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Marek Grabowski

The inverse scattering transform (IST) is developed for a class of matrix
nonlinear Schrödinger-type systems whose reductions include two equations
that model certain hyperfine spin F = 1 spinor Bose–Einstein condensates,
and two novel equations that were recently shown to be integrable, and
that have applications in nonlinear optics and four-component fermionic
condensates. In addition, the general behavior of the soliton solutions for all
four reductions is analyzed in detail, and some novel solutions are presented.

1. Introduction

The study of multicomponent Bose–Einstein condensates (BECs) has been
a very active field of research in the last two decades. These systems
can be derived within mean-field theory, and the static and dynamical
properties of the nonlinear excitations that they exhibit are well described
by a system of coupled Gross–Pitaevskii equations [1–4], which is a variant
of the so-called defocusing vector nonlinear Schrödinger (NLS) equation
[5, 6], to which it reduces in the absence of a confining potential when
the repulsive interactions within and between the atomic species are of
equal strength (the integrable, or so-called Manakov limit [7]). In particular,
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optical trapping techniques have made it possible to realize spinor BECs in
which atoms can be confined regardless of their spin hyperfine state [8,9]. In
the homogeneous setting (i.e., in the absence of a confining potential), and
for suitable choices of the interaction coefficients, F = 1 spinor BECs can
be described by the matrix NLS equation:

i Qt + Qxx − 2νQ Q†Q = 02×2 , ν = ±1 , (1)

where Q(x, t) is a 2 × 2 complex matrix valued function and Q† denotes
the Hermitian conjugate of Q. When ν = −1 (respectively, ν = +1),
the system is referred to as being in a self-focusing (respectively, self-
defocusing) regime. If the 2 × 2 matrix potential Q(x, t) is chosen to be
a complex symmetric matrix, i.e., Q(x, t) = diag(q1, q−1) + q0σ1 (here and
in the following σ j for j = 1, 2, 3 denote the Pauli matrices), the system
(1) can be used as a model to describe hyperfine spin F = 1 spinor
BECs; the self-defocusing case (ν = 1) corresponds to repulsive interatomic
interactions and antiferromagnetic spin-exchange interactions, while ν = 1
accounts for attractive interatomic interactions and ferromagnetic spin-
exchange interactions (ν = −1). In both cases, the functions q1, q0, q−1 are
related to the vacuum expectation values of the three components of the
quantum field operator in the spin configurations 1, 0,−1 [10, 11].

This work deals with a generalization of the above matrix NLS equation,
namely:

i Qt + Qxx − 2Q� Q†� Q = 02×2, (2)

where Q = Q(x, t) is a 2 × 2 matrix, which was shown to be integrable
for any choice of 2 × 2 Hermitian matrices �,� [12]. The latter can be
chosen without loss of generality to be in canonical form, i.e., diagonal and
with diagonal entries equal to 0 or ±1. Since we are interested in a fully
coupled system, rather than a triangular one, we will assume that � and �
are 2 × 2 diagonal matrices with entries ±1. If we denote � = diag(σ11, σ22)
and � = diag(ω11, ω22), with σ 2

11 = σ 2
22 = ω2

11 = ω2
22 = 1, and assume that

Q(x, t) is a symmetric matrix:

Q(x, t) =
(

q1(x, t) qo(x, t)
qo(x, t) q−1(x, t)

)
,

the compatibility of the off-diagonal terms in Eq. (2) requires σ11ω22 =
σ22ω11. It is then clear that one can have:

Case 1:

� = � = I2

(or, equivalently, � = � = −I2), which yields:

i∂tq1 + ∂2
x q1 − 2q1

[|q1|2 + 2|qo|2
]− 2q2

o q∗
−1 = 0 , (3a)
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i∂tq−1 + ∂2
x q−1 − 2q−1

[|q−1|2 + 2|qo|2
]− 2q2

o q∗
1 = 0 , (3b)

i∂tqo + ∂2
x qo − 2qo

[|q1|2 + |qo|2 + |q−1|2
]− 2q1q∗

o q−1 = 0 , (3b)

corresponding to Eq. (1) with ν = 1, so a matrix NLS system of
defocusing type.

Case 2:

� = −� = I2

(or, equivalently, � = −� = I2), which yields:

i∂tq1 + ∂2
x q1 + 2q1

[|q1|2 + 2|qo|2
]+ 2q2

o q∗
−1 = 0 , (4a)

i∂tq−1 + ∂2
x q−1 + 2q−1

[|q−1|2 + 2|qo|2
]+ 2q2

o q∗
1 = 0 , (4b)

i∂tqo + ∂2
x qo + 2qo

[|q1|2 + |qo|2 + |q−1|2
]+ 2q1q∗

o q−1 = 0 , (4c)

corresponding to Eq. (1) with ν = −1, so a matrix NLS system of

focusing type.

As mentioned before, the above equations are well known and well
studied in the literature, and soliton solutions (both bright and dark, i.e.,
both with zero and nonzero boundary conditions) have been derived in the
context of spinor BECs [10, 11, 13–18]. Two other choices are possible,
though.

Case 3:

� = � = σ3

(or, equivalently, � = � = −σ3), which yields:

i∂tq1 + ∂2
x q1 − 2q1

[|q1|2 − 2|qo|2
]− 2q2

o q∗
−1 = 0 , (5a)

i∂tq−1 + ∂2
x q−1 − 2q−1

[|q−1|2 − 2|qo|2
]− 2q2

o q∗
1 = 0 , (5b)

i∂tqo + ∂2
x qo − 2qo

[|q1|2 − |qo|2 + |q−1|2
]+ 2q1q∗

o q−1 = 0 . (5c)

Case 4:

� = −� = σ3

(or, equivalently, � = −� = −σ3), which corresponds to:

i∂tq1 + ∂2
x q1 + 2q1

[|q1|2 − 2|qo|2
]+ 2q2

o q∗
−1 = 0 , (6a)
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i∂tq−1 + ∂2
x q−1 + 2q−1

[|q−1|2 − 2|qo|2
]+ 2q2

o q∗
1 = 0 , (6b)

i∂tqo + ∂2
x qo + 2qo

[|q1|2 − |qo|2 + |q−1|2
]− 2q1q∗

o q−1 = 0 . (6c)

It is worth mentioning that one could choose Q(x, t) to be an antisym-
metric matrix instead, but the corresponding equations can be obtained from
the above cases 1–4 by simply changing q j (x, t) into −q j (x, t) for either
j = 1 or j = −1. Therefore, there is no need to consider these equations
separately.

Both equations for cases 3 and 4 above correspond to what for coupled
NLS is referred to as the “mixed sign” case, when one has a nonlinearity
in the norm that is of Minkowski-type, instead of Euclidean-type. Soliton
solutions and their interactions for the mixed sign vector NLS equation have
been derived both with zero and with nonzero boundary conditions [19–23].
In the two-component case, the mixed sign NLS equation models the
propagation of a light beam with arbitrary polarization when the wave–wave
interaction exhibits a large-phase mismatch [19]. It can also be obtained as
a model to describe the dynamics of vector solitons in waveguide arrays.
Another relevant application of the mixed sign two-component coupled NLS
is a chain of drops of a binary BEC trapped in an optical lattice, where an
external magnetic field can be used to change the values and signs of the
nonlinear coefficients, a feature known as the Feschbach resonance [19].

The situation is different in the matrix case, however, because for
the spinor model, the signs of the coupling constants, which are related
to the s-wave scattering lengths accounting for inter- and intraspecies
atomic interactions, cannot be chosen as in cases 3 and 4. Although
there are no foreseeable physical realizations of three-component (spin-
1) bosonic condensate for the matrix equation (2) with the choices of
signs in cases 3 and 4, the corresponding equations can model two
other classes of physical problems: nonlinear optics and four-component
fermionic condensates. In the context of nonlinear optics, three-component
copropagating electromagnetic waves and their mutual intensity transfers
have been studied in [24] and [25]. The nonlinear dynamics of the
energy transfer process between the fundamental and second harmonic
fields in the presence of the phase matched direct current field has been
investigated in one-dimensional geometries. The emerging spatio-temporal
phenomena include localized soliton-like excitations and can be modeled
by the equations corresponding to our cases 3 and 4 by appropriate
choices of signs in the nonlinear susceptibility tensor. These phenomena of
switching and downfrequency conversion are finding exciting applications
to integrated optoelectronic devices. The mixed signs of cases 3 and 4
can also model multicolor optical spatio-temporal solitary waves created
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by interaction of light at a central frequency with two sideband waves
both through cross-phase modulation and parametric four-wave mixing
of opposite signs [26]. In this work, different families of multicolor
bright spatial optical solitons were found by numerical integration of the
corresponding stationary equations only. Cases 3 and 4 also emerge in
the context of fermionic condensates of ultracold atoms [27–30], although
there are some difficulties in both the justification of mean-field condensate
wave function for fermions as well as possible pairing instabilities of
superconducting types. Nevertheless, with sufficient care, our cases 3 and
4 can model four-component spin-3/2 cold atomic systems under special
circumstances. Specifically, spin-3/2 systems have four components but
only even total spin channels are open by SO(5) symmetry, and, unlike
the bosonic case, the signs of scattering amplitudes can be controlled
independently. When in the so-called quartetting phase [30], spin-3/2
systems exhibit a three-component condensate similar to our cases 3 and 4.
Moreover, when fermionic condensates are placed in optical lattices (rather
than optical traps), interacting Heisenberg-like models can arise with rich
structures of nonlinear soliton-like excitations [26].

In light of its potential applicative relevance, in this work, we develop
the inverse scattering transform (IST) for the system (2) as a tool to solve
the initial-value problem, as well as to obtain explicit soliton solutions.
While the IST for “unreduced” matrix NLS systems, and for the “canonical”
reductions corresponding to cases 1 and 2 (focusing and defocusing matrix
NLS), is well established, both with zero and nonzero boundary conditions
(see, for instance, [5, 17, 31–34] and references therein), the IST and the
soliton solutions corresponding to the reductions in cases 3 and 4 described
above are novel, and present some interesting aspects and additional
challenges with respect to the other two cases in that one needs to impose
suitable constraints on the norming constants to guarantee that the soliton
solutions are smooth for all x, t ∈ R. As a matter of fact, this work also
provides several advances as far as the IST for general matrix NLS systems
is concerned, including the well-known focusing and defocusing matrix NLS
systems corresponding to cases 1 and 2. Specific focus of the work is to: (i)
provide a rigorous definition of the norming constants that does not require
any unjustified analytic extension of the scattering relations, and clarify the
role of the rank of the norming constants in the spectral characterization
of the corresponding solutions; (ii) properly account for all the symmetries
in the potential matrix, and derive the corresponding symmetries in the
scattering data (reflection coefficients and norming constants); (iii) formulate
the inverse problem as a Riemann–Hilbert problem (RHP), instead of in
terms of Marchenko equations; (iv) obtain novel soliton solutions for the
reductions of Eq. (2) corresponding to cases 3 and 4, and specify the
necessary and sufficient conditions for which the solutions are regular for
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all x, t ∈ R; (v) discuss the reductions of one-soliton solutions, and identify
conditions on the norming constants for which the solutions are unitarily
equivalent to diagonal ones.

The paper is organized as follows. Section 2 is devoted to the direct
scattering problem for the general matrix NLS equation (2). In Section
3, we formulate the inverse scattering problem for the eigenfunctions as
an RHP with poles, provide the formal solution of the latter in the case
of simple poles, and the reconstruction formula of the potential in terms
of eigenfunctions and scattering data. In Section 4, we discuss soliton
solutions, and derive the necessary and sufficient conditions on the norming
constants that guarantee that the solutions in cases 3 and 4 are smooth
for all x, t ∈ R. In Section 5, we discuss the reductions of the one-soliton
solutions to unitarily equivalent diagonal solutions. Section 6 is devoted to
some concluding remarks, while Appendices A and B provide discussions of
the resolvent operator for the scattering problem, and multiple poles in the
RHP and corresponding solutions.

2. Direct scattering

2.1. Lax pair and Jost solutions

It is well known that the matrix NLS equation is equivalent to the
compatibility condition of a Lax pair for a potential matrix Q(x, t), and
the first equation in the Lax pair is the so-called Zakharov-Shabat (ZS) or
Ablowitz-Kaup-Newell-Segur (ANKS) equation. Specifically, Eq. (2) admits
the Lax pair

ϕx = U ϕ , ϕt = V ϕ , (7)

with

U (x, t, k) = −ikσ 3 + Q(x, t) , V (x, t, k) = −2ik2σ 3 + 2k Q + iσ 3 Qx − iσ 3 Q2, (8a)

σ 3 =
(

I2 02×2

02×2 −I2

)
, Q =

(
02×2 Q

R 02×2

)
, R = � Q†�. (8b)

(Here and in the following, In and 0n×n denote the n × n identity and
zero matrices, respectively, and boldface fonts are used to distinguish the
2 × 2 matrices from the corresponding 4 × 4 extensions. When otherwise
clear from the context, we will sometimes omit the subscripts to specify the
sizes of the matrices involved.)

The first equation in the Lax pair (7) is usually referred to as the
scattering problem, and the Jost solutions are defined as usual in terms
of the asymptotic eigenvectors of the scattering problem. Here, we assume
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Q → 0 as x → ±∞ sufficiently rapidly, and in this case, the Lax pair
asymptotically reduces to: ϕx ∼ −ikσ 3ϕ and ϕt ∼ −2ik2σ 3ϕ.

Then, for all k ∈ R, the Jost eigenfunctions 	(x, t, k) and 
(x, t, k) are
defined as the simultaneous solutions of both parts of the Lax pair such
that

	(x, t, k) ≡ (φ(x, t, k) φ̄(x, t, k)) = I4 e−iθ (x,t,k)σ 3 + o(1) as x → −∞ , (9a)


(x, t, k) ≡ (ψ̄(x, t, k) ψ(x, t, k)) = I4 e−iθ (x,t,k)σ 3 + o(1) as x → +∞ , (9b)

where

θ (x, t, k) = k(x + 2kt) , (10)

and φ(x, t, k) and φ̄(x, t, k) (respectively, ψ̄(x, t, k) and ψ(x, t, k)) are 4 × 2
matrices collecting the first two and last two column vectors of the 4 × 4
matrix solutions 	(x, t, k) (respectively, 
(x, t, k)). One can then introduce
modified eigenfunctions defined as follows:(

M(x, t, k) M̄(x, t, k)
) = 	(x, t, k)eiθ(x,t,k)σ 3, (11a)

(
N̄ (x, t, k) N (x, t, k)

) = 
(x, t, k)eiθ(x,t,k)σ 3, (11b)

such that

(M(x, t, k) M̄(x, t, k)) ∼ I4 as x → −∞, (12a)

(N̄ (x, t, k) N (x, t, k)) ∼ I4 as x → +∞ . (12b)

The modified eigenfunctions satisfy the following integral equations:

(M(x, t, k) M̄(x, t, k)) = I4 +
∫ x

−∞
eik(y−x)σ 3 Q(y, t)

× (M(y, t, k) M̄(y, t, k))eik(x−y)σ 3dy , (13a)

(N̄ (x, t, k) N (x, t, k)) = I4 −
∫ ∞

x
eik(y−x)σ 3 Q(y, t)

× (N̄ (y, t, k) N (y, t, k))eik(x−y)σ 3dy , (13b)

and standard techniques (see, for instance, [5]) allow one to prove that if the
entries of Q(·, t) belong to L1(R) for all t ≥ 0, M(x, t, k) and N (x, t, k) can
be analytically extended in the upper half-plane (UHP) of k, and M̄(x, t, k)
and N̄ (x, t, k) can be analytically extended in the lower half-plane (LHP)
of k, and they all are continuous up to k ∈ R. The analyticity properties of
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the columns of 	(x, t, k) and 
(x, t, k) are an obvious consequence of the
above. Finally, it easily follows with the help of Gronwall’s inequality that
the relations (12a) are valid for each t ∈ R uniformly in k ∈ R.

2.2. Scattering coefficients

Since U and V in (7) are traceless, Jacobi’s formula implies that any matrix
solution ϕ(x, t, k) of (7) satisfies ∂x (detϕ) = ∂t (detϕ) = 0. Since for all
k ∈ R, one has limx→−∞	(x, t, k) eiθσ 3 = limx→+∞
(x, t, k) eiθσ 3 = I4, it
then follows that

det	(x, t, k) = det
(x, t, k) = 1 , x, t, k ∈ R , (14)

which implies that both 	 and 
 are fundamental matrix solutions of
the scattering problem. Hence, there exists a 4 × 4 scattering matrix S(k)
independent of x and t such that

	(x, t, k) = 
(x, t, k) S(k) , S(k) =
(

a(k) b̄(k)
b(k) ā(k)

)
, x, t, k ∈ R ,

(15)
where a(k), b(k), ā(k), b̄(k) are the 2 × 2 blocks of the scattering matrix in
(15). Using the analytic groups of columns introduced in (9), one can then
write:

φ = ψb + ψ̄a , φ̄ = ψ ā + ψ̄ b̄ . (16)

Note that the entries of S(k) are independent of time (this is a consequence
of the fact that 	 and 
 are chosen to be simultaneous solutions of both
parts of the Lax pair), and the same holds for the norming constants (see
Section 2.4). Moreover, (14) and (15) imply that det S(k) = 1 for all k ∈ R.

Using (15) one can easily verify that:

det a(k) = Wr(φ,ψ)/Wr(ψ̄, ψ) ≡ det(φ ψ) , (17a)

det ā(k) = Wr(ψ̄, φ̄)/Wr(ψ̄, ψ) ≡ det(ψ̄ φ̄) . (17b)

Finally, for k ∈ R, we can express

M(x, t, k)a−1(k) = N̄ (x, t, k) + e2iθ(x,t,k) N (x, t, k)ρ(k) , (18a)

M̄(x, t, k)ā−1(k) = N (x, t, k) + e−2iθ(x,t,k) N̄ (x, t, k)ρ̄(k) , (18b)

where M(x, t, k)a−1(k) and M̄(x, t, k)ā−1(k) are meromorphic in the UHP
and LHP of k, respectively, and we introduce (matrix) reflection coeffi-
cients

ρ(k) = b(k)a−1(k) , ρ̄(k) = b̄(k)ā−1(k) k ∈ R. (19)
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2.3. Symmetries

As it is well known in the IST framework, each symmetry in the potential
of the Lax pair directly induces symmetries in the eigenfunctions, and the
latter, in turn, induce corresponding symmetries in the scattering data. In
the case at hand, one has to account for a generalization of the usual
conjugation symmetry R = ±Q†, which now becomes R = � Q†�, and
which for Q reads:

Q† = −�−1 Q� , � =
(
�−1 02×2

02×2 −�
)
, (20)

as well as an additional symmetry that takes into account that Q is assumed
to be a symmetric matrix, namely, QT = Q, which in terms of the 4 × 4
matrix potential Q can be written as

Q =
(

02×2 �
−1�

−I2 02×2

)
QT

(
02×2 ��

−1

−I2 02×2

)
. (21)

Note that � and � are assumed to be diagonal matrices; hence, they
commute. Note also that in all the cases discussed in Section 1, ��−1 and
�−1� are either both equal to I2 (cases 1 and 3) or both equal to −I2

(cases 2 and 4).

First symmetry—conjugation: Q† = −�−1 Q�, corresponding to k 
→
k∗ (UHP/LHP). To determine how the eigenfunctions and the scattering
data are related when the above symmetry in the potential is imposed, we
will follow the same approach as in [5]. To this aim, we introduce for
k ∈ R

f (x, t, k) = 	†(x, t, k∗)�−1	(x, t, k),

g(x, t, k) = 
†(x, t, k∗)�−1
(x, t, k) .

One can easily verify that f, g are x-independent, and their limits as
x → ±∞ from (9) yield

	†(x, t, k∗)�−1	(x, t, k) = 
†(x, t, k∗)�
(x, t, k) = �−1. (22)

On the one hand, the above relationships can be written as

	−1(x, t, k) = �	†(x, t, k∗)�−1, (23a)


−1(x, t, k) = �
†(x, t, k∗)�−1, (23b)

and the latter provide the following representations for the scattering
matrix:

S(k) = 
−1(x, t, k)	(x, t, k) ≡ �
†(x, t, k∗)�−1	(x, t, k) . (24)
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Let us now introduce the following notation for the upper and lower blocks
of the eigenfunctions:

	(x, t, k) =
(
φup φ̄up

φdn φ̄dn

)
, 
(x, t, k) =

(
ψ̄up ψup

ψ̄dn ψdn

)
,

where each of Aup, Adn is a 2 × 2 matrix, and on the right-hand side, we
have omitted the x, t dependence for shortness. Computing the diagonal
2 × 2 blocks of S(k) in (15) using (24) then gives:

a(k) = �−1
(
ψ̄up(x, t, k∗)

)†
�φup(x, t, k) (25a)

−�−1
(
ψ̄dn(x, t, k∗)

)†
�−1φdn(x, t, k)

≡�−1
(
N̄ up(x, t, k∗)

)†
�Mup(x, t, k) −�−1

(
N̄ dn(x, t, k∗)

)†
�−1 Mdn(x, t, k),

ā(k) =� (
ψdn(x, t, k∗)

)†
�−1φ̄dn(x, t, k) −� (ψup(x, t, k∗))†� φ̄up(x, t, k) (25b)

≡� (
N dn(x, t, k∗)

)†
�−1 M̄dn(x, t, k) −� (N up(x, t, k∗))†� M̄up(x, t, k).

Based on the analyticity properties established for the eigenfunctions, the
above expressions show that a(k) can be analytically continued in the UHP
of k, and ā(k) can be analytically continued in the LHP. The off-diagonal
blocks b(k) and b̄(k) of the scattering matrix, on the other hand, are
only defined on the continuous spectrum (i.e., for k ∈ R), and, in general,
are nowhere analytic. Also, note that the above relationships provide yet
another representation for the analytic scattering coefficients a(k) and ā(k),
namely,

a(k) = lim
x→+∞ Mup(x, t, k) = lim

x→−∞�
−1
(
N̄ up(x, t, k∗)

)†
� , k ∈ C

+, (26a)

ā(k) = lim
x→+∞ M̄dn(x, t, k) = lim

x→−∞�
(
N dn(x, t, k∗)

)†
�−1 , k ∈ C

−. (26b)

Note, for future reference, that explicitly computing the upper and lower
blocks of (22) yields:

(φup(x, t, k∗))†� φ̄up(x, t, k) = (
φdn(x, t, k∗)

)†
�−1φ̄dn(x, t, k) , (27a)

(ψup(x, t, k∗))†�ψ̄up(x, t, k) = (
ψdn(x, t, k∗)

)†
�−1ψ̄dn(x, t, k) . (27b)

Moreover, (22) implies

S†(k∗)�−1S(k) = �−1 k ∈ R , (28)

which in terms of the individual 2 × 2 blocks reads:

a†(k∗)� a(k) − b†(k∗)�−1b(k) = � , (29a)
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a†(k∗)� b̄(k) − b†(k∗)�−1ā(k) = 02×2 , (29b)

b̄†(k∗)� a(k) − ā†(k∗)�−1b(k) = 02×2 , (29c)

b̄†(k∗)� b̄(k) − ā†(k∗)�−1ā(k) = −�−1 . (29d)

As a consequence, the reflection coefficients introduced in (19) satisfy the
following symmetry:

ρ̄(k) = �−1ρ†(k∗)�−1 , k ∈ R . (30)

Note that one can rewrite the above equations for the diagonal blocks
a(k) and ā(k) in terms of the reflection coefficients introduced in (19) as
follows:

a(k)�−1a†(k∗)� = [
I2 −�−1ρ†(k∗)�−1ρ(k)

]−1
, (31a)

ā(k)� ā†(k∗)�−1 = [
I2 −� ρ̄†(k∗)� ρ̄(k)

]−1
. (31b)

Furthermore, if � = � = ±I2 (i.e., in case 1), from (29a) and (29d), it
follows that for any ξ ∈ C

2 and k ∈ R:

||a(k)ξ ||2 = ||ξ ||2 + ||b(k)ξ ||2 , ||ā(k)ξ ||2 = ||ξ ||2 + ||b̄(k)ξ ||2 , (32)

so that a(k)ξ = 0 or ā(k)ξ = 0 necessarily implies ξ = 0. Consequently, one
can conclude that in case 1, det a(k) �= 0 and det ā(k) �= 0 for all k ∈ R.
(This is exactly the same as in the scalar case.) Note that Eq. (32) implies
that in case 1 for any k ∈ R, the norms of the reflection coefficients ρ(k)
and ρ̄(k) are strictly less than 1.

Note that (28) implies

S−1(k) = � S†(k∗)�−1 , S−1(k) =
(

c̄(k) d(k)
d̄(k) c(k)

)
, (33)

and therefore the blocks of S(k) and S−1(k) for k ∈ R are related as
follows:

c̄(k) = �−1 a†(k∗)� , c(k) = � ā†(k∗)�−1 , (34a)

d(k) = −�−1b†(k∗)�−1 , d̄(k) = −� b̄†(k∗)� . (34b)

As usual, Eqs. (34) can be extended to C
± by Schwarz reflection principle,

but (34b), in general, only hold for k ∈ R.
In turn, the analog of (17) for 
(x, t, k) = 	(x, t, k)S−1(k), namely,
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det c(k) = Wr(φ,ψ)/Wr(φ, φ̄) ≡ det(φ ψ) , (35a)

det c̄(k) = Wr(ψ̄, φ̄)/Wr(φ, φ̄) ≡ det(ψ̄ φ̄) , (35b)

allows one to conclude that

det c(k) = det a(k) for k ∈ C
+ ∪ R , det c̄(k) = det ā(k) for k ∈ C

− ∪ R .

(36)

Finally, from (34), it follows that

det ā(k) = det a†(k∗) ≡ (det a(k∗))∗ for k ∈ C
− ∩ R . (37)

Second symmetry: QT = Q. To account for the second symmetry in the
potential, we introduce for k ∈ R:

f̃ (x, t, k) = 	T (x, t, k) F 	(x, t, k) , g̃(x, t, k) = 
T (x, t, k) F 
(x, t, k),

where

F =
(

02×2 −��−1

�−1� 02×2

)
. (38)

As mentioned above, in all the cases discussed in Section 1, ��−1 and
�−1� are either both equal to I2 (cases 1 and 3) or both equal to −I2

(cases 2 and 4).
Again, it is easy to verify that with this choice of F , f̃ and g̃ are

independent of x , and taking into account Eq. (9), the limits of f̃ and g̃ as
x → ±∞ yield

	T (x, t, k) F 	(x, t, k) = 
T (x, t, k) F 
(x, t, k) = F , (39)

which, in turn, implies

ST (k) F S(k) = F k ∈ R . (40)

The above equation can be written down explicitly in terms of the blocks of
the scattering matrix (cf. (15)) as follows:

bT (k)�−1� a(k) = aT (k)��−1b(k) ,

b̄T (k)��−1ā(k) = āT (k)�−1� b̄(k) ,

aT (k)��−1ā(k) − bT (k)�−1� b̄(k) = ��−1 ,

āT (k)�−1� a(k) − b̄T (k)��−1b(k) = �−1�,

which then, in particular, imply:

ρT (k) = ��−1ρ(k)�−1� , ρ̄T (k) = �−1� ρ̄(k)��−1 , (41)
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as well as

a(k)�−1� āT (k)�−1� = [
I2 −�−1�ρ̄T (k)��−1ρ(k)

]−1
k ∈ R. (42)

Because �−1� and �−1� are either both equal to I2 or both equal to −I2,
the above relationships can be simplified to:

ρT (k) = ρ(k) , ρ̄T (k) = ρ̄(k) k ∈ R , (43)

and

a(k) āT (k) = [
I2 − ρ̄T (k) ρ(k)

]−1
k ∈ R . (44)

Finally, (40) also implies S−1(k) = A ST (k) A−1 for k ∈ R, i.e.,

c̄T (k) = ��−1ā(k)�−1� , cT (k) = �−1� a(k)�−1� ,

dT (k) = −�−1� b̄(k)�−1� , d̄T (k) = −��−1b(k)�−1� ,

and, again, the latter can be simplified to:

c̄T (k) = ā(k) , cT (k) = a(k) , dT (k) = −b̄(k) , d̄T (k) = −b(k) , (45)

which, combined with (34), yield

āT (k) = �−1a†(k∗)� k ∈ C
− , (46a)

b̄T (k) = �−1b†(k∗)�−1 k ∈ R . (46b)

2.4. Discrete spectrum, norming constants, and residue conditions

The discrete spectrum is the set of all values k ∈ C \ R for which the
scattering problem admits eigenfunctions in L2(R). We show below that
these values coincide with the zeros of det a(k) in C

+ and with those of
det ā(k) in C

− (see also Appendix A for a discussion on the resolvent
operator of the ZS/AKNZ scattering problem). In general, except for case
1 (see Section 2.3 with regard to the first symmetry), one cannot exclude
the possible presence of such zeros on the real axis (so-called spectral
singularities): as shown in [35], there exist Schwartz class potentials for
which discrete eigenvalues accumulate to spectral singularities, which, in
turn, accumulate on the continuous spectrum. For the 2 × 2 ZS/AKNS
system, real spectral singularities have been extensively studied, and, in
particular, sufficient conditions on the potential Q(x, t) have been identified
to guarantee their absence (e.g., single lobe potentials when 2||Q||1/π is
not an odd integer, and also certain double and multiple lobe potentials
[36–39]). For the general 2m × 2m ZS/AKNS system, in [40], it is shown
that if ‖Q‖1 < π/2, the scattering problem has no discrete eigenvalues
or spectral singularities (a result known as the “area theorem”), while
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if ‖Q‖1 = π/2, one has no discrete eigenvalues, but cannot exclude the
presence of a spectral singularity.

As to the location of proper discrete eigenvalues in the complex plane
(i.e., off the real axis), in case 1, the scattering problem is self-adjoint,
like for the scalar defocusing NLS, and therefore when the potential
is assumed to rapidly vanish as x → ±∞ eigenvalues corresponding to
square integrable eigenfunctions need to be real. Since we have already
excluded zeros of det a(k) and det ā(k) for k ∈ R, it follows that no discrete
eigenvalues exist for case 1. In the remaining three cases, there is no
constraint a priori on the location of discrete eigenvalues (except for the fact
that they appear in complex conjugate pairs).

To properly define the discrete eigenvalues, it is convenient to introduce
the 4 × 4 matrix solutions of (7):

P(x, t, k) = (φ(x, t, k) ψ(x, t, k)) , P̄(x, t, k) = (
ψ̄(x, t, k) φ̄(x, t, k)

)
.

(47)

Clearly, P(x, t, k) is analytic for k ∈ C
+, and P̄(x, t, k) is an-

alytic for k ∈ C
−; consequently, the bilinear combinations A(k) =

P̄†(x, t, k∗)�−1 P(x, t, k) and Ā(k) = P†(x, t, k∗)�−1 P̄(x, t, k) with � de-
fined in (20) are analytic in C

+ and C
−, respectively, and they are

independent of x and t (as a result of the same argument used in Section 2.3
when discussing the first symmetry). Taking into account (25) and (27), one
can explicitly compute the 2 × 2 blocks of these bilinear combinations of
P(x, t, k) and P̄(x, t, k) in terms of the eigenfunctions, and find:

A(k) = P̄†(x, t, k∗)�−1 P(x, t, k) ≡
(
� a(k) 02×2

02×2 −ā†(k∗)�−1

)
k ∈ C

+ , (48a)

Ā(k) = A†(k∗) = P†(x, t, k∗)�−1 P̄(x, t, k) ≡
(

a†(k∗)� 02×2

02×2 −�−1ā(k)

)
k ∈ C

−. (48b)

(Note that because of the symmetries (34), the lower diagonal block of
A(k) could equivalently be expressed as −�−1c(k), and the upper diagonal
block of Ā(k) as � c̄(k).) From (17) and (47), it follows that

det P(x, t, k) = det a(k) , det P̄(x, t, k) = det ā(k) , (49)

showing that the zeros of det a(k) in C
+ are precisely the points where

φ(x, t, k) and ψ(x, t, k) become linearly dependent. The same, of course,
holds for the zeros of det ā(k) in C

−, where φ̄(x, t, k) and ψ̄(x, t, k) become
linearly dependent.

Let us start by assuming that det a(k) has a finite number N of zeros
k1, . . . , kN in C

+. The first symmetry (37) implies det ā(k∗
n ) = 0, and we

will denote the set of such zeros in either half-plane as Z = {kn, k∗
n}Nn=1. For
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any kn ∈ C
+ ∩ Z , one has

rank P(x, t, kn) = 2, 3 , rank A(kn) = 0, 2 , (50)

because: (i) det P(x, t, kn) = 0 (cf. (49)), but the first two and last two
columns of P(x, t, kn) are linearly independent; (ii) A(k) is a block-
diagonal matrix, and both diagonal blocks are singular at k = kn (cf. (48)).
In particular, rank A(k) = rank a(k) + rank ā†(k∗), and since rank a(k) =
rank ā†(k∗) for all k ∈ C

+ (cf., for instance, (46a)), it then follows that
rank A(kn) is either 0 (if and only if a(kn) = 0) or 2 (if and only if
rank a(kn) = 1).

Moreover, from (49), if follows that kn ∈ C
+ ∩ Z is a zero of order

m > 0 of det a(k) if and only if it is a zero of order m of det P(x, t, k), and
if det P(x, t, kn) = det a(kn) = 0, then 0 is an eigenvalue of both P(x, t, kn)
and a(kn). Finally, note that the algebraic multiplicity of 0 as an eigenvalue
of a(kn) can be either 1 or 2, and in the latter case, this implies a(kn) = 0.

In the following proposition, we show that rank P(x, t, k) and rank a(k)
are in one-to-one correspondence for any k ∈ C

+, and rank P̄(x, t, k) and
rank ā(k) are in one-to-one correspondence for any k ∈ C

−.

PROPOSITION 1. At a discrete eigenvalue kn ∈ Z ∩ C
+, one has

rank P(x, t, kn) = 2 if and only if a(kn) = 02×2 and, consequently,
rank P(x, t, kn) = 3 if and only if rank a(kn) = 1. The same holds for
k∗

n ∈ Z ∩ C
−, relatively to the ranks of P̄(x, t, k∗

n ) and ā(k∗
n ).

Proof. Let us first prove that rank P(x, t, kn) = 2 ⇒ a(kn) = 02×2. If
rank P(x, t, kn) = 2, then there exist two linearly independent vectors e j =
(η j ,−ξ j )T ∈ C

4 such that P(x, t, kn)e j = 04×1 for j = 1, 2. From the
definition (48), it then follows that A(kn)e j = 0, and taking into account the
explicit block diagonal expression of A(kn) in (48), we have

a(kn)η j = 02×1 , ā†(k∗
n )�−1ξ j = 02×1 for j = 1, 2 . (51)

If η1 and η2 are linearly independent vectors, this proves that the kernel of
a(kn) has dimension 2, hence a(kn) = 0. Let us then consider η2 = αη1 for
some α ∈ C. Using the symmetry (46a) in the second equation in (51), we
obtain

ξ
†
j�

−1ā(k∗
n ) = ξ

†
j�

−1� a∗(k∗
n )�−1 = 01×2 for j = 1, 2 ,

which then is equivalent to

aT (kn)ξ j = 02×1 for j = 1, 2 .

As before, if ξ1 and ξ2 are linearly independent, this implies aT (kn) = 02×2,
which is equivalent to a(kn) = 02×2. So, we assume ξ2 = βξ1. However,
since e j = (η j ,−ξ j )T ∈ ker P(x, t, kn) for j = 1, 2, we have

φ(x, t, kn)η1 = ψ(x, t, kn)ξ1 , αφ(x, t, kn)η1 = βψ(x, t, kn)ξ1
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yielding ψ(x, t, kn)ξ1(1 − β/α) = 04×1 (or φ(x, t, kn)η1(1 − α/β) = 04×1).
Since the column vectors in both ψ(x, t, kn) and φ(x, t, kn) are linearly inde-
pendent for all x, t , it follows that α = β. However, this is a contradiction
because it implies that e1 and e2 are proportional to each other.

Let us now prove that a(kn) = 02×2 ⇒ rank P(x, t, kn) = 2. If a(kn) = 0,
then the symmetry relation (46a) implies ā(k∗

n ) = 0, and therefore A(kn) =
0. Recall that if A and B are an m × n and an n × k matrices, respectively,
with entries in some field, then rank (AB) ≥ rank A + rank B − n. Using this
result, from (48), we have

0 = rank A(kn) ≥ rank P(x, t, kn) + rank P̄(x, t, k∗
n ) − 4 ,

and because both matrices P(x, t, kn) and P̄(x, t, k∗
n ) have rank that is either

2 or 3, the above inequality requires rank P(x, t, kn) = rank P̄(x, t, k∗
n ) = 2.

(Note that in the proof of Proposition 1, we have used both the first and the
second symmetry of the scattering data. The result can actually be proved
using the first symmetry alone, and therefore also holds for the case in
which Q(x, t) is not necessarily a symmetric matrix, although at the expense
of a much harder proof.) �

If kn ∈ C
+ ∩ Z , then det P(x, t, kn) = 0; on the other hand, the two

columns in φ(x, t, kn) are linearly independent, and so are the two columns
in ψ(x, t, kn), and therefore we conclude that there exist ξn, ηn ∈ C

2 \ {0}
such that

ψ(x, t, kn)ξn = φ(x, t, kn)ηn . (52a)

Note that such vectors are not uniquely defined, because one can divide both
sides of the above equation by any of the nonzero components of either ξn

or ηn . For any kn ∈ C
+ such that det a(kn) = 0, one also has det ā(k∗

n ) = 0
for k∗

n ∈ C
− (cf. (37)), and hence

ψ̄
(
x, t, k∗

n

)
ξ̄n = φ̄

(
x, t, k∗

n

)
η̄n , (52b)

for some ξ̄n, η̄n ∈ C
2 \ {0}.

For any kn ∈ C
+ ∩ Z from (9) and (52a), it then follows

ψ(x, t, kn)ξn ∼
(

02×1

ξn

)
eikn(x+2knt) as x → +∞ ,

ψ(x, t, kn)ξn = φ(x, t, kn)ηn ∼
(
ηn

02×1

)
e−ikn(x+2knt) as x → −∞ ,

and since Im kn > 0, the linear combination of eigenfunctions in ψ(x, t, kn)
is exponentially decaying as x → ±∞, in what is often referred to as a
bound state (continuity of the eigenfunctions for all x ∈ R is established by
means of the integral equations (13) using standard techniques).
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It is important to stress that, while common in the literature, assuming

φ(x, t, kn) = ψ(x, t, kn) bn , φ̄
(
x, t, k∗

n

) = ψ̄
(
x, t, k∗

n

)
b̄n , (53)

where bn, b̄n are 2 × 2 constant, nonzero matrices, is in general not
equivalent to (52). Importantly, bn and b̄n must be nonsingular (for
instance, if det bn = b1,1

n b2,2
n − b1,2

n b2,1
n = 0, then one can show that (53)

implies φ1(x, t, kn) b2,2
n = φ2(x, t, kn) b2,1

n for the columns φ1(x, t, kn) and
φ2(x, t, kn) of φ(x, t, kn), which is a contradiction because the two columns
are linearly independent).

As a matter of fact, (53) is a stronger condition than (52), because it
implies that each column of φ (respectively, φ̄) is a linear combination of
the two columns of ψ (respectively, ψ̄), and it corresponds to assuming
that at k = kn , (52a) holds both with ηn = (1 0)T and ξn given by the first
column of bn , and with ηn = (0 1)T and ξn given by the second column
of bn (and similarly for k∗

n ). Conversely, suppose two linearly independent
conditions such as (52a) hold at the same kn , say

ψ(x, t, kn)ξn = φ(x, t, kn)ηn , ψ(x, t, kn)ξ̃n = φ(x, t, kn)η̃n ,

with βn = Wr(ηn, η̃n) �= 0; then one can solve the above equations with
respect to φ(x, t, kn) and obtain a relation like (53) with bn = (η̃(2)

n ξn −
η

(2)
n ξ̃n ,−η̃(1)

n ξn + η
(1)
n ξ̃n)/βn , where superscripts ( j) denote the j th component

of the vectors ηn and η̃n .
Equations (52) correspond to a situation in which rank P(x, t, kn) =

rank P̄(x, t, k∗
n ) = 3, and as a consequence of Proposition 1, this implies

a(kn) �= 02×2. On the other hand, under the assumption in (53), because bn

and b̄n are invertible, then rank P(x, t, kn) = rank P̄(x, t, k∗
n ) = 2, and as a

consequence of Proposition 1 in this case a(kn) = 02×2. Below, we define
the norming constants and determine the residue conditions in each of the
two cases for rank P(x, t, kn) = rank P̄(x, t, k∗

n ) at a discrete eigenvalue pair
kn, k∗

n .

2.4.1. Norming constants and residue conditions when rank P(x, t, kn) =
3. Let us start by considering the case in which kn ∈ C

+ is a simple
zero of det a(k) (in which case (det a)′(kn) �= 0 where the prime denotes
differentiation with respect to k), and rank P(x, t, kn) = 3. Then the first
symmetry (cf. Section 2.3) implies det ā(k∗

n ) = 0, with (det ā)′(k∗
n ) �= 0. Let

χn ∈ C
4 \ {0} be a right null vector of P(x, t, kn), i.e., χn ∈ ker P(x, t, kn),

and let

χn =
(
χ

up
n

χdn
n

)
χup

n , χ
dn
n ∈ C

2 ,
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then from (47), it follows that

φ(x, t, kn)χup
n + ψ(x, t, kn)χdn

n = 04×2 ,

and therefore any right null vector of P(x, t, kn) implies (52a), with
ηn = χ

up
n and ξn = −χdn

n . Note that ηn = χ
up
n �= 0 and ξn = −χdn

n �= 0,
because the first two columns as well as the last two columns of P(x, t, kn)
are linearly independent. Vice versa, given ξn and ηn as in (52a), the 4 × 1
vector χn = (ηn ,−ξn)T belongs to ker P(x, t, kn). Similar statements can be
proved for k∗

n ∈ C
− ∩ Z and P̄(x, t, k).

If ξn, ηn ∈ C
2 \ {0} satisfy (52a), then χn = (ηn ,−ξn)T is a right null

vector of A(k) = P̄†(x, t, k∗
n )�−1 P(x, t, kn), and from (48), it then follows

that

a(kn)ηn = 02×1 , ā†(k∗
n )�−1ξn = 02×1 , (54a)

showing that ηn belongs to ker a(kn) and �−1ξn belongs to ker ā†(k∗
n ). The

converse is also true, i.e., vectors in ker a(kn) and ker ā†(k∗
n ) provide vectors

that satisfy (52a). The analog can easily be shown for any nonzero vector
χ̄n = (ξ̄n,−η̄n) ∈ kern P̄(x, t, k∗

n ), for which Eq. (52b) holds; moreover,

a†(kn)� ξ̄n = 02×1 , ā(k∗
n )η̄n = 02×1 , (54b)

so that �ξ̄n ∈ ker a†(kn) and η̄n ∈ ker ā(k∗
n ).

For any m × m matrix A, one has det(cof A) = (det A)m−1, where cof A is
the adjugate matrix of A. Thus, if α(k) denotes the adjugate matrix of a(k),
for which a(k)α(k) = α(k)a(k) = det a(k)I2, it follows that

detα(k) = det a(k) ,

and hence detα(k) and det a(k) have a zero of the same order for
each kn ∈ C

+ ∩ Z . Moreover, since they are both 2 × 2 matrices, one
obviously has rank a(k) = rank α(k), and therefore, as a consequence of
Proposition 1, α(kn) �= 02×2 because we are assuming rank P(x, t, kn) = 3.
Similarly, denoting by ᾱ(k) the adjugate matrix of ā(k), it follows that
det ᾱ(k) has a zero of the same order as det ā(k) for each k∗

n ∈ C
− ∩ Z .

Since a(kn)α(kn) = α(kn)a(kn) = 02×2 and ā(k∗
n )ᾱ(k∗

n ) = ᾱ(k∗
n )ā(k∗

n ) =
02×2, each column of α(kn) is both a left and a right null vector of
a(kn), and each column of ᾱ(k∗

n ) is both a left and a right null vector
of ā(k∗

n ). Of course, the two columns of α(kn) and ᾱ(k∗
n ) are proportional

to each other, since detα(kn) = det ᾱ(k∗
n ) = 0. Therefore, one can choose

two vectors in ker P(x, t, kn) with the first two components of each vector
given by the first and the second columns of α(kn), and the remaining two
components, columnwise, denoted by −cn:

04×2 = P(x, t, kn)

(
α(kn)
−cn

)
⇔ φ(x, t, kn)α(kn) = ψ(x, t, kn)cn . (55)
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Since in this case, we are assuming ker P(x, t, kn) is one-dimensional
(because rank P(x, t, kn) = 3), then the two columns of the matrix multi-
plying P(x, t, kn) in (55) must be proportional to each other, which then
implies rank cn = 1. Also, considering that α(k) = a−1(k)/ det a(k), if kn is a
simple zero of det a(k), we have

Resk=kn

[
φ(x, t, k) a−1(k)

] = φ(x, t, kn)α(kn)Resk=kn

1

det a(k)

and from (11a) and (55), it then follows

Resk=kn

[
M(x, t, k)a−1(k)

] = e2iθ(x,t,kn) N (x, t, kn) Cn , det Cn = 0 ,
(56a)

where det Cn = 0 follows since Cn = cn/(det a)′(kn) and by construction
det cn = 0. Equation (56) defines the norming constant Cn associated with a
simple discrete eigenvalue kn , i.e., a simple zero of det a(k), in the rank 3
case for P(x, t, kn), i.e., when a(kn) �= 0. Similarly, one obtains

Resk=k∗
n

[
M̄(x, t, k)ā−1(k)

] = e−2iθ(x,t,k∗
n) N̄

(
x, t, k∗

n

)
C̄n , det C̄n = 0 .

(56b)
As mentioned above, detα(k) and det a(k) have a zero of the same order

at each kn ∈ C
+ ∩ Z , and similarly det ᾱ(k) and det ā(k) have a zero of the

same order at each k∗
n ∈ C

− ∩ Z . Moreover, for any k ∈ C
+ \ Z , one has

a−1(k) = α(k)/(det a(k)), and since α(k) is analytic in C
+, then: (i) a−1(k) is

meromorphic in C
+; (ii) its poles coincide with the discrete eigenvalues in

the UHP; and (iii) the order of each pole at kn is less than or equal to the
order of kn as a zero of det a(k). The same result can obviously be proven
for ā−1(k) in C

−.
Finally, we note that kn is a simple zero (hence, simple pole of

a−1(k)), one can easily show that ker a(kn) = {τnξ : ξ ∈ C
2} ≡ range τn ,

where τn = Resk=kn a−1(k) ≡ α(kn)/((det a)′(kn)).

2.4.2. Norming constants and residue conditions when rank P(x, t, kn) =
2. We now consider rank P(x, t, kn) = rank P̄(x, t, k∗

n ) = 2, which, accord-
ing to Proposition 1, is equivalent to a(kn) = ā(k∗

n ) = 0. Let us start by
assuming that kn is a simple zero of det a(k), so that (det a)′(kn) �= 0. We
can write (53) equivalently as M(x, t, kn) = e2iθ(x,t,kn) N (x, t, kn) bn , and

Resk=kn

[
M(x, t, k)a−1(k)

] = e2iθ(x,t,kn) N (x, t, kn) Cn ,

Cn = 1

(det a)′(kn)
bn α(kn) ,

where, as before, α(k) denotes the cofactor matrix of a(k). However,
in this case, a(kn) = α(kn) = 0, and hence, Cn = 0. This shows that if
rank P(x, t, kn) = 2, no nontrivial norming constant exists at a discrete
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eigenvalue that is a simple zero of det a(k). However, the above arguments
can be easily generalized to higher order zeros of det a(k). If, for instance,
kn is a second-order zero of det a(k), then detα(k) also has a second-order
zero at kn . In this case, however, in a neighborhood of kn , one has

a−1(k) = 1

(k − kn)2
τn,2 + 1

k − kn
τn,1 + f (k),

where f (k) is analytic at kn , and

τn,2 = lim
k→kn

(k − kn)2a−1(k) ≡ 2

(det a)′′(kn)
α(kn) , (57)

τn,1 = lim
k→kn

d

dk

[
(k − kn)2a−1(k)

]
≡ 2

(det a)′′(kn)
α′(kn) − 2

3

(det a)′′′(kn)

((det a)′′(kn))2
α(kn) . (58)

If rank P(x, t, kn) = 3, one has α(kn) �= 02×2 and hence τn,2 �= 02×2 and
det τn,2 = 0 (because detα(kn) = 0); τn,1, on the other hand, might or might
not be zero, and one can have det τn,1 �= 0. This generic situation will be
discussed in Appendix A. However, in the rank 2 case for P(x, t, kn), we are
considering here, α(kn) = τn,2 = 0; in this case, even though det a(k) has a
double zero at kn , a−1(k) still has a first-order pole at kn , with residue

τn,1 = 2

(det a)′′(kn)
α′(kn) .

Consequently,

Resk=kn

[
M(x, t, k)a−1(k)

] = e2iθ(x,t,kn) N (x, t, kn) Cn , (59a)

Cn = 2

(det a)′′(kn)
bn α

′(kn) .

Note that, in general, det(α′)(kn) need not be zero, so τn,1 needs not be rank
one.

Similarly, at k∗
n ∈ C

−, simple zero of det ā(k), we obtain

Resk=k∗
n

[
M̄(x, t, k)ā−1(k)

] = e−2iθ(x,t,k∗
n) N̄

(
x, t, k∗

n

)
C̄n , (59b)

C̄n = 2

(det ā)′′(k∗
n )

b̄n ᾱ
′(k∗

n ) .

The above residue conditions generalize (56) to the rank 2 case. As one can
see, (56) and (59) have exactly the same form, the only difference being that
in the rank 2 case one is allowed to relax the constraint that the norming
constant be a rank 1 matrix. Therefore, in the formulation of the inverse
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problem, we will assume at each discrete eigenvalue pair kn , a residue
condition of the form (59a) holds, where both det Cn = 0 and det Cn �= 0 are
possible choices for the associated norming constant. The same obviously is
true for (59a) at each eigenvalues k∗

n ∈ C
−, and associated norming constant

C̄n .

2.5. Asymptotics as k → ∞
To properly define the inverse problem, one needs the large k asymptotic
behavior of the eigenfunctions and of the scattering matrix.

Assuming the entries of Q(x, t) and Qx (x, t) are in L1(R) for each t ∈ R,
standard integration by parts on the integral equations (13) for the modified
eigenfunctions yields:

M(x, t, k) =

⎛
⎜⎝ I2 + i

2k

∫ x

−∞
Q(x ′, t) R(x ′, t) dx ′ + O(1/k2)

i

2k
R(x, t) + O(1/k2)

⎞
⎟⎠ (60a)

k → ∞ , k ∈ C
+ ∪ R ,

M̄(x, t, k) =

⎛
⎜⎝ − i

2k
Q(x, t) + O(1/k2)

I2 − i

2k

∫ x

−∞
R(x ′, t) Q(x ′, t) dx ′ + O(1/k2)

⎞
⎟⎠ (60b)

k → ∞ , k ∈ C
− ∪ R ,

and

N̄ (x, t, k) =

⎛
⎜⎝ I2 − i

2k

∫ ∞

x
Q(x ′, t) R(x ′, t) dx ′ + O(1/k2)

i

2k
R(x, t) + O(1/k2)

⎞
⎟⎠ (60c)

k → ∞ , k ∈ C
− ∪ R ,

N (x, t, k) =

⎛
⎜⎝ − i

2k
Q(x, t) + O(1/k2)

I2 + i

2k

∫ ∞

x
R(x ′, t) Q(x ′, t) dx ′ + O(1/k2)

⎞
⎟⎠ (60d)

k → ∞ , k ∈ C
+ ∪ R .

The above equations will allow us to reconstruct the scattering potential
Q(x, t) from the solution of the inverse problem for the eigenfunctions.



IST and Solitons for Square Matrix NLS Equations 329

Finally, inserting the above asymptotic expansions for the modified
eigenfunctions into (15), it follows that

S(k) = I2 + O(1/k) , (61)

as k → ∞ in the appropriate regions of the complex k-plane. Explicitly,
the above asymptotic estimate holds in C

+ and C
− for a(k) and ā(k),

respectively, but only on the real axis for b(k) and b̄(k).

3. Inverse problem (Riemann–Hilbert formulation)

The starting point for the formulation of the inverse problem is (18),
regarded as relating the eigenfunctions analytic in C

+ and those analytic in
C

−. As usual, one introduces the sectionally meromorphic matrices

μ+(x, t, k) = (M a−1 N ) , μ−(x, t, k) = (N̄ M̄ ā−1) . (62)

(Superscripts ± distinguish between meromorphicity in C
+ and C

−, respec-
tively.) From (16), we then obtain the jump condition

μ−(x, t, k) = μ+(x, t, k) (I4 − G(x, t, k)) , k ∈ R , (63)

where the jump matrix is

G(x, t, k) =
(

02×2 −e−2iθ(x,t,k)ρ̄(k)
e2iθ(x,t,k)ρ(k) ρ(k)ρ̄(k)

)
. (64)

Recalling the asymptotic behavior of the Jost eigenfunctions and scattering
coefficients, it is easy to check that the meromorphic eigenfunctions μ±

satisfy the following normalization condition:

μ± = I4 + O(1/k) , k → ∞ . (65)

Equations (62)–(64), supplemented with the normalization condition (65),
define a matrix RHP, which needs to be regularized by subtracting out
the asymptotic behavior and the pole contributions. Assuming simple
poles for the meromorphic eigenfunctions, and taking into account the
residue conditions (59), one obtains the following expression for the
eigenfunctions:

N (x, t, k) =
(

02×2

I2

)
+

N∑
j=1

e−2iθ(x,t,k∗
j )

k − k∗
j

N̄
(
x, t, k∗

j

)
C̄ j

− 1

2π i

∫ ∞

−∞

e−2iθ(x,t,ξ ) N̄ (x, t, ξ )ρ̄(ξ )

ξ − (k + i0)
dξ , (66a)
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N̄ (x, t, k) =
(

I2

02×2

)
+

N∑
j=1

e2iθ(x,t,k j )

k − k j
N (x, t, k j ) C j

+ 1

2π i

∫ ∞

−∞

e2iθ(x,t,ξ ) N (x, t, ξ )ρ(ξ )

ξ − (k − i0)
dξ . (66b)

The derivation of the above formal solution of the RHP follows from a
straightforward application of Cauchy projectors to the jump condition (see
Appendix B for further details). To close the system, one needs to evaluate
the first equation at each k = kn ∈ C

+, for n = 1, . . . ,N and the second
equation at each k = k∗

n ∈ C
−, for n = 1, . . . ,N .

The last task in the IST is the reconstruction of the potential from the
solution of the RHP, which is accomplished by simply evaluating the large
k asymptotic behavior of the above equations and comparing it with (60),
yielding:

Q(x, t) = 2i
N∑

n=1

e−2iθ(x,t,k∗
n) N̄ up

(
x, t, k∗

n

)
C̄n

+ 1

π

∫ ∞

−∞
e−2iθ(x,t,ξ ) N̄ up(x, t, ξ ) ρ̄(ξ ) dξ , (67a)

R(x, t) = −2i
N∑

n=1

e2iθ(x,t,kn) N dn(x, t, kn) Cn

+ 1

π

∫ ∞

−∞
e2iθ(x,t,ξ ) N dn(x, t, ξ )ρ(ξ ) dξ . (67b)

Note that in the above expressions, the scattering data (reflection coefficients
and norming constants) are time-independent, and the time dependence
of the solution is entirely accounted for by the time dependence of the
eigenfunctions.

Finally, the consistency of the reconstruction formulas (67) with the
symmetries in the potentials Q(x, t) and R(x, t) allows one to identify the
symmetries of the norming constants. Recalling that N dn(x, t, k) ∼ I2 as
x → ∞ for any k ∈ C

+, and N̄ up(x, t, k) ∼ I2 as x → ∞ for any k ∈ C
−,

the comparison of the above two equations in (67) to R = � Q†� yields

C̄n = �−1C†
n �

−1 n = 1, . . . ,N . (68a)

Similarly, the condition that Q(x, t) be a symmetric matrix for all x, t ∈ R

(i.e., QT (x, t) = Q(x, t)) requires that the norming constants are themselves
symmetric matrices:

CT
n = Cn , C̄T

n = C̄n , n = 1, . . . ,N . (68b)
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In Appendix B, we will discuss how the equations of the inverse problem
are generalized to include double poles in the RHP.

4. Soliton solutions

We now consider potentials Q(x, t) corresponding to pure soliton solutions,
for which the reflection coefficient is identically zero. In this case, there
is no jump in the meromorphic eigenfunctions of the RHP across the
continuous spectrum, and the inverse problem is reduced to a linear alge-
braic system, whose solution yields the soliton solutions of the integrable
nonlinear equation. Explicitly, in the reflectionless case, the system (66) for
the upper blocks of N (x, t, kn) and N̄ (x, t, k∗

n ) can be reduced to:

N̄ up
(
x, t, k∗

n

) = I2 +
N∑

�, j=1

e2i(θ(x,t,k j )−θ(x,t,k∗
� ))

(k∗
n − k j )(k j − k∗

� )
N̄ up(x, t, k∗

� )C̄�C j , (69)

and the solution of this linear system for N̄ up(x, t, k∗
n ) into the reconstruc-

tion formula (67a) yields the N soliton solution:

Q(x, t) = 2i
N∑

n=1

e−2iθ(x,t,k∗
n) N̄ up

(
x, t, k∗

n

)
C̄n . (70)

For a one-soliton solution, we take k1 = ξ + iη with η > 0 and obtain:

N̄ up(x, t, k∗
1) =

[
I2 − e−4η(x+4ξ t)

4η2
�−1C†

1�
−1C1

]−1

,

which yields

Q(x, t) = 2ie−2i(ξ x+2(ξ 2−η2)t)−2η(x+4ξ t)

[
I2 − e−4η(x+4ξ t)

4η2
�−1C†

1�
−1C1

]−1

�−1C†
1�

−1 ,

(71)
for any choice of the 2 × 2 norming constant C1 as a complex symmetric
matrix, both rank 1 and rank 2 (see the discussion at the end of
Section 2.4).

Assuming the inverse matrix in square brackets in (71) exists (we will
discuss later on the necessary and sufficient conditions for this to happen),
the solution can be written as:

Q(x, t) = 4iηeiζ
y
[

I2 − y2cof (C1) cof (�−1) cof
(

C†
1

)
cof (�−1)

]
1 − y2tr

(
�−1C†

1�
−1C1

)
+ y4| det C1|2

�−1C†
1�

−1 ,
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where we introduced the short-hand notations

ζ = −2(ξ x + 2(ξ 2 − η2)t) , y = e−2η(x+4ξ t)/(2η) , (72)

and, as before, cof (A) denotes the cofactor matrix of A and tr denotes the
matrix trace. The last expression can then be further simplified to

Q(x, t) = 4iηeiζ y

1 − y2tr(�−1C†
1�

−1C1) + y4| det C1|2

×
[
�−1C†

1�
−1 − y2(det C1)∗cof (C1)

]
, (73)

where we have used that det� det� = 1 for all four choices for � and �
considered in Section 1.

To discuss the regularity of the solution in all four cases with respect to
the norming constant C1, let

C1 =
(

c1 c0

c0 c−1

)
,

where c j , j = 1, 0,−1 are arbitrary complex numbers (with c2
0 = c1c−1, if

det C1 = 0).
Obviously, in order for the solution to be regular for all x, t ∈ R one

needs

det
[

I2 − y2�−1C†
1�

−1C1

]
≡ 1 − y2tr

(
�−1C†

1�
−1C1

)
+ y4| det C1|2 �= 0 ,

(74)
and hence the necessary and sufficient condition for the solution to be
regular for all x, t ∈ R is that the above biquadratic polynomial in y does
not have any real and positive root (by its definition (72) y > 0). Note
that for all choices of � and � considered here, tr(�−1C†

1�
−1C1) ∈ R, so

the above polynomial has real coefficients. It is clear that the regularity
condition will depend upon whether det C1 = 0 (rank 1 case) or det C1 �= 0
(rank 2 case). We begin by considering the rank 1 case, i.e., det C1 = 0,
where the necessary and sufficient condition for a regular solution reads

tr
(
�−1C†

1�
−1C1

)
≤ 0 .

Considering the four different choices introduced in Section 1 for � and �,
one finds the following:

Case 1: tr(�−1C†
1�

−1C1) = tr(C†
1C1) ≡ (|c1|2 + |c−1|2 + 2|c0|2) ≡ (|c1|+

|c−1|)2 > 0, so no regular solution exists with C1 �= 0 and
det C1 = 0. This is consistent with the fact that in this case, the
scattering problem is self-adjoint and no soliton solutions exist.
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Case 2: tr(�−1C†
1�

−1C1) = −tr(C†
1C1) ≡ −(|c1|2 + |c−1|2 + 2|c0|2) ≡

−(|c1| + |c−1|)2 < 0, so the solution is regular for any choice of the
norming constant C1 �= 0 with det C1 = 0.

Case 3: tr(�−1C†
1�

−1C1) = tr(σ3C†
1σ3C1) ≡ (|c1|2 + |c−1|2 − 2|c0|2) ≡

(|c1| − |c−1|)2 ≥ 0, so the only regular solutions with C1 �= 0 in this
case correspond to having both det C1 = tr(�−1C†

1�
−1C1) = 0, i.e.,

|c1| = |c−1| and c2
0 = c1c−1.

Case 4: tr(�−1C†
1�

−1C1) = −tr(σ3C†
1σ3C1) ≡ −(|c1|2 + |c−1|2 − 2|c0|2) ≡

−(|c1| − |c−1|)2 ≤ 0, so the solution is regular for any choice of the
norming constant C1 with det C1 = 0.

Note that (73) allows one to easily investigate if Q(x, t) vanishes
exponentially as x → ±∞: the decay as x → +∞ is obvious, since y → 0;
when x → −∞, the solution also decays as 1/y both when det C1 �= 0 and
when det C1 = 0. The only case in which the solution does not decay as
x → −∞ is if both det C1 = 0 and tr(�−1C†

1�
−1C1) = 0. This can only

happen in cases 3 and 4, and if |c1| = |c−1|, which corresponds to norming
constants and corresponding solutions of the form:

C1 = |c1|
(

eiα ±ei(α+β)/2

±ei(α+β)/2 eiβ

)
, Q(x, t) = 2i ν̃e−2i(ξ x+2(ξ 2−η2)t)−2η(x+4ξ t)σ3C†

1σ3 ,

(75)

where ν̃ = 1 in case 3 and ν̃ = −1 in case 4. Although smooth, the
solutions are not solitons, so for cases 3 and 4, we only consider rank 1
norming constants such that |c1| �= |c−1|, or equivalently, that

tr(�−1C†
1�

−1C1) < 0 . (76)

(As mentioned above, the condition is satisfied by any rank 1 norming
constant in case 2).

The expression (73) is particularly simple in the rank 1 case, i.e., if
det C1 = 0:

Q(x, t) = 2iηe−2i(ξ x+2(ξ 2−η2)t)sech[2η(x + 4ξ t − xo)]
�−1C†

1 �
−1√

−tr(�−1C†
1�

−1C1)
,

(77)

where 4η2e2ηxo = −tr((�−1C†
1�

−1C1)) (and the trace has to be strictly
negative, of course; so this only applies to case 2, and to case 4 provided
|c1| �= |c−1|).
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Let us now consider the full rank case, det C1 �= 0, and use the expression
(73) to derive necessary and sufficient conditions for the existence of reg-
ular soliton solutions. Recalling that y = e−2η(x+4ξ t)/(2η) > 0, the solution
Q(x, t) is regular for all x, t ∈ R if and only if the polynomial (74) is
nonzero for each y ∈ R. In other words, when det C1 �= 0, we need to
find necessary and sufficient conditions on the norming constant C1 that
guarantee that the second-order polynomial (74) does not have any real
and positive zeros y. From the sign of the discriminant of the quadratic
polynomial, it is then clear that

tr
(
�−1C†

1�
−1C1

)
< 2| det C1| (78)

is the necessary and sufficient condition for the nonexistence of singularities
of the potential Q(x, t) given by (73) for x, t ∈ R. It is easy to check
exponential decay as x → ±∞ from (73) whenever det C1 �= 0, and hence
the condition (78) is clearly a necessary and sufficient condition for having
a regular soliton solution in all four cases, and both when det C1 = 0 and
when det C1 �= 0.

Now (78) is clearly satisfied if the trace is negative, but it also, in
principle, allows for regular solutions to exist if the trace is positive. Again,
writing the above inequality explicitly for all four different choices for �
and �, one finds the following.

Case 1:

0 < |c1|2 + |c−1|2 + 2|c0|2 < 2|c1c−1 − c2
0| ≤ 2|c1||c−1| + 2|c0|2 ,

where triangle inequality has been used. The last inequality implies

|c1|2 + |c−1|2 − 2|c1||c−1|2 ≡ (|c1| − |c−1|)2 < 0 ,

which is obviously false. So in case 1, there is no regular solution
also when det C1 �= 0, again consistent with the fact that there are
no soliton solutions that are rapidly decaying as x → ±∞ for NLS
systems of defocusing type.

Case 2: Since tr(�−1C†
1�

−1C1) < 0, the solution is regular for any choice
of the norming constant C1 with det C1 �= 0 as well.

Case 3: The necessary and sufficient condition for regularity reads

|c1|2 + |c−1|2 − 2|c0|2 < 2|c1c−1 − c2
0| . (79)

Importantly, the above condition is incompatible with c0 = 0, so no
diagonal norming constant C1 will lead to a regular soliton solution
in case 3. Equation (79) is clearly satisfied whenever the left-hand
side is negative, so a sufficient condition for regular solutions in
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case 3 is given by

|c0|2 > 1

2

(|c1|2 + |c−1|2
)
. (80)

When the left-hand side is nonnegative, squaring both sides the nec-
essary and sufficient condition (79) can be shown to be equivalent
to ∣∣|c1|2 − |c−1|2

∣∣ < 2
∣∣c∗

0c1 − c0c∗
−1

∣∣ . (81)

From the reverse triangle inequality, it follows that a sufficient
condition for (79) to hold is that

|c1|2 + |c−1|2 − 2|c0|2 < 2||c1||c−1| − |c0|2| .
Now it is easy to check that if |c1||c−1| > |c0|2, the above inequality
leads to a contradiction, and therefore in order for it to be satisfied,
a necessary condition is that |c1||c−1| ≤ |c0|2. In this case, the
inequality can be rewritten as

(|c1| + |c−1|)2 < 4|c0|2 ,
and therefore, a sufficient condition for regularity is to have

|c0| < 1

2
(|c1| + |c−1|) . (82)

(Note that the above also implies |c0|2 ≥ |c1||c−1|; also, note that
(82) is obviously less stringent than (80)). We conclude that in
case 3, one cannot have a regular solution if det C1 = 0, but there
are regular solutions with det C1 �= 0 if the entries of C1 satisfy
the above necessary and sufficient constraint (79), or the (simpler)
sufficient (82).

Case 4: The necessary and sufficient condition for regularity reads

−|c1|2 − |c−1|2 + 2|c0|2 < 2
∣∣c1c−1 − c2

0

∣∣ . (83)

Clearly, a sufficient condition in this case is

|c0|2 < 1

2

(|c1|2 + |c−1|2
)
.

It remains to be checked if the solution is regular or not when
2|c0|2 ≥ |c1|2 + |c−1|2. To find the class of matrices C1 satisfying
the necessary and sufficient condition (83), we observe that

2|c1c−1 − c2
o| + |c1|2 + |c−1|2 − 2|co|2 ≥ |c1|2 + |c−1|2 − 2||c0|2

− |c1c−1 − c2
o|| ≥ |c1|2 + |c−1|2 − 2|c2

o + c1c−1 − c2
o|

= (|c1|2 − |c−1|2
) ≥ 0 ,
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which means that the only situation we need to exclude is when
none of the above inequalities is strict. In other words, the solution
in case 4 is regular for any choice of a nonsingular norming
constant C1 such that at least one of the following three conditions
does not hold:
(i) |c1| = |c−1|,

(ii) |c0|2 ≥ |c1c−1 − c2
0|,

(iii) ||c0|2 − |c1c−1 − c2
o|| = |c1c−1|.

|c1| �= |c−1| is clearly a sufficient condition for regularity. Note
that taking (i) and (ii) into account, (iii) simply becomes (iii′)
|co|2 − |c1|2 = |c1c−1 − c0|2. Also, (iii′) necessarily implies (ii) as
well as |c0| ≥ |c1| ≡ |c−1|. We then need to exclude nonsingular
matrices of the form

C1 =
(
ε eiα δ eiθ

δ eiθ ε eiβ

)
,

such that δ2 − ε2 = |δ2e2iθ − ε2ei(α+β)|. If we take into account
(75), we can conclude that any matrix C1 except for those of the
form

C1 =
(

ε eiα ±δ ei(α+β)/2

±δ ei(α+β)/2 ε eiβ

)
with δ ≥ ε , (84)

δ > ε if det C1 �= 0] will provide a regular soliton solution for case
4.

5. Reductions of one-soliton solutions

In [41–43], it was shown that for the focusing spinor equation (correspond-
ing here to case 2), soliton solutions can be written as a “superposition
of two oppositely polarized displaced solitons” of the focusing scalar NLS
equation, up to a rotation of the quantization axes. Following [18], we
show below how this result can be obtained using a “spectral” method that
amounts to reducing the norming constant to a diagonal form, and which
can, in some instances, be generalized to the soliton solutions of the matrix
equations corresponding to our cases 3 and 4.

The key property in this reduction and classification result is the
invariance of the matrix NLS equation (2) under unitary transformations:
if Q(x, t) is a solution of Eq. (2), then Q̃(x, t) = U Q(x, t) V is also a
solution, for arbitrary constant unitary matrices U and V . Of course, in
order for this invariance to also apply to the system where Q(x, t) is
assumed to be a symmetric matrix, the unitary matrices U and V must
be chosen so that Q̃(x, t) is also a symmetric matrix. In the spinor BEC
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model, such unitary transformations are associated with spin rotations, but,
of course, the invariance holds for all four reductions considered in this
work, as well as for the unreduced case (generic Q, R systems).

The other key ingredient is the observation that because the norming
constant C1 is a (complex, in general) symmetric matrix, Takagi’s factor-
ization [44] ensures that there exists a unitary constant matrix U such
that

UC1U T = � , � = diag(γ1, γ−1) , (85)

where γ j ≥ 0 and γ 2
j are the eigenvalues of C†

1C1. Obviously, C†
1C1 is a

Hermitian and positive semidefinite matrix, and hence eigenvalues are real
and nonnegative; their explicit expressions are:

2γ 2
±1 = |c1|2 + |c−1|2 + 2|c0|2

±
√(|c1|2 + |c−1|2 + 2|c0|2

)2 − 4|c1c−1 − c2
0|2 . (86)

Conversely, any norming constant can be factored as

C1 = U †�U ∗ . (87)

Substituting Eq. (87) into the one soliton solution for case 2, namely,
Eq. (71) with � = −� = I2, one has

Q(x, t) = U T Q̃(x, t)U , (88)

where Q̃(x, t) is a diagonal matrix given by

Q̃(x, t) = diag (q̃1(x, t), q̃−1(x, t)) = −2i e−2iθ∗
1 (x,t)

(
I2 + c̃†c̃

)−1
�† , (89)

with θ1(x, t) = θ (x, t, k1) and c̃ = �e2iθ1(x,t)/(k∗
1 − k1). Note that Q̃(x, t) is

in the form of Eq. (71), and therefore, it is itself a one-soliton solution of
the matrix NLS (1) in case 2, with the same discrete eigenvalue k1 and a
diagonal norming constant �. At the same time, because Q̃(x, t) is diagonal,
its diagonal components, i.e., q̃±1(x, t), are decoupled, and each component
satisfies the scalar focusing NLS equation:

iqt + qxx + 2|q|2q = 0 . (90)

Then, q̃ j (x, t) with j = ±1 is a one-soliton solution of Eq. (90) with
discrete eigenvalue k1 and norming constant γ j . Denoting the discrete
eigenvalue as k1 = ξ + iη with η > 0, each q̃ j will have the form of a
one-soliton solution of the focusing NLS equation:

q̃sech, j (x, t) = −2iη sech[2η(x + 4ξ t − x j )] e−2i[ξ x+2(ξ 2−η2)t] , (91)

where 2ηx j = ln[γ j/(2η)] (note that here by construction γ j > 0).
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Figure 1. Three components (q1, q−1, and q0 from left to right) for case 2: k1 = 1 + i
and in the top panels, the norming constant C1 has the diagonal entries c1 = 1, c−1 = 3,
and off-diagonal entries c0 = 2; in the bottom panels, the unitarily equivalent diagonal
solution with � = diag(2 + √

5, 2 − √
5) is plotted.

We conclude that indeed any soliton solution in case 2 can be written
as a “superposition of two oppositely polarized displaced solitons” of the
focusing scalar NLS equation, up to a rotation of the quantization axes,
which is provided by the unitary transformation (88), where U is the unitary
matrix that reduces the norming constant to its diagonal form. Furthermore,
from Eq. (85), we have

| det C1 | = γ1γ−1 .

As a consequence, if the solution Q(x, t) corresponds to a so-called
ferromagnetic state, i.e., with det C1 = 0, then one of the diagonal entries γ j

must be zero, and one can assume without loos of generality that γ−1 = 0
and γ1 > 0 (we can exclude γ1 = γ−1 = 0, because in this case, Eq. (71)
implies Q(x, t) ≡ 0). On the other hand, if the solution Q(x, t) describes
a polar state, i.e., det C1 �= 0, then γ1 > 0 and γ−1 > 0. Figure 1 shows
the amplitudes of the three components of the solution in case 2, for a
nondiagonal the norming constant, before (top panels) and after (bottom
panels) the reduction to a unitarily equivalent diagonal solution.

For cases 3 and 4, because of the presence of σ3 in (71) via � and �,
the reduction to a unitarily equivalent diagonal solution is more complicated,
but it is still possible in some circumstances. First of all, note that if
det C1 = 0 (which is only applicable to case 4, because we showed in case 3
no regular/smooth soliton solution exists if det C1 = 0), then the solution
reduces to one single sech as given in (77).

When det C1 �= 0, to reduce the solution to a unitarily equivalent diagonal
one, we have to: either (i) simultaneously unitarily diagonalize both matrices
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Figure 2. Three components (q1, q−1, and q0 from left to right) for case 3: k1 = 1 + i
and the norming constant C1 has diagonal entries c1 = 4 + i , c−1 = 1 + 3i and the
off-diagonal entries c0 = 1 − 2i .

C1 and C̃1 = ±σ3C1 σ3 in (71); or (ii) reduce both matrices to a diagonal
form by means of the same U,U T that realize the Takagi factorization.
Note that (ii) is in principle possible because both matrices are symmetric,
but one needs to find conditions under which the same U yields the
corresponding Takagi’s factorizations.

It is important to point out that whenever C1 and C̃1 are simultaneously
diagonalizable (either by a unitary similarity transformation, or by a
simultaneous Takagi factorization), the necessary and sufficient condition for
regularity, namely, Eq. (78), is invariant under the corresponding unitary
transformation. As already mentioned in Section 4, in case 3, the necessary
and sufficient condition for regularity requires c0 �= 0 (cf. Eq. (79)). As a
consequence, regular soliton solutions in case 3 cannot be reduced to a
unitarily equivalent diagonal form. This is consistent with the fact if Q(x, t)
is diagonal, in case 3, the system (2) reduces to two decoupled scalar
defocusing NLS equations, which do not admit soliton solutions. Figure 2
shows the amplitudes of a one-soliton solution in case 3.

In the remainder of this section, we will therefore investigate the reduc-
tion of polar (det C1 �= 0) soliton solutions in case 4. It is straightforward to
see that C1 and C̃1 = σ3C1σ3 have the same eigenvalues. Moreover, they are
both normal matrices if and only if their entries satisfy the constraint:

c∗
0(c1 − c−1) = co

(
c∗

1 − c∗
−1

)
.

Finally, C1 and C̃1 are simultaneously unitarily diagonalizable if and only if
they are normal matrices and they commute, and it can be easily verified
that a necessary and sufficient condition for this to happen is that either
c0 = 0 (which is trivial, because it means that both matrices are already in
diagonal form), or c1 = c−1. In this latter case, the eigenvalues of C1 and C̃1

are c1 ± c0, but the corresponding eigenvectors are switched; in other words,
one has

C1 = U †�U , C̃†
1 = U †�̃†U , (92)

with diagonal matrices � = diag(c1 + c0, c1 − c0) and �̃ = σ1�σ1 ≡
diag(c1 − c0, c1 + c0).
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If the norming constant has c1 = c−1 and det C1 �= 0, then c2
1 �= c2

0, i.e.,
c1 �= ±c0. Moreover, the necessary and sufficient condition for regularity in
this case requires |c0| < |c1| (cf. (83), or equivalently, (84)).

The corresponding solution in (71) is unitarily equivalent to a diagonal
solution like (89), with two shifted sech-like solitons of the form (91) in
each of the diagonal components. One important difference with respect
to case 2, however, is that x j in this case is not necessarily real, because
the norming constants of the equivalent scalar equation in this case are
given by the entries of �̃†�, i.e., γ±1γ̃

∗
±1 = |c1|2 − |c0|2 ± 2i Im(c0c∗

1), and
2ηx±1 = ln[

√
γ±1γ̃

∗
±1/(2η)]. Explicitly, one has Q(x, t) = U † Q̃(x, t) U with

Q̃(x, t) = diag(q̃sech,1(x, t), q̃sech,−1(x, t)) and

q̃sech,±1(x, t) = −2iη
√
γ̃ ∗

±1/γ±1 sech[2η(x + 4ξ t − x±1)] e−2i[ξ x+2(ξ 2−η2)t]

≡ −2iη e−2i[ξ x+2(ξ 2−η2)t]

√
γ̃ ∗

±1/γ±1

cosh[2η(x + 4ξ t − x0)] cosχ ∓ i sinh[2η(x + 4ξ t − x0)] sinχ
,

with 2ηx0 = ln[
√|γ±1γ̃

∗
±1|/(2η)] and

χ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
tan−1 2 Im

(
c0c∗

1

)
|c1|2 − |c0|2 if Im

(
c0c∗

1

) ≥ 0 ,

−1

2
tan−1 2 Im

(
c0c∗

1

)
|c1|2 − |c0|2 if Im(c0c∗

1) ≤ 0 .

(93)

Here, we have taken into account that the regularity condition requires
|c1|2 − |c0|2 > 0.] It is also worth noticing that

|q̃sech,±1(x, t)|2 = 4η2
∣∣c2

1 − c2
0

∣∣ /|c1 ± c0|2
cosh2[2η(x + 4ξ t − x0)] − sin2 χ

,

and that the solution is always regular (sinχ �= ±1) whenever the norming
constant C1 satisfies the regularity condition (83), i.e., if |c1| > |c0|.

Figure 3 shows the amplitudes of the three components of the solution in
case 4, when for a nondiagonal norming constant in the normal case, before
(top panels) and after (bottom panels) the reduction to a unitarily equivalent
diagonal solution.

When C1 and C̃1 are not simultaneously unitarily diagonalizable (i.e., if
c0(c1 − c−1) �= 0), the only option left for reduction to a unitarily equivalent
two component solution is for C1 and C̃1 to be simultaneously Takagi
diagonalizable, i.e., to have:

C1 = U †�U ∗ , C̃1 = U †�̃U ∗

with the same unitary matrix U and diagonal matrices � = diag(γ1, γ−1)
and �̃ = diag(γ̃1, γ̃−1). Note that γ±1 and γ̃±1 are real, as they are by
construction the square roots of the real and positive eigenvalues of C†

1C1
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Figure 3. Three components (q1, q−1, and q0 from left to right) for case 4: k1 = 1 + i
and in the top panels, the norming constant C1 has the diagonal entries c1 = c−1 = 2, and
off-diagonal entries c0 = 1; in the bottom panels, the unitarily equivalent diagonal solution
with � = diag(1, 3) is plotted.

and C̃†
1C̃1, respectively. In our case, the two matrices C†

1C1 and C̃†
1C̃1 have

the same eigenvalues, which implies that the entries on � and �̃ in the
Takagi algorithm can only differ by either the signs or the ordering, or both.

To the best of our knowledge, there is no simple necessary and sufficient
condition to guarantee that two symmetric matrices are simultaneously Tak-
agi diagonalizable. Note, however, that if C1 and C̃1 are simultaneously Tak-
agi diagonalizable, the solution can be reduced to Q(x, t) = U T Q̃(x, t) U ,
where Q̃(x, t) = diag(q̃1(x, t), q̃−1(x, t)) and for j = ±1

q̃ j (x, t) = −2iη
√
γ̃ j/γ j sech[2η(x + 4ξ t − x j )] e−2i[ξ x+2(ξ 2−η2)t] , (94)

with 2ηx j = ln[
√
γ̃ jγ j/(2η)]. As mentioned above, Takagi’s algorithm re-

quires γ̃ jγ j ∈ R for both j = ±1, although, in principle, the products can be
positive or negative. This implies

ln[
√
γ̃ jγ j/(2η)] = ln[

√|γ̃ jγ j |/(2η)] + i

2
Arg (γ̃ jγ j ) ,

and the argument is either 0 (if γ̃ jγ j > 0) or π (if γ̃ jγ j < 0). (Note that we
are assuming det C1 �= 0, so γ j γ̃ j �= 0 for both j = ±1). The solutions can
then be written as

q̃ j (x, t) = −2iη

√
γ̃ j/γ j

cosh[2η(x + 4ξ t − x̃ j )] cosχ − i sinh[2η(x + 4ξ t − x̃ j )] sinχ
,

where 2ηx̃ j = ln[
√|γ̃ jγ j |/(2η)] and χ = 0 if γ̃ jγ j > 0, and χ = π/2 if

γ̃ jγ j < 0.
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As a consequence, if γ j γ̃ j < 0 for either j = 1 or j = −1, the cor-
responding solution is singular (because the denominator vanishes for all
x, t such that x + 2ξ t − x̃ j = 0), which implies that for regular one-soliton
solutions the entries of � and �̃ must have the same sign. In this case, the
solutions reduce to

q̃ j (x, t) = −2iη

√
γ̃ j/γ j

cosh[2η(x + 4ξ t − x̃ j )]
.

It is easy to check that in order for the above to be a solution of the scalar
NLS equations γ̃ j/γ j = ±1 for both j = 1 and j = −1, which then requires
γ̃ j = γ j for j = ±1. Therefore, for regular one-soliton solutions in case 4,
C1 and C̃1 are simultaneously Takagi diagonalizable if and only if �̃1 = �1,
i.e., if and only if C̃1 = C1. However, this is trivial, because it corresponds
to either c0 = 0 (in which case the solution is already in diagonal form),
or to c1 = c−1 = 0 (in which case C̃1 = −C1 and they are both normal and
commuting, so that can be simultaneously unitarily diagonalized). We then
conclude that in case 4, the one-soliton solutions corresponding to norming
constants for which c1 �= c−1 cannot in general be reduced to a unitarily
equivalent diagonal form.

6. Concluding remarks

In this work, we have developed the IST for a class of matrix NLS
equations whose reductions include two equations that have been proposed
as a model to describe hyperfine spin F = 1 spinor BECs, and two
novel equations that were recently shown to be integrable, and that have
applications in nonlinear optics and four-component fermionic condensates.

Matrix NLS systems of the form:

i Qt + Qxx + 2Q R Q = 0 , i Rt − Rxx + 2R Q R = 0 ,

where Q(x, t) is an n × m matrix and R(x, t) is an n × m matrix, have
been studied for over 40 years. Although the IST for the “unreduced” matrix
NLS systems (Q, R-systems where Q(x, t) and R(x, t) are independent
fields), and for the “canonical” reductions corresponding to cases 1 and 2
in this work (R(x, t) = ±Q†(x, t), corresponding to focusing and defocusing
matrix NLS, respectively) are well established, both with zero and nonzero
boundary conditions, this work presents several advances for those systems
as well. Specifically: (i) we have provided a rigorous definition of the
norming constants that does not require any unjustified analytic extension
of the scattering relations, clarified the role that the rank of the norming
constants plays and provided a clear spectral characterization of the corre-
sponding solutions; (ii) we have properly accounted for all the symmetries
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in the potential matrix, and obtained the corresponding symmetries in the
scattering data (reflection coefficients and norming constants). The IST and
the soliton solutions corresponding to the reductions in cases 3 and 4
(R(x, t) = ±σ3 Q(x, t) σ3) are novel, and present some interesting aspects
and additional challenges with respect to the other two cases in that one
needs to impose suitable constraints on the norming constants to guarantee
that the soliton solutions are smooth for all (x, t) ∈ R.

We have also studied the one-soliton solutions and showed that: (i) in
case 2, all solutions are always unitarily equivalent to a superposition of two
oppositely polarized displaced solitons of the focusing scalar NLS equation,
up to a rotation of the quantization axes that is provided by the unitary
transformation; (ii) in case 3, all regular solutions are irreducible, in the
sense that they are not unitarily equivalent to solutions in diagonal form;
(iii) in case 4, some solutions (the ones obtained when the associated
norming constant is a normal symmetric matrix with the same diagonal
entries) are reducible (unitarily equivalent to a diagonal solution), while
others are irreducible. We note that even in the reducible case, the solutions
are slightly different from the ones in case 2. Further analysis of the soliton
solutions, to include double pole solitons and multisoliton interactions, is left
for future investigation.

As far as the applications are concerned, it is worth investigating the
equations corresponding to cases 3 and 4 in the symmetric case in the
framework of multicolor optical spatiotemporal solitary waves created by
interaction of light at a central frequency with two sideband waves both
through cross-phase modulation and parametric four-wave mixing of oppo-
site signs. On the other hand, the four-component spinor system could have
applications to the recently discovered phenomenon of superconductivity in
bilayer graphene [45]. The mechanism of superconductivity in this context
is yet to be fully understood, and it could be originating from bound states
(singlet/triplet) of four-component solitons.

Acknowledgments

BP and AKO gratefully acknowledge support for this work from the Na-
tional Science Foundation under grant DMS-1614601. CvdM acknowledges
support from INdAM-GNFM. BP also wishes to thank G. Biondini for
insightful discussions related to this work.

Appendix A: Resolvent operator and spectrum

In this section, we prove that the discrete eigenvalues k ∈ C
+ coincide with

the poles of a−1(k) in C
+, and those in C

− with the poles of ā−1(k) in
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C
−. This requires computing the resolvent operator of the AKNS differential

operator. As an ancillary result, the domain of the AKNS differential
operator will coincide with the range of the resolvent operator.

Given F ∈ L2(R)4×1, let us find u ∈ L2(R)4×1 such that

ku − iσ 3(I4∂x − Q)u = F.

When such u cannot be found for each such F in a unique way, then k is
said to belong to the spectrum of the linear operator iσ 3(I4∂x − Q). We can
write the preceding equation in the form

∂x u = (−ikσ 3 + Q)u + iσ 3 F , (A1)

where, for each t ∈ R, the entries of Q(·, t) belong to L1(R). We assume
that F(x) does not depend on either t ∈ R or k ∈ C. For k ∈ C

+, we write

u(x, t, k) = P(x, t, k)v(x, t, k) ,

where P(x, t, k) is defined in terms of the Jost eigenfunctions analytic in C
+

via (47). Then, Px = (−ikσ 3 + Q(x))P implies that

vx = i P−1σ 3 F . (A2)

Since from (48)

P−1(x, t, k) = A−1(k)P̄†(x, t, k∗)�−1

for any k ∈ C
+ such that det a(k) �= 0, we obtain

vup(x, t, k) = −i

∫ ∞

x
dy a−1(k)�−1 ψ̄†(y, t, k∗)�−1σ 3 F(y) ,

vdn(x, t, k) = −i

∫ x

−∞
dy c−1(k)� φ̄†(y, t, k∗)�−1σ 3 F(y) ,

where we have the integrability of ψ̄†(y, t, k∗) for y ≥ x , and of φ̄†(y, t, k∗)
for y ≤ x . Consequently, for any k ∈ C

+ such that if det a(k) = det c(k) �= 0,
then

u(x, t, k) =
∫ ∞

−∞
dy G(x, y; t, k)F(y), (A3)

where

G(x, y; t, k) =
{−iφ(x, t, k) a−1(k)�−1ψ̄†(y, t, k∗)�−1σ 3, y > x ,
−iψ(x, t, k) c−1(k)�φ̄†(y, t, k∗)�−1σ 3, y < x .

(A4)

In the same way, we prove that for any k ∈ C
− such that det ā(k) =

det c̄(k) �= 0, then (A3) holds with

G(x, y; t, k) =
{

i ψ̄(x, t, k) c̄−1(k)�−1φ†(x, t, k∗)�−1σ 3, y < x ,
i φ̄(x, t, k) ā−1(k)�ψ†(x, t, k∗)�−1σ 3, y > x .

(A5)
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Using (48), (A4), and (A5), we get

G(x, x+; t, k) − G(x, x−; t, k) =
{

iσ 3 k ∈ C
+ ,

−iσ 3 k ∈ C
−. (A6)

Thus, the Green function G(x, y; t, k) has a jump discontinuity on the
diagonal y = x . Equations (A3) and (A4) imply, for k ∈ R, the existence
of F ∈ L2(R)4×1 such that the integral (A3) is not an L2 vector function
of x ∈ R. In fact, the integral might not even exist. Thus, the spectrum
contains the real k axis plus the zeros of a(k) in C

+ and those of ā(k) in
C

−. (The discussion after Eqs. (52) actually shows that all of these zeros
belong to the spectrum.)

The spectral projection of the AKNS operator iσ 3(I4∂x − Q) at the
eigenvalue kn is an integral operator whose integral kernel �n(x, y; t) is the
residue of G(x, y; t, k) at k = kn . If kn is a simple pole in C

+, we have

�n(x, y; t) =
{−iφ(x, t, kn)τn�

−1ψ̄†(y, t, k∗
n )�−1σ 3, y > x,

−iψ(x, t, kn)τ̆n� φ̄
†(y, t, k∗

n )�−1σ 3, y < x,

where τn and τ̆n are the residues of a−1(k) and c−1(k) at k = kn . If km is a
double pole in C

+, we have

�m(x, y; t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−i
2∑

j=1

j−1∑
l=0

φm,l(x, t)τm, j�
−1ψ̄

†
n, j−l−1(y, t)�−1σ 3, y > x,

−i
2∑

j=1

j−1∑
l=0

ψm,l(x, t)τ̆m, j� φ̄
†
n, j−l−1(y, t)�−1σ 3, y < x,

where

φ(x, t, k) = φm,0(x, t) + (k − km)φm,1(x, t) + O((k − km)2),

ψ(x, t, k) = ψm,0(x, t) + (k − km)ψm,1(x, t) + O((k − km)2).

Here (k − km)−1τm,1 + (k − km)−1τm,2 and (k − km)−1τ̆m,1 + (k − km)−1τ̆m,2

are the principal parts of a−1(k) and c−1(k) at k = km .
Similar expressions hold for higher order poles and for eigenvalues

in C
−.

Appendix B: Double pole Riemann–Hilbert problem

In this appendix, we generalize the formulation of the inverse problem
as an RHP in Section 4 to the case where the matrix of meromorphic
eigenfunctions has double poles.

Let τn and τ̄n denote the residues of a−1(k) and ā−1(k) at the simple
poles kn ∈ C

+ and k∗
n ∈ C

−. Then,

φ(x, t, kn)τn = ψ(x, t, kn)Cn, (B1a)
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φ̄
(
x, t, k∗

n

)
τ̄n = ψ̄

(
x, t, k∗

n

)
C̄n, (B1b)

where Cn and C̄n are called norming constants.
Equation (B1a) can be phrased in the following way: There exists

a unique 2 × 2 matrix function C(k) meromorphic in a neighborhood
of k = kn , and a unique 2 × 2 matrix function C̄(k) meromorphic in a
neighborhood of k = k∗

n such that

φ(x, t, k)a−1(k) = ψ(x, t, k)C(k) + O(1), k → kn, (B2a)

φ̄(x, t, k)ā−1(k) = ψ̄(x, t, k)C̄(k) + O(1), k → k∗
n . (B2b)

Then, C(k) has a simple pole at k = kn and C̄(k) has a simple pole
in k = k∗

n and their residues coincide with the norming constants Cn

and C̄n .
The above results can be generalized to the case in which a(k) and ā−1(k)

have a double pole:

a−1(k) = τn,1

k − kn
+ τn,2

(k − kn)2
+ O(1) , k → kn,

ā−1(k) = τ̄n,1

k − k∗
n

+ τ̄n,2(
k − k∗

n

)2
+ O(1), k → k∗

n ,

with τn,2, τ̄n,2 �= 02×2. We now consider (B2), where

C(k) = Cn,1

k − kn
+ Cn,2

(k − kn)2
+ O(1), k → kn ,

C̄(k) = C̄n,1

k − k∗
n

+ C̄n,2(
k − k∗

n

)2
+ O(1), k → k∗

n ,

with two sets of norming constants, Cn,1,Cn,2 and C̄n,1, C̄n,2 for each of the
discrete eigenvalues kn and k∗

n .
Let us now write down the Taylor series expansions

φ(x, t, k) =
∞∑

r=0

(k − kn)rφn,r (x, t) , ψ(x, t, k) =
∞∑

r=0

(k − kn)rψn,r (x, t) ,

φ̄(x, t, k) =
∞∑

r=0

(
k − k∗

n

)r
φ̄n,r (x, t) , ψ̄(x, t, k) =

∞∑
r=0

,
(
k − k∗

n

)r
ψ̄n,r (x, t) ,

valid if |k − kn| < Im kn and if |k − k∗
n | < Im kn , respectively. Similarly,
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M(x, t, k) =
∞∑

r=0

(k − kn)r Mn,r (x, t), N (x, t, k) =
∞∑

r=0

(k − kn)r Nn,r (x, t),

M̄(x, t, k) =
∞∑

r=0

(
k − k∗

n

)r
M̄n,r (x, t), N̄ (x, t, k) =

∞∑
r=0

(
k − k∗

n

)r
N̄n,r (x, t),

valid if |k − kn| < Im kn and if |k − k∗
n | < Im kn , respectively. We actually

only need their coefficients for r = 0, 1.
Now consider the jump conditions (18), written as

N̄ (x, t, k) = M(x, t, k)a−1(k) − e2iθ(x,t,k) N (x, t, k)ρ(k) , (B3a)

N (x, t, k) = M̄(x, t, k)ā−1(k) − e−2iθ(x,t,k) N̄ (x, t, k)ρ̄(k) . (B3b)

Assuming that, for each (x, t) ∈ R
2, each term belongs to

E4×1 = E4×1
+ ⊕ E− ⊕ C

4,

where E is a suitable complex Banach space of functions of k ∈ R

vanishing as k → ±∞ and E± are those functions in E that are analytic in
k ∈ C

±, we can define the (bounded) projection �± of E0 = E+ ⊕ E− onto
E± by the Plemelj formulas

(�± f )(k) = ±1

2π i

∫ ∞

−∞
dξ

f (ξ )

ξ − (k ± i0+)
. (B4)

As E we can take the constants plus the Fourier transforms of functions
in L1(R), the so-called Wiener algebra. If the potential Q(·, t) has only L1

entries and there are no spectral singularities, we are always in this situation.
Note that the Schwarz reflection principle also implies

(�± f ∗)(k) = [(�∓ f )(k∗)]∗ . (B5)

The coupled singular integral equations for the inverse problem are
obtained by applying �− to (B3a) and �+ to (B3b). If a−1(k) has only
simple poles, we arrive at (66), where the definitions of the norming
constants are used to replace the residues by norming constants and to
get rid of the functions M(x, t, k) and M̄(x, t, k) in favor of the functions
N (x, t, k) and N̄ (x, t, k). In fact, using that Ma−1 = eiθφa−1 = eiθψC =
e2iθNC and M̄ā−1 = e−iθ φ̄ā−1 = e−iθ ψ̄C̄ = e−2iθ N̄ C̄ , we obtain

�−
[
N̄ (x, t, k) + e2iθ(x,t,k) N (x, t, k)ρ(k)

]
=�−

[
e2iθ(x,t,k) N (x, t, k)C(k)+O(1)

]=�−
[
e2iθ(x,t,k) N (x, t, k)C(k)

]
,

(B6a)

�+
[
N (x, t, k) + e−2iθ(x,t,k) N̄ (x, t, k)ρ̄(k)

]
=�+

[
e−2iθ(x,t,k)N̄ (x, t, k)C̄(k)+O(1)

]=�+
[
e−2iθ(x,t,k)N̄ (x, t, k)C̄(k)

]
.

(B6b)
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For a finite number of simple and double poles, one has

C(k) =
N∑

n=1

Cn

k − kn
+

M∑
m=1

[
Cm,1

k − km
+ Cm,2

(k − km)2

]
+ �(k), (B7a)

where �(k) is continuous in k ∈ C
+ ∪ R, analytic in k ∈ C

+, and has a limit
as k → ∞ from within C

+ ∪ R, and

C̄(k) =
N∑

n=1

C̄n

k − k∗
n

+
M∑

m=1

[
C̄m,1

k − k∗
m

+ C̄m,2(
k − k∗

m

)2

]
+ �̄(k), (B7b)

where �̄(k) is continuous in k ∈ C
− ∪ R, analytic in k ∈ C

−, and has a limit
as k → ∞ from within C

− ∪ R.
Using

e2iθ(x+2kt) = e2iθ(x,t,kn)
(
1 + 2i(k − kn)[x + 4knt] + O((k − kn)2)

)
,

e−2iθ(x+2kt) = e−2iθ(x,t,k∗
n)
(

1 − 2i
(
k − k∗

n

) [
x + 4k∗

n t
]+ O

((
k − k∗

n

)2
))

,

and denoting Nm,0(x, t) = N (x, t, km) and Nm,1(x, t) = (∂N/∂k)(x, t, km),
we compute

e2iθ(x,t,k) N (x, t, k)C(k) =
N∑

n=1

[
e2iθ(x,t,k) N (x, t, k) − e2iθ(x,t,kn ) Nn,0(x, t)

k − kn
Cn

+ e2iθ(x,t,kn ) Nn,0(x, t)

k − kn
Cn

]
+

M∑
m=1

[
e2iθ(x,t,k) N (x, t, k) − e2iθ(x,t,km ) Nm,0(x, t)

k − kn
Cm,1

+
e2iθ(x,t,k) N (x, t, k) − e2iθ(x,t,km ) Nm,0(x, t) − (k − km) ∂

∂k

[
e2iθ(x,t,k) N (x, t, k)

]
k=km

(k − km)2

× Cm,2 + e2iθ(x,t,km ) Nm,0(x, t)Cm,1

k − km
+ e2iθ(x,t,km ) Nm,1(x, t)Cm,2

(k − km)2

+ 2i(x + 4kmt)e2iθ(x,t,km ) Nm,0(x, t)Cm,2

k − km

]
+ e2iθ(x,t,k) N (x, t, k)�(k).

Applying �− to the above expression, we get

�−
[
e2iθ (x,t,k) N (x, t, k)C(k)

] =
N∑

n=1

e2iθ (x,t,kn ) Nn,0(x, t)

k − kn
Cn

+
M∑

m=1

[
e2iθ (x,t,km ) Nm,0(x, t)Cm,1

k − km
+ e2iθ (x,t,km ) Nm,1(x, t)Cm,2

(k − km)2

+ 2i(x + 4kmt)e2iθ (x,t,km ) Nm,0(x, t)Cm,2

k − km

]
.
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In the same way, we get

�+
[
e−2iθ(x,t,k) N̄ (x, t, k)C̄(k)

] =
N∑

n=1

e−2iθ(x,t,kn) N̄n,0(x, t)

k − k∗
n

C̄n

+
M∑

m=1

[
e−2iθ(x,t,km ) N̄m,0(x, t)C̄m,1

k − k∗
m

+e−2iθ(x,t,km ) N̄m,1(x, t)C̄m,2

(k − k∗
m)2

− 2i(x + 4k∗
mt)e−2iθ(x,t,km ) N̄m,0(x, t)C̄m,2

k − k∗
m

]
.

Using that

�−
[
N̄ (x, t, k)

] = N̄ (x, t, k) −
(

I2

02×2

)
, �+[N (x, t, k)] = N (x, t, k) −

(
02×2

I2

)
,

as well as (B6a) and (B6b), we obtain the generalizations of the singular
integral equations (66) that include double poles:

N̄ (x, t, k) =
(

I2

02×2

)
+

N∑
n=1

e2iθ(x,t,kn ) Nn,0(x, t)

k − kn
Cn

+
M∑

m=1

[
e2iθ(x,t,km ) Nm,0(x, t)Cm,1

k − km
+ e2iθ(x,t,km ) Nm,1(x, t)Cm,2

(k − km)2

+ 2i(x + 4kmt)e2iθ(x,t,km ) Nm,0(x, t)Cm,2

k − km

]
+ 1

2π i

∫ ∞

−∞
dξ

e2iθ(x,t,ξ ) N (x, t, ξ )ρ(ξ )

ξ − (k − i0+)
,

(B8a)

N (x, t, k) =
(

02×2

I2

)
+

N∑
n=1

e−2iθ(x,t,k∗
n) N̄n,0(x, t)

k − k∗
n

C̄n

+
M∑

m=1

[
e−2iθ(x,t,k∗

m ) N̄m,0(x, t)C̄m,1

k − k∗
m

+ e−2iθ(x,t,k∗
m ) N̄m,1(x, t)C̄m,2

(k − k∗
m)2

− 2i(x + 4k∗
mt)e−2iθ(x,t,k∗

m ) N̄m,0(x, t)C̄m2

k − k∗
m

]
− 1

2π i

∫ ∞

−∞
dξ

e−2iθ(x,t,ξ ) N̄ (x, t, ξ )ρ̄(ξ )

ξ − (k + i0+)
.

(B8b)

To “close” the system of equations, one needs to evaluate (B8a) at k = k∗
n

and k = k∗
m and the k-derivative of (B8a) at k = k∗

m , and to evaluate (B8b)
at k = kn and k = km and the k-derivative of (B8b) at k = km .

The potential is then reconstructed from the solution of the above system
by simply evaluating the large k asymptotic behavior of the equations (B8)
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and comparing it with (60), yielding:

Q(x, t) = 2i
N∑

n=1

e−2iθ(x,t,k∗
n) N̄ up

n,0(x, t) C̄n

+ 2i
M∑

m=1

e−2iθ(x,t,k∗
m) N̄ up

m,0(x, t)
[
C̄m,1 − 2i

(
x + 4k∗

mt
)

C̄m,2
]

+ 1

π

∫ ∞

−∞
e−2iθ(x,t,ξ ) N̄ up(x, t, ξ ) ρ̄(ξ ) dξ , (B9a)

R(x, t) = −2i
N∑

n=1

e2iθ(x,t,kn) N dn
n,0(x, t) Cn

− 2i
M∑

m=1

e2iθ(x,t,km ) N dn
m,0(x, t)

[
Cm,1 + 2i(x + 4kmt)Cm,2

]

+ 1

π

∫ ∞

−∞
e2iθ(x,t,ξ ) N dn(x, t, ξ )ρ(ξ ) dξ . (B9b)
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41. P. SZAŃKOWSKI, M. TRIPPENBACH, E. INFELD, and G. ROWLANDS, Oscillating solitons in
a three-component Bose-Einstein condensate, Phys. Rev. Lett. 105:125302 (2010).
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UNIVERSITÀ DI CAGLIARI

(Received March 15, 2018)


