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ABSTRACT BOUNDARY VALUE PROBLEMS
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1. Introduction

Since Hangelbroek's®!study of mon—conservative neutron
transport with isotropic scattering considerable effort Has been
made towards the solution of abstract half-gspace’ problems of the
form nE '

(T£)' (x) = -Af(x) (0<x<w) (1)
QLM = £, [lEG)]] = 0(1) (xw), (2)

where T is an injective self-adjoint operator and A a positive
self-adjoint Fredholm operator on a complex Hilbert space H and
Q, is the orthogonal projection onto the maximal positive T-

invariant subspace of H. Concrete examples abound in neutron
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transport theory®, radiative transfer®123,13  rarefied gas
dynamics’, phonon transporel’ and Brownian motion in 1iquid518.
Substantial contributions to the development of the abstract
2s3sha48
3

theory were made by Beals Greenberg®®’®, Hangelbroek''?1%,

Lekkerkerkerl2,:15, Van der Meel®s104?, Protopopescu and
Zweifell®. In this article we review the abstract theory as
presented by Greenmberg et al.ld, and work out the specific
example of strongly evaporating liquids. Finally, we discuss
some related and open half-space problems with reflective boun-—

dary conditions.

2, Strictly dissipative models

Let us first discuss the strictly dissipative case when A is

strictly positive and has zero mull .space, This case is relevant
to c<i meutron transport and radiative transfer with albedo of
single scattering a<l. Te simplify the discussion we take A and T
bounded on H, Ther the operator A—lT is self-adjeint with respect

to the Hangelbroekll inner product
(h,k), = (&h,x), (3

which turns H into the complete inmer product space H,. Let Qi
be the (.,.)-orthogonal prejection onto the maximal positive/
negative T-invariant subspace of E and ?x the (.,.)A“orthogonal
projection onto the maximal (.,.)A-positive/-negative'A_IT—

invariant subspace of HA {= H, in this case). Then solutioms to

Eqs. (1) and (2) must be given by the semigroup expression

-1

f(x) = efXT Af(O) » 0<¥<o,

where P_f£(0) = ¢ and Q+f(0) =f,.Tna natural way we are bound

to investigate the invertibility of the operator!?

Ve Q+P+ + QP
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Once the invertibility of V has been established, one defines the
-1 . .
albedo operator E by E = V and writes for the unique solutiom to

Egs. (1) and (2)
£x) = e PEE,, Dgxce,

For neutron transport with redistribution function pELr[—I,l] for
some r>l, or for radiative transfer with phase funetion pELr[—],il
with r>! the operator I-A is compact, while there exist O<ou<l and

a bounded operator D such that the regularity cendition
T-4=|1]% o (4)

is satisfied'®. Tan this case the operator V is invertible on H
and thus the half-space problem (1) and (2) has a unique solution
in H. For some specific cases of neutron transport theory such
results were found by Hangelbroek'l; the above general anisotrbpic
case is due to Van der Meel®, The key observation in these proofs
is the compactness of I-Von H. If T is unbounded, I-A compact
and a generalization of {4) holds, similar results hold true, but
the vectors f+ and f(x) must helong to the demain B{T) of T.

Tt is possible to derive analogous results for cases when
I-A is not a compact operator satisfying condition (4)., The price
we must pay for this generalization is that the invertibility of
V, the existence of E and the solutions of Eqs.(1) and (2) must
be seeked for in a larger space than D(T) The instigator of
this generalization was Beals2, Let us define HT as the comple-~

tion of the domain D(T) of T with respect to the inner product
(hykdp = ([Th,e) = (2(Q,-Q )h,x). (5

Next let H be defined as the completion of the domain D(T) of

~1 . .
A T with respect to the inner product

(hyidy _ ([A"lT{haK)A = (T(P,~P_Yh,x). {6)
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Assuming A bounded, Beals? proved the equivalence of the inner
products (5) and (6} on (T}, after wh;ch he could simply
idehtify Hy, and Hy. The operator ¥V then is well-definred and
bounded on HT = HK, has a bounded inverse and gives rise to an
albedo operator £ =V ., We obtain=as & result the unique solva-
bility of Egs.(1)} and (2) on the.extension space HT of D{T).

Wext let us drop the boundedness.of A but let us take T
boundgd. Then,ye;cquld still defiue_EA as the goupletiqn of the
domain D(A) of A with respect to the inmer product (3), but for
unbounded A the épagerHA_mudt He:ideutifigdlwith a proper sub—
gpace of H, We define HT and HK as before. We construct the
projgctions Q, on H and P, on HA-and consider V = Q. F + QP
as an operator from HA into H. Using the closed biiinear form
associated with V (see Ref.19)}) we are able to prove that V is
a (possibly unbounded) inverse to a bounded injective operator

:HT+HTDHKf which is the_maln_result,of Greenberg et al. 10
As a result ome obtains the unigue solvability of Egs.(l) and
(2) on thé enlafged Hilbert space HKV.Agaiu.we must pay & price:
in general HK is not easy to construct explicitly.

For unbounded A the equlvalence of the norms {5) and (6)
and therefore the natural Ldentlflcatlon of HT and HK may be
lost, as shown by =zn example of Kwong . ITn such a case E maps
HT onto a proper dense subspace of HT (see Ref, 10) and does not
have a bounded inverse. On the other hand, as shown by Beals®®,
there exist_unbounded A (certaiu differéntlal operators), for which
these norms are equivalent, HT and Hk allow ndtural identifica—
tion, and E has V as a bounded inverse.

Flnally, if T and A are both unbounded and gsome minor domain
assumptions are fulfllled additional problems may arise due to
the non—ex1stenee or non-unigue existence of self-adjoint ex-
teasions of A T {cf.Ref.9), With the self-adjoint extension A T
fixed, one recovers the results of Ref.10. Under suitable restrictions
or for specific examples”, one could agdin identify HT and HK.

3, Non—strictly dissipdﬁive models

We now discuss mon-strictly dissipative cases when KerA#{0}.

Such cases may pose additional problems. Paramount in the dis-

ua

>
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cussion are the zero root linear manifolds

oo - = .y |
Zg = U Ker(X'A)™, 7§ = y Rer(ar™ )"
=0 =0

both of which are finite-dimensional, They are related by

Tlz4] = zg o TiZ1] = alzq]1 = zf. (7)
where
.1 1
Z1 = (Zg) Z?: =Zg - (8)

Moreover, we have the decompositicns

Zg®Z, =H , 7,8z =® . (9)

Becomwpositions of the form (9) were first employed by Lekker-
kerkerl® for ¢ = 1 neutron transport with isotropic scattering
and in some other cases by Beals?, Both of them considered
special cases where Egs.(1) and (2) have a unique solution. In
general, as explicitly stated in Refs.16,10 and 9, these equa-
tions may sometimes have non—unique soluticns,

As observed by Van ¢. Meel®, the finite-dimensional sub-
space Zp is an indefinite inner product space® with respsct to

the scalar product
[h,«} = (Th,x). (103
If we now choose an invertible operator 8 on Z, such that
{gh,n] = (Tgh,h) > C , h€Zy,
then the operator

ho= AP + Tshl(I—P),

33
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where P denotes the projection of H oato Z; along Zg, is strict-—

ly positive self-adjoint with the same domain as A, and satisfies

Alr =3 @jT"lA{ }'l
B Zy

-1 -1
Hence, T A, has the same non—zero spectrum as T A. We now

B

define HA as the completion of D(A) = D(AB) with respect to the

inmer product

(th}A = (ABhaK):
g

Pt as the (.,. -orthogonal projection of HA onto the maximal

Ja T

(.,.)A -positive/-negative A, T-invariant subspace, and HK as the

8
-1 N
comple%ion,of D{T) = D(AB T) with respect to the inner product

CHOME (!A"lTlh,K)A = (T(P,~P_)h,x).
: B B .

The projections Qi and the space HT are defined as previously,
while the subscript B 1s suppressed in the spaces because of
equivalence of imner products, We now define ¥ as before and

repeat the approach presented in Seec.2 with AB instead of A, The

) -1 -1 B
crux of the matter is that T A, and T A coincide oun the sub-

g

space Z1 on finite co—dimension.

The operator A, allows us to reduce Eqs.(l) and (2) to an

B

analogous boundary value problem with A replaced by A, and a

B
finite~dimensional evolution equation on Z;, which can be
trivially solved. As a result we obtain solutions to Egs.(l) and
(2) of the form

~1

F(x) = e"xT A

PEF+ + {I—P)Ef+ ’ szfé' (1
In order to establish existence, we have to prove that B can

be chosen such that {I-P)?+{HT]§KerA (or, equivalently, such

that the eigenvectors of B corresponding to positive eigen-

values can all be chosen in KerA}. This choice of B is, indeed,

10, also 9

possible . Uniqueness needs not always be satisfied.



ABSTRACT BOUNDARY PROBLEMS

The null space KerA of A is a subspace of Zp which allows

the [.,.J]-orthogonal decomposition
KerA = N+ 2] Np ® N_

into a strictly positive subspace N, (i.e.,[h,h]>0 for 0#heN,),
a neutral subspace Ny (i.e.,[h,h] = C for HENy) and a strictly
negative subspace ¥_ (i.e.,[h,h]<0 for O#hEN ). The respective
dimensions m_, my and m_ of these subspaces N, , Np and N_ do

not depend on the specific choice of N+, Ny and N _, and thus are

invariants,

THEOREM 1. Equations (1) and (2) have at least one solution.
The measure of non~uniqueness for the solution of Eqs. (1) and
(2) equals m_, Thus Eqs.{(1) and (2) are uniquely solvable <f and
only if {Th,h)>0 for all h€KerA.

In Refs.15 and 2 all problems satisfy m, = m_ = 0 and
therefore the solutions must be unique. We emphasize that we
seek for solutions in the manner explained in the previous
section.

We also have

TBEOREM 2. Solutions to the boundary value problem

(TE) ' (%) = -Af(x) (0<x<w) (12)
Q£(0) = £,,1in|[£(x)|]=0 (13)
Koo

are unique. The measure of nown—completeness for the solutiom of

these equations equals m,_ + mgp.

+
By the measure of non-completeness we mean the number of

linearly independent f+€Q+[HT}, which together with all

f+€Q+[HT} for which Egs,{(12) and (!3) have a solution span the

whole space Q+[HT]. Boundary value problems of the form {12)}-(§3)

35
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appear in rarefied gas dynamics to describe strong evapora-

tionl,ED,Zl.

4, Applicarions to stromg evaporation

Arthur and Cercignanil considered the boundary value
probiem (12) and (13) for the Hilbert space H of functions
hoe: R € with inner product

. _1 7 uq__'__ci
(hyey =1 ° Jh(cx}K(cX}e dCX.

oo

Their operators T, Q and A are defined by

(Th)(cx) = (Cx+d)h(cx);(Q+h)(Cx) = Jh(cx) for cx>—d (14)
10 for ¢ <~d

_1 i —c!?

(Ah)(cx)=h(cx)—ﬂ 2 J {l+2cxc;+2{c§—%)(céz—%)}e * h{c;)dc; . (153
This boundary value problem describes the strong evéporation of

a liquid inte a half-gpace vacuum with drift veloeity d>0 in the
x—direction, where transverse effects are neglected. Two papers

of Siewert and Thomas?9»2! followed: the first ome covered the
game problem, but the second one considered a two group half-
space problem where both longitudinal and transverse effects

were accounted for.

For the opexrator A in Eq.(15) we find

Ker A = span{l,cx,ci—é}.

The indefinite scalar product (10) has the form

@ 2
~1 ——— T C
[h,kl == 2 J(cx+d)h(cx)x(cx) e xdcx . (16)
Therefore, {l,ci—é,&cx—ci} isan [.,.]-orthogonal set, which

spans KerA, Further,



ABSTRACT BOUNDARY PROBLEMS

o ) . 3
[1,i1 = d,[ci—%,ci—é] = %d?fdcx—ciqdcx—ci] = %ﬁ(dz - E)'
Using. the definitions for m,, myp and m_ ia the previous section

we find .

Pn =2,mp=0,m_=1 for O<d<}v6
{m+ Z,mgkl,m_—O for d = 1/B
m+=3,m0=o,fﬁ_=0 for d>4v6 .

Theorem 2 yields a measure of non~completeness 2 for d<1/g-aﬁd

3 for d>'JB In Refs.l and 20, however, one always takes ‘the 1n~
coming flux f EQ [Keral. A close inspection now gives that, with
f+€Q+{KerA], no non-trivial solutionsg of Eqs.{12) and (13) exist
for dziva. If d<ivB, the subspace of f+€Q+fKerA} for which a

37

solution to Egs.{12) and (13) exists has dimension | and is strictly

negative with respeet to the inmer product (16). This can'be
physically interpreted by stating that, if d<i JE for every value
of the drift velocity at the surfice there exist unique values
for density and temperature at the surface for which Egs.{12)

and (13) have a solution.

3. Some related and open ﬁalf—sﬁape_problems

The development of abstract half-space theory sofar has been
predominantly oriented towards partial-range boundary conditions,
where f(O) is given and a growth condition at infinity ig im-
posed, This bias towards non-reflective boundary condztlons is
4 severe restriction in applications to rarefied gas dynamics,
Brownian motion in fluids and radiative transfer, because re—
flection by the surface of the medium is neglected this way,

For a specific Fokker-Planck equation Beals and Protopopescu®
recently supplied half-space theory with reflective bdun&ary
conditions, '

Let us pose the problem in an abstract way. We first need an

operation representing the reversal of the direction of propaga-
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tion, By an inversion symmetry we mean & unitary and self-adjoint

operator J (i,e,;J = J* and J2 = 1) leaving invariant the domains

of T and A and satisfying
JT = -TJ , JA = AJ. (17

In zctual kinetic models we usually have {Jh}{u) = h{-u) and Eqs,
{(17) are caused by the principle of reciprocity {cf. Ref.8 for
radiative transfer; Ref.6 for neutron physics). We also need a

surface reflection operator R:Q+{H]+Q+[H], which leaves invariant

the domain of T and describes the dissipativity of the surface

reflection if it satisfies

0<(TRn,b)<(Th,h) , heqQ [HIND(T}. (18}
In a straightforward way one shows that R extends to a positive
contraction operator on the Hilbert space Q+[HT]. We may extend R
to H (or, via restriction to D(T), to HT) by putting

rhdeling n + JRIQ_N.

The positivity and contractivity of R QHHT are retained this way.

We may now write down the boundary value problem
(TE) ' (x) = ~Af(x)  (0gx<=) (19
Q,£(0) = RIQ_E(0)+£, , [E@H | = 001) (x) . (20)

0f course, the problem can be posed on H as well as on HT' We

observe that R = I in case of specular reflection, R = 0 in

case of total absorption in the radiative transfer case and for

diffuse reflection R is an integral operator. One could,
in the radiative transfer case, take a dissipative combination

of specular and diffuse reflection®2:
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i
{Rh)(u) = psh(u)+2pd { vh(v)dv (0zu<i,h€l,yl0,1]),
0

where ps+pd§1, Dsio and deO.

Let us perform the construction of Section 3 for KerA = (0)
and obtain an albedo operator E which maps Q+{HT] into
PP+[HT]' Then, for a solution of the form (11}, we find the

equation
(Q,-RIQIE(0) = £ _,

Take g with P+g = £(0) and recall V, Then we have the eguation
(V-RI(I-v)1g= £,

. -1
on HT' For models where V has a bounded ioverse E = ¥V on HT we

thus have to investigate the invertibility om H. of the R-

scattering operator

Sp = THRI(I-E),
which is imwediate from the dissipativity condition (18) and
the estimate i[InE!J<1 in Hy-norm (see Refs.10 and 9 for cases

when HT = HK). We cbtain the particular solution

-1
- -1
I(x) = e =L A ESR £.» Qx<on, (21}

Uniqueness of solutions to Eqs,(19)-(20) is more difficulc
to establish, We present the following results for KerA = (0):
(1) If KerA = {0}, the function (2i) is the only solution to
Egs. (19)-(20}.
(ii) If KerA # {0}, the measure of non—unigqueness is finite and
bounded above by m_ if ||R|[<1 in Hy-norm, and by m_+mg if
PRI =1 in H.-norm,
(iii} For specular reflection (R=1) the solutions to the homo-

geneous f+ = 0 problem (19)-(20) are the constant functions

39



4G VAN DER MEE

f(x) = h = Jh € KerA.

In particular, for the Beals-Protopopescu example (m0=],m+=m_=0)
we find uniqueness if ||R||<i in Hp-norm and non-uniqueness if
R = I. Herewith we recover their results for R = oI, O<axi,

At this moment the general uniqueness problem is open.
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