
SIAM J. MATH, ANAL.
Vol. 17, No. 4, July 1986

986 Society for Industrial and Applied Mathematics
012

KINETIC EQUATIONS WITH REFLECTING BOUNDARY
CONDITIONS*

C. V. M. VAN DER MEE" AND V. PROTOPOPESCU

Abstract. A general abstract model of time-independent kinetic equations on the half-line is presented.
The existence and uniqueness of the solution is proved under specified incoming flux and nonmultiplying
boundary reflection processes. An iterative method is formulated for computing in principle the solution by
using the solution of the analogous problem without reflection. In many concrete cases (e.g. neutron
transport, BGK model in rarefied gas dynamics, etc.) the available explicit expression for the latter provides
the actual solution of the general problem. Possible generalizations and open problems are briefly discussed.
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1. Introduction. In recent years substantial progress has been reported on the
existence and uniqueness theory for the solution of boundary value problems of the
type

(1.2)
(1.3)

r+’(x) -A,(x), xen +,

Q++(O)=JQ_4,(O)++,
II (x) II-- o(1)

where T is an injective self-adjoint operator, Q+ and Q_ the orthogonal projections
onto the maximal positive and negative T-invariant subspaces and A a positive self-ad-
joint (bounded or unbounded) Fredholm operator. The operators 9 and J as well as
the precise meaning of the norm in (1.3) will be specified later. This boundary value
problem models a variety of time-independent transport phenomena in semi-infinite
media with boundary conditions appropriate to incoming flux specification and, if is
nonzero, to a (partial) reflection at the boundary. In most instances, however, it has
been assumed that 9=0 (absence of reflection), and in this case the solution +,
whenever unique, is represented in the form

(1.4) + ( x ) e-Xr- a’4Eq +, x l +.

In this direction we note the important contributions of Hangelbroek [14], Lekker-
kerker [16], Beals [1, 2], van der Mee [19] and Greenberg et al. [13]. Only recently such
a theory has been developed with full account of boundary reflection processes (R 0).
Namely, Beals and Protopopescu [3], [4] obtained an existence and uniqueness theory
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for the Fokker-Planck equation

o)+ f o a+,

(1.7) lim ((x,v)/x } =b.

For general o’s the existence proof required a condition which will turn out to be
automatically satisfied. Maslova [17], [18] published related results on the linearized
Boltzmann equation with a sufficiently regular intermolecular potential. Greenberg and
van der Mee [12] formulated a related radiative transfer problem in an abstract setting,
but their result deals with (1.1) on a finite interval. The abstract approach was recently
followed by van der Mee [20], who announced some results on this problem.

The paper is organized as follows. For the reader’s convenience in 2 we provide a
brief but fairly complete review of the existence and uniqueness theory for the solution
of (1.1)-(1.3). Section 3 contains the procedure of computing the solution of the
problem with reflection from the solution of the same problem without reflection
(= 0). This iterative scheme can be implemented whenever the albedo operator E in
(1.4) is known explicitly, wch is actually the case for a large class ofproblems.
Namely, if A is a compact perturbation of the identity, an expression for E in terms of
generalized Chandrasear H-functions [9] has been given by van der Mee [21], thereby
generalizing a plethora of results obtained before for specific models (neutron trans-
port, radiative transfer, BGK models, etc.). In some cases the iterative procedure can
also be derived from a half-range completeness result involving H-functions (cf. [7], for
instance). At present, no explicit representation is known for the albedo operator E in
the case of the Fokker-Planck model (1.5)-(1.7) and more general Sturm-Liouville
problems.

2. Existence and uniqueness theol. In the present section we provide a brief but
fairly complete review of the existence and uniqueness theory for the solution of
(1.1)-(1.3). In order to explain the later introduction of a number of concepts, we
present the overall flavor of the theory by first considering T bounded and A strictly
positive and neglecting reflection processes, which is relevant to radiative transfer in
absorbing atmospheres [9] and neutron transport in submultiplying reactors [7]. Using
semigroup theory, one may naturally write solutions to (1.1) in the form

(x)=e-xT-aA(o), 0ZX<
where (0) must be chosen in the subspace corresponding to the nonnegative part of
the spectrum of the evolution operator T-A in order that the above segroup
expression makes sense and condition (1.3) is fulfilled. On fitting the boundary condi-
tion (1.2) where =0, one must require Q+(0)=+. If one would formulate an
analogous boundary value problem for x (+ , 0), one should require that (0) be
chosen in the subspace corresponding to the nonpositive part of the spectrum of T-1A
and Q_(0)= _. In a natural way one may thus express the unique solvability of both
half-space problems, for x (0, ) and for x (- , 0), in terms of the invertibility of
the operator V, which maps the nonnegative (resp. nonpositive) spectral subspace of
T-1A into the ranges of the projections Q onto forward (resp. backward) "fluxes". As
a matter of fact, V(0)=+, E V-1 is called the albedo operator and formula (1.4)
arises as the obvious result. Below we shall review the existence and uniqueness theory



A MODEL OF TIME-INDEPENDENT KINETIC EQUATIONS 935

along the above set up (which originates from Hangelbroek [14]) in some detail, since
the unboundedness of T, the appearance of a nonzero null space of ‘4 and the absence
of compactness assumptions on .4 cause technical difficulties and necessitate the
introduction of some novel notions.

Let us now drop the above restrictions on T and .4. Let T be an injective
self-adjoint operator and .4 a positive self-adjoint operator with closed range Ran.4
and null space Ker.4 of finite dimension, both defined on the complex Hilbert space H.
For the sake of convenience we assume .4 to be bounded, but at the end of this work
we shall discuss how to remove this restriction. We then define the zero root subspace

(2.1) Zo= (hH/Zln "(T-A)"h=O},
and assume ZoC D(T). It can then be proved (cf. [13]; the result there extends to
unbounded T) that Zo has a finite dimension and Zo=Ker(T-XA) 2. Here we also
assume that Zo is nondegenerate in the following sense:

( h Zo/(Th, k ) 0 for all k Z0 } (0 }.
In fact, this assumption is automatically satisfied. (If T is bounded, see [13]).

PROPOSITION 2.1. We have the following decompositions:

(2.2) Zo (r[Zo]) 
(2.3) r[zol Zo

(2.4) Zd=T{(T[Zo])X}=A{(T[Zo])’}.
Moreover, Zo and (T[Zo]) +/- are T-XA-invariant subspaces and there exists a unique
operator S on (T[ Zo]) +/- such that

(2.5) T-A=( T-’AIzo)S-’.
The operator S is self-adjoint with respect to the positioe definite inner product on
(T[Zo]) +/- gioen by

(2.6) ( h,k ), ( Ah,k ).
For isotropic neutron transport in a conservative medium, where Z0 can be

constructed explicitly, this Proposition 2.1 is due to Lekkerkerker [16]. It later appeared
in more abstract form in [19], [13], [2].

Let us introduce Hr as the Hilbert space obtained by completing D(T) with
respect to the inner product

(h,k)T=(ITIh,k).
Let us assume that there exists a unitary and self-adjoint operator J on H, which leaves
invariant D(T) and satisfies

TJ JT, AJ JA

Then J extends from D(T) to a unitary and self-adjoint operator on Hr, as also do the
orthogonal projections Q/ and Q_ of H onto the maximal positive and negative
T-invariant subspaces, respectively. We shall require the reflection operator to be a
bounded operator on Q/[H], which leaves invariant D(T), and satisfies the identity

(2.7) T=tT
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for some bounded operator N?+ on H. Putting
def

h JJh hQ_[H],

we extend to a bounded operator on H, which automatically commutes with J,
leaves invariant D(T) and extends from D(T) to a bounded operator on Hr. In order
that the operator models a nonmultiplying reflection process at the boundary, we
also assume that extends to a contraction on Hr:

(IT[th, th)<=([T[h, h), hD(T).
For later use we include the following result, derived by Beals [1] for injective and

certain noninjective A, and generalized by Greenberg et al. [13].
THF.OREM 2.2. For every q + Q +[Hr] there exists at least one continuous function

q: [0,)Hr, which is continuously differentiable on (0, ) and satisfies the equations

(2.8) T+’(x) -A+(x), xn +,

(2.9) Q+ (0) q+,

(2.10) q(x)lit= O(1) (x ).
The number of linearly independent solutions of the homogeneous (q+=0) problem
coincides with the maximal number of linearly independent vectors h x,..., h k KerA
satisfying (Zhi, hj)-’O for i4=j and (Zhi, hi)<O for i= 1,2,..-, k.

In fact, it is possible to construct at least one "albedo operator" E, which is a
bounded strictly positive self-adjoint operator on Hr, such that

(2.11) tk(x) e-Xr-PE++ (I- P )E+

is a solution of (2.8)-(2.10). Here P is the continuous extension from D(T) to HT of
the projection of H onto (T[Z0]) - along Z0 (cf. (2.1)), while

(2.12) III-EII,<I
(cf. [13], where it is shown that o(E)c (0,2)). Evidently we must then have (I-P)E+
KerA for all q+ Q+[Hr].
The solution of the existence problem for (1.1)-(1.3) is provided by the following
THF.ORF.M 2.3. For every q+ Q +[Hr] there exists at least one continuous function

k: [0, oz) Hr, which is continuously differentiable on (0, ) and satisfies the equations

(2.13) T’(x) -A(x), xl +,

(2.14) Q++ (0) JQ_tk (0) +ok +,
(2.a5) q (x)II-o(1) (x--, ).

Proof. Consider the operator

S=I+J(I-E).
Because of the estimate

the operator S is bounded and invertible on Hr. Consider the function

q(x)=e-r-’PESXq,/ + (-P)ES,/, O__<x < .
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Then q is a continuous function from [0, o) into Hv, which is bounded and continu-
ously differentiable on (0, o) and satisfies (2.13), since (I-P)ES g,+ KerA. Notice
that S maps Q+[Hr] onto itself. We now have

( Q+-JQ_) q (O) (Q+-JQ_ )ES1k +
(Q+-.JQ_)EQ+S1, += (Q+-.JQ_EQ+)S lq +

(Q++.JQ_(I-E)Q+)S 1,+= Q+SQ+slq,+=q+,
and therefore (2.14) is satisfied, t

Remark. As far as one considers only operators A which do not have negative
definite parts and whose kernel is finite-dimensional, the most general boundary condi-
tion to be imposed at infinity reads

(2.17) :in>=0"
This is the case for conservative neutron transport [16] and for the Fokker-Planck
equation [4], where the root subspace as defined by (2.1) is two-dimensional and n 1.
This implies that for large x the solution behaves as fl +f2x. (Here the vectors fl and

f2 are functions depending on the angular (for neutron transport) or velocity (for the
Fokker-Planck equation) variable, but in more general cases they may contain some
other variables as well, depending on the complexity of the operators T and A.) For the
kinetic (transport) problems usually occurring in physical situations the solution fl +f2x
is called normal (or Chapman-Enskog) and the vectors in the root subspace are related
to the (reduced) hydrodynamical description, valid far from the boundary. Because the
boundary condition (2.17) is more general than (2.15), existence of solutions is clear.
For the two types of boundary condition at infinity the number of linearly independent
solutions might be different if normal solutions occur.

Let us now define P as the projection onto (T[Z0])" along Z0 and PP/ (resp.
PP_) as the projection onto the maximal positive (resp. negative) S-invariant subspace
along the direct sum of Z0 and the maximal negative (resp. positive) S-invariant
subspace. Here positivity and negativity relate to the inner product (2.6) and essential
use has been made of the Spectral Theorem for S (cf. Proposition 2.1). As a conse-
quence,

(2.18) (TPP+h,h)=(SPP+h,h)A>_ O (TPP_k,k)=(SPP_k,k)A <=O,

where strict positivity and negativity hold for h RanPP+ and k RanPP_. Then
PP/ and PP_ extend to bounded projections on Hr (cf. [1],[13]). Next put

(2.19) M:, [RanPP+/- Ker(Q +_-JQ;)] qZo

for the notions concerning indefinite inner product spaces we are going to use we refer
to [5].

LEMMA 2.4. We have

(Th,h)<=O, hM_,.
< 1, or under the weaker assumption

Ker(Q+-JO_) Cq Zo= {O }
we have

(Th,h)<O, 04=hM_,.
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Proof. For h M_, we first determine g RanPP+ and k Ker(Q+-JQ_)
such that h =g+ k. Since h Z0 and g(T[Z0]) ", we have (Th,g)=O. Hence,

(Th h)+(Tg g)=(Tk,k)=l[Q+kl[
) 2

Since (Tg, g) (Sg, g)A 0 (cf. (2.18)), we have (Th, h) O. Moreover, if (Th, h) O,
then g=0 and either IIllh 1 or Q_k=0; the latter would imply k=JQ_k+ Q_k
=0 and h=0. Hence, if IIllm<l, we have (Th,h)<O for OhM_,. The latter
conclusion can also be drawn under the weaker assumption (2.20).

In the same way we can prove that

provided

(2.21)

(Th, h) < 0, h M_,f3 KerA,

Ker(Q+-JQ_)nKerA {0}.
TrIEORtM 2.5. Under the condition (2.21) the number of linearly independent solu-

tions of the homogeneous (+=0) problem (2.13)-(2.15) coincides with the maximal
number of linearly independent vectors hi,..., h k KerA satisfying (Thi, hj)=O for i=/=j
and (Thi, hi)<O fori=l,2,...,k.

Proof. Denoting by * the adjoint of in H, we easily compute

(TtM,,e]) a= [(TRanPP) Ran T-I(o-OJ*)] + (TtZol)

[(Ran,,, Z0) Ran(Q e + OJ(N*)* )-T- + (T[ Zo])

{ [RanPP; Ran(Qe+ Q;J(*)* )] z0} (T[ Z0]) s

Here we have used the intertwining property T=tT and the fact that the operator
Q + Q;J(*)* is a bounded projection on H and therefore has closed range. For
gRanPP_ and k=(Q++ Q_J(*)*)I we obtain

(Th h)+(Zg, g)=(Zk,k)=[I a kll
2 : = *Zll+  -IIa- lt =llO+Zll -llP-J( *)

because (*)* is a contraction in Hr:
Q_)h) <ll ll%dlhll  llhll

We now obtain

(Th,h)zO, h(T[M_,])*Zo.
Since Zo is nondegenerate with respect to the indefinite inner product

(2.22) [h,k]=(Th,k),

M_, is negative and (T[M_,]) sZ0 is positive, the subspace M_, is maximal
negative with respect to this inner product. Under the condition (2.21) the subspace
M_, KerA then is strictly negative and maximal in this respect among the subspaces
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of KerA. Because the linear span of the vectors hi,..., h in the statement of this
theorem is also a maximal strictly negative subspace of KerA and the dimension of
such a subspace does not depend on its specific choice, we must have dim(M_,rq
KerA)=k. Finally, if q is a solution of (2.13)-(2.15) with +=0, then necessarily
(I- P)(O) M_,9fq KerA.

Under the condition (2.21) we find the same existence and uniqueness result as for
9=0, which we easily see on comparing Theorems 2.2 and 2.5. If one would drop
condition (2.21), the homogeneous (+=0) problem (2.13)-(2.15) in general has more
linearly independent solutions than is to be expected from the above theorem. As an
example, consider the case 9t= I, which describes purely specular reflection. First we
observe that every k Hr, which satisfies Q 4k-9JQ_k for= I, has the property

(Tk k)=llO kll
2

Q k I1== Ja k =
+ r-IIa-kll-O,

since J is a unitary operator on Hr. If such a vector k would belong to the space
RanPP4 KerA, as it should be if it were the initial value of a solution q, then
k g + h for some g RanPP+ and h KerA. Since Q +k JQ_k implies

Jk=JQ4k +JQ_k=J(JQ_k ) + Q4k= k,

and therefore Jg g and Jh h, the property g Jg RanPP_ would give rise to g 0
and thus k KerA, whence k KerA r3 Ker(I- J). Conversely, every such k would
fulfill the condition JQ_k= Q4Jk= Q4k and therefore be an initial value of some
solution q. Thus the constant functions q (x) k, where k Jk KerA, are the solu-
tions of the homogeneous (4 0) problem (2.13)-(2.15) with = I.

Remark. The analogue of Theorem 2.5 for the kinetic equation (2.13) with boundary
conditions (2.14) and (2.17) can easily be obtained by repeating the arguments with Z0

instead of KerA. It then appears that under the assumption (2.20) the number of
linearly independent solutions of the homogeneous (q4 0) problem coincides with the
maximal number of linearly independent vectors h 1,--., h Z0 satisfying (Th i, h.)= 0
for g:j and (Th i, h) < 0 for 1, 2,. -, k, which is the same result as for = 0. In the
case of purely specular reflection (= I) this number generally is larger and in fact
equals the dimension of the subspace Z0 n Ker(I-J) of "even" root subspace vectors.
In general, for Z0 KerA one will find a larger measure of nonuniqueness of the
solution than for the problem (2.13)-(2.15), which can be accounted for by considering
the normal solutions f +f2x.

3. An iteration procedure. Let us consider a suitable bounded strictly positive
albedo operator E on Hr, such that q(0)=E+ yields a solution of (2.8)-(2.10). Such
an operator always exists and satisfies (2.12). It is unique, if and only if (Th,h)>=O for
all h KerA (cf. Theorem 2.2). Using the norm estimate (2.16), we may write a
solution of (2.13)-(2.15) as follows:

O/(x)=e-r-PEg++(I-P)Eg+, xl+,

(3.1) g+=Sgqb+ E (-1)n[j(I-E)]no+;
n=0

the series is absolutely convergent in the norm of Hr, uniformly in + on bounded
subsets of Q 4[ Hr]- We may therefore compute g4 by iterating the vector equation

(3.2) g++ J(I- E)g+=O+

where
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on Q+[Hr]. Depending on the choice of the albedo operator Emunique if and only if
(Th,h)>_O for hKerAm, different solutions are generated. In order to find all
solutions, especially in the cases where they are nonunique, one should still solve the
homogeneous (q+=0) problem (2.13)-(2.15). For instance, if KerA 4: {0} and Jh=h
for all h KerA, which occurs for the Fokker-Planck example (1.5)-(1.7) (disregard-
ing for the moment that this model does not satisfy the boundedness assumption on
A), we would have (Th,h)=(TJh,Jh)=-(JTh,Jh)=-(Th,h)=O for all hKerA.
This would imply existence of a unique albedo operator and therefore the generation by
iteration of one solution only. Nevertheless the problem is nonuniquely solvable and
the homogeneous problem should be solved as well. A similar remark applies to the
solution of (2.13) with boundary conditions (2.14) and (2.17).

Let us consider the case when A is a compact perturbation of the identity
satisfying

(3.3) :10<a <1 "Ran(I-A)RanlTI’, ZoCD(ITIg+’),
which occurs in one-speed and symmetric multigroup neutron transport (cf. [19]), and
several BGK models in rarefied gas dynamics. If we choose a closed subspace
Ran(l-A), which may be chosen finite-dimensional if I-A has finite rank, and
operators r H B and j B H such that rrj is the identity on and jr the
orthogonal projection of H onto B, a representation for E can be found in terms of
generalized Chandrasekhar H-functions. More precisely, if o(.) denotes the resolution
of the identity of the self-adjoint operator T, we have (see [21])

(3.4) -- p__

where Hz(-/) and H,(v) are solutions of the nonlinear integral equations

(3.5) HI(z) -1 I zf(z’+’t) -1H,(t)ro(dt)(I-A)j,
ao

(3.6) Hr(z)-l=I-zfo(Z + t)-l’tro(-dt)(I-A)jHt(t).

The solutions and their inverses must be analytic for Rez >0 and continuous for
Rez _>_ 0. If KerA 4: {0}, the continuity of Hz and H at infinity must be replaced by a
weaker requirement. (The precise description of such requirements was not given in
[21].) Equation (3.2) then has the form

fo fo(3.7) g+-
-o v-/
() (v)

On solving the H-equations (3.5)-(3.6) we may compute g4 by iteration. It should be
noted that the above expression (3.4) for E was formulated for q4 Q4[ H], but allows
continuous extension to q 4 Q 4[ Hr].

Let us consider the specific example of the scalar BGK model. The existence and
uniqueness theory for this example without reflection is immediate from [1], and has
also been published by Kaper [15]. For a combination of specular and diffuse reflection
(no absorption) solutions were obtained before by Cercignani [8], using expansion with
respect to increasing powers of the accommodation coefficient a. Let L_(R)n be the
Hilbert space of complex measurable functions on R with inner product

(h,l)= fh(_ o)I(v) d(o), dS( v ) =,tr-1/2e-V2 dv,
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and define T, Q /, Q_, A, and J as follows:

(Th)(v)=vh(o),

(Q+h)()={h!)’0
(Jh)(v)=h(-v),

(Ah)(o)=h(o)-r-1/2f h(v’)e-’)2dv’,

v>0, (Q_h)(v)=lO, v>0,
v<O, h(v), v<O,

(h1(v) =cth(v) + 2flr-1/2fv’h( v’le-’)2dv’,
"0

where is defined on Ran Q+ and ct, fl>__ 0 with a + fl__< 1. This model satisfies the
assumptions of the previous section and existence is assured. First we solve the H-
equation (i.e., (3.5)-(3.6) with Hi= H and B (constant functions})

Z f0H(z)-I 1--- (z+t)-IH(t)e dt,

requiring a solution such that H and H- are analytic for Re z > 0, continuous for
Re z >= 0 and satisfying H(z)= O(z) for z with Rez _>_ 0. We find

O+(v,
v>O,

(Eck+)(v)= 1 v’
b’-’v H(-v)H(v’)+(v’)e-(’):dv’’ v<O.

Therefore, we write (3.2) in the form

a fo v’ ,,H(v)H(v,)g+(v,)e_(O,)_dv,g+(v)-w
2 fo fo vv’ H(v)H(v,)g+(v,)e_t,+o,)ldv, dv=+(v)
"a" V’ + V

which has to be solved by iteration. The initial value of the solution is then given by
(0, v ) g +(v) for v > 0 and by

(O,v)=--- v’ v
H(-v)H(v’)g+(v’)e-(’)-dv’

for o<0.
For the isotropic Lorentz gas (neutron transport) the calculation has been carried

out for various combinations of selective, specular and diffuse boundary conditions (cf.
[10], [11]) yielding interesting and sometimes striking conclusions about their influence
on the boundary layer structure, density profile at the wall, validity of Fick’s law, etc.
For instance, the selective reflection of slow particles and absorption of fast ones leads
to an accumulation of particles near the wall and a reversal of the density gradient
(interpreted in terms of Fick’s law, as equivalent to a negative diffusion coefficient
[11]). For the Fokker-Planck equation such selective boundary conditions have been
investigated numerically by Burschka and Titulaer [6]. We remark that in general (e.g.
for so-called selective boundary conditions [6], [11]) the operator is not self-adjoint
in Hr. Since only the contraction property of plays a role in all derivations and not
whether it is self-adjoint, our existence, uniqueness and iteration results also apply to
selective boundary conditions.
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4. Discussion.
4.1. Generalization to unbounded A. Hitherto we have assumed that A is a

bounded operator. For many applications, especially the ones involving BGK models
in rarefied gas dynamics, this is sufficient. The Fokker-Planck model (1.5)-(1.7),
however, does not satisfy these assumptions. We shall therefore point out what type of
hypotheses on T and A, with A unbounded, would entail a repetition of the previous
arguments.

Let us assume that T is (bounded or unbounded) injective self-adjoint on H, and
let us define Q +, Q_ and Hr as before. Suppose A is a positive self-adjoint operator
with closed range and finite-dimensional kernel, possibly unbounded, such that D(T)
D(A) is dense in H. On defining Z0 as before and repeating the previous hypotheses
on Zo, we may derive Proposition 2.1. It should be noted that T-1A, with D(T-
( h D(A)/Ah Ran T }, is closable, but not necessarily closed. Still we may derive the
decompositions (2.2) and (2.3) where T-Alzo is closed (and even bounded) and T-1A
and S-1 should be replaced by their respective closures. As a result, S will be a closed
symmetric operator with respect to the inner product (2.6). We shall assume that S is,
in fact, self-adjoint on the completion of (T[Z0]) +/- fD(A) (which is dense in H, due to
the density of D(T)fD(A)) with respect to (2.6). By Ha we shall denote the direct sum
of this completion and Z0. Since A has a closed range and a finite-dimensional kernel,
Ha is densely imbedded in H. We define HK as the direct sum of Z0 and the
completion of D(T)fH,( D D(T)D(A)) with respect to the inner product

(h,k)K=(lSlh,k),

where the absolute value of S is taken in HA. As before, we define the projections P,
PP/ and PP_ on HA (and not on H) and extend them continuously to projections on
HK (and not on Hr).

If A is bounded, we may identify HA and H (which is a trivial observation) as well
as HK and Hr (see [1]; cf. [13] for a different proof). The existence and uniqueness
theory has then been developed in 2. For a large class of models on L2(a, b), where T
is a multiplication by an indefinite weight function and A is a Sturm-Liouville type
differential operator, it has been proved by Beals [2] that the Hilbert spaces HT and HK
are completions of D(T)D(A) with respect to equivalent inner products and can be
identified. Moreover, for the models Beals considered the previous assumptions on T
and A, including the self-adjointness assumption on S, are satisfied. As for bounded A,
we may then develop the theory of 2 and the first paragraph of 3 for these indefinite
Sturm-Liouville problems and essentially the same results are found. Moreover, for
these cases the operator S is bounded self-adjoint on H,4(T[Zo]) - (which is due to
more specific assumptions on T and A) and even compact. A specific example of such
a model is the Fokker-Planck equation (1.5)-(1.7). For this example the equivalence
proof of HT and HK is contained in [3]. It should be noticed that Theorem 2.3 answers
in the affirmative the existence issue raised in [4], thereby making redundant the
condition imposed there to enforce existence of solutions (namely, the condition BI
cls( Bu,, n > 0} in [4]).

4.2. The albedo operator for indefinite Sturm-Liouville problems. It is by no means
clear how to proceed finding the albedo operator E for (1.5)-(1.7) and other
Sturm-Liouville type models. One way, suggested by the approach in [4], is to use the
completeness of the eigenfunctions (Un)0,n z of T-1A at the nonzero eigenvalues
() n) 0, z, where we order these by __< )x_ 2 _-< )x_ < 0 < )xl =< )x 2 _-< and take
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account of multiplicities. (It should be noted that under weak oscillation conditions on
A these eigenvalues are simple). We add an orthogonal basis u0,1,.-., u0,1 of a given
maximal positive subspace N4 of KerA (i.e., (Tuo, i, Uo, i)> 0). The full-range complete-
ness property implies that every vector h PP+[HK]N+ can be expanded as the
series

(4.1) h= E o, iUo, -" E nbln
i=1 n=l

Half-range completeness (for the problem without reflection) amounts to the possibility
of expanding every vector g4 Q4[Hr] (where HK= Hr) as

i=1 n=l

here Q + is the restriction to the interval I+ where the indefinite weight is positive. (For
(1.5)-(1.7) we have I4 R 4)- Assuming the existence of a nonnegative weight function
H on 14 satisfying

(4.2) Uo, i(V)Uo, j(t)H(o)do=i,jOo, 00, i> 0

(4.3) f Un(O)Um(O)H(o)do=n,mOn, On>O

(4.4) Uo,(v)u(v)H(v)dv=O,

we can easily evaluate the (unique) albedo operator E such that

EQ+[Hr]=PP+[H]*N+.
Indeed, on expanding h= Eg+ with g+ Q+[Hr] as the series (4.1) we obtain

(4.5) g+=Q+Eg+= E o, iQ+uo, + E .Q+u..
i=1 n=l

Using (4.2)-(4.4), we then easily derive

Eg+= EO i(o)g+(o)H(o)do Uo,
i=

+ E 02 v)g+(v)H(v)dv u,.
=1

If the weight function H on I+ is known, the boundary value problem with reflection
can again be solved by iterating (3.2), using (4.6). At present even the existence (let
alone the computation) of such a weight function is an open problem.
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