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A CLASS OF LINEAR KINETIC EQUATIONS IN A KREIN SPACE SETTING 

Alexander H. Ganchev*, William Greenberg and C.V.M. van der Mee'* 

Krein space methods are used to derive the unique solvability of a class of 
abstract kinetic equations on a half-space with accretive collision operators. At 
the same time a new proof is provided for the case of a positive self-adjoint colli- 
sion operator. A Fokker-Planck type example is worked out as a new application. 

I. Introduction 

A mul t i t ude  of  l inear  k ine t ic  equa t ions  in a ha l f - space  descr ib ing such  di- 

v e r s e  phys ica l  p rocesses  as neu t ron  t r anspor t ,  r a d i a t i v e  t r a n s f e r ,  r a r i f i ed  gas dyna-  

mics, e l ec t ron  sca t t e r ing ,  etc . ,  can be incorpora ted  in a single abs t r ac t  t r a n s p o r t  

equat ion ,  

d-~T$(x) = --A~p(x), 0 < x < oo. (1.1) 

Here x is the spatial variable. The phase space density of the particles is de- 

scribed by ~(x); more precisely, for each x, ~(x) is an element in a Hilbert space H, 

where H is typically a space of functions of velocity variables. The operators T 

and A on H are linear. The left hand side of equation (1.1) describes the free 

streaming and the operator A describes the collisions. In most physical situations 

t he  o p e r a t o r  T is s e l f - ad jo in t  and i n j ec t i ve ,  so t he  maximal p o s i t i v e / n e g a t i v e  spec-  
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tral projectors Q4- for T are well defined. The equation (1.1) is usually supplemen- 

ted by boundary conditions in the following form. At x=0 one assumes that the in- 

coming flux ~+ is given, i.e., 

Q+~(0) = ~+, (1.2a) 

and a certain behavior at infinity, appropriate to the problem at hand, is pre- 

scribed, e.g., 

IIl#(x)ll = o ( x %  x --* oo.  (l.2b) 

The operator T is bounded for many models in neutron transport, radiative 

transfer and electron scattering and is in general unbounded for models in gas dyna- 

mics. The operator A is bounded, in fact the "identity plus a compact operator", 

for many models in neutron transport and radiative transfer, and for BGK models 

in gas dynamics. For models of electron scattering the operator A is unbounded, 

more precisely it is a Sturm-Liouville operator describing diffusion in velocity 

space. For various linearizations of the Boltzmann equation A may or may not be 

bounded. For a model of strongly anisotropic neutron transport A has the form of 

a "Sturm-Liouville plus a compact operator". The compact operator contributing to 

A is in general nonsymmetric. 

Under quite general circumstances, one may show that the operator T-IA ge- 

nerates a bisemigroup with separating projectors P4- (see next section, for details 

also [9], [8], [11] and [2]). If this is the case, then every solution of the boundary 

value problem has the form e• for some vector hEP+H such that 

Q+h=~+. Hence the boundary value problem is uniquely solvable if and only if Q+ 

maps P+H bijectively onto Q+H. Moreover, the invertibility of the operator 

V=Q+P++Q_P_ is equivalent to the unique solvability of the above boundary 

value problem and its counterpart for xE(--co,0). 

In their pioneering work Hangelbroek [14] and Lekkerkerker [19] viewed the i- 

sotropic one-speed neutron transport problem as a boundary value problem of the 

type described above and introduced the operators Q• Pzh and V. A complete in- 

vestigation of the case when A is a positive self-adjoint operator of the form "i- 

dentity plus a compact operator" was carried out by van der Mee [20] for bounded 

T and by Greenberg et al. for unbounded T [12]. A different approach was 

proposed by Beals [3], who sought weak solutions of the abstract kinetic boundary 
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value problem. This work was extended to unbounded positive self-adjoint colli- 

sion operators in [13] and [4]. In this approach one has to work with several dif- 

ferent Hilbert spaces HA, HT, HS, which are obtained by completion of a suitable 

dense subspace of H in the topologies given by the scalar products (A.,-), 0Ti.,.), 

(AISI.,.), respectively. When A is a Sturm-Liouville operator and T is a multipli- 

cation operator, one has an indefinite Sturm-Liouville problem; the corresponding 

boundary value problems have been investigated in [3], [16] and [15]. 

The first to use spaces with indefinite metrics in transport theory were Ball 

and Greenberg [I]. This work was extended in [10]. In these papers A is assumed 

to have a finite dimensional negative part, hence the scalar product (A.,.) induces a 

Pontryagin space structure. If A has a nontrivial null space, one first has to 

separate off the zero root linear manifold Z0(T-IA). Then the question of unique 

solvability reduces to the analysis of the structure of this finite dimensional 

subspace with respect to the indefinite scalar product (T.,.). This was carried out 

in [20], [3], [4] and [13] for positive self-adjoint A and in [9] and [8] for accretive 

nonsymmetric A. In this paper we extend the analysis of [9] to include weak 

solutions and unbounded collision operators. We extensively use the Krein space 

structure of the whole space H T with respect to (T.,.). A study of the geometry 

of Krein spaces, Proposition 2.2, is crucial in proving the unique solvability and 

replaces the usual Fredholm argument concerning V. In this way we not only can 

treat nonsymmetric unbounded operators A but also provide a new and more trans- 

parent way of looking at the case of self-adjoint collision operators A. In order 

not to overburden the analysis with technicalities we consider only the case of 

bounded T. 

In the next section we have collected a few definitions and facts about 

Krein spaces [5], positive operators in Krein spaces ([5], [17] and [18]), and perturba- 

tion of bisemigroups ([9], [8]). In Section 3 we extend the operator T-IA from H to 

I-I T and present a T-IA-invariant decomposition of I-I T with 7.0(T-IA) being one of 

the summands. In Section 4 we treat the case of strictly positive A (see [3], [4] and 

[13]) in a Krein space setting, using the Spectral Theorem for definitizable ope- 

rators and Proposition 2.2. Using a perturbation theorem for bisemigroups, we ex- 

tend in Section 5 the analysis to accretive operators A of the form "Sturm-Liou- 

rifle plus a compact operator". The case of a collision operator with nontrivial 

null space is treated in Section 6. Finally, in Section 7 we give an example of a mo- 

del for neutron transport with strong anisotropy (cf. [21], [6]). 
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2. Krein Spaces, Positive Operators and Bisemigroups 

In this section, as a prerequisite to the sequel, we summarize some proper- 

ties of Krein spaces and analytic bisemigroups. 

Let FIT be an arbitrary Krein space with indefinite scalar product ('")T' fun- 

damental projectors Qq_, and fundamental decomposition I-IT=Q+HT(~Q H T. This 

means that ('")T is a nondegenerate sesquilinear form on H T, Q+I-I T is a Hilbert 

space with scalar product (.,0 T and Q_H T is a Hilbert space with scalar product 

--('")T" The operator Q= Q+-Q_ is an involution, i.e. Q2=~, called a fundamental 

symmetry. The topology of H T is defined by the norm induced by the positive de- 

finite scalar product (Q'")T" With respect to this scalar product Q is unitary. If 

K is an operator on HT, its adjoint with respect to ('")T' the so-called the H T- 

ad joint, will be denoted as K #. If K" is the adjoint of K with respect to (Q"')T' 

then K#=QK'Q. A vector f in H T is called positive, negative or neutral if 

(f,f)T>0, <0 or =0, respectively. A subspace M in H T is called positive if it does 

not contain negative vectors, M is called positive definite if except for the zero 

vector it contains only positive vectors and M is maximal positive if it is positive 

and is not the proper subspace of a positive subspace. One has the analogous defi- 

nitions for negative, negative definite and maximal negative subspaces. The ortho- 

gonal companion of M is MZ={fEHT: (f,g)T=0 for all gEM). The isotropic part of 

a subspace M is M~ L. If M is a positive subspace then M ~ consists precise- 

ly of the neutral vectors in M. A decomposition HT=M+~M_ with M• closed po- 

sitive/negative definite subspaces is called a fundamental decomposition of [-I T. 

The corresponding projectors P-4-: H-*Mq_ are called fundamental projectors. 

The following simple geometric fact about Krein spaces will be crucial in the 

analysis of the unique solvability in the next sections. 

PROPOSITION 2.1. (see [5], T h e o r e m  4.1) A Iooslt lve subspace M+ of FI T /s maxima~ 

positive I f  and only I f  Q+M+=Q+FIT, or  equivalently, Q+ maps  M+ bIJectlvely onto 

Q+H T. 
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In Section 6 we will need the following simple fact. 

PROPOSITION 2.2. Suppose  M •  are closed posit ive/negative subspaces o f  H T, 

M + ~  M _ = H  T and M_ Is negative def ini te. Then M+ Is a maximal posit ive subspace. 

Next  we will s t a t e  t he  spec t ra l  theorem for  pos i t i ve  o p e r a t o r s  in a Krein 

space (see [18] and [5]). An H T - s e l f - a d j o i n t  ope ra to r  K is cal led pos i t i ve  if  i t s  resol -  

v e n t  se t  is nonempty  and (Kf , f )T>0 fo r  all fED(K). Let  % be the  semiring which 

cons is t s  of  all bounded i n t e r v a l s  and t he i r  complements  in ~ with endpoints  d i f f e -  

ren t  f rom zero .  

SPECTRAL THEOREM (see  [18], Theorem  3.1). I f  K Is an HT-pos l t l ve  opera tor ,  

then there exists a rasp F f rom % Into the set o f  bounded, HT-Sel f -ad jo ln t  

ope ra to rs  In H T such that F(E)F(I~.)=F(EAt~); F(EU]~)=F(E)-t-F(E,) f o r  d is jo int  E and 

F, In %; F(E)H T Is a posit ive/negative subspace I f  ECRH_; F(E) Is In the double 

corarautant o f  the resolvent of  K; I f  E Is a bounded Interval,  then F(E)HTCD(K) and 

K[F(E)H T Is a bounded opera to r ;  cr(K[F(E)HT) E. 

A point  t is a critical po in t  fo r  t he  ope ra to r  K if  F(E)H T is an indef in i t e  

subspace for every EE% with tEE. The only possible critical points for a positive 

operator K are zero and infinity. If K has a bounded inverse it may have a criti- 

cal point only at infinity. If the limits lira F((to~t)) as t-.q-co and lira F((t~%)) as 

t-~--co exist, we call infinity a regular critical point. In this case F((0,co))H T and 

F((--co,0))H T are maximal positive/negative definite subspaces forming a fundamen- 

tal decomposition of the Krein space. In the same way one defines regularity of 

the critical point at zero. 

A strongly continuous blseralgroup E(t) on a Hilbert space H is a function E 

from R\{0} into L(H), the bounded operators on H, with the following properties: 

(i) E(t)E(s)=+E(t+s) if sgn(t)=sgn(s)=• and E(t)E(s)=0 if sgn(t)=--sgn(s) 

(ii) E(-) is strongly continuous and has strong limits as (it)t0. 

I t  is easy to check that  

17+ = s-lira ( •  
( ~ t ) m  

are bounded projectors, called separating projectors, and that //+H_=0~//_//+. In 
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the definition of a bisemigroup we require also 

(iii) U+ + U -  = I ,  

where E denotes the identity operator. This is equivalent to saying that 

IE(t)H+, ~t~0, are strongly continuous right/ left semigroups on Ran H i, An 

operator S is the generator of E(t) if Hd_ leaves D(S) invariant and SH+h=H+Sh, 

VhED(S), and if E(t)=~e• (--tS)H i, ~:t>0. We will write E(t;S) for the bisemi- 

group generated by S. The bisemigroup will be called bounded holomorphic, strong- 

ly decaying holomorphic, or exponentially decaying holomorphic if both of the semi- 

groups !E(t)Hq_, ~t>0, have the respective properties. 

For an angle 0<0~Tr we denote sectors about the real axis by ~ed- with 

~e_[_~{zEC: [arg(~:z)i<e} and ~e=~s+U~0-. Assume that S is an injective normal 

operator on a Hilbert space H with spectral measure dF(X), i.e. 

S = Icr(S) XdF(k). 

Assume also t h a t  c~(S)CE~_Ot f o r  some O<Ot<~Tc and t h a t  z e ro  is e i t h e r  in t h e  r e so l -  

vent set or in the continuous spectrum of S. It is immediate to check that S is 

the generator of a strongly decaying, holomorphic bisemigroup of angle at least 0 I, 

with as separating projectors //~=F(cr(S)N{+Re z~0}). If S -I is a bounded opera- 

tor, the bisemigroup is exponentially decaying. Besides the assumption on S made a- 

bove, suppose also that the following conditions hold: 

(i) B ~ ~--A is compact. 

(ii) B is HSlder continuous with respect to S at zero and infinity: there exist 

numbers cc,~/>0 and bounded operators DI,D 2 such that B = ISi-~Ds and B = 

IS17D2, where  [S]=S( / /+--H_) ,  or  

(ii') B is trace class. 

(iii) The spectrum of S==SA is contained in a sector around the real axis: G(S=)C__ 

Z~_O~ fo r  some 0<0~<~Yr. 

(iv) Ker  A = {0}, 

Here we assume either (ii) or (ii'). 

THEOREM 2.3 (see [9]). With the above assumlOttona on S and B, S = generates a ho- 

tomofphlc blsemlgroup E~(t) with selmaratlng pro jectors I I~ .  For  any t~[R\(0} the 

dif ference oDeretors Ef t ] - -E=Ct]  and H ~ - - [ I ~  ere compact and the btsemlgroup 
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E~(t) Is strongly decaying. / f  or(S) has a gap at zero  (I.e., S -~ Is bounded), then 

E=(t) Is exponent ia l ly  decaying. 

3. Extensions anti Decompositions 

Let H be a Hilbert space and assume that T is a bounded, self-adjoint and in- 

jective operator on H, hence T-* is densely defined with domain TH. Let Q4- be 

the maximal positive/negative spectral projectors for T, i.e. Q~-=Q4-'_ T Q • 1 7 7  

and ~(TQi)___{~61~:i~>0}. Set Q=Q+-Q_, obviously a unitary involution, i.e. 

Q,=Q =Q-I. By definition, the absolute value of T is JTI=TQ, a positive operator. 

If (-,.) is the scalar product in H and k>0, let the Hilbert space H~ be the space 

IT[~/21-1 with the scalar product (-,.)~----(ITI-~.,.). For --k~0 let (.,.)_~=(ITI k .,.) and 

denote by H_~ the completion of H with respect to the norm ]HI-~. In particular, 

we have the chain of Hilbert spaces 

H_ 2 ---" H-I ~-" H ~-. Hz ~ H2 (3.1) 

where the arrows represent the unitary isomorphisms given by [TI I/2. Because II'[E~ 

majorizes II'Jlh if k>h, we also have the chain of continuous imbeddings 

H_2 D__. H_I D D_. H D~ HI ~ H~. (3.2) 

By construction and by the injectivity of T the imbeddings are dense. We remark 

that H2 is the domain Of T -I in H and H-I is denoted by H T elsewhere in the lite- 

rature (cf. [3], [13]). 

Let K, I( be operators in H. Assume that 

T D(K) C_ D(K) ___ H2 ___ HI (3.3) 

and 

TKf = KTf for every  f E D(K). (3.4) 

Assume that I( is a closed operator in H. Then I~ is a closed operator in HI if it 

has the same domain as in H. Indeed, let fn6D(I(), Hf~--frI1-~0, and ll~,f~--gll1-~0 for 
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some g6H1. B e c a u s e  11-111 m a j o r i z e s  11-11 we h a v e  t h e  same c o n v e r g e n c e s  in H. Bu t  we 

know t h a t  I~ is c losed  in H, h e n c e  fED(K) and K f = g .  We now e a s i l y  see  t h a t  gEH1, 

h e n c e  F. is c losed  in H1. Def ine  an e x t e n s i o n  in H-1 of  t h e  o p e r a t o r  K in H b y  

T -1 o K: o T (3.5) 

where I~ is viewed as an operator in HI and T and T -i are viewed as isometrics be- 

tween HI and H_I. Denoting this extension again by K will cause no confusion. 

Thus K in H_I is a closed operator. We also assume that Ker K=T(Ker K) as 

kernels of operators on a dense domain in H so that the kernels of K in H and H-I 

will be the same. If K is densely defined in H, then its extension to H-I is densely 

defined. Indeed, if M is a set in H and c/os_~M is its closure in H_~, we have MC_ 

c/osoMC_clos_iM. Taking c/os_1 once more we get c/os_iM = c/os_1 c/osoM, so if 

closoM=H we also get clos_iM = H_z. 

If K and I< are bounded operators on H and TK=KT then K extends to a 

bounded operator on H_~. Indeed, it is immediate that K has a bounded extension in 

H_2. Using the usual interpolation between H-2 and H based on the norm estimate 

11hli_1~llhl[ol/2[[hH_2 I/2, V hEH, we get that K is bounded on H_~. 

Now consider an operator A in H which is Fredholm, accretive (i.e. 2Re A= 

Aq-A*~0) and satisfies Ker A=Ker (Re A). The proof of the following lemmas is 

easy and is contained in [9] and [8]. For convenience we sketch some of the proofs. 

LEMMA 3.1. W e  have 

(a) f E H and (Af,f )  = 0 ImDly f E Ker  A, 

(b) K e r A  = K e r A * ,  R a n A  = R a n A  ~, 

(c) H = K e r A  ~ R a n A .  

Se t  K = T - I A  and F . = A T  -1 (no te  t h e  d i f f e r e n c e  in n o t a t i o n  f rom [91). 

L E M M A  3.2. The operators K and F, are densely defined and closed In H. 

Proof." We will only show that Y. is closed. The density of D(K) was proved in a 

straightforward way in [8], while the rest is rather obvious. 

Let fnED(AT-I)=T(D(A)), so f,=Th, for some hnED(A). Assume that fn-*f 

and Kf,=Ahn-*fq Because Ran A is closed we can write f'=Ah for some hED(A). 

Thus A(h,--h)-~0. By the Fredholmness of A (more precisely by Lemma 3.1(c)) one 
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can view A as an operator from Ran A onto Ran A with a bounded inverse, thus 

uniquely specifying h~ and h, whence hn~h. But T is bounded, so Th~-~Th. 

Therefore f=ThED(K) and V=Ah=KTh=~.f. [] 

T h e  b o u n d e d n e s s  of  K and K on H enables  us  to  p r o v e  t h a t  t h e  z e r o  roo t  

manifold Zo(K), which is t h e  union of  t h e  ke rne l s  o f  K ~, is  t h e  same on H and on 

H_ i. Indeed, Ker K = T ( K e r  K) on H 1 implies t h a t  Ker K is t h e  same on H 1 and on 

H-1. If we assume K~f=0  fo r  some fEH_l  and nE~q, we f ind  K~- l fEKer  KCH~C_H. 

Since K has  a bounded i n v e r s e  on H, we f ind fED(K~)CH, which  s e t t l e s  our  

s t a t emen t .  

LEMMA 3.3. The only possible elgenvalues of T-1A on the Imaginary axis are at 

the origin. 

Proof :  If )~ is imaginary,  hED(T-IA)  and T - i A h = k h ,  we h a v e  

2((Re A)h,h) = (kTh,h) -F (h,kTh) = ~(Th,h) q- ~(h,Th) = 0 

implying ; x T h = A h = ( R e  A ) h = 0  and hence  kh=0 ,  which p r o v e s  t h e  lamina. [] 

LEMMA 3.4. T h e  J o r d a n  chains o f  T-~A, T-~A *, AT -~ and  A ' T  -1 at k=0  have 

length at most two. 

Proof :  If T - 1 A h = k ,  T - l A k = g  and T-lAg-----0, we f ind 

2((Re A)k,k) ~ (Tg,k) h- (k,Tg) = (g,Ah) q- (Ah,g) = (A*g,h) q- (h ,A'g)  = 0, 

by v i r t u e  of  Lamina 3.1{b). Hence T g = A k = ( R e  A)k~-0 and t h e r e f o r e  g=0.  [] 

LEMMA 3.5. W e  have 

(a) K Zo(K) = (T-~A *) Zo(T-1A*), 

(b) dtm Zo(K) = d t m  Zo(T-1A*). 

Using t h e  r emarks  a t  t h e  beginning of  t h i s  s ec t ion  we ex tend  t h e  o p e r a t o r  

K = T - ~ A  to H_ v So we may cons ide r  K as a closed,  d en s e l y  de f ined  o p e r a t o r  in 

H_~. I~s z e r o  roo t  manifold Zo(K) will be i den t i f i ed  wi th  t h e  one in H. 
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The  space H_I becomes a Krein space, denoted HT, if  we in t roduce  the inde- 

f in i te  scalar  product  (.,.)T~(Q-,-)_I~(T-,.). Let K # be the  HT-adjoint  of  K. The  ope- 

ra to r  K # is an extension of T - I A  * and Z0(K#)~Z0(T-IA*). Let Zz(K) be the  HT-or-  

thogonal companion of Z0(K#), i.e. Z~(K)=(Zo(K#)) A. It is immediate tha t  ZI(K) is K- 

invariant. 

LEMMA 3.6. Zo(K) N Z I(K) = {0}. 

Proof:  Let M be a subspace such tha t  MCHCHT; then TMACM -j-. Suppose h6 

(Zo(K#))ZC(Ker A*)A= (Ker A) A. Then ThE(Ker A)-J-=Ran A*. Hence h=K#g for  

some g. Because both Z0(K) and ZI(K) are K-invar iant  and KZo(K) ~ Ker A = 

Ker A*, we need only show Ker A*NZI(K)={0}. So assume also hEKer (A*)CZo(K#). 

This  implies tha t  gEZo(K#). Thus  we have  0~(Th,g)=(A*g,g). By Lemma 3.1 this  

implies A*g~0, so h =  K#g=0. [] 

THEOREM 3.7. There  Is a K-Invarlant decomposit ion o f  HT: H T ~ Zo(K) ~ Zz(K). 

/ 

Proof: Using codlm M~dlm M 

equality coming from Lemma 3.5. 

the decomposition holds. [] 

we get codlin Zz(K)~dlm Zo(K#)~dlm Z0(K), the  

But above we obtained Z0(K)NZz(K)={0}, hence 

4. Strictly Positive Collision Operators 

In this section we assume that A is positive self-adjoint and Fredholm and 

Ker A={0}. Even though A will in general be unbounded, the assumptions we made 

force A -~ to be a bounded operator on H. By the considerations of the previous 

section A-IT has a bounded extension to H T and K~T-ZA has a closed, densely 

defined extension to H T and a bounded inverse in H T. The operator A-iT is H T- 

self-adjoint and, in fact, HT-positive. Indeed, (A-*Tf,f)T=(A-I(Tf),(Tf))>0 by the 

assumption that A is positive self-adjoint on H. Thus we may view K as an H T- 

self-adjoint, HT-positive operator with an HT-bounded inverse. Hence K has at 

most one critical point, namely at infinity. Since in most physical models T has 

both positive and negative spectrum around zero, we must treat the case that infi- 

nity is a critical point of K. 

In order to proceed further and use the functional calculus for definitizable 
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operators in a Krein space we assume that infinity is a regular critical point of K. 

The regularity of the critical point infinity for a positive, boundedly invertible 

operator in a Krein space has been investigated in detail in [7]. In particular, infini- 

ty is a regular critical point for the operator K if and only if the norms []'[]T and 

[HI S are equivalent  (see [3], [4], [7], [13] or [11]). Here (.,.)s=(T(P+--P_).,.) where P ~  

are the pos i t ive \nega t ive  spectral  project ions of S. For example, when T is multi- 

plication by a piecewise continuous function sat isfying a H61der type condition at 

the sign changes and A is a Sturm-Liouvil le  operator,  it is shown in [4] that  the 

two norms are equivalent  and thus  inf ini ty  is a regular cr i t ical  point. The  two 

norms are also equivalent  if A is a bounded operator  (cf. [3], [ll]). 

Assuming K has no singular cr i t ical  points the Spectral  Theorem for  definit i-  

zable operators  [18] provides us with separating pro jec tors  Pq_, i.e. P4_D(K)CD(K), 

Pq_Kh=KP• for  hED(K), P+q-P_=X and c~(KPq_)___{~E~:q-~,>0}. From the functional  

calculus of the operator  K we obtain exponential ly decaying holomorphic semi- 

groups e x p  (--xK)P• •  Moreover ,  P=P+--P_ is a fundamental symmetry of 

the Krein space H T and P q H  T are maximal pos i t ive /nega t ive  defini te  subspaces of 

H T �9 

Now consider the boundary value  problem 

~x TcJ(x) = -- A~0(x), 0 < x < ~o, (4.1a) 

Q+~(o) = ~+, (4.1b) 

][@(x)JOl --, o, x -- 0% (4.1c) 

where ~o+CQ+H T is the given incoming flux. All solutions of the boundary value 

problem (4.1) are of the form 

~(x) = exp (--xK) h (4.2) 

for  some h~P+H T such that  Q + h ~ +  (see [11] and [12]). Thus  the unique solvabil i-  

ty  is reduced to the question whether  Q+ maps P+H T b i jec t ive ly  onto Q+H T. As 

noted, P+H T is a maximal positive subspace in HT, so the bijectivity of Q+ as a 

map from P+H T onto Q+H T follows from Proposition 2.1. 
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5. Invertible, Accretive Collision Operators 

Assume that the collision 

A=A1--A2 where 

(i) 

(it) 

(iii) 

(iv) 

(v) 

operator A can be written as a difference 

AI is a positive self-adjoint operator in H with a bounded inverse, 

the extension K I of the operator T-1A~ to the Krein space H T has a regular 

critical point at infinity, 

A is an accretive operator in H, i.e. 2Re A=Aq-A~0, 

Ker A = Ker (Re A) = {0}, 

A~-IA2 is a trace class operator in H_I. 

Following the discussion of the previous section we obtain that KI is similar 

to a self-adjoint operator. Let P1q- be the separating projectors for Ki in HT, i.e. 

the maximal positive/negative spectral projectors for KI. We also have exponential- 

ly decaying holomorphic semigroups exp (--xK1)P1q_, q-x>0. Let K be the extension 

of T-IA to H T. We want to define maximal positive/negative spectral projectors 

Pq_ for K in H T and exponentially decaying semigroups exp (--xK)P• To accom- 

plish this one applies the perturbation theorem for bisemigroups directly. Write 

T-IA=T-IAI(I--AI-IA2). Condition (iv) assures that T-IA has no eigenvalues on 

the imaginary axis. This with assumption (v) gives us that K is the generator of 

an exponentially decaying holomorphic bisemigroup if K 1 is. 

Consider again the boundary value problem (4.1). Once more all solutions 

will be of the form ~(x)=e• (--xK)h for some hEP+H T such that Q+h=~+. So the 

question of unique solvability is equivalent to the bijectivity of Q+ as a map from 

P+H T onto Q+H T. To answer this question in the affirmative using Proposition 

2.1, we need to show that P+H T is a maximal positive subspace. Here the accretivi- 

ty assumption (iii) becomes crucial. 

PROPOSITION 5.1. The subs/Daces P_FHT are positive/negative definite. 

Proof: By virtue of assumptions (i) and (iv), we have that A -I is a bounded opera- 

tor on H. By the same reasoning as before we get that K~K # is a strictly HT-posi- 

tire operator. Now take any gEP+H T and set f(x)=exp (--xK)g, x>0. Because KP+ 

generates a holomorphic semigroup we have that f(x)ED(K) for x>0. So we have 

O > --((Kq-K#)f(x),f(x))T ~ d~(f(x),f(x))T, x > O. 
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I n t e g r a t i n g  b o t h  s ides  (a t r i c k  adap t ed  f rom [23]) we o b t a i n  

f 

> --  lira I ((K-{-K#)f(x) ' f(x))TdX = lira (f(~-),f('r)) T --  (g 'g)T = --(g'g)T" 0 
J 0 

Thus (g,g)T>0 and P+H T is positive definite, rl 

From the fact that P++P_=I, P+H T is a positive subspace, P_H T is a 

negative definite subspace and Proposition 2.2 holds true, we conclude that P+H T 

is a maximal positive subspace. So applying Proposition 2.1 once more, we obtain 

unique solvability. 

6. Accretive Collision Operators with a Nontrivial Kernel 

F or  t h e  o p e r a t o r  A assume  t h a t  (i)-(iii) and (v)  ho ld  and change  ( iv)  to  read:  

( iv)  Ker  A = Ker  (Re A). 

In Sec t ion  3 we ob t a ined  t h e  decompos i t ion  H T = Z 0 ( K ) ~ Z I ( K ) .  Le t  P1 be t h e  

p r o j e c t o r  of  I-I T o n t o  ZI(K) along Zo(K) and le t  P 0 = I - - P I  be t h e  c o m p l e m e n t a r y  pro-  

j ec to r .  We now de f ine  t h e  s p e c t r a l  p r o j e c t o r s  P •  f o r  t h e  r e s t r i c t i o n  of  K to  ZI(K) 

and to  o b t a i n  t h e  c o r r e s p o n d i n g  semigroups .  Let  us  wr i t e  A'=TP0-{-API=A-{- 

(T--A)Po=AI-{-(A2-{-(T--A)Po). Here ,  P0 and P1 are  t h e  r e s t r i c t i o n s  of  t h e  c o r r e s p o n -  

ding p r o j e c t o r s  to  H. Note  t h a t  K' = T-~A ' = P0 -{- KP~. O b v i o u s l y  we h a v e  

K'Po = PoK' = Po, 

K'PI = PIK' = PIK = KPI. 

Under the assumptions on A and T we observe that A' has a bounded inverse and 

K' has no eigenvalues on the imaginary axis. Moreover, since A~=A~+(T--A)P~ is a 

finite rank perturbation of A2, the trace class condition (v) will be satisfied. By 

the same arguments as in Section S we conclude that K' is the generator of an expo- 

nentially decaying holomorphic bisemigroup with separating projectors P~. Now 

t h e  o p e r a t o r s  P4_=P~:PI  a re  p r o j e c t o r s ,  commut ing  w i th  K and s u c h  t h a t  P + + P _ =  
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Z0(K#) ~ Then (Tf,g) = 0 Vg 6 KerA ~ = KerA, so that Tf 6 RanA*. Now write 

Tf=A'h; then h6Z0(K #) and (Tf,h) = 0. We now easily see that (h,Ah) = (A*h,h) 

(Tf,h) = 0, so that ((Re A)h,h) = 0 and thus (Re A)h = 0. By Condition (iv) we 

get successively Ah=0, A~ Tf=0 and f=0, which proves (Zo(K#)) ~ = {0). On 

the other hand, from the definitions of the isotropic part of a subspace and of the 

subspace ZI(K) we have {0}~(ZI(K))~ (ZI(K))/=ZI(K)NZ0(K#). Hence 

codlin Z1(K)=codlm (Zo(K#)Z~dlm Zo(K#), which completes the proof. [] 

Because of the HT-orthogonality of Z0(K #) and ZI(K), we may decompose 

Z0(K#)=M+~M_ into a positive and a negative subspace to obtain that HT=(M+~ 

P+HT)~(M_~P_H T) is a decomposition of H T into a positive and a negative sub- 

space. 

PROPOSITION 6.3. There exists a decomposition Z0(K#)=M+6]gM_ wlth M+ a po~/- 

tlve subspace contained In Ker A and M_ a negative definite subspace. 

Proof: First we show (Ker A)~ Suppose fE(Ker A)~ A)N(Ker A) Z. 

Then TfET(KerA)/_(KerA)-J-=Ran A', so f=K#g for some g, and hence f6 

K#Zo(K#). Conversely, suppose fEK#Z0(K#). Then Tf=A'g for some g, and (f,u)T= 

(Tf,u)=(A*g,u)=(g,Au)=0 for every uEKer A. 

Because (Ker A)/(Ker A) ~ is a Krein space, we can choose an HT-orthogonal, 

linearly independent set of nonneutral vectors {zl,"-,z~}CKer A such that 

(Ker A)~ {zl,...,zn}=Ker A. The same argument as the one in the proof of 

Proposition 6.2 shows that Z0(K #) is a Krein space, so we can choose an H T- 

orthogonal, linearly independent set of nonneutral vectors {y~, ,y~}CZ0(K #) which 

is HT-Orthogonal to {zl,---,z~} and such that Ker A~jgspan{yw .,y~)=Zo(K#). One 

may assume that all the y~'s are negative (or positive), because if they are not, 

one can adjust them to be negative (or positive) without spoiling any of the other 

properties by the following trick [13]. If ~ is a real number and x~=K#y~, then 

((Y--{x)'(Y--gX))T = (Y'Y)T + ~2(x'x)T -- 

-- ~{(x'Y)T -- (Y'X)T} = (Y'Y)T -- 29((Re A)y,y) 

can be made negative (or positive) by choosing an appropriate ~, since 

((Re A)y,y) >0. 



532 Ganchev ,  G r e e n b e r g  and  v an  d e r  Mee 

W i t h o u t  loss  of  g e n e r a l i t y  we may assume  t h a t  zl,.--,z,n span  a n e g a t i v e  de f i -  

n i t e  s u b s p a c e  and z~+D..-,z~ span a p o s i t i v e  d e f i n i t e  s u b s p a c e  of  Ker  A. Note  t h a t  

m is t h e  d imens ion  of  any  maximal  n e g a t i v e  s u b s p a c e  in t h e  Kre in  space  

(Ker A) / (Ker  A) ~ and t h u s  is i n d e p e n d e n t  of  t h e  p a r t i c u l a r  c h o i c e  of  t h e  z~'s. F ina l -  

ly, s e t  M + =  (Ker A)~ ...,z~} and M_=span{yD...,y~}~span{zl,...,z~}. 
T h e n ,  b y  c o n s t r u c t i o n ,  M+ is a p o s i t i v e  s u b s p a c e  c o n t a i n e d  in Ker  A, M_ is nega-  

t i v e  d e f i n i t e ,  and  Zo(K#) = M+(~M_. [] 

Note  t h a t  t h e  s u b s p a c e  M+ is a maximal  p o s i t i v e  s u b s p a c e  in b o t h  Z0(K #) 

and Ker  A. T h u s  i t s  d imens ion  is i n d e p e n d e n t  of  t h e  c h o i c e  of  t h e  space  M+. 

Deno te  t h i s  i n v a r i a n t  by  m+. Using P r o p o s i t i o n  2.1, we conc lude  t h a t  M+ff)P+H T is 

a maximal  p o s i t i v e  s u b s p a c e  in H T,  so f rom P r o p o s i t i o n  2.2 we ob ta in  t h a t  Q+ maps 

M+•  P+H T b i j e c t i v e l y  o n t o  Q+H T. 

Def ine  t h e  measu re  of  n o n e x i s t e n c e  6 to  be t h e  cod imens ion  in Q+H T of  t h e  

space  of  b o u n d a r y  v a l u e s  ~+  fo r  wh ich  t h e  b o u n d a r y  v a l u e  p rob lem is so lvab le ,  

and t h e  measu re  of  n o n u n i q u e n e s s  ~/ to  be t h e  d imens ion  of  t h e  s o l u t i o n  space  of  

t h e  c o r r e s p o n d i n g  h o m o g e n e o u s  ( ~ + = 0 )  b o u n d a r y  v a l u e  problem.  F rom t h e  a b o v e  

c o n s i d e r a t i o n s ,  we ob ta in  t h e  main t h e o r e m  of  t h i s  sec t ion .  

THEOREM 6.4. For  the boundary value problem (6.1)-(6.3a), we have 6=m+ and 

~/=0. For  the boundary value problem (6.1)-(6.3b), we have 6=0 and ~[=dlm (Ker A) 

--m+. For  the boundary value problem (6.1)-(6.3c), we have 6=0 and ~/=dlm (Zo(K)) 

--m+. 

7. T h e  B o l t z m a n n - F o k k e r - P l a n c k  E q u a t i o n  

T h e  B o l t z m a n n - F o k k e r - P l a n c k  e q u a t i o n  was f o r m u l a t e d  b y  Ligou to d e s c r i b e  

t h e  t r a n s p o r t  of  c h a r g e d  p a r t i c l e s  in h o t  plasmas.  It  was s u b s e q u e n t l y  used  in [21], 

[6] and [22] to  d e s c r i b e  t h e  t r a n s p o r t  of  v e r y  f a s t  n e u t r o n s  whe re  t h e  p r e d o m i n a n c e  

of  f o r w a r d  s c a t t e r i n g  r e n d e r s  t h e  u s u a l  Legendre  s e r i e s  expans ion  use les s .  

Adopt ing  a m u l t i g r o u p  scheme,  we ob ta in  fo r  i= l , - - . ,N 

~-~- + (o'~+S~)~(x,~) = S~_~_~(x,r 3- 3- 

~=0 J=l 1 

(7.1) 
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where internal sources are neglected, ~,~-*0 as ~-.oo and all constants involved are 

nonnegative. The cross-sections crw.-,cr N and the constants Tw-.,T N are positive. 

We study the corresponding half-space problem on the Hilbert space H consisting 

of the direct sum of N copies of L2[--1,1] with inner product 

(_,k) = ~ (o'~+S~) h~(/z')k~(#')d/z', 
~=i ~--i 

where h and _k are the column vectors with entries h~ and k~, respectively. Introdu- 

cing the diagonal matrix D with diagonal entries cr~q-S~ and appropriate other matri- 

ces and vectors, we easily write Eq. (7.1) in the vector form 

/z~-~ + ~(x,/z) = E~(x,/z) + T B (1 .2)B~1 

1 --I [1  
q- ~ (s ~E~s,,P,(/z) P~C/z')~(x,xg)d/z' (7.2) 

~ 0  | ~--1 

with the usual half-space boundary conditions. Apart from that, we require the so- 

lution to be bounded at /Z=~:I in order to single out a self-adjoint boundary condi- 

tion on the Sturm-Liouville operator. On H we now define the operator T as the 

premultiplication by D-I/~ so that Q~: is the restriction to 4-[0,1]. We then define 

(A~ h)(/z) = h(/z) -- X ~ [(1--/Z 2) ~ h(/z)l 
- - o / Z t  o / z -  

on the appropriate domain of functions h={h,}N=i that are bounded at #=q-l, with 

the derivatives interpreted in the distributional sense. Then A~ is a strictly posi- 

tive self-adjoint operator with fully discrete spectrum 

or(A1) = {1--n(n+l)(cr~-FSt)-lTt: n=0,1,2,.., and i=l,2,...,N}, 

whence A1-1 is a trace class operator. We also define the bounded operator A2 by 

F (A2h)(~) = Eh(/~) n c T ~  (b t -~)D-~,zP~( /Z)  P~(/ZO___(/Z')d~', 
~=0 " - - I  

and A as the difference of A I and A e. It is now straightforward to impose such 

conditions on the coefficients as to make the operator A accretive with Ker A= 

Ker (Re A). On doing so one obtains the unique solvability of the half-space pro- 
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blem on the Hilbert space HT, which is the weighted direct sum of N copies of 

L2([-- 1,1];l#Jd/z). 

Note added in proof: Recently two of the authors have developed a theory of ab- 

stract kinetic equations where T is injective, A is a compact perturbation of the i- 

dentity and Ran (I--A)~D(T). Under these assumptions the author proved T-IA to 

generate an analytic bisemigroup. As a result, assumptions (it) and (it') can be 

dropped in the derivation of Theorem 2.3~ while condition (v) of Section 4 that the 

operator A~-IA2 be trace class may be weakened to A~lAe compact. 
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