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A mathematical justification ls given for the multiple interface reflection expan- 
sion arising when using the adding method for solving numerically the equation of 
transfer of polarized light in a homogeneous atmosphere. The ratio of convergence 
is investigated analytically as a function of the optical thicknesses of the layers. The 
proof is based on manipulations with the positivity properties of the reflection and 
transmission operators, whose existence may be based on recent existence and uni- 
queness results for the solution of the equation of polarized light transfer. © 1986 
Academic Press, Inc. 

1. I N T R O D U C T I O N  

On neglecting vertical inhomogeneities and thermal emission, as well as 
reflection by the planetary surface, the equat ion of transfer of  polarized 
light in a plane-parallel a tmosphere  of finite optical thickness b is the vec- 
tor-valued integrodifferential equat ion 

d all au ,, 

(1) 

where 0 < r < b, endowed with the bounda ry  condit ions 

I(0, u, ~0) = J(u, (o) for u > 0, I(b, u, ~o) = J(u, q0) for u < 0. (2) 

Here 0 < a ~< 1 is the albedo of single scattering, Z(u, u', (p - qf) the phase 
matrix, and I(z, u, ~0) a four-vector depending on optical depth z, direction 
cosine of p ropaga t ion  u, and azimuthal  angle q~. The components  /, Q, U, 
and V of the vector I are the Stokes parameters,  which describe the inten- 
sity and state of  polar izat ion of the beam. The function J(u, (o) specifies the 
Stokes parameters  of the light incident to the top of the atmosphere.  
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Usually r = 0  is the top and r = b  is the bot tom so that J(u, ( p )=0  for 
u < 0, but for later convenience we choose to have the more general boun- 
dary conditions (2)_ A consistent treatment of polarized light transfer based 
on the (equivalent) conventions for polarization parameters of Chan- 
drasekhar [2]  and van de H u M  [17] is given in [15], on which we shall 
rely for the basic notations and physical background. 

The phase matrix can be expressed as the product 

Z(u, u', ~p - ~p') = L(n - a2) F(0) L( - al ) (3) 

of two rotation matrices of the form 

1 0 

0 cos 2~ 
L(~) = 

0 - sin 2~ 

0 0 

cos 2~ 

0 

and the scattering matrix 
[at(O) b~(O) 0 0 [ 

F(O) = I bl(O) a2(O) 0 0 
o a~(O) b40) 
o -b2(o) a (O)J 

(4) 

The relationship between u = - c o s  v, u ' =  - c o s  v', and 0 (0 ~< v, v', 0 < n) 
on the one hand and ~p, (p', a~, and az on the other hand is given by the 
formulae 

COS O" 1 

cos 0 = cos v cos v' + sin v sin v' cos(tp - ~o') (5) 

COS V - -  COS V r COS 0 COS v ' - -  COS V COS 0 
cos a2 - (6) 

sin v' sin 0 ' sin v sin 0 ' 

where sin a~ and sin a2 have the same sign as sin(~0'-~0). When the 
denominator  of any of the equations (6) vanishes, the appropriate limits 
have to be taken as to make the transformation continuous. 

The existence and uniqueness theory for the boundary value problems 
(1)-(2) has been developed by van der Mee. In [24] he considered 
Eqs. (1)-(2) and corresponding equations for media of infinite optical 
thickness, while in [25] reflection by the planetary surface was incor- 
porated. In both of these publications it is assumed that F(0) is a 
measurable matrix that leaves invariant the positive cone of vectors I = 
(I, Q, U, V) satisfying 

I>~/Q2 + U2 + V:>~0, (7) 
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while the phase function al(O) is nonnegative and satisfies the conditions 

3 r>  1: 

f1_1 al(O) d(cos 0 ) =  2 (8) 

fl  al(0) r d(cos 0) < oe. (9) 
--1 

Condition (7) for a four-vector I = (/, Q, U, V) means physically that the 
degree of polarization of a beam of light with Stokes parameters L Q, U, 
and V belongs to (0, 1]. The positive cone property (7) was first observed 
by Germogenova and Konovalov [5].  

Let Hp denote the Banach space of measurable functions I: D ~ C 4, 
where D is the unit sphere in three-dimensional space, bounded with 
respect to the norm 

IIINp f? = { II(u, ~0)1 p + IQ(u, q~)l p 
1 

+ I U(u, ~o)1 p +IV(u, ~o)1"} dq~ du] x/p, l ~ < p < o %  

and let Kp denote the positive cone on Hp consisting of those functions 
whose values satisfy the condition (7) almost everywhere on g2. On Hp we 
define the operators T, B, A, Q +, and Q_ as follows: 

(TI)(u, ~o) = ul(u, q~), 

(BI)(u, ¢p) = Z(u, u', ~o - q/) l(u', q)') de' du' 

(AI)(u, p ) =  I(u, ~o)-a(BI)(u, q~) 

(Q+I)(u,~o)=I(u,~0) for u>0;  (Q I)(u,q~)=0 for u>0  

= 0  for u < 0 ;  = I ( u , p )  for u < 0 ,  

where points cosf2 are parametrized as (u,q)) with u e [ - 1 , 1 ]  and 
~0 e [0, 2n). Then the boundary value problem (1)-(2) can be reformulated 
a s  

(71)'(z) = -Al(z) ,  O < r < b  (10) 

Q + I ( 0 ) =  Q + J ,  Q I(r) = Q_ J. (11) 

For every J ~ Hp, 1 <~ p < 00, there exists a unique continuous function 
I: [O,b]--*H e such that 7I is strongly differentiable on (0, b) and 
Eqs. (10) (11) are fulfilled; moreover, if J~Kp, then I(z)~Kp for every 
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e [0, b] (cf. 1-24]). If we now define (unique) reflection operators R+b and 
R_b and transmission operators T+b and T ~ by 

I(O)=(R+b+T_b)a, I(b)=(T+b+R_b)J, (12) 

where 

R+bQ+ =Rib, T+_bQ+ = T+_b, (13) 

then (R+_b--Q+_)J denotes the Stokes vector of the light reflected by the 
surface at ~ = 0 (resp. ~ = b) and T+,J  accounts for the light transmitted 
from the surface at v = 0 (resp. z = b) to the opposite surface. If we next 
introduce the transfer (matrix) operator Sb by 

SbJ = Q_ I(0) + Q + I(b), (14) 

then with respect to the decomposition lip= Q+[Hp] @ Q_ [Hp] we have 

= + s :  ], ( i s )  
Sb Lsy + s y -  J 

where S{ + = r+b: Q+[Hp] -4 Q+[Hp] and S[  + = R-v-b- Q-v: 
QT_[Hp] ~ Q+[Hp]. For unpolarized light transfer reflection and trans- 
mission operators were introduced in [23] and studied further in [7]. 
There is a close relationship between these operators and the reflection and 
transmission matrices prevalent in the radiative transfer literature (for 
instance, [2, 18]). The operator Sb also appears in the study of stationary 
kinetic equations on finite layers with reflective boundary conditions at 
both surfaces (cf. [8, Chap. V]). 

In this article we shall justify the series expansion arising when using the 
adding method. This method consists of computing the reflection and 
transmission properties of a medium of optical thickness b = bl + b2 from 
the reflection and transmission properties of two constituent layers of 
optical thicknesses bl and b2, using a series expansion in orders of multiple 
reflection by the interface of the two constituent layers. A comprehensive 
account of this method and of the doubling method (merely a repetitive 
application of the adding method using identical layers at each stage) has 
been given by Hansen and Travis [13] and van de Hulst [18], where 
many references can be found. A detailed description of the method for 
polarized light was recently given by de Haan [10], and has been sup- 
plemented by numerical results by de Haan, Bosma, and Hovenier [11 ]. A 
comprehensive account of the qualitative aspects of the adding of con- 
stituent media in neutron transport, displaying the philosophy of systems 
theory, was given by Ribari6 [27]. 
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Let us consider a layer of optical thickness b = bl + b2 composed of two 
adjacent layers of optical thicknesses bl and b2- Using (14) and (15) we 
obtain the pairs of formulae 

Q + I ( b ~ ) = s ~ + o + J + S ~ - O  I(b~) (16) 

Q_ I (0 )=  S~+Q+J + sff, - Q _  I(b,) (17) 

and 

whence 

Q + I ( b l ) =  S ~ + Q + I ( b , ) +  S ~ - Q _ J  

Q_ I ( b l ) =  S~ + Q + I(b~) + Sb2-Q_J, 

(18) 

(19) 

Q+I(bl)=S~+Q+J+S~-[S~+Q+I(ba)+S~ Q J ]  (20) 

Q I(bl)=Sb2- Q J+Sb2+[S~+Q+J+S ~ Q_I(b l ) ] .  (21) 

From the latter equations one easily derives 

({-S~ sb2+)Q+I(bl)=S~+Q+J+S ~ Sb2-Q-J (22) 

({-s~+s~-)Q_i(bl)=S~-Q J+Sb2+Sf+Q+J. (23) 

As we shall prove (~ -S~I-S~ +) and (1 -Sb2+S~ ) invertible, we may 
write 

S + + = S ~ + ( { - S { t - S ~ +  ) ~S~ + (24) 

S{ = S• + S L + (~ - Sb+~ - S~ + )-1 S~ - Sb2- (25) 

S;+=S~+ + S~-(~-S-+S+-)-~ S~+S~ a, (26) 

S ;  - = Sb, - (~ -- S L +S~ - )-1 SL_.  (27) 

The adding method consists of calculating the operator Sb from the 
operators Sb~ and Sb~ using the series expansions 

( ~ - S ~  1 S L + ) - ' =  ~ (S~-SL+) ", 
.=o (28) 

(~_sb+s~l-) ~= ~ (s~+s~-) ~, 
n = O  

which have the physical interpretation of giving the contributions of suc- 
cessive reflection by the interface between the two adjacent slabs. For 
instance, transmission from ~ = 0 to z = b (incorporated in S~-+) can be 
thought of as being composed of the contributions (for n = 0, 1, 2,...) of first 
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transmission from ~ = 0 to v = b 1, then n consecutive pairs of a reflection by 
the surface z = b 1 of the layer at bl 4 T ~< b followed by a reflection by the 
surface r = b~ of the layer at 0 ~< ~ ~< b~, and finally transmission from ~ = b~ 
to r = b .  We shall justify the expansions (28) using a simple positivity 
argument. 

Several authors have studied numerically the ratio of convergence of the 
series expansions (28). In particular, one has to study the eigenvalues, and 
foremost the spectral radii, of the operators S~-Sb2 + and Sb2 +S+-b~ (In 
fact, we shall prove that both operators are compact on tip, 1 <<, p < oo, 
and have the same eigenvalues.) Once an accurate value is obtained for the 
leading eigenvalue and possibly for the second largest eigenvalue in 
modulus, the remaining terms of the series can be approximately computed 
using extrapolation by a geometric series (cf. [-12-14]). A comprehensive 
discussion of the eigenvalues involved in the rate of convergence of the 
series (28) has been given by van de Hulst 1-18]. In this article we shall 

Sb2 Sb~-) as a study the behavior of the spectral radius of S~-Sb2 + (or - + + 
function of the optical thicknesses b~ and b2. In particular, we shall prove 
that the spectral radius is a continuous function of b I and b2 (where 
bl, b2 s (0, ~ ) )  which is strictly monotonically increasing in the albedo of 
single scattering a and in each of the optical thicknesses b1 and b 2. It 
appears that the supremum of the spectral radius over all bl, b2 ~ (0, ~ )  is 
strictly less than one if a s (0, 1 ) and equals one if a = 1. 

In Section 2 we shall establish the absolute convergence of the series 
+ - -  + expansions (28) and the monotonicity of the spectral radii of Sb, Sb2 and 

S - + ¢ + -  in the optical thicknesses bj and b,. In Section 3 we shall prove 
b 2 t-~b 1 ~ 

strict monotonicity and investigate the behavior of the spectral radii for 
large b I and be- Section 4 is devoted to a discussion of the results obtained 
and some possibilities of generalization to multigroup neutron transport. 

2_ C O N V E R G E N C E  OF THE M U L T I P L E  INTERFACE 

R E F L E C T I O N  E X P A N S I O N  

In [24] we have proved that every continuous function I: [0, b] --* tip 
such that 7I is strongly differentiable on (0, b) and Eqs. (10) and (11) hold 
true satisfies the vector-valued convolution equation 

f2 I ( z ) - a  ~(z - z ' )BI (~ ' )dz '=co(z ) ,  O<~ ~<.b, (29) 

where 

[~(r ) I ] (u ,  cp)=lul-le-~/~I(u, cp) for r u > 0  

= 0  for r u < 0  

409/116/2-18 
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and 

m(z)(u, ~o) = e ¢/"I(u, cp) for u > 0 

= e  ~b ¢)/"I(u, ~0) for u < 0 .  
(30) 

Conversely, every bounded solution of Eq. (29) with right-hand side (30) is 
continuous on [0, b], has 7I strongly differentiable on (0, b), and satisfies 
Eqs. (10) and (11). If we introduce the Banach space C(Hp)~ of continuous 
functions I: [0, b] ~ H e with norm 

[; f? I[III c(u~)~ = max {]I(u, cp)[P + [Q(u, ~p)l p 
0~<~<b  1 

+ lU(u, ~o)l P+ V(u, qg)l p } d~o dul  '/p 
A 

then Eq. (29) can be written as 

(1] --  aL, eb) I = o ,  (31)  

where 

(~bl)(z) = 3/t~(z-z')BI(z')d'c ' , O<~z~b, (32) 

is a compact operator on C(Hp)bo . Writing co = ¢% for (30), we obtain 

s ~  + J  = [{(4 - a~e~) -~ - ~ } o~Q~ ~3(0) 

and 

(33) 

S ~ - - J = [ { ( ' I ] - a ~ ° b )  ~-1]}¢~Q a](b), (34) 

whence S b + and S~- - are compact operators on Hv, 1 ~< p < or. Since Eqs. 
(22) and (23) having more than one solution would contradict the unique 
solvability of Eqs. (1)-(2), the operators ( 1 - S ~ 1 - S ~  ÷) and 
( 1 -  Sfx + S ~ - )  are injective and, by the Fredholm alternative, are inver- 
tible on lip. Moreover, the nonzero eigenvalues of the compact operators 
S ÷ - S -  ÷ and S + e + -  coincide and their resolvents are related as follows: bl b2 b2 ~ b l  

(~-cS~-S~+) '=~+cs~, (~-cS~+S~,-) ls~+ (35) 

and 

( 1 - c S b 2 + S ~ - )  I = I + c S b 2 + ( ~ - - c S ~ - S b 2 + ) - I  S ~ -  (36) 
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Moreover, in terms of the reflection operators R+b and R_ b one has [cf. 
(12), (13), (14), and (15)] 

(R+b~+R_b,--I)(R+b2+R_b~--I)=S~I-Sf~+@S~+S~ - (37) 

and 

(R__b2+R_o2-I)(R+o,+R o , - I ) = S ~  S b + O S b + S ~  - (38) 

THEOREM 2.1. The series expansions (28) are absolutely convergent in 
Hp-operator norm and the spectral radii of S~ Sb~ + and S~2 + S~ - coincide 
and are strictly less than one. 

Proof Using an argument of Ribari~ ([26, Lemma 12]) we first com- 
pute Ecf- (22), (23)] 

L 

(S~-Sb=*)"FS~*Q+J+S~-S~ Q _ J ]  
n = O  

=Q+I(bl)-(S~ Sb2+) L+I Q+l(bl)<~Q+I(bl) 

and 

L 

( S ~ + S ~ - ) " [ S ~ - Q _ J + S - + S  + b2 bj+Q+ J ]  
n = 0  

=Q I(bj)--(Sb~+S~-)L+IQ I(b)<~Q_I(bl), 

where (here and in the sequel) we have used the order derived from the 
positive cone Kp of Hp (i.e., I1 ~<I2 means I 2 - I 1  e Kp) and J~Kp. [We 
have also used that I ( b l ) e K  v whenever J e Kp_] Since the partial sums of 
the iterated series deducible from Eqs. (22) and (23) are bounded above in 
lip whenever J ~ K p  and since Kp is a regular cone in Hp whenever 
1 ~< p < ~ (cf. [20] for the terminology), these iterated series converge for 
every J ~ Kp. Because Kp is a reproducing cone in Hp, these iterated series 
converge for every J ~ kip. 

It suffices to prove that the right-hand sides of (22) and (23) are dense 
sets in Q + [Hp] and Q [tip], since in combination with the invertibility of 
the operators (~-S~-S~2+) and ( ~ - S ~ + S ~  -)  it would imply the 
positivity (relative to the cone Kp) of the inverses of these operators and 
thus r(S~ -S~  + ) = r(S~ +S~ - ) < 1 for their spectral radii. Indeed, consider 
the operator ~-- defined by 

9-J=S{11+Q + J + S ~ - S ~ : - Q _ J  + S ~ - Q _ J  + S~+S~+Q + J, 
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which may be factorized as [cf. (12), (13), (14), (15)] 

where 

(6Pbl,b2J)(u, ¢p) = e ba/UJ(u, (19) for u > 0 

=eb2/~J(u, 9) for u < 0 .  

Clearly, R+b L + R-a1 is a compact perturbation of the identity satisfying 

(Q+-Q_)(R+bj+R bj)(O+-O_) 

=(Q+-Q-){(R+bl-Q+)-(R-b~-Q-)+(Q+-Q )} 

=-(R+bL-Q+)-(R_bx-Q )+'~ 

= 2 ~ - - ( R + b L +  R v~)- 

The invertibility of (~ - S~ SL ÷ ) and (~ - Sb, + Sb, ÷ ) in combination with 
Eqs. (37) and (38) (for bl = b2) implies the invertibility of the operators 
(R+bL+R_b~) and 2 ~ - ( R + b ~ + R  bx)- Since Sbl,b2 has a dense range, we 
have a dense range for Y-. | 

It is immediate from (25) and (26) that S { - > ~ S ~ - > ~ 0  and S{-+>~ 
S~, +/>0, whence S~+S[11 - and S~-Sb~ + are increasing if b 1 and b2 are 
increasing. On writing 

s ~ - +  - s #  + = ( ~ - S  -+-+~±+ ~ S+-+-~S+-*v~+~"S~ + b 2 ? ~ b  2 ~ b 2 \ b 1 ~ab 2 -- ! 

and 

~0 b2 tTI(~--Sb2)J=IT[J--ITISb2J=TI(O)--TI(b2)= AI(r) dz>~0 

using Eqs. (10) and (11) with b replaced by b2, w e  easily obtain S~ -+ >~ 
S{ -+- ~> 0, whence S{ + and S~- are decreasing if b is increasing. Since Kp is 
a reproducing and normal cone in Hp (cf. [20] for the terminology) and 
therefore a renormalization of Hp is possible that turns Hp into a Banach 
space with strictly monotonic norm (with respect to lip; i_e., 0 ~<I~ ~<I 2 
implies [hIlll ~ [112]1 after equivalent renormalization), we have 
monotonicity of the coinciding spectral radii of S+b~ -Sb2 + and Sff: + S ~ -  
with respect to bl and b2, as well as monotonicity of the spectral radii of 
the four operators S~-+, S~--, S~ +, and S ~ -  with respect to b. 



THE ADDING METHOD 583 

3. MONOTONICITY AND SMOOTHNESS PROPERTIES 

OF THE CONVERGENCE RATES 

On transforming the convolution equation (29) to an equation for 
z ~ [0, 1 ] we may deduce that Sb is an analytic operator function of b in 
the open right half-plane. Indeed, on defining the operator 

(Sgb I)(r ) = b ~ ( b ( z  - z')) BI(z') dr' 

on C(Hp)~ and inspecting closely local (in b) bounds on the strong 
derivative 

d 
{ ~ ( b ( ~ - ~ ' ) ) B } = - I ~ - ~ ' l  ITI 2 e x p [ - b l ~ - ~ ' l . f T  I - l I B ,  

we easily see (cf. [24], (2.2), using Eq. (9) from the present article) that 

fo' d {~C~(b(z-z '))B} d ~ ' < ~ M < ~ ,  

uniformly in ~ e [0, 1 ] and in b on compact subsets on the open right half- 
plane. Hence, ~b is an analytic operator function in b, and so is ~b' Using 
the formulae (33) and (34) we obtain the analyticity in b of the operators 
Sb + and S ;  The analyticity of S~- + and S ~ -  follows analogously using 
the formulae 

s ; + J =  [(1 - a ~ )  l,%+j](b) 

and 

s ~ - - J  = [(1 - a y e )  -1 ,%_j](0).  

Next, let us discuss the Fourier decomposition of the radiative transfer 
problem in Eqs. (1)-(2). On writing 

IC°'(z, u) = I(z, u, ~o) do, Q(z, u, q~) dq~, O, 0 

and 

V°a(z, u) = 0, 0, U(z, u, ~o) d~o, V(z, u, ~o) dcp , 



5 8 4  C. V. M. VAN DER MEE 

where I = (L Q, U, V) and s = symmetric and a = antisymmetric, we obtain 
the boundary value problems 

d 1 u ~ V°~(z, u) + V°s(z, u) = 

V°~(0, u) = Y°~(u) for u > 0, 

and 

f l  ZC°~( u, u') V°s(z, u') du' (39) 
--1 

V°'(b, u) = J~°S(u) for u < 0 (40) 

d cOa 1 ' 
u--~I  (z, u l + V ° ~ ( % u ) = ~ a f  Z~°~(u ,u ' )V°~(z ,u ' )du  ' (41) 

V°~(0, u) = JC°~(u) for u > 0, v°a(b, u) = Y°~(u) for u < 0, (42) 

where 0 < z < b, 

Z~°~(u, u') = Zc°~(u ', u), Z~00(U, U') = EZc°~(u ', u) E, (43) 

E = d i a g ( 1 , - 1 ) ,  and the tilde above a matrix symbol denotes trans- 
position. Equations (39) to (43) were obtained from the full radiative trans- 
fer problem (1)-(2) by Ku~e r  and Ribari~ [21]. Generalizations to 
azimuthally dependent real component equations are due to Siewert [29]. 
In terms of complex polarization parameters a Fourier decomposition was 
derived by K u ~ e r  and Ribari~ [21] and further studied by Germogenova 
and Konovalov [5]. It should be noticed that Eqs. (39)-(40) and Eqs. 
(41)-(42) can both be posed in the form of problem (10)-(11) on the 
Banach space L p [ - 1 ,  1 ] O L p [ - 1 ,  1] with corresponding operators B 
defined by 

l f l  

l f l  (Bcooroo)(u) = ~ _, 

ZC°S(u, u') IC°~(u ') du', 

zc°~(u, u') r°a(u ') du', 

where B ~°s and EB c°a are selfadjoint on L 2 [ - - 1 , 1 ] ® L 2 [ - - 1 , 1 ] .  It 
appears that the operator AC°~= ~ -  aB c°~ is strictly positive selfadjoint if 
a t ( 0 ,  1), and positive selfadjoint with null space span{(1 ,0 ,0 ,0)}  if 
al(0) ~ a4(0) and span{(1, 0, 0, 0), (0, 0, 0, 1)} if al(0) - a4(0), if a = 1 (cf. 
Section VII.2 of [9];  the result is immediate from an inequality for expan- 
sion coefficients given in [16]). 

+ + and S +S + have the same LEMMA 3.1. The operators Sbl Sb2 b2 b, 
positive spectral radius. 
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Proof Let us consider the component problem (39)-(40) and let us 
define the reflection and transmission operators R+_b, T+b, and Sb for this 
problem in the same way as for the undecomposed problem (1) (2), i.e., by 
restricting the operators related to the undecomposed problem to the sub- 
space H~ °~ = {I = (L Q, u, V) ~ Hp/U = V= O, I and Q do not depend on 
~0}. Introducing the Hilbert space ~2.TH~°~ of measurable functions I = (/, Q): 
[-- 1, 1 ] ~ C 2 which are bounded with respect to the norm 

with corresponding inner product 

(I1, I2)r = lul {/l(U) I2(u) + Q,(u) Q2(u)} du, 
1 

one can exploit the positive selfadjointness of the operator A c°~ on H~ °~ to 
prove the existence of a unique continuous function I: [0, b]--* 14~o~ for ~ 2 ,  T 

every J ~ H~°~ that is strongly differentiable on (0, b) and satisfies the boun- 
dary value problem of the type (10)-(11) associated with Eqs. (39)-(40), as 
one may deduce from the abstract kinetic equations theory constructed by 
Beals [1 ]. As a result the reflection and transmission operators R +b, T_+b, 
and So can be defined on H~°~. and the addition formulae (12) (23) can be 

H~o~ As a consequence of Eqs. (37)-(38) and the selfad- formulated on ~'2.T" 
I4~0s of the operators (R+bj + R b~ -- ~ ) and (R+b~ + R_b~-- ~ ) jointness on --2,r 

with ~os H2,r-norm strictly less than one, the latter being a result of Greenberg 
and van der Mee [7], the invertibility of ( ~ - S ~  Sb~ +) and 
(~ - S~2-+ Sbl+- ) on ~2,r,[4c°s the addition formulae (24)-(27), and the absolute 
convergence in 14cOs operator norm are clear, as also are Eqs. (35)-(36) "~2,  T 

extended to ~4cOs Since all operators (R+b+R b), T+b, and T_ b a r e  ~ 2, T" 

i4~o~ and satisfy identities of the type selfadjoint on , ,  2,T 

ITI K = K  * [TI, 

where (Tl)(u)=uI(u), K is compact on H f  s, and K* is the adjoint of K 
with respect to ~2r4c°~, the operators (R+b+R b-4) ,  (T+b--e br ~Q+), 

r4co, [6, Theorem V 3.4], where and (T b--e ~T 'Q_) are compact on "'2,T 
Sb ~ - ,  Sb +, and ( S b -  e -brrl-') are compact in J-2,r4c°sT topology. Using simple 
Fredholm arguments it can now be understood that the spectra of these 
compact operators do not depend on the choice of the space H~ °s 
(i ~< p < m) or H~,~ of definition, and thus neither do their spectral radii. If 
any of the spectral radii of S~ Sb2 + or Sb~ + S~ would vanish, so would 
the spectral radii of S~ S~ + and Sb+S~ - where bo=min(b~,b2) 
(because of monotonicity), and therefore (R+b0 + R-b0-- ~) would have 
zero spectral radius (cf. (37)-(38)). Since the latter operator is selfadjoint 
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n c O s  m on 2.r, we would have (R+~+R_b ~ ) = 0  for 0<b~<b0  and thus, by 
analytic continuation, (R+b+R b)=~ for 0 < b <  +o% which is a con- 
tradiction. Hence, S~-Sb2 + and Sb+Sg11 have positive spectral radii. 

Hitherto in this proof we have dealt with the component problem 
(39)-(40), which is a restriction of the undecomposed problem (1)-(2). 
Hence, we also have the result for the latter. | 

TrlZOREM 3.2. The coinciding spectral radii of the operators S~ S~ + 
and Sb2+ S~-,  r(bl, b2), are continuous functions on the open right half-plane 
which are strictly monotonically increasing in both variables bl and b2 
separately and satisfy the requirements 

lim r(bl, b 2 ) =  lira r(bl, b2)=0. 
bl ---~ 0 b 2 ~ 0  

Proof Fix b2c(0,  ~ ) .  Then ~+ S - +  is a compact operator on ~ b l  b2 

Q+ [Hp] depending monotonically and analytically on bl. As its spectral 
radius r(bl, b2) is an eigenvalue, it depends analytically on b I except at a 
discrete set of algebraic branch points where it is still continuous in bl [19, 
Theorem VII 1.8]. If r(bl,b2) would be constant and positive in a 
neighborhood of bl E (0, ~ ) ,  then the nearest branch point of r(bl, b2) as a 
function of bl cannot possibly be a branch point, and therefore r(bl, b2) 
can be analytically continued in every bx ~ (0, ~ ) ,  which implies the false 
statement l imb~ o r(bl, bz) > 0. Hence, r(bl, b2) is strictly monotonically 
increasing and continuous in bl. Similarly, one proves that r(bl, b2) is 
strictly monotonically increasing and continuous in b2. As a consequence 
of Eqs. (37) and (38) we have, using spr(C) for the spectral radius of C 
(here and consecutively), 

max{r(bl,  b2), r(b2, bl)} = s p r { ( R + b t + R  b , - { ) ( R + ~ 2 + R  b2-{)}  

~ < ] ] R + 6 I W R _ b l - - ~ H  ]IR +b2 + R-b2--  ~ [[ 

~(llS~ II + IIS~+ll)(lIS~-II + IqS~+ll), 

which vanishes if one of the variables b I o r  b 2 vanishes. The latter is 
immediate from (33) and (34). | 

Next, we shall study the behavior of the spectral radius r(bl, b2) if either 
bl or b2 tends to infinity. In order to do so, we have to consider the accom- 
panying radiative transfer equation on a semi-infinite medium, namely, the 
boundary value problem 

d 
u ~--~r I(r, u, ~0)+ I(r, u, ~0) 

=~_~f1_1 f~Z(u,u',~p-~o')l(r,u',q~')d~p'du' (44) 
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I(0, u, cO) = J+(u)  for u > 0, 

(45) 
[f~,ff~l,I(z,u,q)),[Ppdepdu]'/P:o(1),z--,oe), 

where 0 < v < oc. This problem appears to be uniquely solvable on Hp for 
every J+ e Q+ [Hp] (cf. [24]) and the solution at z = 0 can be expressed in 
terms of the Stokes vector of incident light J+(u)  using a reflection 
operator: 

I(0)(u, ~0)= (R+~J+) (u ,  cp). (46) 

On posing the problem in integral form we obtain the equivalent vector 
equation 

(~ - a£°~) I = oJe+s 

on the Banach space C(Hp)~ of bounded continuous functions 
I: [0, oo)---, Hp where Q + J = J + .  For a s (0 ,  1) the operator (4 - a ~ )  is 
invertible on C(Hp)~, whereas invertibility breaks down for a =  1 (see 
[24]). 

LEMMA 3.3. We have for all a s (0, 1 ] 

lim ][R+~-R+bI[ =0. (47) 
b --* co 

Proof Since Kp is a reproducing and normal cone in lip, there is a con- 

stant M (i.e., M =  x/3) such that 0 ~< I1 ~< I2 on lip implies [lI1J[ ~< M[[I2][ (cf. 
[20]). It should be observed that, if one indicates the dependence on 
a s ( 0 , 1 ]  by using a superscript (a), one has (i) O<~R(~)b<~Rm + b  

monotonically in a, as easily follows by iterating Eq. (31) for o)=¢~Q+a, 
and (ii) O<~R(~)b<~R(2~ monotonically in b and for a s (0 ,  1), as follows 
from the monotonicity in b of the reflection operator in combination with 
the "projection method" (cf. [4]; applicable since ~ I[~(z)BI[ & < oe 
and (4 - a ~ )  is invertible on C(Hp)~ for a s  (0, 1); see [24] for the latter 
ingredients). We have the following convergence properties: 

(i) lima_~l []R~)b-R(~)b[I =0,  since (4-aLZ~) is invertible on C(Hp)bo 
for all a s (0 ,  1]; 

(ii) limb ~ ~ IlR(g)b -- R(g)~ [[ = 0 for a s (0, 1), as a direct consequence 
of the "projection method" [4]; 

(iii) l i m ~ l  [ I R ~ - R ( 2 ) ~ [ [ = 0 ,  as a result of Proposition6.2 of 
[24]. 

The latter limit implies 0 ~< R~)~ ~< R ~  monotonically in a. 
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Let us use the monotonicity of the Lp n o r m .  First choose bo ~ (0, ~ )  
such that [[R~)~ - R I~) I < (e/3M2); then + b0 

I I R ~  - R%ll < (~/3M), b ~ [bo, ~ ) .  

Next select aoe(0 ,  1) such that R (1) --R~)b0[] <(e/3M) for a~[ao,  1). + b0 

Finally, choose a~ • [ao, 1) such that 

R(I) _ R(~) I < (e/3M), a ~ [al, ~ ) .  
+ bo + bo 

Hence, on using these inequalities one obtains I I R ~ - - R ( ~ ) I < e / M ,  + b0 

whence by monotonicity 

NR(+I~-R%II <~, be  [bo, ~ ) .  

Then (47) is immediate. I 

A similar result holds true for the reflection operators R b, which con- 
verge to the reflection operator R _ ~  for a left semi-infinite medium 
(T~ ( - ~ ,  0)). 

On using Eqs. (37) and (38) we obtain that S~ Sb: + and Sb+S~ con- 
verge in the operator norms of Q+[Hp] and Q_[lIp],  respectively, if 
either b~ or b2 tends to infinity. 

THEOREM 3.4. f ie#her  b] or b2 tends to infinity while the other variable 
remains f ixed and finite, the spectral radii of  S ~ -  S~ + and Sb- 2 + Sb + , 
r(bl, b2), tend to a limit strictly less than one. Moreover, 

sup{r(bl, b 2 ) / b l , b 2 e ( O , ~ ) } = [ s p r ( R + ~ + R  _ ~ ) ] 2 ,  (48) 

which is strictly less than one if a ~ (0, 1 ), and equals one i f  a = 1. 

Proof The result is a direct consequence of previous monotonicity and 
continuity properties and Eqs. (37)(38) .  It should be observed that 
(R+oo + R _ o o -  ~ ) is a compact operator, since it is the limit of the com- 
pact operator (R+bWR b--q) in the operator norm on Hp as b tends to 
infinity. One should also observe that ( R + ~ + R  ~ - ~ )  depends 
analytically on a ~ (0, 1) and continuously on a ~ [0, 1 ], tends to zero as 
a ~ 0 and to a nonzero operator as a ~ 1, and is monotonically increasing 
in a. Since certainly s p r ( R + ~ + R  o~--~)>~spr(R+b+R_b--~)>O for 
a ~ (0, 1), the spectral radius of (R + ~ + R o~ - ~ ) is monotonically increas- 
ing in a from 0 (for a = 0 )  to some l e (0 ,  1]. However, if J = ( 1 , 0 , 0 , 0 ) ,  
then AJ = 0 for a = 1 and therefore I(r)  -- J satisfies the radiative transfer 
problem (44)-(45) on z e (0, ~ ) with J+  = Q + J, while I ( z ) -  J satisfies the 
analogous problem on r ~ ( - ~ , 0 )  with J = Q  J. Hence, J =  
(1, 0, 0, 0 ) ~ K e r ( R + ~  + R  ~ - 4 )  for a =  1 and therefore l =  1. | 
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The operator R+oo + R ~ maps the Stokes vector of incident radiation 
Q+ J = J+  onto the Stokes vector of incident plus reflected radiation I(0) 
for the right semi-infinite layer problem (44)-(45). On the other hand, 
(R+oo + R  ~ - ~ )  transforms the Stokes vector of incident radiation 
Q_ J = J _  for the corresponding left semi-infinite layer (~ e ( -  ~ ,  0)) 
problem into the Stokes vector of incident plus reflected radiation I(0). For 
a~(0,  1) where A = 4 - a B  has trivial null space, R+~  + R _ ~  is the 
so-called albedo operator, which plays a crucial role in the existence and 
uniqueness theory for (abstract) kinetic equations in half-spaces (cf. [ i ,  22, 
8, 9]). If a = 1, Ker A ~ {0}. (In fact, Ker A = span{(1, 0, 0, 0), (0, 0, 0, 1)} 
if al(O)-a4(O), and KerA =span{(1, 0, 0, 0)} if al(0) ~ a4(O).) In such 
situations one usually modifies the operator A and obtains an invertible 
finite-rank perturbation in order to deduce existence and uniqueness 
results. For "half-space" problems on z~ (0, aD) and v~ ( - - ~ ,  0) one con- 
structs separate albedo operators Er and Et such that Er and Et coincide on 
a subspace of finite co-dimension (4 or 2, depending on Ker A) and 
E~Q+ +EtQ_=R+oo+R ~. 

4. DISCUSSION 

We have established the convergence of the multiple interface reflection 
expansion which is used when applying the adding method for polarized 
light transfer. We have also studied in detail the rate of convergence of the 
expansion in the form of results on the spectral radius r(bl, b2) of certain 
operators. In fact, in the long term the multiple interface reflection expan- 
sion behaves like a geometric progression with ratio r(bl, b2) (E(0, 1)), 
because r(bl, b2) is the so-called dominant eigenvalue of the operators 
S~-Sb2+ (or S~+S~ ) (cf. [20] for the existence of such an eigenvalue if 
one knows that the spectral radius of the compact positive operator 
S ~ - S ~  +, or S~ + S ~ - ,  is strictly positive). It appears that the ratio of con- 
vergence r(bl, b2) is a continuous and strictly monotonically increasing 
function of bj and b2 with upper bounds r ( + ~ ,  b2) for finite b 2 and 
r(bl, + ~)  for finite b~ strictly less than one, which means that the multiple 
interface reflection expansion also converges on adding a finite layer to a 
semi-infinite layer. However, the supremum r( + 0% + oo) over both optical 
thicknesses bl and b2, corresponding to the ratio of convergence involved 
in the addition of two semi-infinite layers (a physically irrelevant situation), 
is less than one if a ~ (0, 1), and one if a = 1. 

For more detailed information on the convergence rate for the above 
expansion one needs information about all (or the largest) eigenvalues of 
S~ S~ +. It is known that there is a leading positive eigenvalue, r(bl, b2), 
which exceeds or equals in modulus the remaining eigenvalues. In some 
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cases it is known that all eigenvalues are real, namely, if polarization is 
neglected (a2(O) - a3(O) - a4(0) - bl(0) - b2(O) - 0), or if b2(O) =- 0 (which 
occurs, for instance, for Rayleigh scattering with or without depolarization 
effects ( [2, 17, 18 ], for instance)), or for the component problem (39)-(40). 
In all other cases, if b2(0) el 0 and for other Fourier component problems 
arising from Eqs. (1)-(2), the most that one could say is that the non- 
dominating eigenvalues occur in complex conjugate pairs of the same mul- 
tiplicity, while the competing eigenvalues (those having modulus r(b,, b2) 
but different from r(bl, b2)) are given by 2 = r(bl, b2) exp[(2nki)/n] where 
k = 1, 2,..., n -  1, with multiplicity at most the multiplicity of the dominant 
eigenvalue r(bx, b2). The property of having only real eigenvalues rests on 
the selfadjointness of the operator B, the property of having eigenvalues in 
complex conjugate pairs rests on the selfadjointness of (R+b q-R b -  "0 ) in 
an indefinite inner product (cf. [24, Sect. 7], together with Eqs. (37)-(38)), 
while the property of competing eigenvalues is based on the positivity and 
compactness of S~ Sb: + (cf. [28, Chap. V])_ These results are in 
agreement with numerical results presented in [13, 18, 11]. 

With minor modifications the convergence proof and the analysis of the 
rate of convergence apply to multigroup neutron transport. Here the 
problem is to find the N-vector ~(x, #, q))= (~i(x, ~, ~0))u=l of neutron 
angular densities within N groups of neutrons with constant speed (cf. 
[3]).  Here the equations read 

~ ~-~x (x, ~, ~o)+ ~v(x, u, q,) 

lfllf~ = (C ® P(co. co')) V(x, #', ~o') &o' d#' (49) 

and 

~(0, #, rp) = O(#, ~0) for # > 0, ~(z, #, ~0)= O(#, ~0)for # < 0, (50) 

where x is the distance to the surface of the finite-slab reactor medium with 
thickness z,/~ is the direction cosine of propagation, q~ the azimuthal angle, 
and l~=diag(¢l,. . . ,  Cru) with ¢1~> "'" > ¢ u  = 1 the diagonal matrix of 
neutron cross sections. Here C is a nonnegative N x N  matrix, and 
P(co.a)') is an N x N  matrix of nonnegative functions in L r [ - 1 ,  1] for 
some r > 1 which satisfy the conditions y l  1 [P(cos 0)] 0. d(cos 0 ) =  2 (1 ~< i, 
j<~N), [ C ® P ] a =  [C]u[P]0. ,  and c o - ( # ,  ~0)~£2. On introducing a s  lip 
the Banach space of measurable functions h: Q --+ C u which are bounded 
with respect to the norm 

Ilhllp = o" i Ih~(/.t, O)l  v d e d #  
i = 1  --1 
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as well as the operators 

(Th)(#, ~o)= ~E lh(/t, ~o), 

1 1 2re 
(Bh)(/~, ~o)=~-~ f , :o '~-*(C®P(co .co')) h(#, ~o) d(o' d#' 

(Ah)(., ~o) = h(#, ~o) - (Bh)(#, ~o) 

(Q + h)(/~, ~0) = h(/~, ~0) for/~ > 0; (Q_ h)(~, ~0) = 0 f o r , > 0  

= 0  for # <  0; = h(/z, ~o) for/~ < 0, 

we obtain the boundary value problem (10)-(11) (replacing (T, b) by (x, r) 
and J by 0) .  Using unique solvability of the corresponding half-space 
problem if IIBII < 1, and a monotonicity argument (cf. I-8, Sect. IX.4], for 
details), we may derive unique solvability of Eqs. (49)-(50) for II B rl ~< 1. 
(The spectral radius spr(B) does not depend on the space Hp, 1 <~ p < ~ ,  
since B is compact on all those spaces.) For I/B[I ~< 1 we may develop the 
formalism for the adding method and establish convergence with ratio less 
than one for the multiple interface reflection expansion. If 0 ~< IIBII ~< 1, the 
continuity properties and monotonicity of r(b~, b2) can be proved in full; 
however, since taking the b I ----r +oO and b 2 ---* +oo limits requires existence 
and uniqueness for the corresponding half-space problem, these results only 
go through for 0~< IIBII < 1, or for the symmetric multigroup problem 
where C and P(m.~o') are real symmetric matrices (cf. [9]  for the half- 
space result for the symmetric multigroup case). Strict monotonicity can 
only be shown in the previous way for the symmetric multigroup case with 
spr(B) ~< 1. For general nonsymmetric cases one might have spr(B) = 0 and 
perhaps s p r ( S ~ - S ~  +) = 0. Intuitively one would expect r(~l, ~2) < 1 in 
subcritical cases (spr(~,)  < 1 for b = bi + b2; cf. (32)), but this cannot be 
proved by a complete repetition of the arguments used for polarized light 
transfer. 
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