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AN ABSTRACT MODEL FOR RADIATIVE TRANSFER IN AN
ATMOSPHERE WITH REFLECTION BY THE PLANETARY SURFACE*

W. GREENBERG AND C. V. M. VAN DER MEE

Abstract. A Hilbert space model is developed that applies to radiative transfer in a homogeneous,
plane-parallel planetary atmosphere. Reflection and absorption by the planetary surface are taken into
account by imposing a reflective boundary condition. The existence and uniqueness of the solution of this
boundary value problem are established by proving the invertibility of a scattering operator using the
Fredholm alternative.

1. Introduction. It is well known (cf. [10], [1], [13], [8]) that on neglecting polariza-
tion and thermal emission the transfer of radiation through a plane-parallel, vertically
homogeneous planetary atmosphere of finite optical thickness r can be described by the
abstract differential equation

(1.1) (Tg)’(x)= -Ag(x), 0 <x <’r,

where T is a bounded injective self-adjoint operator and A a positive self-adjoint
compact perturbation of the identity, both of them acting on a complex Hilbert space
H. For the rnth Fourier component problem in radiative transfer one has H= L2[- 1,1],
while T and A are given by

Here the phase function p is nonnegative and f11p(t)dt=2, while O=<c=<l is the
albedo of single scattering (cf. [5], [15], [11]). Equation (1.2) also appears in neutron
transport theory (see [3], [7]).

In the mathematical literature (1.1) usually is endowed with partial-range boundary
conditions of the form

(1.3) Q+g(0)=f+ Ran Q+, Q_g(r) =f_ Ran Q_,

where Q + is the (., .)-orthogonal projection onto the maximal T-positive/negative
T-invariant subspace of H. For the specific T in (1.2) one in fact has

(Q +h)() ( h(#),0, >0, {0, t>0,
/x<0,

(Q_h)(g)= h(g), g<0.
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Although in neutron physics equations (1.3) are a realistic set of boundary conditions
(because neutrons typically do not reflect), .in planetary physics equations (1.3) are
satisfied only on neglecting reflection by the planetary surface. In order to formulate
abstract boundary conditions to (1.1) that describe reflection and absorption by the
planetary surface for the example (1.2), we assume the existence of a signature operator
J (i.e., J J* J- 1) such that

(1.4) JT TJ, JA AJ.

For T and A in (1.2) one may, indeed, take

(1.5) ( Jh )(l ) h ( l ).

Now let be an operator on Ran Q+ such that 0 =< T=< T on Ran Q+. Then on (1.1)
we impose the boundary conditions

(1.6) Q +g(0) =f+, Q_g( ) JQ+g( ).

We call J an inoersion symmetry, the surface reflection operator and (1.1) with
boundary conditions (1.6) an (abstract)planetary problem. Equation (1.1) with boundary
conditions (1.3) we shall call an (abstract)finite-slab problem, which is the name
prevalent in neutron physics. By a solution of the planetary problem shall be meant a
continuous function g: [0,’] H such that Tg is differentiable on (0,r) in the strong
sense and (1.1) and (1.6) are satisfied.

Equations (1.6) are so-called reflective boundary conditions. In rarefied gas dy-
namics [4] and radiative transfer [6] they are common practice. It has only been recently
that Beals and Protopopescu [2] have given a rigorous treatment of such problems for
the generalized Fokker-Planck equation. However, their boundary conditions differ
from (1.6) and do not show a general abstract form. In the present article we shall draw
on some results of van der Mee on the abstract finite-slab problem [13] and reflection
and transmission operators [14] as well as on an inner product of Beals [1].

Under the weak assumption that Ran(I-A)c_RanlTI for some 0<<1, the
finite-slab problem (1.1)-(1.3) has a unique solution given by

(1.7) g(x)= [e-XWlAPP++e(-x)WlAPP_+(I-xT-1A)(I-P)]g(l(f++f_).
As we shall point out in {}2, T-1A is self-adjoint with respect to an equivalent inner
product, except possibly for an isolated eigenvalue at zero. Then P, I-P, PP+ and
PP_ are the spectral projections of T-IA corresponding to the nonzero, zero, positive
and negative part of the spectrum, respectively, while

(1.8)

Vr=Q+[PP++e’rT-IAPP_+(I-P)] +Q_[PP_+e-’r-IPP++(I-T-A)(I-P)]
is an invertible operator. The result is due to van der Mee [13], a parallel proof of the
invertibility of V, (but for strictly positive A) was found by Hangelbroek, and a related
result, with the solution in some extension of the Hilbert space H but for more general
A, was proved by Beals [1]. As in [14], we write

(1.9) g(O) R +,f+ + r_,f g(’r)= T+,f+ + R_f
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where R + are reflection operators and T+ transmission operators. These operators are
uniquely specified by (1.9) and the requirement R +Q :- T+__ Q q:= 0, and their closed
form can be found using (1.7).

Let us combine (1.9) with the boundary conditions (1.6) and apply Q + to the left.
We obtain

(1.10) (Q+- Q+R_,J)Q+g(’r)= Q+T+f+.

Once Q+g(’) has been found from (1.10), one computes Q_g(’) from (1.6) and gets
the solution in the form (1.7) with f_= Q_g(-). Hence, the vector equation (1.10) is
equivalent to the abstract planetary problem. From (1.4) one finds JQ += Q_J and
JR +_ --R

_
,J (cf. [14]), whence

J(Q+- Q+R_,J)= (Q_- Q_R+,J)J.

In order to solve (1.10) we thus have to investigate the invertibility of the -scattering
operator

(1.11) S=I- Q +R_,J- Q_R+J.

We state the main results of this article.
THEOREM 1.1. Let Ran(I-A)_ Ran[T[ for some 0<a < 1, and let 0<_ T<= T on

Ran Q +. Then the -scattering operator in (1.11) is invertible.
Using standard semigroup theory we then have as a consequence the next theorem.
THEOREM 1.2. Let Ran(I-A)c RanlT] for some 0 < a < 1, and let 0 <= T<= T on

Ran Q +. Then for every f+ Ran Q+ the planetary problem (1.1) and (1.6) has a unique
solution, which is given by (1.7) where

f_-JS1Q+ T+f+.

We have required that 0__<T__< T on Ran Q+. For the example of radiative
transfer this implies that the radiative flux returning from the planetary surface does
not exceed the flux incident to the surface. For=0 one has total absorption, for=I
specular reflection and for

(h)(/) 2 f01/’h (/’) d/’

diffuse reflection. In [2] and [4] the only surface reflection operators studied are
=(1- a)I where, in rarefied gas dynamics terminology, 0 __<c <_ 1 is the accommoda-
tion coefficient. In [6] the more general surface reflection operator

(h)(l)=osh(#)+20d l h(l’)dl’

is used, where 0s + Od <- 1, 0,>__0 and Od>__O. In all cases the hypothesis 0__< T__< T on
Ran Q / is fulfilled. If the phase function p Lr[-1,1] with r > 1, then Ran(I-A)_
Ran]rl for every 0 < a < (r- 1)/2r [13, VI.1].

In {}2 we shall review some properties of reflection and transmission operators,
partly from [14] and partly hitherto unknown. In {}3 we prove the invertibility of the
-scattering operator for =I (specular reflection). Finally, in {}4 we prove Theorem
1.1.
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2. Reflection and transmission operators. Throughout the present and the next
section T is a bounded injective self-adjoint operator and A a positive operator, defined
on the complex Hilbert space H. We assume that I-A is compact and Ran(I-A)_
RanlTI for some 0<a < 1. By (2 + we denote the orthogonal projection onto the
maximal positive/negative T-invariant subspace of H. If KerA {0}, then, as
Hangelbroek [9] observed, H is a Hilbert space with respect to the inner product

(2.1) (x,y)A=(Ax,y)

and T-1A is self-adjoint with respect to (2.1). The (.,-)a-orthogonal projection onto
the maximal positive/negative T-1A-invariant subspace of H is denoted by P +. If
KerA 4= {0 }, then T-1A has a nonzero and finite-dimensional zero root linear manifold

Zo(T-XA)= { xH/::ln>=O (T-XA)"x=O},
while the (.,-)-orthogonal complement ZI={T[Zo(T-A)]} +/- of the subspace
T[Zo(T-1A)] is T-1A-invariant and a Hilbert space with respect to (2.1) and the
restriction of T-IA to Z is (., .)A-selfadjoint. The projection of H onto Z along
Z0(T-A) we denote by P, whence the (.,.)A-orthogonal projection onto the maximal
positive/negative T-1A-invariant subspace of H is given by PP +, where Zo(T-1A)c__
KerPP +. The idea to study T-1A on the finite-codimensional subspace Z was first
exploited by Lekkerkerker [12] for neutron transport with isotropic scattering.

For everyfH the abstract finite-slab problem (1.1)-(1.3), where f+= Q +f, has a
unique solution g, which is given by (1.7) (see [13]). In terms of the solution g one may
specify in a unique way reflection operators R _+, and transmission operators T+, such
that R + ,Q := T+ ,Q q:= 0 (see (1.9)). More precisely, if f+= 0 (resp. f_ 0), then g(0)=
T_,f_ (resp. g(0)= R +,f+) and g(r)= R_,f_ (resp. g(r)= T+,f+). The expression (1.7)
can now be used to find the following explicit formulas"

(2.2)

(2.3)

(2.4)

R+ =[PP++eT-APP +(I-P)]V-IQ
T+ =[PP +e-rT-1APP +(I-’rT-1A)(I-P)]V-IQ+
R r=[PP +e-’r-’aPP +(I-rT-1A)(I-P)]V-IQ

Using (1.8) one easily finds

(2.6) Q+R+,=Q+, Q_T+,.=O,
(2.7) R +_Q +_=R +, T++_Q += T+_.

We also find that R+, is a projection operator such that R+,-Q + is compact (cf.
[14]). In a less elementary way (see [14]) one derives the intertwining properties

(2.8) TR +=(I-R%,.)T, TT+= T*+_T.

PROPOSITION 2.1. One has the decompositions

RanR +, Ran Q q: H.



RADIATIVE TRANSFER WITH REFLECTING SURFACE 699

Proof. Put

Ut=Q+R++Q_(I-R+).

Then the invertibility of U is easily proved equivalent to the decomposition

RanR + Ran Q_ H.

Using (2.6) one computes that

Ut=Q++Q_-(I-Q+)R+,=I-(R+-Q+),

whence I U is compact. If Uh 0, then the vector Q +h (I- R +)h Ran Q +
Ran Q {0}, which implies Q +h I R +)h 0 and therefore

h=R+,h+(I-R+)h=R+h=R+Q+h=O.

Thus Ker U (0} and the invertibility of U is clear.
PROPOSITION 2.2. One has the decomposition

RanR+ RanR_ H.

Proof. Assume that, for some k, H,

R+k R_,l.

Putting x += +_ Q +(k- l) one finds h k + x_= + x + and

R+,h=R_h.

On premultiplying this equality by Q + and Q_ one gets

h=R+,h=R_h,

which implies (see (2.2)-(2.5))

Hence,

Q.E.D.

T+,h= T+R_h=O, T_,h T_.R +.h O.

h R +.h + T_,.h [PP+ + er-I’PP_ + (I-- P )] V-lh,

h R_.h + T+,.h e-r-’APP+ + PP_+ ( I-T-A)( I P )] Vf h.
From these equations one finds

/ th, h0= (1-e )F(dz)Vf (I-P)V =(I-P)hKerA,

where F is the resolution of the identity of (T-1AIZ1) -1 (as a self-adjoint operator with
respect to (2.1)). Hence, PP Vf Xh= PPh=0, while

h V,h KerA.

Then, since Te ,h 0, we have

PP + Vf XQ h=0 PP VfQh=O,
(I-P)VfQ_h=O, (I-zT-1A)(I-P)VfQ+h=O.
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All this implies

V- 1Q h KerA+_

Using that Vx x for x KerA (cf. (1.8)), one obtains

Q +h KerA.

However, we also have V-Xy =y for y KerA. Thus, in view of T+ h 0,

Q+h= ( I- P V-IQ+h I-rT-1A)( I- P V-IQ+h=O,

Q_h=(I-P)V-Q_h=O,

which implies h 0. From this we find the injectivity of the operator

U2=R+(I-R_)+(I-R+)R_.
However, the compactness of R _+ - Q + implies that

Uz-I=(R+-Q+)-R+(R_-Q_)+(I-R+)(R_-Q_)

is a compact operator. As Ker U2_ RanR+n RanR_= {0}, we conclude that U2 is
invertible. From the invertibility of U2 we easily derive this proposition. Q.E.D.

We note that neither of the proofs of the propositions required the existence of an
inversion symmetry J satisfying (1.4). In case there exists such an inversion symmetry,
one may conclude that

(2.9) JQ +__= Q _J, JPP +_= PPJ,
(2.10) JR +_ .= R -v--J, JT+_ .= Tq: .J.

3. Invertibility of the scattering operators. First we prove Theorem 1.1 for =I
(specular reflection).

PRO’OSITION 3.1. The 9-scattering operator for=I is invertible.

Proof. We have

Sz=I-Q+R_J-Q_R+J.

Clearly this operator is reduced by the orthogonal decomposition

{ x U/Jx x } { x I-I/jx x } u

(see (2.9)-(2.10)) and therefore it suffices to prove the invertibility of the operators
I+(Q+R_+Q_R+). As a result of (2.6) one has to prove the invertibility of the
operators R +, + R_ and 2I- (R++ R_,). Since R +- Q _+ is compact, both of these
operators are compact perturbations of the identity and therefore it is sufficient to
prove that neither R=0 nor k= 2 is an eigenvalue of R++ R_.

If R + + R )h 0, then

R+h R_h RanR+,n RanR_.

Using Proposition 2.2 one finds R+ h=0 and therefore Q +h= Q +R +,h=0. So we
may exclude 3, =0 as an eigenvalue of R++R_.

If R+ + R_)k= 2k, then

(I-R+)k= -(I-R_)kRanQ+RanQ_= (0},
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whence k= R+,k=R_,k. Proposition 2.2 implies k=0, which excludes X= 2 as an
eigenvalue of R +, + R_,. Q.E.D.

The next result will play an important role in the proof of Theorem 1.1 but is also
interesting for its own sake.

PROPOSITION 3.2. For 0<< the operator ITI(R+,+ R_,) is self-adjoint and
satisfies

If Q, denotes the projection ofH onto RanR +, along RanR_,, we have

(3.2) [R+,+R_,]-I=Q+Q,+Q_(I-Q,),
(3.3) [2I-(R+,+R_,)]-I=Q,Q++(I-Q,)Q_.

Proof. With the help of (2.7) and the elementary identities

R+,Q,=Q,, R_,(I-Q,)=I-Q,

one easily proves (3.2) and (3.3).
Using (2.8) one computes that

(ITI(R+,+R_,)}*= T((I-R_,)+(I-R+,)}(Q+-Q_).
Next one exploits (2.7) and subsequently (2.6) and derives

(ITI(R+,+R_,)}*=2ITI- T(R+,-R_,)=[TI(R+,+R_,),
which establishes the self-adjointness of ITI(R+,+R_,). Hence, the eigenvalues of
R+,+ R_, are situated on the real line. It suffices to prove that
C/XI (R +, + R _,) is not invertible}

_
(0, 2).

Using (1.7) and (1.8) one concludes that

(3.4) lim IlI- (R/ + R )lI 0.
r$0

However, for every 0 < < m the operator R +, + R_, is a compact perturbation of the
identity. If o(R+,o+R_,o)g(0,2), either the smallest eigenvalue of R+,o+R_,o is
negative or the largest eigenvalue exceeds 2. Because both the infimum and supremum
of o(R+,+R_,) depend continuously on and (3.4) holds true, there must exist
0 < "1 < *0 such that either 0 or 2 is an eigenvalue of R +,, + R which is a contradic-
tion. Hence, o(R/+R_)___ (02) for all 0<,< . Q.e.D.

We remark that

(Q+-Q_)[R+,+ R_,]= [2I-(R+,+R_,)](Q+-Q_),
so that the (real) spectrum of R +, + R_, is symmetric with respect to )t 1.

Proof of Theorem 1.1. Let us first extend the surface reflection operator from
Ran Q + to H by putting

h=Q+h +JJQ_h, hH.

Then the -scattering operator is given by

S=I-[Q_R+,+Q+R_,IJ.
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Since J,=J, this operator is reduced by the decomposition (3.1). Thus it suffices to
establish the invertibility of the two operators

I+ [Q_R+,+ Q+R_,]=I+(R+,+R_,-I),

I-[Q_R+,+ Q+R_,]=I-(R+,+ R_,-I),

both of which are compact perturbations of the identity.
Following Beals [1] we introduce the completion Hr of H with respect to the inner

product

(x,y)r- (lZlx,y).
As the (extended) operator satisfies 0 __< ITI_< IT I, one has

and therefore extends to a positive contraction on Hr, also denoted by . Proposi-
tion 3.2 implies that R +, + R_,- I extends to a strict contraction on Hr. Hence,

(R+,+R_,-I)

has Hr-norm strictly less than unity. We thus find the invertibility of the operators
I + (R +, + R_,-I) on Hr. On the original Hilbert space H these operators have
zero null space and are compact perturbations of the identity and therefore invertible
too. Q.E.D.
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