP. 

PROPOSITION 3.2. Let l~p<oo, and let IlK II =1 and K~O. Then there exists a 

unique solution u l L (A,dll) of problem (3.2) for every f t Lp(A,dll) and 
p A 

g_ l Lp(D _,dv _) if and only if Of u(BK). In this case the solution is given by 

A -1( A) u = -BK f+Bu + u, (3.3b) 

where u satisfies (3.4). 

THEOREM 3.3. Let 1~p<oo, and let either IlK II <1, or IlK II =1 and K~O. If for 

some E >0 the condition 

J (sgnu) I u I p-l(hu-Ju)dJl ~ E llull p 

A 

is satisfied, then problem (3.2) is uniquely solvable for any f t Lp(A,dJl) and 
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g t L (D ,d v ). 
- p - -

Moreover, if K~O and (>- 0I+J)~O for some >- 0 t IR, then the 

solution is nonnegative if f and g are nonnegative. Finally, for p=1 the condition 

J(hu-Ju)d~t ~ c llullp 

A 

for all nonnegative u t Lp(A,d~t) implies that problem (3.2) has a unique nonnegative 

solution if f and g are nonnegative. 

Proof: The hypotheses of the theorem imply, as a result of Theorems 2.2 and 2.3, 

that the evolution semigroup of the time dependent problem, with h(x,O replaced by 

h(x,€)+ c, IS a contraction semigroup. This in turn implies that the evolution 

semigroup of the corresponding time dependent problem itself has order equal or less 

than - c, and thus its generator BK (in the case II K II< 1) or BK (in the case K~O 

and IIKII=1) has its spectrum in the half plane Re >.~-c. From Propositions 3.1 and 

3.2 it then follows that problem (3.2) is uniquely solvable. The positivity of -BK - 1 

under the appropriate positivity and contractivity assumptions follows directly from the 

corresponding hypotheses in Theorems 2.2 and 2.3. 

It remams to prove that under the above positivity and contractivity 

assumptions the function u in (3.3b) is nonnegative if g_ and f are nonnegative. In 

order to prove this statement, it suffices to show that 

is nonnegative for nonnegative g_. With this in mind we will make a suitable choice for 

the function F(x,€ ,s) in (3.4). For nonnegative >. 0 such that (>- 0I+J)~O we define 

F(x,€,s) = exp { -J:[h(x,€,s)+>-o+1]ds' }· 

Then u belongs to L (A,d~t), is nonnegative if g ~0 and satisfies the estimate p -

G(x,€,s) = - F' (x,€,s)/F(x,€,s) ~ h(x,€,s) + >- 0 - {.t(x,O)-s}- 1, 

where F' is the partial s-derivative. This in turn implies that 
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Hence, due to the positivity of -BK -l, the function z IS nonnegative, and so is the 

solution u. • 

If the lengths of the integral curves of the vector a field Y=at+X on 

~=Ax(O,T) have a uniform positive lower bound, then one may apply Corollary XI 

5.3 to prove that BK (rather than BK) generates the strongly continuous semigroup 

{U(t)}t~O' even if K~O and IIKII=l. For this case we obtain solutions ufFP even 

if IIKII=l and K~o. 

Results analogous to Theorem 3.2 can be obtained for proiilems with nonnegative 

data in the space of measures. This was done by Nelson and Victory [285] for neutron 

transport. 

Next, let us derive the unique solvability of one dimensional time dependent 

problems from the unique solvability of their stationary counterparts. Suppose that T 

is an injective self adjoint operator and A is a positive self adjoint operator with 

closed range and finite dimensional kernel. Suppose D(T)nD(A) is dense in H. Let HA 

be the completion of D(A) with respect to the inner product 

(Au,v). 

We define HT as the completion of D(T) with respect to the inner product 

(u,v)T = (IT I u,v). (3.5) 

Writing z0 for the zero root manifold of T- 1A and z1 ={ufHA : (Tu,v)=O for all 

v f z0}, we denote by Hg the direct sum of z0 and the completion of z1 with respect 

to the inner product 

(u,v)g (3.6) 

We shall assume that HA cD(T) and that the inner products (3.5) and (3.6) are 

equivalent on D(T), i.e., that HT~HS. We may therefore identify HT and H8. 

The time dependent kinetic equation now has the form 
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ou + T ou 
7ft rx 

with initial condition 

-Au+ f, O<x<r, t~O, 

u(x,O) = g0(x), O<x< r, 

and boundary conditions 

Q+g(O,t) + RJQ_u(O,t), 

Q_u(r,t) = Q_g(r,t) + RJQ+u(r,t), 

if 0< T <oo, and the boundary condition (3.7c) along with 

llu(x,t)IIT = 0(1) (x-+oo) 

(3.7a) 

(3.7b) 

(3.7c) 

(3. 7 d) 

(3.7e) 

if T =oo. Here Q± are orthogonal projections onto T -positive and T -negative 

T -invariant subs paces, J is an inversion symmetry (i.e., an invertible isometry satisfying 

TJ = -JT and AJ =JA) and R describes the boundary reflection processes. 

It is instructive to consider for a moment the typical situation, where the 

Hilbert space H=L2(V,dp) for some one dimensional velocity domain VciR with Borel 

measure p and T is the multiplication operator (Tu)(€)=€u(€). Then the projections 

Q± and the inversion symmetry J are given by 

[ 
u(€), 

0, 

(Ju)(€) = u(-€). 

The Green's identity (2.3) can be specified further as follows: 

whence 

r J{e%i-v + eu-H}dp(€)dx = J €{u(€,r)v(€,r) - u(€,0)v(€,0)}dp(€), 
0 

v v 
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for E={O} or E={r} and for any p-measurable WcV. As a result, we may identify 

L2(D±,dv ±) with L2(V, I e I dp(e)), which is the Hilbert space HT On defining K 

= RJQ+ + RJQ_, we may show that K has the property IIKII=IIRIIH . This gives an 

indication that the stationary existence and uniqueness theory in HT (~ther than in H) 

should play a role in time dependent problems. 

We now return to the abstract kinetic equation. The existence theory for the 

stationary equation detailed in Chapters II, III, and V leads to the following result. 

THEOREM 3.4. Let 1:-::;p<oo, and let IIRIIH :-::; 1. Under the above conditions on T 

and A with T ~oo, the initial- boundary valte problem (3. 7) has a unique bounded 

solution u:[O,oo)->Lp(HT)~ for every g<HT, every g0 ELP(HT)~, and every bounded 

continuous function f:[O,oo)->Lp(HT)~ that is strongly continuously differentiable on 

(O,oo). 

Proof: On the Banach space Lp(HT)~ we define the operator 

A au 
(Bu)(x) = -T o-x(x) - Au(x), O<x<r, 

and the linear manifolds 

We define the operator BR as the operator B restricted to the domains 

{u<Fp,r : Q+u(O)=RJQ_u(O), Q_u(r)=RJQ+u(r)}, O<r<oo, 

According to Section 11.3, the stationary boundary value problem 
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(>.I-B)u T * + (>.I+A)u f, (3.8a) 

RJQ_u(O), (3.8b) 

Q_u(r) = RJQ+u(r), (3.8c) 

where for T =oo condition (3.8c) is replaced by 

llu(x)IIT = 0(1) (x-+oo), (3.8d) 

has a unique solution in HT whenever II R II H :S 1. 
T 

Moreover, for u=u>. we have the 

estimate 

liu>. ilL (H )T :S ~ !IfilL (H )T' 
p TO p TO 

for a dense set of inhomogeneous terms f. As a consequence of the Hille-Yosida 
A T 

theorem, we see that BR generates a C0 -semigroup on LP(HT) 0 . • 

4. Spectral properties of positive semigroups 

Under rather general conditions we have shown that problem (1.1) has a unique 

positive solution u(t)=UK(t)u0 described by the semigroup {UK(t]}t~o· In principle, 

the semigroups (UK(t)}t~O and {UO,K(t)}t~O generated by BK and SK=BK-J, 

respectively, can be computed from each other using the Hille-Dyson-Phillips expansion 

(4.1a) 

where 

( 4.1 b) 

and 
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n (IN. ( 4.1 c) 

Sometimes, explicit knowledge of u0,K(t) and the truncation of the senes (4.la) after 

finitely many nonzero terms lead to an explicit expression for the solution semigroup 

{UK(t)}t~o· In most applications, however, no such truncation occurs and the series 

expansion ( 4.la) is so complicated that one cannot even extract from it the asymptotic 

behavior of the solution as t--+oo. Yet, one might expect that the asymptotic behavior 

of the solution, with its obvious implications for the approach of the physical system to 

equilibrium as time elapses, is related to the rightmost part of the spectrum of the 

generator BK, and indeed this will turn out to be the case. 

As we have seen, the semigroups which anse m kinetic theory are defined 

generally on Banach !at tices. For this reason we shall examine positive semigroups 

{U(t)}t~O on Banach lattices E with order relation ~ (cf. Section 1.4). Throughout the 

remainder of the chapter we shall repeatedly employ the classification of points of the 

spectrum u(B) of a closed linear operator B as point or eigenvalue spectrum u p(B), 

continuous spectrum u c(B), and residual spectrum u r(B), and also as approximate point 

spectrum u (B). For definitions we refer to Section 1.3. In this section we will ap 
introduce and discuss some additional notions of this type. 

Consider a closed linear operator B. By the spectral bound of B IS meant the 

(extended) real number 

s(B) sup {Re A ~ A ( u(B)}. 

The peripheral spectrum of B is the set 

u (B) = {:A E u(B) : Re :A =s(B)}. per 

We recall that a closed operator B is Fredholm if B has closed range, Ker B has finite 

dimension and Ran B has finite co-dimension. The essential spectrum of B is the set 

u ess(B) = {>. E<C : (:Al-B) is not Fredholm}. 

By the essential spectral bound is meant the (extended) real number 

sup {Re A A E u ess(B)}. 
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The asymptotic spectrwn of B is the set 

The operator B is said to be additively cyclic if a+i.B f rr (B) implies per that 

a+ik,B f rr per(B) for all kf :Z. 

Although these spectral concepts are defined for arbitrary closed operators, 

they are clearly gauged toward generators of semigroups, and, more specifically, toward 

generators of positive semigroups in Banach lattices. Indeed, it is common to refer to 

s(B) a.s the spectral bound of the semigroup {U(t)}t2':0' where B is its generator, and 

analogously for the other notions. Unfortunately, this can lead to some confusion. In 

addition, the notions of peripheral spectrum and asymptotic spectrum, as well as 

additive cyclicity, have dual definitions in semigroup theory, and the usage must be 

discerned from the context. Let us assume {U(t)}t~O 1s a C0 semigroup. The 

peripheral spectrwn of U(t) is defined to be the set 

rr per(U(t)) = {A E u(U(t)) : I A I =r(U(t))}. 

By the Fredholm radius or essential spectral radius of U( t) is meant the real number 

ress(U(t)) = sup {I A I : (AI-U(t)) is not Fredholm}. 

The asymptotic spectrwn of U(t) is the set 

The bounded operator U( t) IS said to be additively cyclic if I A I ei T 

u (U(t)) implies that I A I eikr E u (U(t)) for all kt:Z. per per 
The relationship between the spectrum of the generator of a semigroup and the 

spectrum of the semigroup operators themselves is given by the Spectral Mapping 

Theorem for C0 semigroups. For the proof we refer to any standard text on semigroup 

theory (e.g., [194, 213, 301]). 

THEOREM 4.1. Let {U(t)}t;::>:O be a C0 -semigroup on a Banach space X with 

infinitesimal generator B. 



(i) 

(ii) 

(iii) 
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there exists 

n € IN, is m 

the numbers 

such that 

If ).. f o-c(B) and if none of the numbers ' =' + 2 1!' i n n • IN 1s 1n "n " t ' c ' 

>-.t o- P(B)Uo- r(B), then e f o- c(U(t)). 

In terms of the spectral bound s(B) and the type w0(U) of a semigroup 

{U( t )}t:?:O' the Spectral :Mapping Theorem expresses that, Ill general, 

-oo~s(B)~w0(U)< +oo. Several explicit examples have been constructed for which 

s(B)<w0(U). The first such example was constructed by Hille and Phillips ([194], 

Section 23) with the help of fractional integration theory. Less complicated examples 

followed (see [5, 191, 173, 279, 398, 403]), mostly as by-products of a still 

unsuccessful attempt to find necessary and sufficient conditions in order to have 

s(B)=w0(U) for any Banach space or for positive semigroups on any Banach lattice. 

Greiner et al. [173] were the first to construct a positive semigroup {U(t)}t:?:O such 

that s(A)<w0. A simple example of such a semigroup was given by Altomare and 

Nagel [5]. Following their account, we consider the Banach lattice E of all real 

continuous functions on [O,oo) that vanish at infinity and are integrable with respect to 

the weighted measure exdx, endowed with the norm 

llull sup lu(x)l + J00 lu(x)lexdx. 
x:?:O 0 

For the semigroup we take (U(t)u)(x)=u(x+t), whose generator is the operator 

(Bu)(x)=%-i- on the domain of those ufE that are continuously differentiable on [O,oo) 

with derivative in E. Then it is easily verified that w0(U)=O and s(A)=-1. In fact, 
\ . h R \ . . I f B . h d' . )., X every " Wlt e "< -1 IS an e1genva ue o Wlt correspon mg e1genvector e . 
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In some settings it is possible to demonstrate the equality of the type of a 

semigroup and the spectral bound of its generator. An important result in this 

direction has been provided by Gearhart [131], who derived sufficient conditions m a 

(separable) Hilbert space, in terms of properties of the resolvent of the generator (see 

also [337, 192] for related results). It is important to note that the equality 

s(B)=w0(U) is valid for all positive semigroups in L1-, L2-, L00 - and C-spaces. 

(See [102] for all of these results except for L2-space; for the latter see [172].) The 

matter is still open for positive semigroups in the remaining L -spaces. A partial 
p 

result in this direction has been provided by Voigt [384] by using interpolation theory 

for positive operators. 

The next result IS difficult to reference concisely, smce it is due to quite a 

number of authors and most of it was developed in stages. Additive cyclicity of 

positive semigroups on Banach lattices (part (iii) of Theorem 4.3 below) was first proved 

by Derndinger [102]. At that time there already existed such a result in Banach 

lattices of continuous functions (see [103]). The multiplicity structure of an isolated 

eigenvalue at the spectral radius of a positive operator (part (iv)) was studied by Lotz 

[251] (also [324], Theorem V 4.9). The group structure of the peripheral spectrum of 

the generator of a positive semigroup (parts (v) and (vi)) was studied in detail by 

Greiner [169] and Greiner et al. [173] Special situations were already found by Lotz 

[251]. 

For the proof of part (iv) of Theorem 4.3, we will need a lemma due to 

Derndinger [102]. 

LEMMA 4.2. Let X be a (real or complex) Banach space, and let {U(t)}t~O be a 

C0 -semigroup with generator B. Consider the Banach quotient space 

X= {{xn}00n= 1 c£ (X): lim IIU(t)x -x 11=0 uniformly in nd-1 }/c0(X), 
oo tJO n n 

where c0(X) is the subspace of sequences in X norm convergent to zero. Let 

[{xn}:= 1] denote the equivalence class of the sequence {xn}:= 1. Then the operators 

U(t) on X defi~ed by U(t)[{xn}:= 1] [{U(t)xn}:= 1] form a C0 -semigroup on X, 
whose generator B is given by 
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where D(B) consists of those [{xn}~=l] such that xn fD(B), {Bxn}~=l is a bounded 

sequence and ! l ~ IIU( t )Bxn -Bxn II =0 uniformly in n d .. J. Moreover, the operator B 

has the following properties: 

(]' (B) p (]' (B) ap (]' p(B)UrJ' c(B), ( 4. 2a) 

(]' c(B) </>, ( 4.2b) 

(]' r(B) = (]' r(B). (4.2c) 

Proof: It IS easy to check that B and U(t) are well-defined. It is also easy to check 

that U(t) and U(t) have the same norm, whence w0(U)=w0(U). Using the Laplace 

transform it follows that (AI-B)- 1 [{xn}~=l] = [{(AI-B)- 1 xn}~=l], which implies the 

expression for D(B). Next, if A f rJ' (B), then there exists a bounded sequence p 
{xn}~=l in D(B) such that 

I im IIBxn -Axn II = 0, 
n-+oo 

( 4.3) 

whence A f rJ' ap(B). Conversely, if A f rJ' ap(B), then there exists a bounded sequence 

{xn}~=l in X satisfying (4.3). Clearly, 

t 
IIU(t)x -x II :5: 11-f eA(t-s)U(s)(B-AI)x dsll + I e>.t-llllxnll n n 0 n 

converges to zero as t 10 uniformly in nd..J, whence the equivalence class of {xn}~=l is 

an eigenvector of B corresponding to the eigenvalue A and A f rJ' (B). 
A A p 

If A f rJ' (B), then A Et rJ' (B) and there exist c > 0 and a bounded sequence 
r p 

{zn}~=l such that 

for any bounded sequence {xn}~=l· Therefore, for all XfX there exists ndN such 

that, for z=zn' 

IIBx-Ax-zll ;;?: c, ( 4.5) 

whence either A f rJ' rfB) or A f rJ' p(B). The !at ter IS excluded because of ( 4. 2a). 
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Conversely, if A f u r(B), then A tt u p(B) and there exists z EX such that (-!.5) 

holds true for every xfX Then, for zn=z, one has (4.4) for every bounded sequence 

{xn}:= 1 in X such that IIU(t)xn -xn II vanishes as t 10 uniformly m n fIN, whence 

either A f u (B) or A f u (B). The ]at ter is excluded because of ( 4. 2a). • r p 

* THEOREM 4.3. Let E be a complex Banach lattice with dual lattice E , and let 

{U(t)}t~O be a positive semigroup on E with generator B. 

statements hold true: 

Then the following 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

r(U(t)) f u(U(t)). 

s(B) f u(B) if s(B) > -oo. 

If z = r(U(t)) is a pole of (zi-U(t))- 1, then uper(U(t)) is cyclic and 

r(U(t))- 1u per(U(t)) consists solely of roots of unity. 

u (B), u (B)nu (B), u (B)nu (B) and u (B)nu (B) are per per p per ap per r 
additively cyclic. 

If s(B) > sess(B) and s(B) is an eigenvalue of B with finite algebraic 

multiplicity, then ( u per(B)-s(B)) is a finite union of additive subgroups of iiR 

and consists only of eigenvalues of B of finite algebraic multiplicity. 

If s(B) is an eigenvalue of B of algebraic multiplicity 1, then {u (B)-s(B)} per 
is an additive subgroup of iR and consists only of eigenvalues of B of algebraic 

multiplicity 1. 

Proof: Part (i) follows immediately from Theorem I 4.2. In order to prove part (ii), 

one first derives the Laplace transform 

( ) -1 Ioo -At ( ) Al-B u = e U t udt, 
0 

ufE, Re A>s(B). ( 4.6) 

* Indeed, for nonnegative ufE and nonnegative ufE and s(B)<A~Jl one has 

Using monotone convergence one may interchange the order of summation and integration 

and obtain (4.6) in the weak sense. One proves the integral in (4.6) to converge in the 

strong operator topology with the help of a Cauchy sequence argument, which settles 
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{R \ }00 
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Now, choosing 

monotonical! y 

a sequence 

decreasing 

{.>.n}~= 1 with limit 

and II(>- I-B)- 1 11->oo 
. n 

s(B) such 

as n~oo, 
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that 

the 

Banach-Steinhaus theorem implies the existence of a nonnegative vector u ~ E for which 

{Ill (Anl-B)- 1u I 11}~= 1 diverges. From this statement one gets the divergence of 

{II (Re An -B) - 1u II}~= 1, which in turn implies that s(B) ~ a(B) when finite. 

In order to prove part (iv), we apply Lemma 4.2. Then {U(t)}t~O is a strongly 
A A 

continuous positive semigroup on E with generator B. Now, assuming a (B) nonempty 
p 

and putting C=B-s(B)I, we take O*u~D(B) with Cu=Au and Re A=O. Then according 
.>.t to part (i) of Theorem 4.1, we have U(t)u=e u and hence the equality 

U(t)lui=IU(t)ul=leAtul=lul for t>O. We may identify Elul (those 

v ~ E for which I vI is dominated by some multiple of I u I) with C(X) for some 

compact Hausdorff space X ([324], Corollary to Theorem II 7.2), while the restrictions 

of the operators e -s(B)tu( t) to this ideal correspond to Banach algebra 

*-homomorphisms on C(X) (cf. [324], III 9.1, Ex. 25). As a result, there must be a 

sequence {v }00 such that e -s(B)tU( t )v =en( -s(B)+A )tv for all t > 0. Hence, 
n n=-oo n n 

a (B)na (B) is additively cyclic. Using ( 4.2a) we immediately get the additive per p 
cyclicity of a per(B)na ap(B). 

follows by using the adjoint. 

of a (B). per 

The additive cyclicity of the residual part of a per(B) 

All these statements together yield the additive cyclicity 

From part (iv) it follows directly that the peripheral spectrum of U(t) consists 

only of isolated points whenever r(U(t)) 1s an isolated eigenvalue, while 

r{U(t))- 1a (U(t)) consists only of roots of unity. per 
In order to prove (v), let s(B) > sess(B). Then (>.I-B) is a Fredholm 

operator for all A~ a per(B) and (.>.1-B)-l is bounded and defined on E for such A 

except, perhaps, for countably many. These countably many A are eigenvalues of 

finite algebraic multiplicity (because of the continuity in A of the Fredholm index), while 

(a per(B)-s(B)) is the union of additive subgroups of iiR. Finally, to derive (vi) from 

(v), it is sufficient to show that s(B) is the eigenvalue with the maximal pole order 

among the eigenvalues in the peripheral spectrum of B. Indeed, assuming that s(B) is a 

pole of (.>.I-B)- 1 

n~m. Using (4.6) 

m a per(B), 

lim ()n( ())-1 of order m, we have A->s(B)I.>.-sBI .>.1-sB =0 for all 

and taking a nonnegative u~E we have, for another pole s(B)+ip 

I .>.-s(B)-ip In I foo e-.>.t<U(t)u,v>dt I $ I .>.-s(B)-ip I n<(Al-B)- 1u,v> 
0 
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* for any nonnegative v t E . Since s(B)+ip is a pole of (AI-B)- 1, its order cannot 

exceed m. • 

In Section 1.4 we have introduced the notions of real and complex Banach 

lattices and discussed some of the properties of positive operators on such spaces. A 

related concept is irreducibility, which we define here in a semigroup context. A 

semigroup {U(t)}t~O on a Banach lattice is called irreducible if, for each nonzero u m 
* the positive cone of the Banach lattice E and for each nonzero u in the positive cone 

* * * of the dual Banach lattice E , there exists t 0 =t0(u,u )~0 such that <U(t0)u, u > > 0. 

* If t 0 does not depend on u , then {U(t)}t>O is called strongly positive. If t 0 does not 
* -

depend on either u or u , then {U(t)}t~O is called positivity improving. 

In time dependent kinetic theory, where B IS the full transport operator 

(actually the operator BK of Section 2) and {U(t)}t~O is the evolution semigroup of the 

system, the spectral bound s(B) is expected to be an isolated eigenvalue which 

determines the long time 

with eigenvector 'Po• and 

a long time behavior of 

some A< s(B) as t-+oo. 

behavior of the system. If s(B) is finite, algebraically simple 

the only point of u (B), we expect from physical intuition 
per (B) A 

the system of the type u(x,e,t)= es t'P0(x,e)+o(e t) for 

Further, we would expect the eigenfunction <p0 (x,e) to be 

nonnegative. The situation turns out to be more complicated. First, we give some 

definitions. By a leading eigenvalue we mean s(B) t u (B), where at least one of the 
p 

corresponding eigenvectors is nonnegative. We call A a dominant eigenvalue if 

At u P(B)nu per(B) and A is algebraically simple. Finally, we call A a strictly 

dominant eigenvalue if A is a dominant eigenvalue and, at the same time, sup {Re p : 

p t u(B), p ;CA} < A. 

The next theorem describes some properties of dominant eigenvalues. It has 

important applications to kinetic equations, where the time evolution semigroup can often 

be proven positive and irreducible. Part (i) was first obtained by Vidav [375] for a 

specific transport problem. His proof was based on duality rather than irreducibility 

arguments. An early version of parts (ii) and (iii) was worked out by Angelescu and 

Protopopescu [11] for another transport problem. The subsequent generalization to 

abstract positive semigroups is due to Voigt [378] and Greiner eta!. [173] 

* THEOREM 4.4. 

{U(t)}t~O be a 

Let E be a complex Banach lattice with dual lattice E , and let 

positive semigroup on E with generator B. Then the following 

statements hold true: 
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(i) If ress(U(t)) < r(U(t)), then s(B) is a dominant eigenvalue with finite algebraic 

multiplicity and u (U(t))={es(B)t}. 
per 

(ii) If ress(U(t)) < r(U(t)), then {U(t)}t~O is irreducible if and only if the spectral 

bound s(B) is an algebraically simple, strictly dominant eigenvalue of B and the 

associated spectral projection P s(B) is positivity improving. 

(iii) If r ess(U( t)) < r(U( t )), then {U( t)} t~O IS irreducible if and only if 

>.(t)=es(B)t is an algebraically simple eigenvalue of U(t) for all t>O and the 

associated spectral projection P>.(t) is positivity improving. 

Proof: In order to settle part (i), denote by P 0 the degenerate projection 

corresponding to uper(U(1)). The restriction {U0(t)}t~O of {U(t)}t~O to Ran P 0 can 

be thought of as a semigroup of matrices, and therefore there are {3 1, ... ,/3k such that 

u per(U(t)) 

tf3. tw 0(U) 
Then f3·=e·+in. and ie Jl=e imply e-=w0(U). 

J J J J t 
Part (iii) of Theorem 4.3 

implies that exp(itnj) is a root of unity. Therefore 2irnj is rational. Since this has 

to be true for all t>O, we conclude nj=O, and thus {3 1 = ... =f3k. As a result of part 

(i) of Theorem 4.1 we get f3 1= ... =f3k=s(B). Then, denoting the restriction of B to 

Ran P 0 by B0, we can apply matrix algebra to obtain s(B)=s(B0)=w0(U0). 

Let us prove (ii) and (iii). The existence of a positive eigenvalue l'o(t) with a 

nonnegative eigenfunction cp0 E Lp follows from Vidav's generalization [37 5] of the 

Krein-Rutman theorem [223, 229]. Moreover, following Kato ([213], Section III 6.6), one 
* may show that the adjoint semigroup U (t) also has p 0(t) as an eigenvalue with 

* * nonnegative eigenfunction t/lo E E . Since U(t) (and therefore U (t)) is irreducible, one 

obtains 

* for some t 1 >0 and all nonnegative o .. vEE, and 

for some t 2 >0 and all nonnegative o .. uEE. Hence, 'Po and t/lo are strictly positive 

vectors. 

Suppose now that <p is another eigenvector of U(t) corresponding to p 0(t) 
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and choose it (taking, if necessary, 

Then <p cannot be 

a linear combination with ~.p0 ) such that 

<<p,I/Jo>=O. 

U(t)l<pl. Thus, 

nonnegative, and therefore I U(t)<p I < 

* J.to(t)< I <pI ,¢0 > = <I U(t)<p I ,¢0 > < <U(t) I <pI ,¢0 > <I <pI ,U(t) ¢ 0 > 

which is a contradiction, and J.to(t) is geometrically simple. 

Suppose J.t 0(t) were not algebraically simple. Then, there exists <pl!!O such 

that (U(t)-J.t 0(t))<p=<p0. But this is impossible in view of the estimate 

* o < <~.p0 ,¢ 0 > = <(U(t)- 110 (t)I)~.p,I/Jo> = <~.p,(U (t)- 110(t)I)¢0 > o. 

Theorem 4.1 together with the geometric simplicity of J.to(t) show that the equation 

e>.t=J.t0(t) has only one solution >. 0. The eigenvalue >. 0 is algebraically simple, 

because (B->. 0I)<p=<po implies (U(t)-J.t0(t)I)<p=texp(>. 0 t)<p0 which contradicts the 

algebraic simplicity of J.to(t). 

In order to prove that P 0 is positivity improving, it suffices to show that 
* <P 0u,v > > 0 for all nonnegative Q,.u f E and o .. v f E . However, if this is false, there 

exists a nonnegative o .. uf E such that P 0u=0. Using ( 4.6) we also have 

Joo At 
P 0u = e- U(t)udt, 

0 
Re >.>s(B), ( 4.7) 

whence U(t)u=O for all t>O. The latter obviously contradicts the irreducibility of 

{U(t)}t~O' whence P 0 is positivity improving. 

Conversely, assume that P 0 is positivity improving and has rank one. Let 
* o,.ufE and o .. vfE be nonnegative. Then <P0u,v> > 0 and 

-s(B)t -s(B)t e <U(t)u,v> = <P0u,v> + <e U(t)(I-P0)u,v>, 

which tends to <P 0u,v> for large t. Therefore, <U(t)u,v> >0 for all t large enough, 

which implies that {U( t)} t~O is irreducible. • 

One issue that was left open in the above theorem is the question of whether 
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one has the decomposition 

m the case when sess(B)<s(B). Here Uas(t) accounts for the contribution from the 

asymptotic spectrum of the generator, while Uremainder(t) is the remaining contribution, 

having a type strictly less than w0 (U). Such a result would be relevant to the study 

of the long time behavior of a kinetic system governed by a positive semigroup, since it 

would imply that the asymptotic spectrum of the generator determines the long time 

behavior of the kinetic system. Using the asymptotic spectrum of the generator, one 

could then write down an asymptotic series for the semigroup for t-+oo, containing the 

eigenvectors and generalized eigenvectors of the generator corresponding to the 

eigenvalues in its asymptotic spectrum. At the same time one would know that the 

remainder contribution to the semigroup has a smaller exponential increase in time than 

the asymptotic series. Unfortunately, this is not the case for general positive 

semigroups. Indeed, if {V(t)}t~O is a positive semigroup on a Banach lattice F with its 

generator C satisfying s(C)<w0(V), then on choosing A with s(C)<A<w0 (V) and 

defining E=F<fl({; and U(t)=V(t)<tl{eAt} one obtains a positive semigroup {U(t)}t~O 
with its generator B satisfying sess(B)<s(B)<w0(U), while IIV(t)ll grows faster as t-+oo 

At 
than e The real issue, however, is whether sess(B)<s(B) for a positive semigroup 

on an Lp-space with l$;p<oo implies a decomposition of the type (4.8). However, 

since in general the semigroup in the decomposition is not positive (certainly not if the 

original semigroup is irreducible), one cannot exploit the equality of the spectral bound 

and the type for positive semigroups in certain Lp -spaces to reach such a co11clusion. 

Indeed, the answer to this question is unknown. 
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5. Spectral and compactness properties for kinetic models 

In this section we will study positive semigroups related to the operators S, J 

and K introduced in Section 2. We shall assume that J and K are positive operators, 

so that the time evolution semigroup is positive and the theory of the previous section 

applies. For the sake of con vemence we shall replace J by cJ, where c dt Under 

the hypotheses of 

replaced by cJ, is 

IlK II =1, we have 

Theorem 2.2, the operator Bc,K' defined as the operator BK with J 

the generator of a positive semigroup U K( t ), provided II K II< 1. If c, 
to take a suitable closed extension of this operator. Similarly, we 

will define SK as the operator Bc,K {or a suitable closed extension if IIKII=1), for 

which J=O. In this way we can treat a fixed operator J multiplied by a constant c, as 

is done in neutron transport theory, where c represents the number of secondaries per 

collision. In addition to positivity we shall assume certain compactness properties of 

the collision operator. 

We begin with a simple monotonicity property of the semigroups {Uc,K{t)}t~o· 

Suppose that we have two time dependent kinetic problems on the same phase space, in 

the same Lp -setting and with the same free streaming operator. Denoting c, K and J 

for the first problem by c1, K 1 and J 1 and those for the second problem by c2, K 2 

and J 2, we have 

u K (t) ~ u K. (t), t~o. 
c1' 1 c2, 2 

whenever c1 ~c2 , K 1 ~K2 and J 1 ~J2 . One way to derive the above inequality is to 

follow step by step the arguments leading to the main existence results in Sections 

XI.4 and XI.5. We would then obtain this monotonicity result more generally, assuming 

time dependent phase space, acceleration and boundary conditions, even in spaces of 

measures. Another way to obtain this result applies to the present semigroup context. 

On writing the Hille-Dyson-Phillips expansion for both semigroups, one immediately gets 

the above monotonicity result by term by term comparison. Since the operator norm on 

a Banach lattice is monotonic on the cone of positive operators, we immediately find 

w{U KJ)~w{U KJ) 0 c1, 1' 1 ° c2, 2' 2 

as well as 
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r(U K J ) ~ r(U K J ), 
c1, 1' 1 c2, 2' 2 

where we have explicitly displayed the dependence of the semigroups on the collision 

operator. A similar monotonicity property can be derived for the spectral bounds of 

the serrugroups. Using the Laplace transforms of the semigroups, we first prove the 

monotonici t y for the resolvents of the generators on {>- € <C : Re >- >w0 }, where wo 
IS the type of the larger serrugroup. Observing that the Laplace transform formula 

holds for all >. exceeding the spectral bound (cf. (4.6)), we may employ the 

monotonicity of the resolvents to get the monotonicity of the spectral bounds. In this 

way we do not have to make assumptions that guarantee the equality of spectral bound 

and type, as was done in [211] where monotonicity properties of neutron transport 

semigroups were treated in detail. 

For many explicit models it IS known that time dependent kinetic equations have 

a dominant eigenvalue if c becomes sufficiently large. The next results express this 

fact. 

* PROPOSITION 5.1. If, for some n fIN and A fIR, the operators 

QA (c)=((>-I-SK)-lcJ)n improving for * all A> A , then are compact and positivity 

s(B K)-+oo and r(U I(( t ))-+co as c-+oo. c, c, 

Proof: Consider first the limit for the spectral bound. Since QA(c) is compact and 

positivity improving, it follows that O<r(QA (c)) fa p(QA (c)). Then, for every c>O and 

for some almost everywhere positive <pc' one has QA(c)<pc=r(Q),.(c))<pc. Using the 

Spectral Mapping Theorem we get, for RA(c)=(>-I-SK)- 1cJ, RA(c)<pc 

fcr(RA(c))<pc' where fc IS an n-th root of unity. Since RA(t) is positive and 

<p c is nonnegative, we have f c = 1, whence 'P c f D(SK)=D(B c,K). Since RA (c) depends 

analytically on A and the eigenvalue r(R>.,K(c)) is algebraically simple, 'Pc can be 

chosen to depend analytically on c. From Theorem VII 1.8 of [213] it follows that 

(>.I - S c J) 
r(RA(c)) 'Pc 

0, 

where ir(RA (c)) =r(RA ( 1 )) and thus <p c =<p does not depend on c. Therefore, 

* >. < >. ~ s(B 1 ). 
r(RA (1))- ,K 
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Since r(RA (1)) tends to zero as A-+oo, we see that s(Bc,K) converges to infinity as c 

does. 

To obtain the limit for the spectral radius, we first observe that 

At 
e 

smce A is an eigenvalue of Bc,K if c=r(RA(l))- 1. Hence, if c tends to infinity, so 

does the corresponding eigenvalue A (as a result of the fact that the analytic function 

r(RA(1)) is strictly monotonically decreasing), and hence r(Uc,K(t)). • 

The assumption that QA(c) is positivity improving for sufficiently large A is 

not essential for deriving the above proposition. 

* 
It is sufficient to assume 

r(QA(c))>O for some A>A , some c>O and some nd~. 

* 
Analyticity will 

that 

then 

guarantee that r(QA (c))>O 

* r(QA(c))=O for some A>A 

for all A>A , all c>O, and all nfiN. In fact, if 

* and some nfiN, then r(QA(c))=O for all A>A , all c>O 

and all n fIN. 

So far we have proved that s(B K) tends to infinity as c-+oo, without linking c, 
this property to the existence of a dominant eigenvalue. The key to its existence is 

the compactness condition in the above proposition. We call J resolvent compact with 

respect to SK, if for some nfiN and all A>A* the operator Q.>..={(AI-SK)- 1J}n is 

compact. By analyticity the operator QA will then be compact for all A in the 

* connected component of SK to which (A ,oo) belongs. 

The following proposition is an auxiliary result that will enable us to prove the 

existence of a dominant eigenvalue for sufficiently large c. 

PROPOSITION 5.2. If J is resolvent compact with respect to SK, then the operator 

* Al-B K is invertible as a bounded operator for all A >Re A , except for a discrete c, 
set of points {Ak}k= 1 , which are eigenvalues of B c K of finite algebraic multiplicity. 

' 

Proof: If J is resolvent compact with n=1, then IIQA 11-+0 as ReA-+oo so that 1-QA 

is invertible as a bounded operator for A real and sufficiently large. Then the 

proposition follows from the analytic version of the Fredholm alternative. If J is 

resolvent compact with n > 1, then (1-(AI-SK) - 1 J) is a Fredholm operator of index zero 
* for all .>.. with Re .>.. > .>.. which is invertible for .>.. large enough, and the same 

argument completes the proof. • 
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These two propositions then yield the existence of a dominant eigenvalue for 

sufficiently large c. Again, one may replace the assumption that QA be positivity 

* improving with the assumption that r(Q>.)>O for some (and hence all) A> A and 

n E IN. 

* THEOREM 5.3. Let QA be positivity improving for some A>A and some nEIN. 

Then for sufficiently large c the operator B K has a dominant eigenvalue, to which c, 
corresponds a strictly positive eigenfunction. 

Let us define E 1 (t) = U0 K(t)J and 
' 

t 
E (t) = J E 1(s)E1(t-s)ds, n=2,3, ... , n 0 n-

where U0 K(t) is the semigroup generated by SK' Here and in the following, the 
' integrals are understood as Riemann integrals in the strong topology. The bounded 

operator J is called SK-smoothing, if there exists n E IN such that En(t) is a compact 

operator for all t>O, and the mapping t->En(t) is continuous on (O,oo) in the uniform 

operator topology. Under the assumption of J being SK-smoothing, the above results 

on the existence of a dominant eigenvalue can be extended to results on other points 

of the asymptotic spectrum. In this way one may derive a more refined picture of the 

long time behavior of time dependent kinetic systems. 

The relevance of smoothing perturbations to kinetic problems was already 

realized by Jorgens [204}, although similar compactness arguments had been previously 

used by Lehner and Wing [245, 246] in a somewhat different context. Vidav [376] 

extended Jorgens' result to a quite general setting. For related results involving 

compact perturbations, holomorphic operator valued functions and positive operators, we 

refer to Shikhov and Shkurpelov [327] and references therein. 

The next theorem generalizes the results of Vidav; the proof improves upon the 

exposition of Shizuta [328], which was given there for the special case 8A=O. 

THEOREM 5.4. Let J be SK-smoothing. Then B K generates a C0 -semigroup U K(t) 
c, * c, 

such that every point of u(U K(t)) lying outside the circle I ~ I =exp(A t) is an c, 
isolated eigenvalue of finite algebraic multiplicity. The asymptotic 

consists of isolated eigenvalues with finite algebraic multiplicity, and 

finite number of eigenvalues of B K in the half plane {A E C c, 
If the eigenvalues in the set u as(Bc K) are 

' 
any ,8>0. 

spectrum u as(Bc,K) 

there are at most a 

* : Re A>A +,8} for 

ordered such that 



436 BOUNDARY VALUE PROBLEMS IN ABSTRACT KINETIC THEORY 

Re .>.. 0 ~Re .>.. 1 ~ ... , then there exists a positive constant M, depending on {3, such 

that 

( 5.1) 

* where n is the number of eigenvalues \ whose real part is strictly greater than .>.. +f3 
and Pi 

outside 

is the eigenprojection co:responding to \· The spectrum of Uc,K(t) lying 

the circle I ~ I =exp( .>.. t) consists of isolated eigenvalues Jlk =exp( .>.. k t) 

Proof: Given T>O, one may find M=M{T) such that 

IIU0 K(t) II ~ M, o~t~T. 
' 

By induction, we obtain 

Mn n-1 
liE {t)ll ~ t , O~t~T. 

n {n-1)! 
{5.2) 

Define 

t 
H (t) = J E (s)U K(t-s)ds, n=1,2, .... n 0 n c, 

Then the mapping t-+Hn{t) is continuous on {O,oo) m the uniform operator topology. 

Indeed, let t > t 0 > 0. Then 

Hn(t)-Hn(t0) = Jt E (t-s)U K(s)ds + Jt 0[E (t-s)-E (t0 -s)]U K(s)ds. {5.3) t n c, 0 n n c, 
0 

The first integral in {5.3) tends uniformly to zero as t-+t 0, since IIUc,K(s)II~N=N{T) 

for O~s~T and En(t-s) can be estimated using {5.2). Since 11En(t-s)-En(t0 -s)II-+O 

for t-+t 0 and for every fixed s, 0<s<t0 and uniformly in t 0 and s on [e,T], it 

follows that the second integral also tends to zero, by the theorem of dominated 

convergence. 

Define 
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c Jt R (t) = E (s)H (t-s)ds, 
n c n n 

n=1,2, ... (5.4) 

We claim that R 0 (t) is a compact operator on X for t~O. Indeed, let t>O and E >0 n 
be fixed, consider O<t~T, and note that the integrand in (5.4) is continuous on [c,T] 

m the uniform operator topology. Then the integral converges in the norm, and En(s) 

IS compact by assumption. Therefore, R~(t) is compact for O<E<t. From the 

estimate 

which is easily found from (5.2), the definition of Hn(t) and the boundedness of Uc,K(t) 

on [O,T], we obtain that R~(t) is compact for every t>O. 

Define 

t 
F (t) = J E (t)U0 K(t-s)ds, n=1,2, .... n 0 n , 

Then, by applying the Hille-Dyson-Phillips expansion, we write 

U K(t) = U0 K(t) + ... + F (t) + ... + F2 1(t) + R 0 (t) = Q (t) + R 0 (t), ndN. c, , n n- n n n 

* 
Since IIU0 K(t)II~MeA t, one easily computes 

' 

for some polynomial function p(t). Since R~(t) IS compact, it follows from a stability 

result for analytic Fredholm operator functions 

essential spectrum. This implies that in the 
* circle {S" £{; : I')" I =p(t)exp(A. t)} there are 

that Uc,K(t) and Q1(t) have the same 

spectrum of U K( t) lying outside the c, 
only isolated eigenvalues J-lk of 

finite algebraic multiplicity. In fact, due to the polynomial nature of p(t), the same is 

true for the spectrum of U K(t) lying outside this circle. c, 
The characterization of the asymptotic spectrum is a consequence of the Spectral 

Mapping Theorem for discrete eigenvalues of finite algebraic multiplicity. For the 

estimate involving the spectral projections Pi, set P=P 1 + ... +Pk' Then we have a 

de composition of the underlying space X =X' GlX", where X'=PX and 

X"=(I-P)X. Let us denote by B" and U"(t) the restrictions of B and U K(t) to c, 
X". It is obvious that <7(B")c{A. : Re A~a}, where a=inf{Re \} and <7(U"(t)) C 
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This means that the spectral radius of U" ( t) ts exp( at). 

In particular, r(U"(1))=exp(a). Therefore, 

I im II{UcK(1)(1-P)}nll 1 /n = I im IIUcK(n)(I-P)Ii 1 /n =ea. 
n-+oo ' n-+oo ' 

* Since .>.. +f3>a, we get 

integer depending on (3. 

where 

* 
IIU K(n)(I-P) II :5; e(.>.. +f3)n 

c, 
Hence, IIU K(n)(I-P) II :5; c, 

C = sup {IIU K(n)(I-P)IIe-(3n+1 : 0:5;n:5;N}. c, 

Setting 

* M = C sup {IIU K(s)(I-P)IIe-(X +f3)s : 0:5;s:5;1}, 
c, 

we obtain (5.1). • 

for n>N, where N is an 
* C exp{(X +f3)n} for n=0,1, ... , 

According to the above theorem it is always possible to order the eigenvalues 

belonging to u as(B) in such a way that ReX 02!ReX 12!... . If one denotes by Bi the 

restriction of B to the finite dimensional subspace Xi=P/, i=0,1,2, ... , then Bi can be 

expressed as Bi=\li+Di, where Di is the nilpotent operator given by 

D. = ~2 1 f (.>..-.>...)(.>..1-B K)- 1d.>... 
1 rr 1 r . 1 c, 

1 

If m.=dim X., then D~=O for N2!m1., and we obtain the following expression for the 1 1 1 

restriction of U K(t) to X.: c, 1 

.>...t D.t 
1 1 = e e 

Setting 

obviously (5.1) is an estimate of the norm of the semigroup Zn(t). We have thus 
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indicated a case in which the decomposition ( 4.8) holds true. 

The earlier work of Vidav [3 7 6] assumed that there exists i' dN such that 

the operator 

(5.5) 

IS compact for all £-tuples (t1'" .. ,t i') in (O.oo) and depends continuously on (t1'" .. ,t i') 

in the uniform operator topology. An operator J satisfying these properties was called 

semigroup compact with respect to the generator SK of {U0 K(t)}t>o· 
' -

It is easily 

seen that this condition implies that J is SK-smoothing, whence the statements of 

Theorem 5.4 are true for this case. 

All these results have the disadvantage of being formulated in such an abstract 

way that it is not clear beforehand which kinetic models satisfy these conditions. This 

difficulty was somewhat alleviated by Voigt [379, 382] m the neutron transport setting. 

His idea was to show that for some mdN the m-th order remainder m the 

Hille-Dyson-Phillips expansion ( 4.1a) is compact, which guarantees the in variance of the 

essential spectrum of the semigroup under the perturbation induced by J. In fact, since 

the m-th order remainder term Rm(t) can also be written as 

Ids 1 . .. I d sm uo,K(s1)J ... JUO,K(sm)JUK(t-s1- ... -sm)' 
s 1 + ... +sm:5;t 

s 1 ~0, .- .. , sm~O 

it IS immediate that Voigt's condition is weaker than Vidav's. 



Chapter XIII 

APPLICATIONS OF THE INITIAL VALUE PROBLEM 

1. Kinetic equations in neutron transport 

In this chapter, we shall consider specific kinetic models related to the 

transport of neutrons and electrons, and to cellular growth. The first two sections 

will be devoted to neutron transport, with special attention to spectral properties of 

the full transport operator and implications to hydrodynamics. The third and fourth 

sections deal with electron transport. In the first of these, the Spencer-Lewis 

equation models the slowing down of electrons by a thermalizing medium. In the 

following, a linearized Boltzmann equation is presented, which describes the drift of 

electrons in a weakly ionized gas. Finally, in the last section, we will outline a 

biological model for the growth of cells, due to Rotenberg, Lebowitz and Rubinow. 

Let us consider a linear kinetic equation, which describes neutron transport m an 
arbitrary (three dimensional) spatial domain with a three dimensional velocity domain 

which is rotationally invariant. We will allow for a rather general collision term, which 

may be written as the difference of a gain term containing a cross section or collision 

frequency and a loss term which has the form of a bounded integral operator. The 

kernel of the integral operator will, at least initially, not be assumed nonnegative, and 
both dissipative and conservative boundary conditions will be allowed. Under these 

assumptions, we obtain a model equation which is applicable to a host of specific 

problems in radiative transfer and rarefied gas dynamics, as well as m neutron 

transport theory. 

Let the spatial domain 0 be an open region m JR3 with piecewise continuously 

differentiable boundary surface 80. The region 0 need be neither bounded nor convex. 

Let the velocity domain V have the form V = F x S, where the speed domain F is a 

Borel subset of (O,oo) endowed with the finite Borel measure p and S is the unit 

sphere in IR3 endowed with the surface Lebesgue measure u. The phase space will 
then be the set A=OxV endowed with the measure dxd>., where d). = dpdu. 
Special cases are the monoenergetic problem, where F is a singleton set, and the 
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mul tigroup problem, where F IS a finite set. The linear kinetic equation IS then given 

by 

%!£-(x,v,t) + v ·%-i-(x,v,t) + v(x,v)u(x,v,t) 

= J k(x,v-+v)u(x,v,t)d)...(v) + q(x,v,t), 
v 

with initial condition 

I im u(x,v,t) 
tlO 

and a boundary condition to be specified later. 

(1.1) 

( 1.2) 

Here (x,v) { A. The function 

v(x,v), which is the total cross section in neutron transport, the extinction coefficient 

in radiative transfer and the collision frequency in gas dynamics, will be assumed 

bounded and measurable. The inhomogeneous term q(x,v,t) accounts for internal particle 

or radiation sources, and the kernel k(x,v-+v), which is called the scattering kernel in 

neutron transport, the phase function in radiative transfer, and the redistribution 

function in gas dynamics, is assumed measurable. 

In order to write down the boundary conditions, we consider the characteristic 

equations 

dx 
dt v, dv 

dt 0, 

of the vector field X=v • h· Along its characteristics, the velocity will be constant, 

while x(t)=x(O)+vt. Thus the projections of the integral curves on the spatial domain 0 

are straight lines parallel to v, on which the particle or radiation moves in the 

direction of v as time increases. The "length" of a trajectory will then be the maximal 

extent of the trajectory in the interior of 0, divided by the speed I vI. Let us 

consider the left and right endpoints of the characteristics. Since the boundary of 0 

is piecewise continuously differentiable, it can be divided in to finitely many components 

on each one of which the outer unit normal n(x) is continuous in x { 80. Since the 

surface is piecewise c1, the trajectories beginning or ending at points where the outer 

unit normal is either not defined or discontinuous form a set m A of dxdA-measure 

zero (see Section Xl.3). Then the sets D _ and D + of left and right endpoints are 

given by 
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D {(x,v) X € ao, n(x). v ~ 0}, 

D + = {(x,v) : X € ao, n(x). v ~ 0}. 

The intersection of these two sets consists of the left and right endpoints of those 

trajectories that are tangent to the boundary. This situation can only occur if 0 is 

not a convex region. As a result of the fact that the surface is piecewise c1, the 

trajectories beginning or ending at a point of D + nD _ form a set of dxd A -measure 

zero (see Section XII.3). 

Let us specify clearly what is meant by Xu. For this reason we introduce the 

test function spaces <I> and <1>0. Here <I> is the linear space of those bounded Borel 

functions 'P on A that are continuously differentiable with bounded directional 

derivative along each characteristic and are such that the lengths of the trajectories 

meeting the support of 'P have a uniform positive lower bound. By <1>0 we denote 

the set of those functions in <I> that vanish at the endpoints of the trajectories. For 

every u€Lp(A,dxd>-) with l~p<oo we define Xu as the following distributional 

derivative: 

J J (Xu)(x,v)'P(x,v)dxd>-
0 v 

We then obtain the Green's identity 

-J J u(x,v)(X'{')(x,v)dxd>-, 'P€4> 0 . 
0 v 

I of v (Xu)(x,v)dxd>- = I D u(.~r.(x,v))dv + - I D u(.t'(x,v))dv _, 
+ 

(1.3) 

where {u,Xu}cL (A,dxd>-) for some l~p<oo and .t'(x,v) and .~r.(x,v) are the left and p 
right endpoints of the integral curve passing through (x,v) € A. The restrictions of u 

to D ± belong to Lp,loc(D ±,dv ±). Here by Lp,loc(D ±,dv ±) we mean the vector 

space of all measurable functions on D which are L -functions with respect to dv ± p ± 
on every bounded Borel subset DcD ± such that the lengths of the trajectories meeting 

D have a uniform positive lower bound. It is easily seen that the boundary measures 

appearing in (1.3) are given by 

dv ±(x,v) I v • n(x) I dxd>.(v). 
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We then define F p as the linear space of those u E Lp(A,dxd>.) such that 

Xu E Lp(A,dxd>.) and the restrictions of u to D ± belong to Lp(D ±,dv ±). 

We shall now formulate the boundary condition to Eq. (1.1). For this purpose 

we consider an arbitrary bounded linear operator K from Lp(D +,dv +) into 

L (D ,dv ) and state the boundary condition in the form 
p - -

u(x,v,t) = (Ku)(x,v,t) + g0(x,v), (x,v)ED _, (1.4) 

where g0 E L (D ,dv ). Well-known examples of boundary operators are those for p - -
vacuum boundary conditions and specular reflection. The former is given by K=O, while 

the latter has the form 

(Ku)(x,v) a(x,v)u(x,v - 2(n(x) • v)n(x)), (x,v) ED_. (1.5) 

Here the accommodation coefficient a(x,v) is a measurable function on D such that 

0 S a(x,v) S 1, (x,v)ED_. 

The first rigorous, thorough and detailed analysis of the linear kinetic problem 

was performed by Lehner and Wing [246] for monoenergetic neutron transport with 

isotropic scattering in slab geometry and a Hilbert space setting. Following their 

method, different boundary conditions, geometries and collision models for neutron 

transport were subsequently tackled by a number of authors. We mention, in particular, 

Belleni-Morante [39], Borysiewicz and Mika [50], Marti [258], Angelescu et a!. [8, 10], 

Pimbley [308], and Albertoni and Montagnini [2]. Important landmarks in subsequent 

developments were Vidav's consideration of the L1-setting (see [375]), and Voigt's 

careful analysis of the vector field X for a variety of positive boundary operators 

[380]. Later developments in an L1-setting were due to Montagnini [268], Suhadolc 

[345], Palczewski [298] and Hejtmanek [189]. 

We shall now apply the theory of Section XII.2 to get the semigroup property 

of the initial-boundary value problem (1.1)-(1.2)-(1.4). Let SK and BK be operators 

defined on the domain 

acting as follows: 

{uEF : u (x,v) 
p -

(Ku +)(x,v), (x,v) ED_}, 
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(SKu)(x,v) = -(Xu)(x,v) - v(x,v)u(x,v), 

(BKu)(x,v) = -(Xu)(x,v) - v(x,v)u(x,v) + (Ju)(x,v). 

Here we observe that v(x,v) is essentially bounded on A, while we impose such 

conditions on k(x,v-+v) that the operator 

(Ju)(x,v) = J k(x,v-+v)u(x,v)d>.(v) 
v 

is bounded on Lp(A,dxd>.). A sufficient condition in order that J is bounded on 

Lp(A,dxd>.) is the condition 

e s s sup J I k(x,v-+v) I d>.(v) < co 
(x,v)tA v 

for p=1, and the condition 

J J [J p ] 1/(p-1) 
0 V V I k(x,v-+v) I d>.(v) dxd>.(v) < co 

for 1<p<co. On applying Theorem XII 2.2 one observes that, for IIKII < 1, SK and 

BK generate the strongly continuous semigroups {U0,K(t)}t~O and {UK(t)}t~O· 

respectively. These semigroups are related by the Hille-Dyson-Phillips expansion 

UK(t) = Uo,K(t) + n~ 1 J ds 0 ... J dsn u0,K(s0)J...JU0,K(sn), 

s 0 ~o, ... , sn~O 

so+ 0 0 0 +sn=t 

which converges absolutely in the operator norm. The free streaming semigroup 

{U0,K(t)}t~O is contractive, and positive if K is positive. If the operator J is 

positive, that is, if k(x,v-+v) is nonnegative for almost every (x,v,v) E OxVxV, and 

if K is positive, then the transport semigroup {UK(t)}t~O is positive. The transport 

semigroup is contractive if for every utL (A,dxd>.) the estimate 
p 

J J sgn(u(x,v)) I u(x,v) I P- 1 [v(x,v)u(x,v) - J k(x,v-+v)u(x,v)d>.(v)] dxd>.(v) ~ 0 
{} v v 

is satisfied. 
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Now let us consider the case of a conservative boundary, where II K II = 1. In 

general, it is not true that SK and BK generate strongly continuous semigroups, even if 

K is positive, as is exemplified by an example of Voigt [380]. On the other hand, if 

the spatial region 0 is plane parallel (a half space, a finite slab or the complete 

three dimensional space) and the speed domain F is bounded, the lengths of the 

trajectories are bounded below (by infinity for a half space or R3, and by w/vmax' 

where w is the width and vmax the supremum of F, for a finite slab). The lengths of 

the trajectories are also bounded away from zero, if the speed domain F is bounded and 

the spatial domain consists of a plane parallel region from which a finite number of 

disjoint closed and convex "cavities," with piecewise continuously differentiable boundary 

surfaces and at positive distance from the boundary of the plane parallel region and 

from each other, are removed. Thus, the trajectories have their lengths bounded away 

from zero on the exterior region of a sphere or finite or (semi)infinite cylinder if the 

speed domain F is bounded, while this is no longer true for the interior region of a 

sphere or cylinder. For all these cases, where the lengths of the integral curves are 

bounded away from zero, one may prove the above semigroup results, including the 

positivity and contractivity statements, provided K is positive. Here we apply the 

paragraph following the proof of Theorem XII 2.3, while observing that it does not 

matter for the semigroup properties whether or not J is positive. 

More generally, it is difficult to state useful conditions which guarantee that SK 

and BK generate the strongly continuous free streaming and transport semigroups. 

Abstractly, it is clear that SK and BK are the generators of the free streaming and 

transport semigroups if and only if every u € F satisfying the boundary condition u = p -
Ku+ has its restrictions to D ± in Lp(D ±,dv ±)' but there is no general method for 

determining when such a condition is true. However, if K is positive and has unit norm, 

we can use the monotonicity argument of Theorem XII 2.3 to prove that suitable closed 

extensions of SK and BK generate the strongly continuous semigroups {U0,K(t)}t~O 
and {UK(t)}t~O' which arise as the monotone limits of the semigroups {UO,aK(t)}t~O 

and {UaK(t)}t~O as ap. 

In order to obtain more detailed information about the neutron transport 

example, let us consider the case of plane parallel symmetry where the spatial domain 

is either the finite interval (0,2a) or the half line (O,oo). The model equation then 

becomes 

1 
Y2c J u(x,IJ,t)d#J + q(x,J~,t), 

-1 
(1.6) 
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where xt(0,2a) for a parameter O<a~oo and pt[-1,1]. This equation describes the 

transport of neutrons in a plane parallel domain with a width of 2a mean free paths, 

under the conditions of constant sp~ed and isotropy of the single scattering processes. 

The direction cosine of propagation of the neutrons is Jl t [ -1 ,1]. The solution u( X,Jl, t) 

and the term q(x,p,t) represent the neutron angular density and the internal neutron 

sources, as a function of position in units of mean free path, direction and time. The 

constant c is the average number of secondaries per collision. The spatial medium is 

plane parallel of width 2a, but because of the invariance of the physical processes 

under translation parallel to the surface, we may reduce the problem to an equation 

with one dimensional spatial geometry. 

We impose the initial condition 

(1.7) 

as well as boundary conditions coupling the incident and outgoing neutron "fluxes". As 

to the latter, we have to distinguish between half space geometry where a=oo, and 

finite slab geometry where a is finite. For half space domains we require 

u(O,p,t) (Ku)(O,p,t), p>O. 

For finite slab media we impose the boundary conditions 

u(O,p,t) 

u(2a,p,t) = (K __ u)(2a,p,t) + (K_+u)(O,p,t), 

Here the operators K and 

[ K++ 
K = K 

-+ 

(1.8) 

( 1. 9a) 

(1.9b) 

are linear and do not depend on time. They also satisfy a contractivity condition, 

which will be specified below. In most applications the reflection processes at the two 

surfaces x=O and x=2a are decoupled so that K+- and K_+ vanish. Typical examples 

are combinations of specular and diffuse reflection, for instance, 
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(K __ u)(2a,p,t) 

1 
a+u(O,-p,t) + .8 +J (ill p)u(O,-it,t)dit, p>O, 

0 
0 . 

a_ u(2a,- p,t) + .8 _ J I P, I p I u(2a,- P,,t)dP,, p < 0. 
-1 

447 

Here a± and .8 ± are the accommodation coefficients for specular and diffuse 

reflection, respectively, 0 :$; a± :$; 1 and 0 :$; .8 ± :$; 1-a ±" For the half space 

problem the analogous boundary condition is 

1 
(Ku)(O,p,t) = au(O,-~-&,t) + .8 J (P,I p)u(O,-P,,t)dP,, p>O, 

0 

where 0 :$; a :$; 1 and 0 :$; .8 :$; 1-a. It should be observed that there exist 

physically interesting boundary conditions (1.9) that do not decouple the surfaces x=O 

and x=2a, for example the periodic boundary condition 

u(2a,p,t) = u(O,p,t), 

where K++ and K __ vanish and K+- and K_+ reduce to identity operators. 

Let us incorporate the above model in the theory developed in the previous 

chapters. First of all, the phase space is A=(0,2a) x( -1,1) endowed with the Lebesgue 

measure dxdp. The vector field X is given by 

(Xu)(x,p) = p%-i-(x,p). 

On using time as a parameter, the characteristic equations of X are given by 

dx dt = p, tr= 0, 

whence p is constant on trajectories and x=x0+pt. The integral curves are then 

given by the lines {(x,p) : 0<x<2a}, where x increases with t for p>O and 

decreases with t for p<O, as well as the points {(x,O) : 0<x<2a}. Hence, the sets 

D ± of left and right endpoints are given by 

D = [{O}x(0,1)] U [{2a}x(-1,0)], 

D + = [{O}x( -1,0)] U [{2a}x(0,1)], 
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for the finite slab, and 

D = {0} X (0,1), 

D+ = {0} X (-1,0), 

for the half space. The "length" of a trajectory, which is measured with the parameter 

t, represents the total travel time along the integral curve. It is given by 

.l(a,p) [ 
2 a

00

l p I - 1 for the f in i t e s I a b , 

for the half space, 

whence .l(a,p) :<!: 2a for all integral curves of X. In considering the vector field 

Y=(8/8t)+X with phase space E=Ax(O,T) for some fixed T>O, we find for the lengths 

of the trajectories 

.l(a,p,T) 
{2alpi- 1 ,T} for the finite slab, 

for the half space, 

as a result of which .l(a,p,T) :<!: min {2a,T} for all integral curves of Y. 

Next, we consider the proper definition of the streaming operator 

a s = -pOx - 1 

and the transport operator 

where 

B = S + J, 

1 
(Ju)(x,p) = ¥,c J u(x,l')d#J. 

-1 

(1.10) 

(1.11) 

We analyze these operators on the (real or complex) space Lp(A,dxdp) with 

1:S:p<oo. The major issue is the correct definition of the·· derivative appearing in 

(1.10). As in Chapter XI, we define the test function space ~ as the linear manifold 
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of all bounded Borel measurable functions on A which are continuously differentiable 

with respect to x with bounded partial derivative, for almost all ll d -1,1). In the 

definition of <I> we do not include a condition curtailing the minimal length of the 

trajectories meeting the support, since these lengths have a uniform positive lower 

bound. By <1> 0 we denote the linear subspace of those <p f <I> that vanish for x=O 

and, in the finite slab case, also for x=2a. For every uELP(A,dxdll) we then define 

for arbitrary <pE<I>0. 

The integral curves of X have a length satisfying .t(a,ll) ~ 8 >0. Thus, 

every uELP(A,dxdll) 

the finite slab case, 

identities 

for the finite slab, and 

with ll(au/ ax) ELP(A,dxdll) has restrictions 

u( 2a, · ) belonging to L ([ -1,1], Ill I dll) such p 

1 I ll{u(2a,ll)-u(O,Il)}dll 
-1 

I 1 Ioo a I 1 _ 1 O ll a~ dxdll = - _ 1 llu(O,Il )dll 

u(O, ·) and, for 

that the Green's 

for the half space, are valid. For the precise connection with the abstract theory we 

refer to Proposition XI 3.1 and the paragraph containing Eq. XI 3.11, in combination 

with Eq. XII 2.1. In any case, for a pair of Borel sets Ec(0,1) and Fe( -1,0) we have 

v _([{O}xE] U [{2a}xF]) 

v +([{O}xF] U [{2a}xE]) 

for the finite slab, and 

v _({O}xE) 

v +({O}xF) 

for the half space. 

I Ill I dll, 
E 

I Ill I dll, 
F 

I lllldll, 
EuF 

J lllldll, 
EuF 
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We now consider K to be a positive (in lattice sense) contraction 

K: L ([{O}x(0,1)]U[{2a}x(-1,0)J, IJ.tl dJ.t)-+ p . 

-+ Lp([{O}x( -1,0)]U[{2a}x(0,1)], IJ.tl dJ.t) 

for the finite slab, and 

K: L~({O}x(0,1), IJ.tl dJ.t)-+ LP({O}x(-1,0), IJ.tl dJ.t) 

for the half space. We define SK and BK as the linear operators on the common 

domain 

D(SK) = D(BK) = {uEF : u =Ku } 
p - + 

and acting as in (1.10) and (1.11), where the "traces" u_ and u+ are the restrictions of 

u E F to D and D+' respectively. p -
It is easily seen that 

I 1I2a I 1 {u(x,Jt)-~ u(x,;l}dp}dxdJ.t = (1-c)llull 1 
-1 0 -1 

for all nonnegative u E L1 (A,dxdJ.t ). Similarly, one obtains 

I 1I2a 1 1 
(sgnu)lulp- {u(x,Jt)-~I u(x,p)dll}dxdJ.t ~ (1-c)PIIuiiP 

-1 0 -1 p 

for arbitrary real uEL (A,dxdJ.t). We also observe that J is a bounded positive p 
operator. As a result of Theorems XII 2.2 and 2.3 (including the paragraph following 

the latter's proof) we arrive at the following results: 

(i) For every nonnegative K with II K II S 1, the operator SK generates the 

strongly continuous semigroup {UO,K(t)}t~O on Lp(A,dxdJ.t). This semigroup is 

positive and its type w0(U0 K)S-1. 
' (ii) For every nonnegative K with II K II S 1, the operator BK generates the 

strongly continuous semigroup {UK(t)}t~O on Lp(A,dxdJ.t). This semigroup is 

positive and its type w0(UK)S-(1-c). 

(iii) The semigroups {U0 K(t)}t~O and {UK(t)}t~O are related via the 
' 
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Hille-Dyson-Phillips expansion, which is absolutely norm convergent. 

These results are valid for 1:5:p<oo. 

In general, it is not easy to obtain closed form representations for the semigroup 

{U0,K(t)}t~O· let alone for {UK(t)}t~o· For vacuum boundary conditions (K=O) it is 

straightforward to obtain 

whence 

The spectral bound equality follows by applying 

X-Jlt E (0,2a), 

X-Jlt E£ (0,2a), 

On defining t 0 =t0(x,Jl)=(x/ ll) for ll>O and t 0 =t0(x,Jl)=(x-2a)/ ll for ll<O, we 

obtain 

-1 ft 0 -(>.+1)t 
((>.-so,K=ol u)(x,Jl) = 0 e u(x-Jlt,Jl)dt. 

For Re >.>-1 and u=1 the right hand side has the form 

x! 1 {1 - exp [-(>.+1)t0(x,Jl)]}, 

and for >.=-1 and u=1 the form t 0(x,Jl), which does not belong to Lp(A,dxdJl). 

Thus s(SK=ol=-1. 

Finally, since for every K~O with II K II :5: 1 

while 



452 BOUNDAP Y VALUE PROBLEMS IN ABSTRACT KINETIC THEORY 

and 

-1 

we obtain 

In particular, the spectral bound and type of the free streaming semigroup {U0,K}t~O 

coincide. 

2. Neutron transport (continued): Spectral decomposition and hydrodynamics 

The transport operator appearing m a typical time dependent kinetic equation 1s 

not a normal operator even in the most simplified situations, such as (1.6). Therefore, 

its spectral decomposition, m a generalized sense, does not automatically follow from the 

standard results of the general theory. Historically, spectral decomposability of 

transport operators was seriously questioned after Lehner and Wing's analysis [245, 

246]. Indeed, it turned out that the perfectly absorbing boundary conditions they 

treated, although the most natural from a physical point of view, were the most 

difficult for the derivation of spectral decomposition results. Even a modified approach 

suggested by Lehner [244] has not furnished a complete answer in this respect. Yet, 

certain special boundary conditions, such as periodic or purely specularly reflecting, 

allow for a generalized spectral decomposition of certain transport operators, such as 

the example (1.6). In this section we shall present a method, essentially due to 

Friedrichs and closely related to the scattering theory of the Boltzmann equation [ 18 8, 

336, 355], which makes it possible to show that certain transport operators are 

spectral. This section is an extension by Protopopescu of earlier work [9, 12]. 

An operator L is called a spectral operator or scalar type (cf. [105], [109] vol. 

III) if there exists a norm bounded, strongly countable additive function E, defined on 

the Borel sets B of the complex plane, whose values are bounded linear operators on 

H, such that 
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and such that the operator L can be diagonalized in the form 

L I .>.dE(>.). 
(; 

453 

(2.1) 

(2.2) 

(2.3) 

Friedrichs' idea consists of applying a time independent scattering formulation, 

i.e., constructing non-unitary "wave operators" which realize the similarity between the 

transport operator under study and a normal operator. We shall consider the 

monoenergetic transport equation in slab geometry with periodic boundary conditions. 

The crucial point is that, due to the particular form of the boundary conditions, one 

may exploit the diagonalization of the transport operator by the Fourier transform and 

explicitly construct the similarity (wave) operators [9]. 

Thus, let us consider the transport operator in slab geometry x € ( -a,a), 

(Bu)( x,JL) JL €[-1,1], (2.4) 

on the Hilbert space H=L2([-a,a]x[-1,1]) with domain as indicated in the previous 

section and periodic boundary conditions u( -a,JL) = u(a,JL ). For convenience we have 

taken x € ( -a,a) rather than x € (0,2a). Here the average secondaries per collision is 

taken to be c=l, with no loss of generality, as will be apparent. Put 

(Nu)(JL) 

Then the Fourier transform F in the x variable diagonalizes B in the form 

where each Fourier component of the transport operator, 
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acts in the space L 

orthogonal direct sum 

L2[-1,1]. The original Hilbert space H is identified with the 

where Lk IS identified with L m a natural way. For convenience, we shall actually 

dec001pose the operator 

obtained from Bk by deleting the trivial part -1 and dividing by -ikf, k¢0. (For 

k=O, B0 is a self adjoint operator whose spectral measure is readily available.) The 

operator Ak is a bounded non-normal operator obtained by perturbing the self adjoint 

multiplicative operator p, which has simple absolutely continuous spectrum on [-1,1], 

with the skew adjoint operator ~; N which is, up to the constant ia/br, a one 

dimensional projection. 

Perturbations of spectral operators have been extensively studied in the 

literature (e.g., [153, 214, 266, 348]), but the methods are limited by the difficulty to 

actually verify, in concrete situations, the abstract conditions imposed in order to 

ensure decomposability. Such conditions typically involve smallness and regularity 

requirements on the perturbation, and continuity of the integral operator associated with 

the related eigenvalue problem. In the case at hand, depending on a and k, II L; Nil 
may become very large, and the kernel of the integral operator, identically one for 

(p,jl)E[-1,l]x[-1,1] and zero outside, is discontinuous at the boundary. 

Direct construction of the similarity operator will obviate these difficulties. A 

generalized eigenfunction expansion for the operator Ak:L-+L will be proved if one can 

find a Hilbert space l., a normal operator Ak: L-+L having the same spectrum as Ak, 

and two bounded operators (wave, similarity or intertwining operators) 0~: L-+L 
and Ok: L-+L, such that 

(a) n+n-
k k 1L' (2.5) 

(b) n-n+ 
k k = ll., (2.6) 

(c) + 
Aknk 

+-
OkAk, OkAk - AkOk. (2.7) 
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Indeed, if this is the case and if s k P II nk II <oo, let us denote by E\( · ), k ,..o, the 

spectral measure of Ay Then the spectral measure of B is given by 

where E 0 ( ·) is the spectral measure of the self adjoint operator B0. 

By explicit computation, we arrive at two cases: 

(i) I k I >~, when Ak has no eigenvalues; 

(ii) 0 < I k I < ~' when Ak has the nondegenerate eigenvalue A k =i co tan ~Ti. 

(2.8) 

...... ..... 0 0 
In case (i) we take L=L and Ak=A , where A is the unperturbed operator of 

multiplication by 1-1, and define nk Uk: L--+L. Conditions (a), (b), (c) then take 

the form 

(al) 
+ -

ukuk 1 L' (2.9) 

(bl) 
- + 

ukuk = 1 L' (2.10) 

( c 1) Akut u+Ao 
k ' (2.11) 

In case (ii) we take I. 
set 

[ ~] Le([:, with vectors written as ., for Uf L and 1J f([:, 

and define ot: L--+L and Ok: L--+L by 

+ [u] = (Ut ¥?tl[~] = utu + 
+ 

Uf L, 1J f ([:, nk 1J fJ¥?k, 

Oku [~~k' . ) ] u 
[uk u ] 

(¥?k,u) 

Here Uk are bounded operators m L and ¥?k fL. The special form of Uk is dictated 

by its continuity and by the Riesz representation theorem. Applying relation (c), one 

obtains the four equations 
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u+Ao 
k ' (2.12) 

(2.13) 

Because of (2.13), 'Pt(l') = 'Pk(l') = ck(>'k-1')- 1, i.e., it is the nonnormalized 

eigenvector corresponding to the eigenvalue Ak. Applying condition (b) then yields 

and therefore we have 

The vector 'Pk is normalized via the relation (<pk,<pk)=l: 

Observing that the conditions (c1) and (c 2) are identical, we shall use them to 

determine U~ simultaneously for both cases. We then have to verify (a1), (b 1) and 

(a2), (b2) for the cases (i) and (ii), respectively. 

Writing Ak=A 0 +~:N, condition (c) can be reformulated as 

(2.14) 

(2.15) 

where by square brackets one denotes the commutator [F, G] = FG-GF. If U~ are 

bounded operators satisfying (2.14)-(2.15), then the Riesz representation theorem yields 

that R~ are degenerate integral operators of rank one, namely 
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1 I r~(j})u(j})dj}, 
-1 

1 
(Rku)(JL) = rk(JL) I u(j})dj}, 

-1 
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Supposing for the moment 

operator Z satisfying 

that R± k were known, one then has to find a bounded 

[A 0 ,Z]=R, (2.16) 

where R is a suitable rank one integral operator. If (2.16) has a solution, it certainly 

has infinitely many, differing from each other by bounded operators which commute with 

A 0 . We shall show that it has a bounded solution whenever R has a kernel of the 

form r 1(JL)r 2(/}), r 1, r 2 EL00[-1,1], by effectively constructing one solution. 

To this end, let us define for c > 0 the bounded integral operator G 13 on L 

with continuous kernel 

As c 10, the operators G±c have strong limits, denoted by G±, which satisfy 

G+ -G_ = -21ril L" 

The formal kernels of G ± will be denoted [JL- j} 1: 1, respectively. 

LEMMA 2.1. For k f 7L, I k I ,.%, k,.o, the intertwining operators U~ are given by 

u+ 
k 

Their (formal) kernels are 

(2.17) 

(2.18) 

(2.19) 



458 BOUNDARY VALUE PROBLEMS IN ABSTRACT KINETIC THEORY 

and their norms are bounded by 

(2.20) 

Proof: The proof is a verification of (2.14) and (2.15). The norm boundedness results 
± from (2.17) and from the concrete form of the kernels of Rk. • 

PROPOSITION 2.2. For I k I >t, Ak is similar to the 

The similarity is realized by U~ given by (2.18)-(2.19). 

to the normal operator Ak=A 0 e>.k acting on L=LeC. The 

operators 0~. 

self adjoint operator A 0 . 

For I k I <t, Ak is similar 

similarity is realized by the 

Proof: We sketch the proof m case (ii), which is more complicated. Condition (b2) 

reads 

(2.21) 

In calculating the contribution of RkG+G+Rt we take into account the identity 

which leads to the cancellation of the last three terms in (2.21), proving (b2). A 

similar argument proves (a2). Indeed, when computing the kernel of G+RtRkG+' one 

may use the identity 

- i{ g [1 + A + ~log.!..=.I!J- 1 + ~-[1 - A + g log.!..=.I!J- 1} - - -2K1T ;<;K ;<;K1f' 2+11 ;<;1TK ;<;K 2K1T 1+11 • 

The contribution of G + RtRk G + then leads to the integral 

where the positively oriented simple Jordan contour C encloses the segment [-1,1], but 
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not the pole >..k. Applying Cauchy's theorem, this is equal to the same integral on a 

sufficiently small negatively oriented circle around >..k, which yields the corresponding 

projector <p~(<pk, •) in condition (a2). • 

We now have the spectral decomposition result, except for the critical values 

a=2,4, .... 

THEOREM 2.3. For a .. 2,4,... the Boltzmann operator (2.4) with periodic boundary 

conditions is spectral of scalar type. 

Proof: For any Borel set accc and any k t 'l., k .. o, we construct 

(2.22) 

lkl<t. 

where X a is the characteristic function of the set a and X a is the operator 

corresponding to multiplication by X a· The non-orthogonal bounded projection valued 

measure Ek( •) is concentrated on [-1,1] if I k I >t and on [-1,1]U{>..k} if 

I k I <t. Using (2.20) one shows that 

2 I k I 2 2 -~ 2 k rr 2 k rr ~ 
IIEk(a)ll ~ c[(1 --a-) + d ] + Xa(>..k)( a cosec a) , 

where c is some constant and d=inf{ I z I 

Spectral Theorem for Ak defines 

zt a}. Therefore, via the similarity, the 

as a norm convergent integral with respect to a countably additive spectral measure. 

The result for the operator B follows by a trivial rephrasing. • 

Operators of the type considered above restricted to the class of Holder 

continuous functions have been studied using the methods of singular integral equations 

theory [70]. The Banach space X of continuously differentiable functions on [-1,1] with 

norm llfll = lf(-1)1 + maxlf'(ll)l is a continuously embedded dense subspace of 
I' 
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L, and AkiX is a bounded operator on X. For fixed #lE[-1,1] the formal kernel 

ut(~t,M defines an element of the dual space of X by 

+* Indeed, for sc>EX the equivalence class of Uk SOE L has a continuous element, as one 

* may easily see, and II(Ut so)(fl)II:Sconst.llsoll. For fixed fl, the formal kernel 
* ut (~t,M is a generalized eigenfuction of Ak with eigenvalue /1, in the sense that 

+* * +* +* * (uk (/l),Ak so)=il(uk (/l),so). But this is just the expression (Uk Ak so)(/1) 
* * (A 0 Ut so)(#l}, i.e., the intertwining property of ut . With this interpretation, the 

. + - .... - .... + b . d II I " d relations OkOk = 1 L and ukuk 1[ can e v1ewe as comp eteness an 

"orthogonality" relations, respectively. 

The constructive method based on Friedrichs' wave operators failed to give an 

answer to the similarity question in the critical cases a=2,4, ... , since the L00 -norm of 

the integral kernels r±(~t,/1) becomes infinite for these particular values of the slab 

widths. One .may ask whether a more clever construction or a completely different 

method may show similarity in these cases. The question may be settled in the 

negative by studying the "characteristic function" of the operator Ak ( cf. [348]). 

However, a weaker form of spectral decomposition can be formulated as an easy 

consequence of Lemma 2.1. 

PROPOSITION 2.4. Suppose a=2 I k I, k E Z, k .. o. Then for every Borel set ac<C at 

nonzero distance from zero, the operators E±a/2(a) given by (2.22) are bounded 

projections in L connecting with Ak, and the restriction of Ak to Ek(.::l)L is similar 

to the restriction of A 0 to X[- 1,1]naL 

The critical behaviour observed for the set of exceptional values a=2,4, ... , has 

many formal similarities with critical phenomena in statistical mechanics (cf. [314]). 

With appropriate definitions of the operator B and the Hilbert space H, the 

infinite medium can be treated analogously, with the difference that 7Tak (k E Z) is 

replaced by real k and the orthogonal direct sum decomposition of H is replaced by an 

orthogonal direct integral with respect to Lebesgue measure, }( = f Lkdk. In terms 

of subspaces Lk, which may be naturally identified with L2[-1,1], o~e may obtain the 

following result. 

THEOREM 2.5. For every 6 >0 and every Borel set ac<C at nonzero distance from 
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zero, we may construct projectors Ek( ·), k fIR, as m (2.22). Then the subspace 

r 
J 
(j) 

lk±%1~8 

of ){ is invariant under the operator A, and A restricted to ){ 8 ,1:::. IS similar to a 

normal operator. 

This similarity method can be applied whenever the Fourier transform (discrete 

or continuous) diagonalizes the transport operator [9]. Besides the example discussed 

above, energy dependent [86] and anisotropic scattering [312] models with specularly 

reflecting boundary conditions in semi-infinite, slab and parallelepiped geometries have 

been treated. For a similar treatment of the linearized Vlasov equation, see [313]. 

We conclude this section by considering the long time behavior of the transport 

equation (1.6). The physical idea behind such an estimate is rather simple and 

generally accepted. It IS assumed that the information contained in the original 

distribution function u0 (x,J1) at time t=O can be split into two parts: a "microscopic" 

part accounting for individual, more chaotic movements, which are rapidly decaying, and 

a "hydrodynamic" part, related to collective, more regular movements. Then, in the final 

stage of the kinetic evolution described by a transport equation, one may replace the 

more complete description of the system via its one particle distribution function 

u(x,Jl,t) by a "reduced" description involving only the first few moments of u(x,Jl,t). 

These moments are usually the hydrodynamic quantities of the system, e.g., the local 

densities of mass, momentum, and energy. The first systematic deduction of 

hydrodynamics from kinetics originated in the work of Hilbert [193] and, later, Chapman 

[90, 91] and Enskog [ 113]. This method, which is essentially a singular perturbation 

approach, is still a fertile area of research. We quote here - both because of their 

particular impetus and of the relevance to the present 

Arsenyev [ 14], Ellis and Pinsky [ 111] and Papanicolaou [300]. 

context the work of 

For the model equation 

(1.6), the only relevant hydrodynamic moment is the local density, which is defined as 

1 
n(x,t) = J u(x,Jl,t)dJl = 2(Nu)(x,J1,t). 

-1 

Let us consider the evolution equation 
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1 
%-f(x,JL,t) = - JL%-i-(x,JL,t) - u(x,JL,t) + ~I u(x,jJ,t)djJ 

-1 

m ){ = L2(IRx[-1,1]) with initial condition 

Denote by nD(x,t) the solution of the diffusion equation 

a D a2 D 
_n_(x,t) = Ya -T(x,t) 
at ax 

with initial condition 

(2.23) 

(2.24) 

Then the asymptotic equivalence result is contained in the following 

theorem, which can also be proved for semi-infinite geometry with specularly reflecting 

boundary conditions [12]. 

THEOREM 2.6. Let u0(x,JL)~O, u0 ,.o, u0 £L2(IRx[-1,1])nL1(IRx[-1,1]). Then there 

exists a constant C >0 such that in L2(IR) one has the estimate 
uo 

(2.25) 

D a2 
Proof: Denoting by U (t) the semigroup generated by Ya W in L2(IR), one has to 

estimate 

D 2 D 2 lin-n II = II2NU(t)u0-U (t)2Nu0 11 . 

Since the Fourier transform is isometric in L 2, the norms may be estimated m the 

k- rep res entation: 

I 
lkl>~1r+8 
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+ I 
c<lki<~7T'+8 

+ f 
lkl<c 

where 

-1 + k cotank 

and 

The first integral can be exponentially bounded in t, by using the spectral 

decomposition result (see Theorem 2.5). The second integral contains the "critical" point 

I k I =71'/2 for which the spectral decomposition per se fails; however, by taking 

advantage of the concrete form of the operators Bk, one can apply the Spectral 

Mapping Theorem directly and bound the second integral by const.e- ct. Then, up to 

exponentially bounded functions, the square of the difference in local densities 

lln-n°11 2 may be bounded by the term 



464 BOUNDARY VALUE PROBLEMS IN ABSTRACT KINETIC THEORY 

3. Spencer-Lewis equation and electron deceleration 

In this section we shall analyze the time dependent Spencer-Lewis equation [13, 

29] 

%1-(x,J',E,t) + 1'%-i-(x,J',E,t) - ~) (x,J',E,t) + u(x,E)u(x,J',E,t) 

1 
= J u (x,J',~,E)u(x,~,E,t)d~ + f(x,J',E,t). 

-1 s 
(3.1) 

Here x f [O,a] is a position variable, I' f [ -1,1] is the direction cosine of propagation, and 

Et[Em'~]c(O,oo) is the energy variable. The equation describes the slowing down of 

electrons from high energies larger than ~ to low energies smaller than Em. Its 

solution u(x,J',E,t) is the density distribution of electrons within the given interval 

and the inhomogeneous term f(x,J',E,t) represents the contribution of internal sources. 

The function ,B(x,E) is the stopping power, u(x,E) the total elastic scattering cross 

section, and u s(x,J',/l,E) the (azimuthally integrated) elastic scattering cross section. 

As a result, ,8, u and us' as well as the functions u and f, are nonnegative. The 

equation describes the electron distribution in the intermediate energy range [Em'~], 

where electrons are continuously slowed down from high to thermal energies. Important 

applications include the slowing down of electrons in an electron microscope, damage to 

semiconductors by intrusion of high energy electrons, and the use of electron guns for 

etching semiconductors (microlithography ). 

Along with (3.1) are given boundary conditions, which specify the incident 

electron distribution, 

(3.2a) 

(3.2b) 

as well as the initial condition 

u(x,J',E,O) (3.3) 

Here gm, gM and g0 are nonnegative functions. 

Equation (3.1) was initially derived in the 1950's by Spencer [343] and Lewis 

[250] to study the continuous slowing down of electrons of intermediate energy. Instead 
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of the energy derivative of ;3u, the equation contained the term /3%-E, which greatly 

facilitated the analysis of the problem. More recently, the topic of interest has been 

the stationary counterpart of the Spencer-Lewis equation. Nelson [283] proved unique 

solvability for a simple rod model of the equation and, in cooperation with Seth [284], 

found strong indications for its unique solvability for the case of a stopping power that 

is piecewise constant in energy. In this section we shall prove the wellposedness of 

the above initial-boundary value problem and its stationary counterpart under a 

simplifying assumption on the stopping power. We shall assume that there exists of 

partition Em=E0 <E1 < ... <Er=~ of [Em,~] such that the stopping power can be 

written as 

(3.4) 

with each /3i a Lipschitz continuous function on [O,a] with at most finitely many zeros. 

This assumption was made by Nelson and Seth [284] in order to prove the convergence 

of a finite difference scheme for numerical computation of the solution. Further, since CT 

represents the total cross section and one must also account for the loss of electrons 

within [Em,~] by absorption, we assume that CT s and CT are nonnegative measurable 

functions satisfying 

1 I CT (x,Jl,iJ,E)dJl ~ u(x,E), 
-1 s 

(x,;:I,E) E [O,a]x[-1,1]x[Em,~]. (3.5) 

This assumption will serve us well if we adopt an L1 -setting for studying Eqs. 

(3.1 )-(3.3). When using an Lp -setting with 1 < p<oo, we will replace (3.5) by the 

hypothesis 

[J- 1
1 

[I_1
1 

]1/(p-1) ]1/q 
CT s(x,Jl,iJ,E)p dJ-1 dJ-1 ~ u(x,E), (3.6) 

where q=p/(p-1). In addition to one of (3.5) and (3.6), we also assume that u(x,E) 

IS bounded as a function of (x,E)E[O,a]x[Em,~]. 

Let us incorporate Eqs. (3.1)-(3.3) in the abstract theory of the previous 

chapters. For i=1,2, ... ,r we define Ai=(O,a)x(-1,1)x(Ei_ 1,Ei) and consider as the phase 

space the set 

r 
A u Ai, 

i=1 
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endowed with the Lebesgue measure dxdJ.tdE. We thus have a phase space with r 

connected components A l'" .. ,Ar. 

Now consider the vector field 

on A.. 
l 

Then clearly the vector field is continuous and divergence free on A. On using time 

as a parameter, its characteristic equations have the form 

dx 
at= Jl, * = 0, 

where (x,J.t,E) t Ai. Hence, the integral curves of X are the curves 

(xo+J.tt, Jl, EO,i - s: ,Bi(xo+J.tf)df) 
m 

with x increasing with t for J.t>O and decreasing with t for J.t<O, as well as the line 

segments (x,J.t,E0 .-,B.(x)t) for fixed (x,J.t). Since the stopping power is nonnegative, 
,l l 

the energy E is non increasing in time along trajectories. Because the stopping power is 

bounded, there is a uniform positive lower bound to the "lengths" of the integral curves. 

The sets D± of left and right endpoints of integral curves are then given by 

D . ~ [[{O}x(0,1)x(Ei_ 1,Ei)] U [{a}x(-1,0)x(Ei_ 1,Ei)] U [(O,a)x(-1,1)x{E)J], 
l =1 

One easily obtains the Green's identity 

faf 1fEM (Xu)(x,J.t,E)dxdJ.tdE 
o -1 E m 

E J.t{u(a,J.t,E)-u(O,J.t,E)}dJ.tdE + r [ J- 11 JEE ~~·· - 1 
i=1 

+ JaJ 1 ,B.(x){u(x,JJ,E· 1)-u(x,J.t,E.)}dxdJ.t]. 
0 - 1 l l- l 
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Hence, the boundary measures dv ± are given by II' I d11dE for parts of the boundary 

within x=O and x=a, and ,Bi(x)dxd11 for parts of the boundary of Ai within E=Ei-l 

and E=E.. 
I 

We may consider the test function space <I> as the linear space of all bounded 

Borel functions on A that are continuously differentiable along trajectories with 

bounded directional derivative, for v ±-almost all integral curves. 

those functions m <I> that vanish at the endpoints of the 

We write <1>0 for 

trajectories. On 

L (A,dxd11dE) we may then define Xu as the distributional derivative satisfying 
p 

and specify F p for l~p<oo as the linear space of those u t Lp(A,dxd11dE) such 

that Xut LP(A,dxd11dE). Since the integral curves have their lengths uniformly 

bounded away from zero, every ueFP has "traces" u± belonging to Lp(D±,dv ±). 

Because we have imposed the "vacuum" boundary conditions (3.2), we would at 

first sight expect to define the boundary operator as K=O. However, since we have 

created a phase space with additional boundaries at the intermediate energies E 1, ... , 

Er_ 1, the boundary operator K must also reflect the continuity of the electron 

distribution at these intermediate energies. Thus we define the operator 

K:LP(D +'dv +) ..... Lp(D _,dv _) by 

x=O, 11>0 

(Ku)(x,/I,E) = u ( x , I' , E+) , I 0' 

0, 

'tt E+. 1'f ( E) A d wn en as 1 X,/1, i t i+l an as E-:- if 
I 

the "free" streaming operator s0 and the transport 

where, for i=1, ... ,r-1, Ei is 

(x,11,E) t Ai. We now define 

operator B0 on the common 

equations 

domain D(S0) = D(B0) = {u t F P : u _ =Ku +} by the 

-(Xu)(x,/I,E) - u(x,E)u(x,/I,E) 

and 

-(Xu)(x,/I,E) - u(x,E)u(x,/I,E) + (Ju)(x,/I,E), 
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where 

1 
(Ju)(x,Jt,E) = I u (x,Jl,p,E)u(x,p,E)dp. 

-1 s 

When treating Eqs. (3.1)-(3.3) in the Lp -setting, we shall require (3.5) for p=1 and 

(3.6) for 1 < p<oo. Using the boundedness of u(x,E), we then easily obtain that J is 

bounded on L (A,dxd~tdE). p 
Let us now derive the semigroup properties of Eqs. (3.1)-(3.3). Observe that J 

and K are bounded positive operators on L (A,dxd~tdE), that II K II= 1, and that the 
p 

lengths of the integral curves of X have a uniform positive lower bound. Further, for 

all nonnegative u f L1 (A,dxd~tdE), 

r I 1 I~ {u(x,E)u(x,Jt,E) - I~ (T (x,jt,p,E)u(x,p,E)dil}dxdjtdE ~ 
0 -1 E E s 

where 

m m 

~ r I 1 I~ {u(x,E)-&(x,E)}u(x,Jl,E)dxdjtdE ~ 0, 
0 -1 E m 

1 
&(x,E) = e s s -suI? I u (x,Jl,p,E)dJl 

pt[-1,1] -1 s 

is dominated by u(x,E) by virtue of (3.5). 

u t LP(A,dxd~tdE), 

Iai 1IEM 1 0 ~ sgn(u) I u(x,Jt,E) I p- x 
0 -1 E m 

Likewise, for arbitrary 

1 
x {u(x,E)u(x,Jt,E) - I u s(x,Jl,p,E)u(x,p,E)dp}dxdpdE, 

-1 

by virtue of (3.6). We may therefore apply Theorem XII 2.3 and the paragraph 

following its proof to obtain the following results: 

(i) For every 1~p<oo the operator S0 generates the strongly continuous 

positive con traction semigroup {U o( t)} t~o· 
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(ii) For every 1~p<oo the operator Bo generates the strongly continuous 

contraction semigroup {U(t)}t~o· 

(iii) The relations hip between the two semigroups IS given by the 

Hille-Dyson-Phillips expansion, which is absolutely norm convergent. 

We shall now consider the stationary boundary value problem corresponding to 

the Spencer-Lewis equation. We shall apply the theory of Section XII.3 to derive 

unique solvability, however, under somewhat more restrictive assumptions on the stopping 

power. 

The boundary value problem for the stationary Spencer-Lewis equation has the 

form 

ll%¥-(x,~J,E) - gk§ u) (x,~J,E) + u(x,E)u(x,~J,E) 

1 
= J u (x,Jl,Jt,E)u(x,;l,E)d;l + f(x,~J,E) 

-1 s 
(3. 7) 

with boundary conditions 

(3.8a) 

u(a,~J,E) (3.8b) 

The stopping power .B(x,~J,E) has again the form (3.4). At the interfaces 

E=El'" .. ,E=Er_ 1 we impose the condition of continuity on the electron distribution 

u(x,~J,E). As in Section XII.3 we may formulate the stationary problem (3.7)-(3.8) in 

Lp(A,dxd~JdE) for 1~p<oo, and unique solvability is equivalent to the property that 

0E£u(B0). One first constructs g£Fp whose restrictions g± to D± satisfy 

g_ =Kg+, where g "coincides" with gm f Lp([0,1]x[Em,~], 1111 d11dE) on the set 

{O}x[0,1Jx[Em'~J, "coincides" with gMfLP([-1,0]x[Em'~J, 1111 d11dE) on the set 

{a}x[-l,O]x[Em,~J, and vanishes on the interfaces E=E1, ... ,E=Er_ 1. Since g is, in 

fact, constructed by interpolation along integral curves, it will be nonnegative whenever 

gm and gM are nonnegative. We may then write the unique solution of Eqs. (3.7)-(3.8) 

as 

u(x,Jl,E) -(B(j 1 (f +Bg))(x,~J,E) + g(x,~J,E), 
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where B=-(X+u-J) is an extension of B0 to an operator with domain Fp (cf. the 

proof of Proposition XII 3.1). A sufficient condition for having 0Etu(B0) and hence 

the unique solvability of Eqs. (3.7)-(3.8) 1s w0(U0) < 0. This will be the case, for 

example, if for some constant 8 >0, 

1 
u(x,E) - I u s(x,Jl,/l,E)dJl ~ 8 

-1 

for p=1, and 

[I- 1
1 

[I 1 ] 1/(p-1) ] 1/q 
u(x,E) - _ 1 u s(x,Jl,/l,E)PdJl dJl ~ 8 

for 1 < p<oo. Note that this implies an absorptive process in the electron transport. 

4. Electron drift in a weakly ionized gas 

In this section we shall study existence and uniqueness properties of a time 

dependent linearized Boltzmann equation describing the free electron distribution of a 

weakly ionized gas in an external electric field [306, 290[. If one considers only 

collisions between the electrons and the neutral gas molecules and disregards the 

interactions between electrons and between electrons and ions (weak ionization), one 

obtains the linearized Boltzmann equation 

( 4.1) 

Here F(x,v,t) and u(x,v,t) are the distributions of the neutral gas molecules and the 

free electrons as functions of position x E JR 3, velocity v E JR 3 and time t E IR+. The 

former is given, nonnegative and measurable, while the latter is to be calculated. The 

acceleration a has the form a=-kE, where k is the absolute quotient of the electron 

charge and the electron mass and E is the external electric field. The collision 

frequency 

v(x,v,t) 
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1s in general a function of x, v and t. However, smce by assumption the molecular 

distribution is nonnegative and isotropic (i.e., F=F(x, I vI ,t)), and the cross section 

u(v 1,v-?v 1,v) is nonnegative and invariant with respect to rigid rotation of the four 

velocities v, v 1, v and v 1, the collision frequency is nonnegative and depends only on 

x, I vI and t. 

We may now rewrite Eq. ( 4.1) as 

au au au 
OT(x,v,t) + v • ax(x,v,t) + a· rv(x,v,t) 

= J v(x,v,t)P(v-?v;x,t)u(x,v,t)dv - v(x,v,t)u(x,v,t), (4.2) 

with initial condition 

u(x,v,O) ( 4.3) 

Since the spatial and velocity domains both coincide with IR 3, no boundary condition 1s 

imposed. 

The quantity 

c(x,v,t) J P(v ..... v;x,t)dv 

determines which of the processes, ionization or recombination, is dominant. If there is 

an equilibrium between these two processes, then c(x,v,t)=:l. We shall assume that the 

collision frequency is essentially bounded and that the redistribution function P(v-?v;x,t) 

is nonnegative and measurable, so that 

c = ess sup {c(x,v,t) : (x,v,t)d~ 3 xiR 3 x(O,oo)} < oo. 

3 3 We shall also assume that the acceleration is Lipschitz continuous on IR xiR x(O,oo), 

partially differentiable with respect to the three velocity components, velocity 

divergence free, 

a a Ov- 0, 

nonzero whenever the velocity v=O, and satisfying the estimate 
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I a(x,v,t) I ~ C (1 + I xI + I vI) 

for some constant C. As a result, multiplication by the collision frequency as well as 

the operator 

(JTu)(x,v,t) = J v(x,v,t)P(v->v;x,t)u(x,v,t)dv 

are bounded positive operators on L1 (E,dxdvdt), which satisfy 

IT J J[v(x,v,t)u(x,v,t)-(JTu)(x,v,t)]dxdvdt <!:: (1-c)JT J J v(x,v,t)u(x,v,t)dxdvdt (4.4) 
0 0 

for every nonnegative UE L1 (A,dxdvdt). 

Now let us consider the vector field 

on the phase space A=R3 xR3, as well as the vector field Y = h + X on the 
extended phase space E=Ax(O,T) for some fixed T>O. Then the characteristic 
equations of X are given by 

dx err= v, 
dv _ err= a, 

where t is the parameter. The assumed estimate on the acceleration guarantees that no 
integral curve of either X or Y runs off to infinity in finite time. The integral curves 
of X are then given by {(x(t),v(t)) : tEll~}, while those for Yare given by {(t,x(t),v(t)) : 

t E (O,T)}. Let us introduce ~T as the linear ·space of bounded Borel functions on E 

that are continuously differentiable with bounded directional derivative along almost all 

integral curves of Y, and ~~ as the linear space of functions in ~T which vanish 
for t=O and t=T. We then define for arbitrary uEL1(E,dxdvdt) the function Yu as 
the distributional derivative 

T T J J J (Yu)(x,v,t)cp(x,v,t)dxdvdt = - J J J u(x,v,t)(Ycp)(x,v,t)dxdvdt, 
0 0 

For those uEL1(E,dxdvdt) such that YuEL1(E,dxdvdt) we obtain the Green's identity 
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T J J J (Yu)(x,v,t)dxdvdt = 
0 

= J u(x(T),v(T),T)dv (x(T),v(T)) - J u(x(O),v(O),O)dv (x(O),v(O)), 
{t=T} - {t=O} -

473 

where v _ is a suitable bounded Borel measure on {t=O} and the points on {t=T} have 

been propagated from those on {t=O} along the integral curves. Similarly, introducing <I> 

as the linear space of bounded Borel functions on A that are continuously differentiable 

with bounded directional derivative along almost every integral curve of X, we may 

define for arbitrary u { L1 (A,dxdv) the function Xu as the distributional derivative 

J J (Xu)(x,v)<p(x,v)dxdv = - J J u(x,v)(X<p)(x,v)dxdv, <p€<1>. 

Since every trajectory of X has the real line as its parameter domain, there 1s no 

Green's identity associated with X. 

Let us first derive the wellposedness of the initial value problem (4.2)-(4.3) 

using the formalism of Chapter XI. Denote by E 1 the linear space of 

u€L 1 (E,dxdvdt) such that Yu€L 1 (A,dxdvdt). Since all of the integral curves of Y 

have the same positive length T, the restrictions u( ·, • ,0) and u( •, • ,T) of u to {t=O} 

and {t=T} belong to L1({t=O},dv_) and L1({t=T},dv+)' where v+ is obtained from 

v by propagation along integral curves. Applying Theorems XI 4.3-4.5, it is 

immediate that for every u0 € L1 ({t=O},dv _) there exists a unique function 

u € L1 (E,dxdvdt) satisfying the equations 

T (Xu)(x,v,t) + v(x,v,t)u(x,v,t) = (J u)(x,v,t), (x,v,t)!E, 

u(x,v,O) = u0 (x,v), (x,v)!A. 

If u0 is nonnegative, then so is the solution u. Moreover, if c € [0,1], then the 

evolution is contractive in the sense that 

~ liu0 11 . 
L1 ({t=O},dv _) 

(4.5) 

Here v t is the measure on {(x,v,t) : (x,v) {A} obtained from v _ by propagation along 

integral curves. In fact, since A does not have boundaries, it follows directly from the 

identity following (XI 4.21) that the contractiveness condition (4.5) is satisfied if and 
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only if c(x,v,t) ~ 1 almost everywhere on I:. Indeed, this condition is necessary and 

sufficient in order that the left hand side of ( 4.4) be nonnegative for all nonnegative 

u f L1 (I:,dxdvdt), and the latter is m turn equivalent to contractiveness. The 

identity following (XI 4.21) also implies that 

II u0 II , o~t~T, 
L1 ({t=O},dv _) 

if and only if c(x,v,t) = 1 almost everywhere on I:. In physical terms, the total 

number of free electrons is independent of time for every initial electron distribution if 

and only if there is local equilibrium (in position and velocity) between ionization and 

recombination. 

Let us now assume that the acceleration, the cross section, the redistribution 

function, the distribution of the neutral gas molecules, and the collision frequency are 

all time independent. Then we may cast the existence and uniqueness results in the 

semigroup framework of Section XII.2. Let F 1 be the linear space of u f L1 (A,dxdv) 

such that XutL1(A,dxdv). We may define the operators S and B on the common 

domain F1 by 

(Su)(x,v) -(Xu)(x,v) - v(x,v)u(x,v), 

(Bu)(x,v) -(Xu)(x,v) - v(x,v)u(x,v) + (Ju)(x,v), 

with 

(Ju)(x,v) J v(x,v,t)P(v-+v;x)u(x,v)dv. 

Then S and B generate strongly continuous positive semigroups {U0(t)}t;;:,:o and 

{U(t)}t;;:,:o on L1 (A,dxdv). The former is contractive. A necessary and sufficient 

condition for contractiveness of the latter semigroup 1s that c(x,v) ~ 1 almost 

everywhere on A, which is satisfied if c f [0,1]. A necessary and sufficient condition in 

order that {U(t)}t;;:,:o be a semigroup of isometries 1s that c(x,v) = 1 almost 

everywhere on A. These statements are easily derived from the formula following (XI 
4.21) in combination with the identity (4.4). 

The runaway electron problem corresponds to giving necessary and sufficient 

conditions in order that the time dependent solution converges as t-+oo. The resulting 
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limit will then be an equilibrium distribution for the electrons. Obviously, this is only 

an interesting question if c(x,v,t) = 1, i.e., m the case of local equilibrium between 

ionization and recombination. Cavalieri and Paveri-Fontana [72], from whom we have 

borrowed the above sketch of the problem, considered the special case Ill which all 

relevant data are independent of position. For this case they gave a necessary 

condition in order that the electrons relax to a steady state distribution. They also 

showed that if this condition IS not satisfied the electron speed will increase 

indefinitely and hence the electrons will run away to infinity. 

5. A transport equation describing growing cell populations 

In this section the abstract time dependent theory will be applied to a 

transport problem modeling growing cell populations. This model was recently developed 

by Rotenberg [322] as an improvement of a model of Lebowitz and Rubinow [243]. 

Rotenberg's effort was directed towards a Fokker-Planck approximation of the equation, 

for which he obtained numerical solutions. For a variety of boundary conditions, van 

der Mee and Zweifel [370] obtained analytical solutions by eigenfunction expansion. 

Here we shall examine a Boltzmann type equation rather than its Fokker-Planck 

approximation. 

The transport equation has the form 

ff(J.I,v,t) + v~(J.I,v,t) 

Joo r(J.I;v,v)u(J.I,v,t)dv - R(J.I,v)u(J.I,v,t) + S(J.I,v,t), 
0 

where J.lf[0,1], vf[O,oo), and 

R(J.I,v) = Joo r(J.I;v,v)dv. 
0 

We impose the initial condition 

(5.1) 

(5.2) 

u(J.I,v,O) = u0(J.I,v) (5.3) 

as well as a boundary condition. This equation describes the number density u(J.I,v,t) 
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of a cell population as a function of the degree of maturation IJ, the maturation 

velocity v, and the time t. Here the degree of maturation is defined so that 1J =0 at 

the birth and JJ=l at the death of a cell. The transition rate r(JJ;v,v) specifies the 

number of transfers per unit time, unit population and unit velocity interval. By 

integration one obtains the total transition cross section R(JJ,v). By assumption, 

r(JJ;v,v) and R(JJ,v) are nonnegative and measurable. The number density of cells 

with maturity IJ is obtained from u(JJ,v,t) by integration over all v; the total 

population at time t in turn is the integral of u(JJ,v,t) over both IJ and v. 

A general reproduction law coupling the velocity distribution before mitosis 

(JJ=l) to the velocity distribution after mitosis (JJ=O) has been introduced by 

Lebowitz and Rubinow [243]. It has the form of a boundary condition, 

vu(O,v,t) p f' vu(l,v,t)d~~:(v,v), 
0 

( 5.4a) 

where ~~:(v, •) Is a positive Borel measure on {O,oo), normalized to unity for all 

v E{O,oo), and the constant p £{0,2] is the average number of viable offspring per 

parent cell on mitosis. If ~~:(v, •) is an absolutely continuous measure for all v E (O,oo), 

then one writes its Radon-Nikodym derivative as k(v,v) and the boundary condition as 

vu(O,v,t) = p Joe k(v,v)vu(l,v,t)dv. 
0 

( 5.4 b) 

In most applications it Will be convenient to write the boundary conditions as in (5.4b), 

even if ~~:(v, •) is not absolutely continuous. We shall do so for the special case of 

reproduction with "perfect memory", where k(v,v)=8(v-v) is the formal kernel of the 

identity operator, the constant p~l, and the boundary condition is given by 

u(O,v,t) pu(l,v,t). 

Let us incorporate Eq. (5.1) with initial condition (5.2) and either of the 

boundary conditions (5.4) in the abstract framework of Chapters XI and XII. The 

phase space will be A=(O,l)x(O,oo) with Lebesgue measure, and the vector field is given 

by X = v%p. Then the characteristic equations of X are 

v, dv 
dt 0, 

where t is the parameter. The integral curves of X are the lines (JJ 0+vt,v), where 
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J.lo dO,l), V£ (O,oo). These integral curves have "length" -1 v while the sets D 

and D + of left and right endpoints are g1ven by D 

{l}x(O,oo). The Green's identity has the form 

= {O}x(O,oo) and D + 

( Joo (Xu)(J.l,v)dJ.ldV = Joo v{u(1,v) - u(O,v)}dJ.l, 
0 0 0 

(5.5) 

so that v ± IS the weighted Lebesgue measure vdv. One should note that the 

lengths of the trajectories of X do not have a uniform positive lower bound. 

We shall analyze the initial-boundary value problem (5.1)-(5.2)-(5.4) on the 

space 1 1 (A,dJ.ldv), where we assume R(J.l,v) to be essentially bounded on A. On 

this space the operator 

(Ju)(J.l,v) = r r(J.l;v,v)u(J.l,V)dv 
0 

1s bounded and positive, while for every nonnegative UfL1 (A,dJ.ldv) 

J 1 Joo {R(J.l,v)u(J.l,v) - Joo r(J.l;v,v)u(J.l,v)dv}dJ.ldv 
0 0 0 

0, (5.6) 

as a corollary of ( 5. 3 ). With the help of the natural identifications between 

1 1 (D ±,dv ±) and 1 1 ([O,oo),vdv) one defines the boundary operator K by 

(Ku)(v) = .2. Joo k(v,v)vu(v)dv. 
v 0 

Then for all nonnegative u€1 1 ([O,oo),vdv) one has 

Joo v(Ku)(v)dv = p Joo vu(v)dv, 
0 0 

whence K is a bounded positive operator with II K II ~1. 

(5. 7) 

As test function space we choose the linear vector space <I> of bounded Borel 

functions <p on A that are continuously differentiable with respect to J.l with 

bounded partial derivative for almost all v dO,oo), and whose support is contained in the 

set [0,1]x[O,v ] for some v dO,oo). By <1> 0 we denote the linear subspace of max max 
functions in <I> which vanish at J.l=O and J.l=1 for almost all vf{O,oo). It should be 

noted that the lengths of integral curves of X that meet the support of a function in <I> 

do m fact have a positive lower bound, namely, some 8~(1/vmax). For 

u f 1 1 (A,dj.ldv) we then define Xu as the distributional derivative specified by 
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We define F 1 to be the linear vector space of ut L1 (A,dpdv) such that 

Xu E L1 (A,dpdv) and the restrictions u(O, •) and u(l, ·) belong to L1 ([O,oo),vdv). In 

general, a function u such that {u,Xu}cL1 (A,dpdv) only has restrictions u(O, •) and 

u(l, •) in L11 ([O,oo),vdv) satisfying (5.5). Here L11 ([O,oo),vdv) is the vector 
'oc 'oc 

space of those Lebesgue measurable functions on A that are integrable on every 

bounded Lebesgue measurable set. In fact, as it will turn out, every solution u of the 

initial- boundary value problem such that {u,Xu}cL1 (A,dpdv) has its restrictions u(O, •) 

and u(l, •) in L1 ([O,oo),vdv). 

We now define SK and BK as linear operators with the common domain 

satisfying 

-(Xu)(p,v) - R(p,v)u(p,v), 

(BKu)(p,v) = -(Xu)(p,v) - R(p,v)u(p,v) + Joo r(p;v,v)u(p,v)dv, 
0 

so that BK = SK+J. 

Let us apply Theorem XII 2.2 for the case O<p<l. In this case IIKII<L In 

view of the positivity of J and K and the identity (5.6) we obtain the following result: 

(i) For pE(O,l) the operators SK and BK generate the strongly continuous 

positive contraction semigroups {U0 K(t)}t~O and {UK(t)}t~O· respectively. 
' (ii) The semigroups {UO,K(t)}t~O and {UK(t)}t~O are related by the 

Hille-Dyson-Phillips expansion, which is absolutely norm convergent. 

Theorem XII 2.2 cannot be used to obtain these semigroup results for p~l, 

although for p=l a somewhat weaker result can still b-e derived. Nevertheless, apart 

from contractiveness, we may extend (i) and (ii) to the case p~l. For this purpose 

we choose some q>p and apply the following transformation to the problem, 

u(p,v,t) -+ w(p,v,t) = q -pu(p,v,t), (5.8) 



XIII. APPLICATIONS: INITIAL VALUE PROBLEM 479 

which replaces the initial-boundary value problem by the initial-boundary value problem 

= Joo r(JJ;v,v)w(Jt,v,t)dv - {R(~t,v)-log(q)}w(JJ,v,t) + q-lls(JJ,v,t), 
0 

vw(O,v,t) = .E. vJ00 k(v,v)vw(l,v,t)dv. 
q 0 

(5.9) 

(5.10) 

(5.11) 

We have replaced Eqs. (5.1)-(5.2)-(5.4) by a new problem (5.9)-(5.11), where the' 

boundary operator has norm (p/q)<l. A straightforward application of Theorem XII 2.2. 

to the modified problem (5.9)-(5.11) m combination with the invertibility of 

(Nqu)(JJ,v)=qllu(JJ,V) on L1 (A,dJ.idv) and the strict contractiveness of the modified 

boundary operator then imply the following results: 

(i) For all p>O the operators SK and BK generate strongly continuous positive 

semigroups {U0,K(t)}t~O and {UK(t)}t~o· respectively. 

(ii) For the type and spectral bound of the semigroup generated by BK we have 

s(BK) = w0(UK) ~ log(p). 

(iii) The semigroups {U0,K(t)}t~O and {UK(t)}t~O are related by the 

Hille-Dyson-Phillips expansion, which is absolutely norm convergent. 

The estimate in (ii) requires some elaboration. In the first place, the types of 

the semigroups {U0,K(t)}t~O and {UK(t)}t~O do not change when applying the 

transformation (5.8). On the other hand, since the condition (5.6) implies the 

contractiveness of the semigroup generated by BK, the additional term in (5.9) 

containing log(q) requires its type not to exceed log(q) for every q>p. As a result, 

the type of the latter semigroup does not exceed log(p). The estimate is then clear, 

because the spectral bound and the type of a positive semigroup coincide on L1. 
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Projective tensor product 195 

Projector, separating 102, 200ff 

Propagator function see Function 

ilk-space 87 

Radiative transfer, equation of 243ff, 

256ff, 273, 274, 440 

Reasonable cross norm 194 

Reciprocity symmetry see Symmetry 

Redistribution function 275, 441, 471 

Reducible operator 20 

Reduction of dimension 152ff, 160 

Reflection operator 125ff, 223ff 

see also Operator, surface 

reflection 

Relaxation time approximation 324 

Residual spectrum 15 

Resolvent compact operator 223, 434 

Resolvent integration method 10, 27 

Resolvent kernel 166, 207, 219, 225 

Resolvent set 14 

Riemann-Hilbert problem 163ff, 207ff,. 

350ff 

Root linear manifold 57 

Runaway election problem 4 7 5 

SK-smoothing operator 435 

Scalar type see Operator, spectral 

Scattering angle 243 

Scattering matrix 257 

Schwarzschild Milne integral equation 11, 

139 

Semiconductor 324, 464 

Semigroup, analytic 16 

c0 - 15, 405ff 

contraction 15, 410ff 

irreducible 428 

positive 13, 20, 410ff, 420ff, 432ff 



positivity improving 428 

strongly positive 428 

Semigroup compact operator 439 

Semigroup reconstruction 161, 168ff, 

189ff 

Separating projector 102, 200ff 

Shear flow 305ff 

Sign characteristics 101 

Signature operator see Inversion 

symmetry 

Singular values 196 

Slab geometry 4, 108ff, 145ff, 154ff, 

27 5ff 

Slip-flow 306ff 

Solution, strong 30ff 

weak 27, 46, 49 

Specific intensity 243, 256, 277 

Spectral bound 421 

essential 4 2 2 

Spectral :Mapping Theorem 423 

Spectral operator see Operator 

Spectral radius 15 

essential 4 2 2 

Spectral Theorem (for definitizable 

operators) 90 

Spectrum 14 

approximate point 15 

asymptotic 422 

continuous 15 

essential 4 21 

peripheral 301, 421, 422 

point 15 

residual 15 

Spectrum of the symbol 169 

Spencer-Lewis equation 464ff 

Spherical functions, generalized 264, 

INDEX 523 

267 

Stoke's Vector 256 

Stopping power 464 

Streaming operator 373, 404 see 

also Operator, free streaming 

Sturm-Liouville boundary value problem 

332 

Sturm-Liouville operator 29, 33lff 

Sturm-Liouville problem, indefinite 332 

Subspace, maximal 88 

negative 88 

neutral 88 

non-degenerate 88, 93, 120 

positive 88 

Supersonic breakdown 7 8 

Surface reflection operator see 

Operator 

Symbol 162ff, 179ff, 189, 200, 202, 

206 

spectrum of 169 

Symmetry 

equatorial plane 258 

meridian plane 258 

llllrror 244, 249, 259 

reciprocity 244, 249, 258, 327, 328, 

361 

T -regular operator 93 

Tauberian Theorems 198 

Tensor product, injective 195ff 

projective 195 

Tensor product norm see Norm 

Theorem, Analytic Fredholm 14 

Bochner-Phillips 143, 199 

Rille-Phillips 16 

Hille-Phillips-Yosida 16 
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Hille-Yosida 16 

Lumer-Phillips 16 

Spectral (for definitiz~~oble operators) 

90 

Spectral Mapping 423 

Trace 372, 397, 409 

Trace norm 196 

Transfer function 180 

Transfer matrix 236ff 

Transfer operator 236ff 

Transmission operator 125ff, 223ff 

Transport operator 3 7 3, 404 

Type 15 

Uniform norm 194 

uo-positive operator 20, 287, 301, 327 

Vector, interior 19 

strictly positive 19 

Vector field 369, 374 

Vlasov equation 9, 406, 461 

Wave operator 453, 454 

Weight function, indefinite 332ff 

Wiener-Hopf equations 11, 161ff, 173ff, 

193, 207ff 

Wiener-Hop! factorization see 

Factorization 

Wiener's Lemma 198 

Wronskian 344 

X-equations 139, 217, 226ff 

X-function see Function 

Y-equations 139, 217, 226ff 

Y -function see Function 

Zel algebra 

Zodiacal Jig h t 

198 

242 
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