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A CLASS OF LINEAR KINETIC EQUATIONS IN A KREIN SPACE SETTING

Alexander H. Ganchev®, William Greenberg and C.V.M. van der Mee**

Krein space methods are used to derive the unique solvability of a class of
abstract kinetic equations on a half-space with accretive collision operators. At
the same time a new proof is provided for the case of a positive self-adjoint colli-
sion operator. A Fokker-Planck type example is worked out as a new application.

1. Introduction

A multitude of linear kinetic equations in a half-space describing such di-
verse physical processes as neutron transport, radiative transfer, rarified gas dyna-
mics, electron scattering, etc., can be incorporated in a single abstract transport

equation,
%{sz(x) = —AP(x), 0 < x < o0, (1.1)

Here x is the spatial variable. The phase space density of the particles is de-
scribed by P(x); more precisely, for each X, ¥(x) is an element in a Hilbert space H,
where H is typically a space of functions of velocity variables. The operators T
and A on H are linear. The left hand side of equation (1.1) describes the free
streaming and the operator A describes the collisions. In most physical situations

the operator T is self-adjoint and injective, so the maximal positive/negative spec-
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tral projectors Q + for T are well defined. The equation (1.1) is usually supplemen-
ted by boundary conditions in the following form. At x=0 one assumes that the in-

coming flux ¢, is given, i.e,
Q. ¥(0) = wy, (1.2a)

and a certain behavior at infinity, appropriate to the problem at hand, is pre-

scribed, e.g.,
N = ox™), x — oo, (1.2b)

The operator T is bounded for many models in neutron transport, radiative
transfer and electron scattering and is in general unbounded for models in gas dyna-
mics. The operator A is bounded, in fact the “identity plus a compact operator”,
for many models in neutron transport and radiative transfer, and for BGK models
in gas dynamics. For models of electron scattering the operator A is unbounded,
more precisely it is a Sturm-Liouville operator describing diffusion in velocity
space. For various linearizations of the Boltzmann equation A may or may not be
bounded. For a model of strongly anisotropic neutron transport A has the form of
a "Sturm-Liouville plus a compact operator”. The compact operator contributing to
A is in general nonsymmetric.

Under quite general circumstances, one may show that the oﬁerator T7'A ge-
nerates a bisemigroup with separating projectors P + (see next section, for details
also [9], [8], [11] and [2]). If this is the case, then every solution of the boundary
value problem has the form exp(—xT 'A)h for some vector h€P,H such that
Q;h=¢p,. Hence the boundary value problem is uniquely solvable if and only if Q,
maps P, H bijectively onto Q,H. Moreover, the invertibility of the operator
V=Q,P,+Q_P_ is equivalent to the unique solvability of the above boundary
value problem and its counterpart for x€(—ec,0).

In their pioneering work Hangelbroek [14] and Lekkerkerker [19] viewed the i-
sotropic one-speed neutron transport problem as a boundary value problem of the
type described above and introduced the operators Q 4 P + and V. A complete in-
vestigation of the case when A is a positive self-adjoint operator of the form ”i-
dentity plus a compact operator” was carried out by van der Mee [20] for bounded
T and by Greenberg et al. for unbounded T [12]. A different approach was

proposed by Beals [3], who sought weak solutions of the abstract kinetic boundary
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value problem. This work was extended to unbounded positive self-adjoint colli-
sion operators in [13] and [4]. In this approach one has to work with several dif-
ferent Hilbert spaces HA’ HT’ HS’ which are obtained by completion of a suitable
dense subspace of H in the topologies given by the scalar products (A.), (Tl,),
(AlS|,), respectively. When A is a Sturm-Liouville operator and T is a multipli-
cation operator, one has an indefinite Sturm-Liouville problem; the corresponding
boundary value problems have been investigated in [3], [16] and [15].

The first to use spaces with indefinite metrics in transport theory were Ball
and Greenberg [1]. This work was extended in [10]. In these papers A is assumed
to have a finite dimensional negative part, hence the scalar product (A.) induces a
Pontryagin space structure. If A has a nontrivial null space, one first has to
separate off the zero root linear manifold ZD(T"‘A). Then the question of unique
solvability reduces to the analysis of the structure of this finite dimensional
subspace with respect to the indefinite scalar product (T.,). This was carried out
in [20], [3], [4] and [13] for positive self-adjoint A and in [9] and [8] for accretive
nonsymmetric A. In this paper we extend the analysis of [9] to include weak
solutions and unbounded collision operators. We extensively use the Krein space
structure of the whole space HT with respect to (T-). A study of the geometry
of Krein spaces, Proposition 2.2, is crucial in proving the unique solvability and
replaces the ﬁsual Fredholm argument concerning V. In this way we not only can
treat nonsymmetric unbounded operators A but also provide a new and more trans-
parent way of looking at the case of self-adjoint collision operators A. In order
not to overburden the analysis with technicalities we consider only the case of
bounded T.

In the next section we have collected a few definitions and facts about
Krein spaces [5], positive operators in Krein spaces ([5], [17] and [18]), and perturba-
tion of bisemigroups ([9], [8D). In Section 3 we extend the operator T 'A from H to
Hy and present a T~ 'A-invariant decomposition of Hy with Zo(T™*A) being one of
the summands. In Section 4 we treat the case of strictly positive A (see [3], [4] and
[13]) in a Krein space setting, using the Spectral Theorem for definitizable ope-
rators and Proposition 2.2. Using a perturbation theorem for bisemigroups, we ex-
tend in Section 5 the analysis to accretive operators A of the form "Sturm-Liou-
ville plus a compact operator”. The case of a collision operator with nontrivial
null space is treated in Section 6. Finally, in Section 7 we give an example of a mo-
del for neutron transport with strong anisotropy (cf. [21], [6]).

Acknowledgements: This article is based in part on the Ph. D. thesis of the first




Ganchev, Greenberg and van der Mee 521

author. Two of the authors would like to thank Prof. Paul Zweifel for stimulating
discussions. The research leading to this article was supported in part by the U.S.
Dept. of Energy under grant No. DE-AS05 83ER10711-1 and the National Science
Foundation under grants DMS 8312451 and DMS 8501337.

2. Krein Spaces, Positive Operators and Bisemigroups

In this section, as a prerequisite to the sequel, we summarize some proper-
ties of Krein spaces and analytic bisemigroups.

Let HT be an arbitrary Krein space with indefinite scalar product ("')T’ fun-
damental projectors Q 4 and fundamental decomposition HT=Q+HTEBQ*HT. This
means that (-,~)T is a nondegenerate sesquilinear form on HT’ Q+HT is a Hilbert
space with scalar product (~,»)T and Q_HT is a Hilbert space with scalar product
—("’)T' The operator Q= Q,—Q_ is an involution, i.e. Q%=1, called a fundamental
symmetry. The topology of HT is defined by the norm induced by the positive de-
finite scalar product (Q-,-)T. With respect to this scalar product Q is unitary. If
K is an operator on H’I" its adjoint with respect to (~,-)T, the so-called the HT—
adjoint, will be denoted as K#. If K* is the adjoint of K with respect to (Q"')T’
then K#=QK"’Q. A vector f in HT is called positive, negative or neutral if
(f,f)T>0, <0 or =0, respectively. A subspsce M in HT is called positive if it does
not contain negative vectors, M is called positive definite if except for the zero
vector it contains only positive vectors and M is maximal positive if it is positive
and is not the proper subspace of a positive subspace. One has the analogous defi-
nitions for negative, negative definite and maximal negative subspaces. The ortho-
gonal companion of M is M4={f€HT: (f,g)T=0 for all gEM}. The isotropic part of
a subspace M is M°=MNM<. If M is a positive subspace then M® consists precise-
ly of the neutral vectors in M. A decomposition HT=M+®M_ with Md: closed po-
sitive/negative definite subspaces is called a fundemental! decomposition of HT‘
The corresponding projectors P 4 H-M 4 are called fundamental projectors.

The following simple geometric fact about Krein spaces will be crucial in the

analysis of the unique solvability in the next sections.

PROPOSITION 2.1. (see {5], Theorem 4.1) A positive subspace M, or HT is maximal
positive If and only If Q.M,=Q,Hr, or equivalently, Q, maps M, bljectively onto
Q;Hp.
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In Section 6 we will need the following simple fact.

PROPOSITION 2.2. Suppose M 4 are closed positive/negative subspaces of HT’
M. M_=HT and M_ is negative definite. Then M_ is a maximal positive subspace.

Next we will state the spectral theorem for positive operators in a Krein
space (see [18] and {5]). An HT-self-adjoint operator K is called positive if its resol-
vent set is nonempty and (Kf,f)TZO for all fED(K). Let R be the semiring which
consists of all bounded intervals and their complements in R with endpoints diffe-

rent from zero.

SPECTRAL THEOREM (see [18], Theorem 3.1). If K is an Hy-positive operator,
then there exists a map F from %R Into the set of bounded, HT—seIf-ad Jjoint
operators in HT such that F(E)F(E)=F(ENE); F(EUE)=F(E)4+F(E) for disjoint E and
E in %Ry F(I:‘,)HT is a positive/negative subspace if ECR +5 F(E) Is In the double
commutant of the resolvent of K; if E is a bounded interval, then F(E)HTQD(K) and
K[F(E)HT is a bounded operator; G(KFF(E)HT)QE'

A point t is a critical point for the operator K if F(E)HT is an indefinite
subspace for every EER with t€E. The only possible critical points for a positive
operator K are zero and infinity. If K has a bounded inverse it may have a criti-
cal point only at infinity. If the limits /im F({tyt)) as t—+4oc and /im F({({,ty)) as
t—+—oo exist, we call infinity a regular critical point. In this case F((O,oo))HT and
F((—oo,O))HT are maximal positive/negative definite subspaces forming a fundamen-
tal decomposition of the Krein space. In the same way one defines regularity of
the critical point at zero.

A strongly continuous bisemigroup E(t) on a Hilbert space H is a function E
from R\{0} into L(H), the bounded operators on H, with the following properties:

(i) E{)E(s)=+E(t+s) if sgn(t)=sgn(s)==+1 and E(t)E(s)=0 if sgrn(t)=—sgn(s)
(ii) E() is strongly continuous and has strong limits as (4t)I0.

It is easy to check that
7, = s-tim {(LE{t)
T (g

are bounded projectors, called separating projectors, and that .0 =0=10_01,. In
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the definition of a bisemigroup we require also
G I, + 0- =1,

where E denotes the identity operator. This is equivalent to saying that
+E(OT + 41>0, are strongly continuous right/ left semigroups on Ran 7 + An
operator S is the generator of E(t) if X7 + leaves D(S) invariant and SI7 ih=II :i:Sh’
YheD(S), and if E(t)=+exp (—iS)T L +1>0. We will write E(t;S) for the bisemi-
group generated by S. The bisemigroup will be called bounded holomorphic, strong-
Iy decaying holomorphic, or exponentially decaying holomorphic if both of the semi-
groups +-Et)7 4 +41>0, have the respective propertiss.

For an angle 0<6g%7\' we denote sectors about the real axis by X, 4+ with
29 :I:=(z€ﬂ:: larg{+z)<8} and Xy=%, U, . Assume that S is an injective normal

operator on a Hilbert space H with spectral measure dF(})), i.e.

S = J NAF(A).
o{S)

Assume also that cr(S)Qfg__gl for some 0<0,<}x and that zero is either in the resol-

vent set or in the continuous spectrum of S, It is immediate to check that S is

the generator of a strongly decaying, holomorphic bisemigroup of angle at least 8,,

with as separating projectors I i=F(a(S)ﬂ{;&;Re z>0)). If 87! is a bounded opera-

tor, the bisemigroup is exponentially decaying. Besides the assumption on S made a-

bove, suppose also that the following conditions hold:

(i) B = [—A is compact.

(ii) B is Holder continuous with respect to S at zero and infinity: there exist
numbers ,Y>>0 and bounded operators DD, such that B = |S|7°D, and B =
IS"D,, where |S}=S(JI,—II.), or

(ii”) B is trace class.

(iii) The spectrum of S*=SA is contained in a sector around the real axis: o(S*)C
fg_gz for some 0<8,<}~.

(iv) Ker A = {0}.

Here we assume either (ii) or (ii’).

THEOREM 2.3 (see [9]). With the above assumptions on S and B, S* generates a ho-
lomorphic bisemigroup E*(t) with separating projectors MI°.. For any t€R\{0} the
difference operators E(tD—EZ(t) and IO ﬂ:—H:l: are compact and the bisemigroup
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E*(t) Is strongly decaying. /f o(S) has a gap at zero (l.e., S™! is bounded), then
E*(t) Is exponentially decaying.

3. Extensions and Decompositions

Let H be a Hilbert space and assume that T is a bounded, self-adjoint and in-
jective operator on H, hence T~! is densely defined with domain TH. Let Q + be
the maximal positive/negative spectral projectors for T, i.e. Q§:=Q 1 TQ :tz-Q :{:T
and o(TQ i)g{xeR::txzo}. Set Q=Q,—Q_, obviously a unitary involution, i.e.
Q*=Q =Q~'. By definition, the absolute value of T is |T}=TQ, a positive operator.
If (-,) is the scalar product in H and k>0, let the Hilbert space H, be the space
IT/*/’H with the scalar product (,),=(T|™*,). For —k>0 let (,)_=(T[ .) and
denote by H_, the completion of H with respect to the norm |[|_,. In particular,

we have the chain of Hilbert spaces

H,= H_,,=H=H, = H; (3.1)

where the arrows represent the unitary isomorphisms given by I’I‘Il/ %, Because Hefle

ma jorizes |}, if k>h, we also have the chain of continuous imbeddings
H_, 2+ H_, =+ H =~ H, = H, (3.2)

By construction and by the injectivity of T the imbeddings are dense. We remark
that H, is the domain of T~ ' in H and H_, is denoted by HT elsewhere in the lite-
rature (cf. [3], [13]).

Let K, K be operators in H. Assume that

T DK) C D(K) C H, C H, (3.3)
and
TKf — RTf for every f € D(K). 3.4)

Assume that K is a closed operator in H. Then K is a closed operator in H, if it
has the same domain as in H. Indeed, let f.€D(R), [fa—fl;~0, and |Kf.—g|l,—~0 for
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some g€H,. Because Il{; majorizes ||| we have the same convergences in H. But we
know that K is closed in H, hence feD(K) and Kf=g. We now easily see that geH,,

hence K is closed in H,. Define an extension in H_, of the operator K in H by
T 'cKoT 3.5)

where K is viewed as an operator in H, and T and T~ are viewed as isometries be-
tween H, and H_,. Denoting this extension again by K will cause no confusion.
Thus K in H_, is a closed operator. We also assume that Ker K=T(Ker K) as
kernels of operators on a dense domain in H so that the kernels of K in H and H_,
will be the same. If K is densely defined in H, then its extension to H_, is densely
defined. Indeed, if M is a set in H and clos_, M is its closure in H_,, we have MC
clospMCclos_ M. Taking clos_;, once more we get clos_ M = clos_, closM, so if
closgM=H we also get clos_ M = H_,.

If K and K are bounded operators on H and TK=KT then K extends to a
bounded operator on H_,. Indeed, it is immediate that K has a bounded extension in
H_,. Using the usual interpolation between H_, and H based on the norm estimate
linfi_ <itll,#bil_,"%, v heH, we get that K is bounded on H_,.

Now consider an operator A in H which is Fredholm, accretive (i.e. 2Re A=
A+4+A*>0) and satisfies Ker A=Ker (Re A). The proof of the following lemmas is

easy and is contained in [9] and [8]. For convenience we sketch some of the proofs.

LEMMA 3.1. We have
(a) f € H and (Af,f) = 0 imply £ € Ker A,

(b) Ker A = Ker A*, Ran A = Ran A%,
(c) H= Ker A & RanA.

Set K=T A and K=AT™! (note the difference in notation from [9]).
LEMMA 3.2. The operators K and K are densely defined and closed in H.

Proof: We will only show that K is closed. The density of D(K) was proved in a
straightforward way in [8], while the rest is rather obvious.

Let f.€D(AT )=T(D(A)), so fr=Th, for some h,ED(A). Assume that f,—f
and Kf,=Ah,—f’. Because Ran A is closed we can write f’=Ah for some heD(A).

Thus A(h,—h)—0. By the Fredholmness of A (more precisely by Lemma 3.1(c)) one
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can view A as an operator from Ran A onto Ran A with a bounded inverse, thus
uniquely specifying h. and h, whence h,—h. But T is bounded, so Th,—Th.
Therefore f=TheD(K) and {’=Ah=KTh=Kf. O

The boundedness of K and K on H enables us to prove that the zero root
manifold Z,K), which is the union of the kernels of K", is the same on H and on
H_,. Indeed, Ker K=T(Ker K) on H, implies that Ker K is the same on H, and on
H_,. If we assume K®f=0 for some f€H_, and ncN, we find K" 'feKer KCH,CH.

Since K has a bounded inverse on H, we find fED(K™CH, which settles our

statement.

LEMMA 3.3. The only possible eigenvalues of T 'A on the imaginary axis are at
the origin.

Proof: If M\ is imaginary, h€D(T 'A) and T !Ah=Ah, we have
2((Re A)h,h) = (\NTh,h) + (hATh) = ATh,h) + M, Th) = 0
implying A\Th=Ah—(Re A)h=0 and hence Ah=0, which proves the lemma. 0O

LEMMA 3.4. The Jordan chains of T'A, T'A*, AT and A*T™' at \=0 have

length at most two.
Proof: If T~ !Ah=k, T 'Ak=g and T 'Ag=0, we find
2((Re A)k,k) = (Tg,k) + (k,Tg) = (g,Ah} + (Ah,g) = (A%g,h) + (h,A%g) = 0,
by virtue of Lemma 3.1(b). Hence Tg=Ak=(Re A)k=0 and therefore g=0. 0
LEMMA 3.5. We have
(@) K ZoK) = (T7'A*) Z(T 'A%,
(b) dim Zo(K) = dim Zo(TT'A%).
Usging the remarks at the beginning of this section we extend the operator

K=T7'A to H_,. So we may consider K as a closed, densely defined operator in

H_,. Its zero root manifold Z,(K) will be identified with the one in H.
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The space H_, becomes 2 Krein space, denoted HT, if we introduce the inde-
finite scalar product (-,~)T=(Q~,~)_l=(’[‘~,~). Let K# be the HT-adjoint of K. The ope-
rator K¥ is an extension of T'A* and ZO(K#)=ZO(T"A"). Let Z,(K) be the Hp-or-
thogonal companion of ZO(K#), i.e. Zl(K)=(ZD(K#))‘4. It is immediate that Z,(K) is K-

invariant.
LEMMA 3.6. ZyXK) N Z(K) = {0}.

Proof: Let M be a subspace such that MQH(_:HT; then TM‘(_:MJ‘. Suppose he
(ZO(K#))AQ(Ker A’)L= (Ker A)A. Then Thé&(Ker A)‘L=Ran A*.  Hence h=K#g for
some g. Because both Z (K} and Z.,(K) are K-invariant and KZ,K) C Ker A =
Ker A*, we need only show Ker A*NZ{K)={0}. So assume also hcKer (A’)QZD(K#).
This implies that gEZO(K#). Thus we have 0=(Th,g)=(A"g,g). By Lemma 3.1 this
implies A*g=0, so h= K#g=0. o

THEOREM 3.7. There is a K-invariant decomposition of Hp: Hp = Z,(K) & Z,(K).
Proof: Using codim MéngmM we get codim Z(K)<dim ZO(K#)=dIm ZoK), the

equality coming from Lemma 3.5. But above we obtained Z,(K)NZ,(K)={0}, hence
the decomposition holds, 0O

4. Strictly Positive Collision Operators

In this section we assume that A is positive self-adjoint and Fredholm and
Ker A={0}. Even though A will in general be unbounded, the assumptions we made
force A™' to be a2 bounded operator on H. By the considerations of the previous
section A™'T has a bounded extension to HT and K=T!A has a closed, densely
defined extension to HT and a bounded inverse in HT' The operator A™'T is Hp-
self-adjoint and, in fact, HT-positive. Indeed, (A_le,f)T=(A“I(Tf),(Tf))ZO by the
assumption that A is positive self-adjoint on H. Thus we may view K as an HT'
self-ad joint, Hrp-positive operator with an HT-bounded inverse. Hence K has at
most one critical peint, namely at infinity. Since in most physical models T has
both positive and negative spectrum around zero, we must treat the case that infi-
nity is a critical point of K.

In order to proceed further and use the functional calculus for definitizable
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operators in a Krein space we assume that infinity is a regular critical point of K.
The regularity of the criticel point infinity for a positive, boundedly invertible
operator in a Krein space has been investigated in detail in [7]. In particular, infini-
ty is a regular critical point for the operator K if and only if the norms H-IIT and
IHIS are equivalent (see [3], [4], [7], [13] or [11]). Here (-,-)S=(T(P+—P_)',-) where P +
are the positive\negative spectral projections of S. For example, when T is multi-
plication by a piecewise continuous function satisfying a Holder type condition at
the sign changes and A is a Sturm-Liouville operator, it is shown in [4] that the
two norms are equivalent and thus infinity is a regular critical point. The two
norms are also equivalent if A is a bounded operator (cf. [3], [11]).

Assuming K has no singular critical points the Spectral Theorem for definiti~
zable operators [18] provides us with separating projectors P:i:’ i.e. P:tD(K)C_:D(K),
P:i:KthPih for heD(K), P,+P_=1 and a(KPi)Q{)\ElR::I:)\ZO}. From the functional
calculus of the operator K we obtain exponentially decaying holomorphic semi-
groups exp (—xK)Pi, +x>0. Moreover, P=P_—P_ is a fundamental symmetry of
the Krein space HT and P:i:HT are maximal positive/negative definite subspaces of
Hr.

Now consider the boundary value problem

AT4x0 = — A%, 0 < x < (4.12)
Q. ¥(0) = ¢, (4.1b)
WG, — 0, x — oo, (4.1¢)

where <p+€Q+HT is the given incoming flux. All solutions of the boundary value

problem (4.1) are of the form
Y(x) = exp (—xK)h (4.2)

for some heP,Hy. such that Q h=p, (see [11] and [12]). Thus the unique solvabili-
ty is reduced to the guestion whether Q. maps P+H’r bijectively onto Q+HT. As
noted, P+HT is a maximal positive subspace in HT, so the bijectivity of Q, as a

map from P Hq onto Q Hp follows from Proposition 2.1.
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5. Invertible, Accretive Collision Operators

Assume that the collision operator A can be written as a difference
A=A ,—A, where
(i) A, is a positive self-adjoint operator in H with a bounded inverse,
(ii) the extension K, of the operator T7'A, to the Krein space Hp has a regular
critical point at infinity,
(iii) A is an accretive operator in H, i.e. 2Re A=A-+A*>0,
(iv) Ker A = Ker (Re A) = {0},

(v) AT'A, is a trace class operator in H_,.

Following the discussion of the previous section we obtain that K, is similar
to a self-adjoint operator. Let F’1 + be the separating projectors for K, in HT, i.e.
the maximal positive/negative spectral projectors for K;. We also have exponential-
ly decaying holomorphic semigroups exp (—xKl)P‘l + 4+x>0. Let K be the extension
of TTA to -HT‘ We want to define maximal positive/negative spectral projectors
P + for K in HT and exponentially decaying semigroups exp (—xK)P + To accom-
plish this one applies the perturbation theorem for bisemigroups directly., Write
T'A=T'A(1—A,"'A,). Condition (iv) assures that T 'A has no eigenvalues on
the imaginary axis. This with assumption (v) gives us that K is the generator of
an exponentially decaying holomorphic bisemigroup if K, is.

Consider again the boundary value problem (4.1). Once more all solutions
will be of the form P(x)=exp (—xK)h for some heP Hy such that Q h=¢,. So the
question of unique solvability is equivalent to the bijectivity of Q, as a map from
P,,HT onto Q+HT. To answer this question in the affirmative using Proposition
2.1, we need to show that P+HT is a meximal positive subspace. Here the accretivi-

ty assumption (iii) becomes crucial.

PROPOSITION 5.1. 7 he subspaces P j:HT are positive/negative definite.

Proof: By virtue of assumptions (i) and (iv), we have that A™' is a bounded opera-
tor on H. By the same reasoning as before we get that K+K# is a strictly HT-posi-

tive operator. Now take any g6P+HT and set f(x)=exp (—xK)g, x>0. Because KP_

generates a holomorphic semigroup we have that f(x)eD(K) for x>0. So we have

0 > —®+kMH ey ~ Laeatenn, x> o
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Integrating both sides (a trick adapted from {23]) we obtain

T+

# = - —
0> —fim [ (KHKDIEE G pdx = lim (TN — (@l = —(@R)p
0
Thus (g,g)T>0 and P+HT is positive definite. 0O
From the fact that P, +P_=I, P+HT is a positive subspace, P_HT is a
negative definite subspace and Proposition 2.2 holds true, we conclude that P+HT

is 2 maximal positive subspace. So applying Proposition 2.1 once more, we obtain

unique solvability.

6. Accretive Collision Operators with a Nontrivial Kernel

For the operator A assume that (i)-(iii) and (v) hold and change (iv) to read:
(iv) Ker A = Ker (Re A).

In Section 3 we obtained the decomposition HT=ZO(K)®ZI(K). Let P, be the
projector of HT onto Z,(K) along Z,(K) and let Po=1—P, be the complementary pro-
jector. We now define the spectral projectors Pi for the restriction of K to Z(K)
and to obtain the corresponding semigroups. Let us write A'=TP,+AP,=A+
(T—A)Py=A,+(A,+(T—A)P,). Here, P, and P, are the restrictions of the correspon-
ding projectors to H. Note that K/ = T™'A’ = Ps + KP,. Obviously we have

K’P, = PK’ = Py,
K’P, = PK’ = P,K = KP,.

Under the assumptions on A and T we observe that A’ has a bounded inverse and
K’ has no eigenvalues on the imaginary axis. Moreover, since Ai=A,+(T—A)P, is a
finite rank perturbation of A,, the trace class condition (v) will be satisfied. By
the same arguments as in Section 5 we conclude that K’ is the generator of an expo-
nentially decaying holomorphic bisemigroup with separating projectors P’,. Now

the operators F':E——P’:‘:P1 are projectors, commuting with K and such that P,{+P_=
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ZO(K#)°. Then (Tf,g) = 0 Vg € Ker A* = Ker A, so that Tf € Ran A*. Now write
Tf=A"h; then hEZo(K#) and (Tf,h) = 0. We now easily see that (h,Ah) = (A*h,h)
= (Tf,h}) = 0, so that ((ReA)h,h) = 0 and thus (ReA)h = 0. By Condition (iv) we
get successively Ah=0, A*h=0, Tf=0 and f=0, which proves (ZO(K#))0 = {0}, On
the other hand, from the definitions of the isotropic part of a subspace and of the
subspace Z,(K) we have {0}=(Z,(K)°=Z,(KIN (Z,(KN“=Z,(KINZo(K™.  Hence
codim Z,(K)=codim (ZO(K#)Agdlm ZO(K#), which completes the proof. D

Because of the HT-orthogonality of ZO(K#) and Z,(K), we may decompose
ZO(K#)=M+®M_ into a positive and a negative subspace to obtain that HT=(M+EB
P+HT)®(M_®P_HT) is a decomposition of HT into a positive and a negative sub-

space.

PROPOSITION 6.3. There exists a decomposition ZO(K#)=M+@M_ with M, a posi-

tive subspace contained In Ker A and M_ a negative definite subspace.

Proof: First we show (Ker A)°=K#ZO(K#). Suppose f&(Ker A)’=(Ker A)(Ker A)é.
Then TfeT(Ker A)AQ(Ker A)L=Ran A", so f=K#g for some g, and hence f€
K#ZO(K#). Conversely, suppose f EK*ZO(K#). Then Tf=A"g for some g, and (f ,u)T=
(Tfu)=(A"g,u)=(g,Au)=0 for every ucKer A.

Because (Ker A)/(Ker A)? is a Krein space, we can choose an HT-orthogonal,
linearly independent set of nonneutral vectors {z, -,Zx}CKer A such that
(Ker AY’® {2,,-zn}=Ker A. The same argument as the one in the proof of
Proposition 6.2 shows that ZO(K#) is a Krein space, so we can choose an HT—
orthogonal, linearly independent set of nonneutral vectors {yl,»--,yk}gZO(K#) which
is HT-orthogonal to {2, -»2z»} and such that Ker A@span{y,,u~,yk}=ZO(K#). One
may assume that all the y,'s are negative (or positive), because if they are not,
one can adjust them to be negative (or positive) without spoiling any of the other

properties by the following trick [13]. If ¢ is a real number and x1=K#yi, then
ty—sx)y—$xDp = vy + §P(xx)p —
- g{(x;Y)T — (y,X)T} = (y’y)T — 2¢ ((Re A)Y,Y)

can be made negative (or positive) by choosing an appropriate ¢, since
((Re A)y;Y) >0.
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Without loss of generality we may assume that z,,--,zZn» spaﬁ a negative defi-
nite subspace and z,;,,-,Zr Span a positive definite subspace of Ker A. Note that
m is the dimension of any maximal negative subspace in the Krein space
(Ker A)/(Ker A)° and thus is independent of the particular choice of the z,’s. Final-
ly, set M,= (Ker AYDspan{z, 1, +zn} and M_—span{y, - y=}Dspan{z, -Zn}.
Then, by construction, M, is a positive subspace contained in Ker A, M_ is nega-
tive definite, and ZO(K#)= M.6GM_, O

Note that the subspace M, is a maximal positive subspace in both ZO(K#)
and Ker A. Thus its dimension is independent of the choice of the space M,.
Denote this invariant by m,. Using Proposition 2.1, we conclude that M &P Hy is
a maximal positive subspace in HT, so from Proposition 2.2 we obtain that Q, maps
M. & P+HT bijectively onto Q+HT.

Define the measure of nonexistence § to be the codimension in Q+HT of the
space of boundary values ¢, for which the boundary value problem is solvable,
and the measure of nonuniqueness Y to be the dimension of the solution space of
the corresponding homogeneous (g, =0} boundary value problem. From the above

considerations, we obtain the main theorem of this section.

THEOREM 6.4. For the boundary value problem (6.1)-(6.3a), we have §=m, and
Y=0. For the boundary value problem (6.1)-(6.3b), we have §=0 and Y=dim (Ker A)
—m,. For the boundary value problem (6.1)-(6.3c), we have §=0 and Y=dim (Z,K))

—Mm.

7. The Boltzmann-Fokker-Planck Equation

The Boltzmann-Fokker-Planck equation was formulated by Ligou to describe
the transport of charged particles in hot plasmas. It was subsequently used in [21],
[6] and [22] to describe the transport of very fast neutrons where the predominance
of forward scattering renders the usual Legendre series expansion useless.
Adopting a multigroup scheme, we obtain for i=1,-,N
5%,

s

B (1,2
a u)au

2]
u B 4 @SVl = Sy B + T, 2

. N s !
+5 3 @rd ziiPz(mI P B i, 7.1
’ -1

=0 J=1
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where internal sources are neglected, 22'1‘-40 as £—oo and all constants involved are
nonnegative. The cross-sections CENERTSN and the constants Tl,-n,TN are positive.
We study the corresponding half-space problem on the Hilbert space H consisting
of the direct sum of N copies of L,[—1,1] with inner product

N 1
(b’_k) = E (Ui‘*"si)-[ hi(ﬂ’) ki(/")duls
fe=1
-1
where h and k are the column vectors with entries h, and k,, respectively. Introdu-
cing the diagonal matrix D with diagonal entries o,+4S,; and appropriate other matri-

ces and vectors, we easily write Eq. (7.1) in the vector form
~1,0¥ - 2 [(1—,2)o¥
D7l ug + W) = E¥Oow) + T2 [0-uF]) +

1
+> (2—{—%)1!)_125,;?;(#)[ P ()W (x,u)du’ (7.2)
=0
-1
with the usual half-space boundary conditions. Apart from that, we require the so-
lution to be bounded at x=+1 in order to single out a self-adjoint boundary condi-
tion on the Sturm-Liouville operator. On H we now define the operator T as the

premultiplication by D™'x so that Q:i: is the restriction to 4[0,1}. We then define
- — T [(1—y®y. 2
(A1h)w) = bw) — T (-4 5 hw)

on the appropriate domain of functions g={h1}£11 that are bounded at u=--1, with
the derivatives interpreted in the distributional sense. Then A, is a strictly posi-

tive self-adjoint operator with fully discrete spectrum
o(A) = {l—n(n+1)o+S) T n=0,1,2,--- and i=1,2,.--,N},

whence A, ' is a trace class operator. We also define the bounded operator A, by

1
(A h)(u) = Eh(w) + TZEJ e+HD1'3,, Pz(u)l P(uYh(u)dy’,
t=
—1
and A as the difference of A, and A,. It is now straightforward to impose such
conditions on the coefficients as to make the operator A accretive with Ker A—

Ker (Re A). On doing so one obtains the unique solvability of the half-space pro-



534 Ganchev, Greenberg and van der Mee

blem on the Hilbert space HT’ which is the weighted direct sum of N copies of

Note added in proof: Recently two of the authors have developed a theory of ab-
stract kinetic equations where T is injective, A is a compact perturbation of the i-
dentity and Ran (I—A)CIXT). Under these assumptions the author proved T 'A to
generate an analytic bisemigroup. As a result, assumptions (ii) and (ii’) can be
dropped in the derivation of Theorem 2.3, while condition (v) of Section 4 that the

operator A7'A, be trace class may be weakened to A7'A, compact.
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