
Journal of Geometry and Physics 127 (2018) 84–100

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/geomphys

Nonlocal integrable PDEs from hierarchies of symmetry laws:
The example of Pohlmeyer–Lund–Regge equation and its
reflectionless potential solutions
F. Demontis a, G. Ortenzi b,*, C. van der Mee a

a Dip. Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09121 Cagliari, Italy
b Dip. di Matematica Pura e Applicazioni, Università di Milano Bicocca, via Cozzi 53, 20125 Milano, Italy

a r t i c l e i n f o

Article history:
Received 12 April 2017
Received in revised form 18 December 2017
Accepted 22 January 2018
Available online 7 February 2018

Keywords:
bi-Hamiltonian pencil
Integrable systems
Hierarchies of commuting flows
Nonlocal PDEs
Inverse scattering method

a b s t r a c t

By following the ideas presented by Fukumoto and Miyajima in Fukumoto and Miyajima
(1996) we derive a generalized method for constructing integrable nonlocal equations
starting from any bi-Hamiltonian hierarchy supplied with a recursion operator. This con-
struction provides the right framework for the application of the full machinery of the
inverse scattering transform. We pay attention to the Pohlmeyer–Lund–Regge equation
coming from the nonlinear Schrödinger hierarchy and construct the formula for the
reflectionless potential solutionswhich are generalizations ofmulti-solitons. Some explicit
examples are discussed.
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1. Introduction

The hierarchies of bi-Hamiltonian PDEs are sets of commuting evolution equations which can be constructed recur-
sively [1]. Their commutation implies that such flows can be summed preserving the integrability property. Historically,
the relevance of commuting flow summations in hydrodynamics goes back to the paper by Fukumoto and Miyazaki written
in 1991 [2], where the authors connect the vortex motion in a three dimensional Euler fluid to the Hirota equation, which
is the sum of the nonlinear Schrödinger (NLS) and complex modified Korteweg–de Vries Hamiltonian flows. Along the same
line of research, in 1996 Fukumoto and Miyajima [3] found an interesting connection between the NLS hierarchy and the
Pohlmeyer-Lund-Regge (PLR) equation: the PLR equation can be obtained as a suitable infinite sum of commuting flows
in the NLS hierarchy. This property, de facto, is a Hamiltonian proof of the integrability of the PLR equation. In this paper
we generalize such construction to any bi-Hamiltonian hierarchy for which can be defined a recursion operator formally
inverting one of the Poisson bi-vectors (see e.g. ωN-manifolds in [4]). The result of these infinite summation methods is
generically a nonlocal PDE. This construction could appear as an academic exercise but it is an explicit way to construct
nonlocal integrable systemswhose interest is growing. Moreover, in the inverse scattering transform (IST) framework, it can
be used to explicitly find reflectionless solutions. We concretely illustrate the method in the case of soliton-like solutions of
the PLR equation.

The PLR equation in a uniform static external field has been proposed in 1976 by Lund and Regge [5] as a possible model
describing both motion of extended relativistic strings and (in a particular limit) nonrelativistic vortices in superfluids. It is
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explicitly given by

Xtt − Xxx = −2Xt × Xx ,

Xt
2
+ Xx

2
= 1 ,

Xt · Xx = 0,

(1.1)

where X ∈ R3 is the vector of coordinates of the string. In the same year Pohlmeyer [6] proposed the same equation in
the framework of Hamiltonian systems as an integrable generalization of the sine-Gordon equation. The ubiquity of the
PLR equations as a model of very different phenomena involves also plasma physics: in a relatively recent paper [7], Schief
proved a relation between a particular constrained version of the PLR equation and magnetohydrodynamics.

An interesting mathematical property of the PLR equation (see e.g. [3]) is that, through the Hasimoto map q =
K exp(

∫ x
τ dx), K and τ being the curvature and torsion of the curve X, respectively, Eq. (1.1) becomes

iqt − εqxt + 2εkq
∫ x

|q|2t dx = −qxx + 2k|q|2q . (1.2)

This form of the PLR equation, used throughout the paper, can be viewed as a nonlocal generalization of the NLS equation.
Another equation which shares with PLR a similar property, i.e. to be a nonlocal and integrable generalization of NLS, is the
Landau–Lifshitz equation [8].

In our paper we derive an explicit multisoliton solution formula for the PLR equation (1.2). In fact, to the best of our
knowledge only few examples of soliton (see e.g. [9]) or shape invariant [3] solutions have been obtained for Eq. (1.2) and
typically in implicit form.

To get such results we generalize the procedure used in [10] to solve the Hirota equation. This procedure combines the
so-calledmatrix triplet method (which is partially based on the IST; see Section 3 for more details) with the observation that
if Vε denotes the time evolution matrix for the summed flows of the NLS hierarchy, we have

Vε =
∞∑
n=1

εn−1Vn, (1.3)

where Vn is the evolution matrix of the nth flow of the hierarchy and ε is a small positive parameter. For the class of
reflectionless solutions we prove that asymptotically the series (1.3) is absolutely convergent. Moreover, even though the
problem of establishing the absolute convergence of the series (1.3) has so far remained unanswered for the class of non
reflectionless solutions, it is interesting to observe that the summations truncated after the first N flows give an interesting
indication of the qualitative features of the flow summations on a hierarchy and an approximation of the PLR solutions. In
fact, as suggested in a purely physical context by the study of the axial velocity in vortex filaments [10], the main effect is
the variation of the typical speed of the solution for fixed amplitudes.

To obtain an explicit manageable formula we use the so-called matrix triplet method: this method is based on the
observation that the integral kernel of the Marchenko integral equation has separated variables if the reflection coefficient
vanishes identically. In that case there exists a triplet of matrices

(
A, B, C

)
, of sizes p × p, p × 1, and 1 × p, such that the

Marchenko kernel is given by

Ωl(x+ y, t) = CetHe−(x+y)AB,

where the p×pmatrices A andH commute and A has only eigenvalues with positive real part. UsuallyH is a simple function
of A. Solving theMarchenko equation by elementarymeans, we arrive at the solution of the initial-value problem in terms of
the matrix triplet

(
A, B, C

)
and the matrix H describing the time dependence. The expression obtained can then be written

in terms of elementary functions using computer algebra. The matrix triplet method has been applied successfully to the
KdV equation [11], the focusing NLS equation [12–16], the sine-Gordon equation [17,18], the modified Korteweg–de Vries
(mKdV) equation [19], the Hirota equation [10], and the Heisenberg ferromagnetic equation [20]. In this article we show
how to get a solution of the Marchenko equation associated to the PLR equation (1.2).

2. Bi-Hamiltonian structures and nonlocal integrable equations

In this section we present a generalization of the method used in [3] for the construction of the PLR equation. Using
the classical bi-Hamiltonian recursion relations, it is possible to construct a nonlocal integrable equation associated to the
hierarchy by assuming the existence of a recursion operator. In this framework this requirement is always fulfilledwhen one
of the two Poisson structures is the inverse of a symplectic structure. In infinite dimensional spaces the notion of invertibility
of a tensor boils down to a suitable choice of the function space in which the theory is formulated. Actually, the Poisson
tensors are differential operators acting on the variation of Hamiltonian functionals. The study of this problem, also in well-
known cases such as constant structures, goes beyond the scope of this paper: we refer the reader to the excellent classical
paper by Maltsev and Novikov [21], where the NLS case is one of the many cases considered.



86 F. Demontis et al. / Journal of Geometry and Physics 127 (2018) 84–100

We recall that a bi-Hamiltonian differential equation is an evolution equation which is Hamiltonian with respect to two
different Poisson structures Pi and Hamiltonian functionals Hi such that

qt = P0δH1 = P1δH0 , (2.1)

where q = q(x, t) is a function possibly vector-valued. By δH we mean the variation of the functional H .1 The apparently
strange choice of the indices will be clarified in a moment. Moreover, the Poisson structures have to satisfy another really
strict property, called compatibility: the sum of the two structures must be a Poisson structure itself [1]. There is a standard
way, called Lennard–Magri recursion, to generate an infinite number of commuting flows [1].

Let us consider a bi-Hamiltonian hierarchy of Hamiltonian flows

qtn = Wn , n ≥ 1, (2.2)

such that

Wn = P1δHn−1 = P0δHn. (2.3)

As one can see from this construction, the apparently strange scaling in the indices of the Hamiltonians in (2.1) is due to the
natural gradation present in the full hierarchy. If P0 is formally invertible, the recursion operator acting on the flows as

Wn = RWn−1 (2.4)

is given byR = P1P−10 . It iswell-known that for theGelfand–Dickii equation and theNLS equation (see e.g. [21]) the recursion
operator is not local, even though every equation of the hierarchy is. In general, it is possible to summarize the full hierarchy
in the following way (see for the Langer–Perline hierarchy [23]):

W τ
≡

+∞∑
n=0

εnWn = W0 +

+∞∑
n=1

εnRWn−1 = W0 + εR
+∞∑
n=1

εn−1Wn−1

= W0 + εR
+∞∑
n=0

εnWn = W0 + εRW τ . (2.5)

Therefore, the flowW τ can be defined by

(1− εP1P−10 )W τ
= W0. (2.6)

The summed hierarchy can be seen as described by the nonlocal tensor given by

I = 1− εP1P−10 , (2.7)

acting on the first flow of the hierarchy. In general, it is possible, for every hierarchy having a recursion operator, to construct
a ‘‘dual’’ nonlocal hierarchy whose flows are given by

W τ
N ≡

+∞∑
n=N

εnWn = WN + εRW τ
N (2.8)

or

(1− εR)W τ
N = WN . (2.9)

We will call seed the flow WN used for the construction of the dual non-local flowW τ
N .

Eq. (2.6) is, by construction, non-evolutionary and, in general, non-local. However, a formal Hamiltonian structure can
be recovered using the summation rule (2.5). Actually, it is obvious that any equation obtained by means of the previous
construction is still bi-Hamiltonian with respect the same structures P0 and P1 and Hamiltonians given by the formal infinite
sum of all the Hamiltonians of the hierarchy. For the first structure the related Hamiltonian Hτ1 is obtained from (2.5) as

W τ
≡

+∞∑
n=0

εnWn =

+∞∑
n=0

εnP0δHn = P0δ

(
+∞∑
n=0

εnHn

)
≡ P0δ Hτ1 . (2.10)

1 As standard in the infinite dimensional Hamiltonian systems, the variation symbol δ means

δ

∫
h(q, qx, qxx, . . .) dx ≡

∑
n

(−1)n∂n
∂ h

∂ (∂nq)
, ∂ =

∂

∂x
.

For the explanation of this notation we refer the interested reader to Dubrovin and Zhang’s work [22].
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Analogously, for the second structure we have

W τ
≡

+∞∑
n=0

εnWn =

+∞∑
n=1

εnP1δHn−1 = P1δ

(
+∞∑
n=1

εnHn−1

)
≡ P1δ Hτ0 . (2.11)

However, there is a second way to construct a bi-Hamiltonian structure of Eqs. (2.5) by using an infinite sum of Poisson
tensors acting on the same variations of Hamiltonians (H1 andH0) of the seed flows. Obviously, this procedure is only possible
due to the compatibility of the P0 and P1 Poisson structures. Actually, starting from

W τ
≡

+∞∑
n=0

εnWn =

+∞∑
n=0

εnRnW0 =

(
+∞∑
n=0

εnRn

)
P0δH1 = (1− εR)−1P0δH1 , (2.12)

by the compatibility condition the operator

Pτ0 = (1− εR)−1P0 (2.13)

is a formal nonlocal Poisson operator such that

W τ
= Pτ0 δH1 . (2.14)

Analogous computations can be done for the Hamiltonian H0. In general, the infinite sum of compatible Poisson tensors like
(2.13) yields a really complicated nonlocal operator whose structure is unclear. However, in some cases the nonlocality does
not blow up and the tensor summation yields a nonlocality which is of the same degree as the recursion operator. Some
explicit cases such as the KdV and Camassa–Holm equations have been studied in [24,25] and the related Pτ0 tensor is only
weakly non-local in the sense of [21]. It is an open question if such a construction is possible also for NLS.

At the end of this general discussion we stress that the weak-nonlocality notion is relevant when one studies the
Hamiltonian properties of the systembut it is not involved in the analyticmethod to find solutions. Consequently, the explicit
solutions will be found without the introduction of the nonlocality notion because, as we will see in the next section, the
proof is based on the explicit summation of the infinite time evolutions of the compatibility problems associated to the flows.

2.1. A simple example: KdV case

The KdV equation

qt = qxxx + 3qqx (2.15)

is bi-Hamiltonian with respect to the Poisson structures

P0 = ∂, P1 = ∂3 + 2q∂ + qx, (2.16)

and the respective Hamiltonians

H1 =

∫ (
q2x
2
+

q3

2

)
dx, H0 =

∫
q2

2
dx, (2.17)

such that qt = P0δH1 = P1δH0. Let us now consider the associated nonlocal system. Using the KdV equation as the seed
equation one obtains

Iqτ = qxxx + 3qqx , (2.18)

where I is the nonlocal tensor

I = 1− ε∂2 − εq− ε∂q∂−1 , (2.19)

or more explicitly

qτ − ε
(
qxxτ + 2qqτ + qx

∫
qτ dx

)
= qxxx + 3qqx. (2.20)

As described in the general discussion, it is possible to construct an integrable nonlocal evolutionary equation starting from
every hierarchy evolution qtn = Wn whose dual non-local counterpart is

Iqτn = Wn. (2.21)

The first nontrivial commuting flow in the KdV hierarchy isW0 = qx, which gives

qτ0 − ε
(
qxxτ0 + 2qqτ + qx

∫
qτ0 dx

)
= qx . (2.22)
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The KdV equation has the peculiar property that in the potential variable vx = q the equations of the hierarchy become local,
e.g. for the first two flows

vxτ0 − ε(vxxxτ0 + 2vxvxτ0 + vxxvτ0 ) = vxx ,

vxτ − ε(vxxxτ + 2vxvxτ + vxxvτ ) = vxxxx + 3vxxvx.
(2.23)

As we will see in the NLS case, the locality of the dual hierarchy is not general, and we think that it is a quite rare feature.

2.2. PLR equation and NLS hierarchy

In the remainder of this paper we confine our considerations to the PLR equation which is related to the hierarchy
of integrable evolution equations, where the NLS equation is the first and the modified Korteweg–de Vries equation is
the second equation. Fukumoto and Miyajima showed in [3] that the equation obtained by summing the Langer–Perline
hierarchy equations [23] is equivalent to the PLR equation. Here we obtain the same result by acting directly on the NLS
hierarchy which is related to the Langer–Perline hierarchy by the Hasimoto map. By using the notations adopted in the
introduction, we have [21]

P0 =
(

0 i
−i 0

)
, P1 =

(
0 ∂

∂ 0

)
− 2k

(
−q∂−1q q∂−1q∗

q∗∂−1q q∗∂−1q∗

)
.

Using the respective Hamiltonians

H1 =

∫ (
−
|qx|2

2
− k|q|4

)
dx , H0 =

∫
i
2

(
qxq∗ − qq∗x

)
dx , (2.24)

we obtain the standard NLS equation

qt = iqxx − 2ik|q|2q , q∗t = −iq
∗

xx + 2ik|q|2q∗ . (2.25)

Then the recursion operator is given by

R = P1P0−1 = i
(
−∂ 0
0 ∂

)
+ 2ik

(
q∂−1q∗ q∂−1q
−q∗∂−1q∗ −q∗∂−1q

)
and the corresponding Eq. (2.6) is

iqτ + qxx − 2k|q|2q− ε
(
qxτ − 2kq

∫ x

(|q|2)τdx
)
= 0 , (2.26)

using as the seed equation the NLS equation itself. Eq. (2.26) is exactly the PLR equation [3]. Using a flow commuting with
NLS as the seed equation, one can obtain a flow commuting with PLR by construction. For example, using the momentum
conservation as the seed equation one obtains the flow

iqσ + qx − ε
(
qxσ + 2kq

∫ x

(|q|2)σdx
)
= 0 (2.27)

which commutes with PLR.

3. Inverse scattering transform for PLR equation

As already stressed in the introduction, to the best of our knowledge there are only a few explicit solutions of the
PLR equation. To construct the general multisoliton solution formula for the PLR equation (2.26), we need to recall some
preliminaries on the IST, because the procedure used to establish our main results is essentially based on it. We have
alreadymentioned in the introduction that the IST consists of three parts: the direct scattering problem, the evolution of the
scattering data, and the inverse scattering problem. In this section we are going to give more details on each of these parts.

The bi-Hamiltonian structure associated to the NLS equation is closely related to the structure of the compatibility
problem useful for the inverse scattering problem.

It is suitable to consider the AKNS pair (see [26]) corresponding to each equation of the hierarchy. In thiswaywe construct
a hierarchy of compatibility problems of the following form:

ψx = Uψ, ψt = Vnψ, (3.1)

where U = −iλσ3 + Q , q is the so-called potential which is assumed to belong to L1(R) ∩ L2(R) and to satisfy qx ∈ L1(R), λ
is the spectral parameter, Q =

(
0 q
−q∗ 0

)
, σ3 =

(
1 0
0 −1

)
is the third Pauli matrix, and Vn is a matrix function depending on x, t ,

and λ (it is important to stress that the matrix Vn depends explicitly on the potential q and its derivative with respect to x
which are functions of x and t). Then Vn gives the time evolution matrix for the nth flow of the hierarchy.
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The compatibility condition ψxt = ψtx leads to the zero-curvature representation

Ut − (Vn)x + UVn − VnU = 02×2

of the nth equation of the hierarchy. We remark that U remains the same for all hierarchy equations, whereas Vn is the time
evolution for the nth (fixed) flow of the hierarchy. For each fixed n, from the NLS hierarchy we get an integrable equation in
the sense that we know what the AKNS pair [26] associated to the nth flux is. In fact, in [26] it is explained how to construct
the time evolution matrix Vn when the matrix U is given. Then for each fixed n the AKNS pair generating the nth flow of the
hierarchy is available. It is well-known [26–28] that when an AKNS pair is associated to a given nonlinear PDE, the initial
value problem of this equation can be solved by applying the Inverse Scattering Transform (IST) and many authors called
the PDEs solvable by applying the IST integrable [26,28–32].

We observe that Vn has the following form:

Vn = −2niλn+1σ3 + (. . .), (3.2)

where the expression in (. . .) is a finite sum of terms each of which contains the potential and/or its derivatives. In particular,
as x → ±∞ (for each fixed t), we have Vn → −2niλn+1σ3. It will be proved in Appendix that the time evolution of the
scattering data is only determined by the asymptotic behavior of the evolution operator Vn. We note that for n = 1 and
n = 2 the asymptotic behavior of Vn is given by −2iλ2σ3 and −4iλ3σ3, respectively, which coincides with the asymptotic
behavior of the NLS and mKdV time evolution operators [10].

In [10] we have constructed the reflectionless solutions of the Hirota equation by observing that

(1) the Hirota equation can be viewed as a linear combination of the NLS and mKdV equations;
(2) the kernel of the Marchenko integral equation associated to the Hirota equation can be obtained by a (suitable) linear

combination of the kernels of the Marchenko equations associated with the NLS and mKdV equations.

Since Eq. (2.26) is obtained by summing the fluxes of the NLS hierarchy, we can obtain the reflectionless solutions of this
equation by applying the ideas used in [10]. Here the difference lies in the fact that we have to sum an infinite number of
equations/kernels which corresponds to considering a (formal) series. In particular, the time evolution operator associated
to the PLR operator is given by

Vε =
∞∑
n=1

εn−1Vn,

where Vn satisfy (3.2). The natural thing to do is to write the matrix V in the AKNS pair of the PLR equation as

Vε =
∞∑
n=1

εn−1(−2niλn+1σ3)+ (. . .) =
−2iλ2

1− ελ
σ3 + (. . .),

where (. . .) indicates the part vanishing as x → ±∞. This requires interchanging the summation and the x → ±∞ limits
in V , as well as justifying the convergence of the above geometric series by assuming that ε|λ| < 1. So far we have not been
able to justify either fact. However, when restricting ourselves to the reflectionless case and seeking soliton solutions, the
use of matrix triplets (A, B, C) will allow us to justify these two facts. In fact, it will be sufficient to take the positive ε to be
smaller than the reciprocal of the spectral radius of the matrix A [cf. (4.3) ].

Let us explain our idea in a more detailed manner. Since the first of Eqs. (3.1) holds for each equation of the hierarchy,
i.e., depends only on the hierarchy, the PLR equation is associated to the Zakharov–Shabat (ZS) system [27]. It is well-known
that the ZS system is given by (3.1). If we want to apply the IST to the PLR equation, we have to associate it to the ZS system
(corresponding to the first of Eq. (3.1)) by developing the direct and inverse scattering theory for this system. There is a vast
literature on the ZS system, so we can skip the proofs of the statements reported below by referring the reader to [27,30,32]
for details. We present the direct and inverse scattering problems of the ZS system and, for the sake of simplicity, we omit
the subscripts n and ε (we recall that each flux of the AKNS hierarchy is associated to the ZS system).

Direct Scattering Problem. The direct scattering problem consists of constructing the so-called scatteringmatrix S(λ) (or
S̆(λ)). As it will be explained better later in this section, the matrix S(λ) contains part of the scattering data. The knowledge
of the scattering data at the time t allows one to find the potential q(x, t) satisfying the PLR equation. It is important to
remember that in the direct scattering theory the initial potential q(x, 0) appears as a coefficient in the ZS system (3.1) and,
as a consequence, we will first find the scattering data corresponding to t = 0. One has to take into account the second
equation in the AKNS pair ψt = Vnψ if one wants to know the time evolution of the scattering data (we will deal with this
problem after we have completed the study of the direct scattering problem). Essentially, the direct scattering problem can
be regarded as the study of the spectral properties of the ZS system and, in this sense, the construction of S(λ) represents an
important result.

In order to construct the matrix S(λ), let us introduce the 2 × 1 columns known as Jost functions from the right ψ(λ, x)
and ψ(λ, x), the 2-component vectors known as Jost functions from the left φ(λ, x) and φ(λ, x), and the 2× 2 matrices called
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Jost matrices Ψ (λ, x) and Φ(λ, x) from the right and the left as those solutions of the ZS system satisfying the asymptotic
conditions

Ψ (λ, x) =
(
ψ(λ, x) ψ(λ, x)

)
= e−iλσ3x[I2 + o(1)], x→+∞, (3.3a)

Φ(λ, x) =
(
φ(λ, x) φ(λ, x)

)
= e−iλσ3x[I2 + o(1)], x→−∞, (3.3b)

where I2 is the identity matrix of order 2 (from now on, Ip denotes the identity matrix of order p). The Jost functions are the
key instruments to prove the analytic properties of the scattering data associated to the ZS system. Using (3.3a) and (3.3b),
we get the Volterra integral equations

Ψ (λ, x) = e−iλσ3x + iσ3

∫
∞

x
dy eiλσ3(y−x)Q (y)Ψ (λ, y), (3.4a)

Φ(λ, x) = e−iλσ3x − iσ3

∫ x

−∞

dy e−iλσ3(x−y)Q (y)Φ(λ, y). (3.4b)

Since the ZS system is first order, there exist matrices al(λ) and ar (λ) not depending on x ∈ R called transition matrices from
the left and the right, respectively, such that

Φ(λ, x) = Ψ (λ, x)ar (λ), Ψ (λ, x) = Φ(λ, x)al(λ), (3.5)

where

ar (λ) = I2 + iσ3

∫
∞

−∞

dy eiλσ3yQ (y)Ψ (λ, y),

al(λ) = I2 − iσ3

∫
∞

−∞

dy eiλσ3yQ (y)Φ(λ, y).

It is immediate to verify that al(λ) and ar (λ) are each others inverses and, from Eqs. (3.3) and (3.4), we easily obtain

Ψ (λ, x) =e−iλσ3x [al(λ)+ o(1)] , x→−∞, (3.6)

Φ(λ, x) =e−iλσ3x [ar (λ)+ o(1)] , x→+∞. (3.7)

It is convenient to use the matrix representations

al(λ) =
(
al1(λ) al2(λ)
al3(λ) al4(λ)

)
, ar (λ) =

(
ar1(λ) ar2(λ)
ar3(λ) ar4(λ)

)
,

where (cf. [28,30,32]) al1(λ) and ar4(λ) are continuous in λ ∈ C+, are analytic in λ ∈ C+, and tend to 1 as |λ| → +∞ from
withinC+. HereC± is the open upper/lower complex plane andC± = C±∪R. In the sameway we see that ar1(λ) and al4(λ)
are continuous in λ ∈ C−, are analytic in λ ∈ C−, and tend to 1 as |λ| → +∞ from within C−. The remaining elements
al2(λ), al3(λ), ar2(λ), and ar3(λ) are continuous in λ ∈ R and vanish as λ→±∞.

The zeros λ ∈ C+ of al1(λ) and ar4(λ) are exactly the discrete eigenvalues of the ZS system in C+. On the other hand,
the zeros λ ∈ C− of ar1(λ) and al4(λ) are exactly the discrete eigenvalues of the ZS system in C− which are the complex
conjugates of those in C+. We call λ ∈ R a spectral singularity if it is a zero of, at least one of the diagonal elements al1(λ),
al4(λ), ar1(λ), and ar4(λ). From now on, we assume that there are no spectral singularities. In that case, elementary complex
analysis implies that the number of discrete eigenvalues of the ZS system is finite [26].Moreover,we observe that the discrete
eigenvalues are the poles of the transmission coefficient introduced below in (3.10) and defined in terms of the elements of
the transition matrices in the Appendix.

To introduce the scattering matrices S(λ) and S̆(λ), let us introduce themodified Jost matrices as follows:

F+(λ, x) =
(
φ(λ, x) ψ(λ, x)

)
, F−(λ, x) =

(
ψ(λ, x) φ(λ, x)

)
. (3.8)

Then F±(λ, x)e−iλxσ3 are continuous in λ ∈ C±, are analytic in C±, converge to I2 as |λ| → +∞ from within C±, and are
related as follows:

F−(λ, x) = F+(λ, x)σ3S(λ)σ3, F+(λ, x) = F−(λ, x)σ3S̆(λ)σ3, (3.9)

where the scattering matrices S(λ) and S̆(λ) are each other’s inverses. Writing

S(λ) =
(
Tr (λ) L(λ)
R(λ) Tr (λ)

)
, S̆(λ) =

(
T̆l(λ) R̆(λ)
L̆(λ) T̆l(λ)

)
, (3.10)

we get the reflection coefficients R(λ) and R̆(λ) from the right, the reflection coefficients L(λ) and L̆(λ) from the left,
the transmission coefficient T̆ (λ) (which is meromorphic in λ ∈ C−), and the transmission coefficient T (λ) (which is
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meromorphic in λ ∈ C+). Moreover, it is easily verified that

S̆(λ) = S(λ)−1 = σ3S(λ)†σ3, for λ ∈ R ,

where the dagger denotes the matrix complex conjugate transpose. Under the assumption that there are no spectral
singularities, we also have

R(λ) =
∫
∞

−∞

dy e−iλyρ(y), L(λ) =
∫
∞

−∞

dy eiλyℓ(y), (3.11)

where ρ, ℓ belong to L1(R). Furthermore, R̆(λ) and L̆(λ) have analogous representations, where ρ̆(y) = −ρ(y)∗ and ℓ̆(y) =
−ℓ(y)∗ replace ρ and ℓ. The scattering data associated with the ZS system consist of:

(a) one reflection coefficient;
(b) the discrete eigenvalues of the ZS system;
(c) a suitable set of nonzero constants associated to the discrete eigenvalues called the norming constants.

The construction of the norming constants has been treated in detail in [30], where the case where all the eigenvalues
have algebraic multiplicity one is considered. It is important to note that the multiplicity of the norming constants is not
necessarily one (see [12] on this aspect). By the way, we briefly discuss how to introduce the norming constants and how to
determine their time evolution in the Appendix.

Having determined the scattering data for the ZS system a natural problem which arises is the research of their time
evolution. Before dealing with this problem, we present the Inverse Scattering Problem for the ZS system.

Inverse Scattering Problem. The inverse scattering problem consists of the construction of the potential q corresponding
to a given set of scattering data. As already said in the introduction,wewill formulate this problem in terms of theMarchenko
method. In this method the scattering data are used to construct the kernel of suitable integral equations (the so-called
Marchenko integral equations) whose solution is connected by an easy algebraic relation with the potential q(x). In general,
it is difficult to write down explicitly the solution of the Marchenko equations but we will see in the next section how this
result can be achieved in the reflectionless case (see also [32] for the conditions under which the Marchenko equations are
uniquely solvable).Wediscuss the inverse problemneglecting the time variable, i.e., t = 0 butwe remark that everything can
be repeated also by considering the variable t as a parameter.Weunderline that the introduction of the time variable requires
the knowledge of the evolution of the scattering data. We prefer to postpone this topic because to find the reflectionless
solutions of the PLR equation, wewill employ the time evolution of the ‘‘entire’’ kernel of theMarchenko equation (see (3.23)
and (3.24)). For this pedagogical reason, we prefer to introduce the Marchenko equation before discussing the evolution of
the scattering data. The time variable will be reintroduced in the next section.

In order to find the Marchenko integral equations we observe that [10,28,30,31] it is possible to write the Jost solutions
by using their Fourier triangular representations

Ψ (λ, x) =
(
ψ(λ, x) ψ(λ, x)

)
= e−iλσ3x +

∫
∞

x
dyαl(x, y)e−iλσ3y, (3.12a)

Φ(λ, x) =
(
φ(λ, x) φ(λ, x)

)
= e−iλσ3x +

∫ x

−∞

dyαr (x, y)e−iλσ3y, (3.12b)

where the following notation is adopted:

αl(x, y) =
(
K (x, y) K (x, y)

)
, αr (x, y) =

(
M(x, y) M(x, y)

)
. (3.13)

Here K (x, y), K (x, y),M(x, y),M(x, y) are column vectors of length two (up and down will denote the first and second
components of such column vectors). Furthermore, αl(x, y) and αr (x, y) have to satisfy the following Marchenko integral
equations [30,32]:

αl(x, y)+ ωl(x+ y)+
∫
∞

x
dz αl(x, z)ωl(z + y) = 02×2, (3.14a)

αr (x, y)+ ωr (x+ y)+
∫ x

−∞

dz αr (x, z)ωr (z + y) = 02×2. (3.14b)

The kernels ωl(x + y), ωr (x + y) appearing in the Marchenko equations are called the left and right Marchenko kernels,
respectively. It is well-known that these kernels can be expressed in terms of the scattering data as follows:

ωl(x) =

⎛⎜⎜⎜⎜⎜⎝
0 −ρ(x)∗ −

m∑
j=1

nj∑
s=0

xs

s!
e−iλ

∗
j x[Cl]

∗

js

ρ(x)+
m∑
j=1

nj∑
s=0

xs

s!
eiλjx[Cl]js 0

⎞⎟⎟⎟⎟⎟⎠ , (3.15)
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ωr (x) =

⎛⎜⎜⎜⎜⎜⎝
0 ℓ(x)+

m∑
j=1

nj∑
s=0

xs

s!
e−iλjx[Cr ]js

−ℓ(x)∗ −
m∑
j=1

nj∑
s=0

xs

s!
eiλ
∗
j x[Cr ]

∗

js 0

⎞⎟⎟⎟⎟⎟⎠ , (3.16)

where λj are the distinct discrete eigenvalues in C+, nj is the algebraic multiplicity of the eigenvalue λj and [Cl,r ]js are the
associated norming constants.

In general, for q ∈ L1(R) ∩ L2(R) the potential q(x) is related to the Marchenko solutions αl(x, y) and αr (x, y) as indicated
below [cf. (A.2) and (A.4) in [15]]:

αl(x, x) = −
1
2

⎛⎜⎝
∫
∞

x
dz |q(z)|2 q(x)

−q(x)∗
∫
∞

x
dz |q(z)|2

⎞⎟⎠ , (3.17a)

αr (x, x) = −
1
2

⎛⎜⎜⎝
∫ x

−∞

dz |q(z)|2 −q(x)

q(x)∗
∫ x

−∞

dz |q(z)|2

⎞⎟⎟⎠ . (3.17b)

As a result, to recover the potential q(x) we can follow the three steps indicated below:

a. Suppose that the reflection coefficient R(λ), the discrete eigenvalues {λj}mj=1, and the norming constants
{
{Cjs}

nj−1
s=0

}m
j=1

are given, wherem denotes the number of discrete eigenvalues inC+ while nj is themultiplicity of λj as a pole of T (λ).
By using the scattering data we construct the kernel of the Marchenko equation:

Ωl(y)
def
= −ρ(y)+

m∑
j=1

nj−1∑
s=0

cjs
ys

s!
eiλjy , (3.18)

where ρ(y) = 1
2π

∫
∞

−∞
R(λ)eiλydλ is the Fourier transform of R(λ).

b. Solve the Marchenko equation having as its kernel the function (3.18), i.e., the following integral equation

K up(x, y)−Ω∗l (x+ y)+
∫
∞

x
dz
∫
∞

x
ds K up(x, z)Ωl(z + s)Ω∗l (s+ y) = 0. (3.19)

c. Finally, we get the potential q(x) by using the following formula:

q(x) = −2K up(x, x). (3.20)

An analogous procedure can be followed by using the right Marchenko kernel.
Time Evolution of the Scattering Data. The considerations made until now involved only the first of Eqs. (3.1). In this

paragraphwe take into account the second equation in (3.1) to determine how the kernel of theMarchenko equation evolves
in time. Following the procedure explained in Appendix, we arrive at the following equation describing the evolution of the
reflection coefficient of the nth flux

R(n)(λ, t) = e2
n+1iλn+1tR(n)(λ, 0) . (3.21)

Computing the derivative with respect to the time variable, we obtain

∂tR(n)(λ, t) = 2n+1iλn+1R(n)(λ, t)

and taking the Fourier transform of the preceding equation we get

∂tρ(n)(α, t) = 2n+1(i)−n∂ (n+1)α ρ(n)(α, t), (3.22)

where ρ(n)(α, t) is the Fourier transform of the reflection coefficient of the nth flux.
Furthermore, by applying the procedure shown in Appendix, we can see that the kernelΩ(n)l of the Marchenko equation

associated to the nth flux is given by

∂t
(
Ω(n)l(α, t)− ρn(α, t)

)
= 2n+1(i)−n∂ (n+1)α

(
Ω(n)l(α, t)− ρn(α, t)

)
. (3.23)

From [26,32] we know that the construction of the kernel is linear in the transmission and reflection coefficients and thus,
by using Eq. (1.3), we get that the time evolution of the kernel of the Marchenko equation associated to the PLR equation is
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as follows:

∂t (Ωεl(α, t)− ρ(α, t))−
∞∑
n=1

2n+1(i)−n∂ (n+1)α (Ωεl(α, t)− ρ(α, t)) = 0, (3.24)

where Ωεl(α, t) and ρ(α, t) represent, respectively, the kernel of the Marchenko equation defined by (4.2) and the Fourier
transform of the reflection coefficient associated to the PLR equation.

Inverse Scattering Transform for the PLR equation. By using q(x, 0) as the potential in the ZS system, we develop the
direct scattering theory as explained above and construct the scattering data (for t = 0). Next, let us evolve the scattering
data in time in such a way that Eq. (3.24) is satisfied. Finally, the solution of the PLR equation is obtained by finding the
solution K (up)(x, y; t) of the Marchenko equation (3.19) (where Ω(α) is replaced by Ω(α, t) with Ω(α, t) satisfying (3.24))
and by using the formula (3.20):

q(x; t) = −2K (up)(x, x; t).

The following classical scheme illustrates and summarizes how the IST works:

given q(x, 0)
direct scattering problem

with potential q(x,0)
−−−−−−−−−−−−−→ S(λ, 0)⏐⏐↓Solution of evolution equation time evolution of

scattering data

⏐⏐↓
q(x, t) ←−−−−−−−−−−−−−−−−−

inverse scattering problem
with time evolved scattering data

S(λ, t)

4. Reflectionless solutions of the PLR equation

In this subsection we construct an explicit soliton solution formula of the PLR equation. To get this result we use the
matrix triplet method which has been successfully applied to solve important integrable equations like the NLS [12,16],
mKdV [19], sine-Gordon [18], Hirota [10], and Heisenberg ferromagnetic equations [20]. We refer the reader to the papers
cited above for details and for the calculationswhich allowone to solve explicitly theMarchenko equation.Here it is sufficient
to mention that the main idea of the matrix triplet method is based on the particular form assumed by the kernelΩl(α, t) of
the Marchenko equation when the reflection coefficient R(λ, t) vanishes. In this case the kernel of the Marchenko equation
can be written in separated form, implying that the Marchenko equation can be explicitly solved by separation of variables.
More precisely, to find the soliton solutions of the PLR equation we put R(λ, t) = 0 in the expression ofΩl(λ, t) and obtain

Ωεl(y; t) =
m∑
j=1

nj−1∑
s=0

cjs(t)
ys

s!
eiλjy = C(t)e−yAB, (4.1)

where λ1, . . . , λN are the discrete eigenvalues, nj are the orders of the poles of the transmission coefficient at the discrete
eigenvalues iλj, and cjs are the so-called norming constants. The complex conjugate Ω∗εl(y; t) is obviously obtained as
Ω∗εl(y; t) = (C(t)e−yAB)†. It is well-known [32–34] that if a function assumes the form

∑m
j=1
∑nj−1

s=0 cjs(t) y
s

s! e
iλjy then there

exists a triplet of matrices (A, B, C) of order p × p, p × 1, 1 × p, respectively, where p is a positive integer number and C
depends on t such that the second equality in (4.1) holds. It will be clear later that some restrictions on the choice of the
matrix triplet have to be imposed [12,33,34].

We assume the following:

a. The eigenvalues of the matrix A have positive real parts;
b. The triplet (A, B, C) provides a minimal representation for the kernelΩl(y; t) in the sense that

+∞⋂
r=1

[
ker CAr−1]

=

+∞⋂
r=1

[
ker B†(A†)r−1

]
= {0},

(we refer to [32–34] for more details on minimal representations). Here ker S denotes the null space of a matrix S.

It is easy to verify that choosingΩεl(y, t) as follows

Ωεl(y, t) = Ce−iφε (iA)te−yAB, (4.2)

where

φε(z) = −
∞∑
n=1

εn−12n+1zn+1 =
−4z2

1− 2εz
. (4.3)
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Eq. (3.24) is satisfied. Here we observe that det(I − 2iεA) ̸= 0, since A has only eigenvalues with positive real parts. The
particular form of (4.3) deserves a comment: as is proven in the Appendix, φε function is the result of the sum of the constant
dominant terms of the Tn matrices. Then Eqs. (4.2) and (4.3) give us the time evolution of the kernelΩl(y, t) of theMarchenko
equations associated to the inverse problem for the PLR equation.

To derive the soliton solution formula for the PLR equationwemimic the procedure explained in [10]. First of all, we have
to solve the Marchenko equation (3.19), where the kernel Ωl(y) is to be replaced by Ωεl(y, t) = Ce−iφε (iA)e−yAB and φ(z) is
given by Eq. (4.3). Repeating the calculations in [10], we get the following solutions:

K up
ε (x, y; t) = B†e−A

†xΓε(x, t)−1e−A
†y+iφε (−iA†)tC† , (4.4)

where

Γε(x, t) = Ip + e−A
†x+iφε (−iA†)tQe−2Ax−iφε (iA)tNe−A

†x , (4.5)

Q =
∫
∞

0
ds e−A

†sC†Ce−As, N =
∫
∞

0
dr e−ArBB†e−A

†r . (4.6)

Recalling the relationship between the solution of theMarchenko equation and the solution of the PLR equation, i.e., Eq. (3.20),
we arrive at

qε(x, t) = −2B†e−A
†xΓ −1ε (x, t)e−A

†x+iφε (−iA†)tC† . (4.7)

The solution expressed by (4.7) depends only on the matrix triplet chosen as input. In fact, for a given triplet of matrices
(A, B, C) satisfying the conditions a. and b. above, we can calculate Q ,N , and Γε(x, t) and, consequently, the solution qε(x, t).
It should be noted that the expressions found forQ andN are the expressions corresponding to the solutions to the Lyapunov
equations

A†Q + QA = C†C, AN + NA†
= BB†. (4.8)

The Lyapunov equations are studied in detail in [33,34] where the proof that the matrices Q and N introduced through (4.5)
satisfy Eqs. (4.8), respectively, can be found. Moreover, under the above hypotheses a. and b., the Lyapunov equations are
uniquely solvable. Of course, the solutions expressed by (4.7) hold only if the integrals defining Q and N are convergent
and the matrix Γε(x, t) is invertible. It should be proven that the convergence of these integrals and the invertibility of
matrix Γε(x, t) are equivalent to requiring the condition a., while the hypothesis of minimality is convenient to prove that
Γ −1ε (x, t)→ 0 as x→ ±∞ (for each fixed t .)2 We skip the proof of these statements, because the proofs furnished in [12]
can be repeated verbatim. We observe that the solution (4.7) can be obtained starting from different triplets of matrices and
this justifies that two triplets of matrices are called equivalent triplets if they lead to the same potential qε(x, t).

Furthermore, in [14] a class of matrix triplets (larger than those characterized by properties a. and b.) such that the
integrals appearing in (4.5) are convergent and thematrix Γε(x, t) is invertible has been introduced and called the admissible
class. We refer the interested reader to the paper [12] for the definition of admissible class. The result useful for this paper
is given by the proposition below which suggests the ‘‘canonical way’’ of taking the triplet of matrices generating the
reflectionless solutions given by (4.7):

Proposition 4.1. Starting from (Ã, B̃, C̃) in the admissible class, it is possible to associate to this triplet an equivalent triplet
(A, B, C), where A has the Jordan canonical form with each Jordan block containing a distinct eigenvalue having a positive real
part, the column B consists of zeros and ones, and C has real entries. More specifically, for some appropriate positive integer m, we
have

A =

⎛⎜⎜⎝
A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Am

⎞⎟⎟⎠ , B =

⎛⎜⎜⎝
B1
B2
...

Bm

⎞⎟⎟⎠ , C =
(
C1 C2 · · · Cm

)
, (4.9)

where in the case of a real (positive) eigenvalue ωj of Aj the corresponding blocks are given by

Aj :=

⎛⎜⎜⎜⎜⎜⎜⎝

ωj −1 0 · · · 0 0
0 ωj −1 · · · 0 0
0 0 ωj · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · ωj −1
0 0 0 · · · 0 ωj

⎞⎟⎟⎟⎟⎟⎟⎠ , Bj :=

⎛⎜⎜⎝
0
...

0
1

⎞⎟⎟⎠ ,

Cj :=
(
cjnj · · · cj2 cj1

)
,

(4.10)

2 It is important to recall that qε(x, t)→ 0 as x→±∞ for each fixed t .
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Aj having size nj×nj, Bj size nj×1, Cj size 1×nj, and the constant cjnj is nonzero. In the case of complex eigenvalues, which must
appear in pairs as αj ± iβj with αj > 0, the corresponding blocks are given by

Aj :=

⎛⎜⎜⎜⎜⎜⎜⎝

Λj −I2 0 . . . 0 0
0 Λj −I2 . . . 0 0
0 0 Λj . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . Λj −I2
0 0 0 . . . 0 Λj

⎞⎟⎟⎟⎟⎟⎟⎠ , Bj :=

⎛⎜⎜⎝
0
...

0
1

⎞⎟⎟⎠ ,

Cj :=
(
γjnj ϵjnj . . . γj1 ϵj1

)
,

(4.11)

where γjs and ϵjs for s = 1, . . . , nj are real constants with (γ 2
jnj
+ ϵ2jnj ) > 0, each column vector Bj has 2nj components, each Aj

has size 2nj × 2nj, and the 2× 2 matrixΛj is defined as

Λj :=

⎛⎜⎝ αj βj

−βj αj

⎞⎟⎠ . (4.12)

Proof. The triplet (A, B, C) can be chosen as in Section 3 of [12]. ■

Even though the choice of the triplet shown in Proposition 4.1 helps significantly in the classification of the reflectionless
solutions, however, in the next section we do not always consider the triplet in this form in order to get clearer plots and to
reduce computing time.

4.1. Examples of reflectionless solutions of the PLR equation

In this subsection, we give examples of solutions obtained starting from (4.7) and choosing the matrix triplet (A, B, C) as
indicated by Proposition 4.1. The plots in this section (obtained with the help of the software Mathematica 9) display the
curvature and torsion of the PLR solution as defined in the introduction

K = |q| , τ =
1
2i

(
qx
q
−

q∗x
q∗

)
, (4.13)

where q is explicitly given by

qε(x, t) = −2B†e−A
†x
(
Ip + e−A

†x+iφε (−iA†)t
∫
∞

0
ds e−A

†sC†Ce−Ase−2Ax−iφε (iA)t×

∫
∞

0
dr e−ArBB†e−A

†re−A
†x
)−1

e−A
†x+iφε (−iA†)tC† .

(4.14)

Example 1 (One Soliton Solution). Let us consider the triplet

A = (1+ 3i), B = (1), C = (1+ 2i). (4.15)

Then it is easily verified that

Q =
(
1/2

)
, N =

(
1/2

)
,

are the unique solutions to the Lyapunov equations

A†Q + QA = C†C, AN + NA†
= BB†.

In the plot below we compare a one soliton solution obtained by using the Hasimoto map of the NLS solution with the PLR
solution with ε = 0.1. The perturbation affects both the amplitude of the soliton curvature and the velocity of the bump. In
this simple case the torsion remains constant in both cases (see Fig. 4.1). In the following two examples the effects will be
more evident.

Example 2 (Two Soliton Solution). Let us take the triplet

A =
(
2 0
0 1

)
, B =

(
3
2

)
, C =

(
3 −2

)
. (4.16)
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Fig. 4.1. Curvature of a one soliton solution corresponding to: on the left to NLS, in the center to the PLR with ε = 0.01 and on the right to the PLR with
ε = 0.1. The triplet is given in (4.15).

Fig. 4.2. Curvature of a two soliton solution corresponding to: on the left to NLS, in the center to the PLR with ε = 0.01 and on the right to the PLR with
ε = 0.1. The triplet used to generate these solutions is (4.16).

Fig. 4.3. Torsion of a two soliton solution corresponding to: on the left to NLS, in the center to the PLR with ε = 0.01 and on the right to the PLR with
ε = 0.1. The triplet used to generate these solutions is (4.16).

The unique solutions of the Lyapunov equations

A†Q + QA = C†C, AN + NA†
= BB†,

are given as follows

Q =

⎛⎝ 9
4
−2

−2 2

⎞⎠ , N =

⎛⎝9
4

2

2 2

⎞⎠ .
Belowwe compare the plots of curvature (see Fig. 4.2) and torsion (see Fig. 4.3) of the NLS equation with those of the PLR

equation for different values of ε.
In this case the qualitative effects of the perturbation are evident. In fact, we choose a particular two soliton solution of

NLS related to a coupled state with fixedmean position: themain qualitative effect of the PLR perturbation is the decoupling
of the solution that now appears to behave as an asymptotically free two soliton solution.

Example 3 (Double Pole Soliton Solution). Let us consider the following triplet

A =
(
1 −1
0 1

)
, B =

(
0
1

)
, C =

(
1 1

)
, (4.17)
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Fig. 4.4. Curvature of a double pole solution corresponding to: on the left to NLS, in the center to the PLR with ε = 0.01 and on the right to the PLR with
ε = 0.1. The triplet used to generate these solutions is (4.17).

Fig. 4.5. Torsion of a double pole solution corresponding on the left to NLS, on the center to the PLR with ε = 0.01 and on the right to the PLR with ε = 0.1.
The triplet used to generate these solutions is (4.17).

where the matrix A is not diagonalizable, namely it is a Jordan block of dimension two. It is easy to verify that Q and N are
given by

Q =

⎛⎜⎜⎝
1
2

3
4

3
4

5
4

⎞⎟⎟⎠ , N =

⎛⎜⎜⎝
1
4

1
4

1
4

1
2

⎞⎟⎟⎠ .
Below we compare the plots of curvature (see Fig. 4.4) and torsion (see Fig. 4.5) of the NLS equation with those of the PLR
equation for different values of ε.

In this case the correction does not change the qualitative pole-like behavior of the solution. In the celebrated paper [27]
the authors remark that the distance between the twobumps in themodulus of the a two-pole solution grows logarithmically
in time. In the paper [10] the authors showed that a similar behavior is present also for the Hirota equation: the main
difference is that in this case the ‘‘center of the mass’’ of the solution3 is not at rest as in the NLS case. The PLR equation
displays a qualitative behavior similar to the Hirota equation: the curvature of the solution the reciprocal distance of the two
bumps grows sub-linearly in time and the velocity of the center of mass in not zero.

5. Conclusions and further developments

In this paper we combine two rather different approaches to integrability: Bi-Hamiltonian structures and inverse
scattering transform. Such a combination allows us to explicitly find soliton-like solutions of the Pohlmeyer–Lund–Regge
model. The interest for this equation (born in string-theory) has been renewed by the fact that it is the prototype of a nonlocal
equation obtained as a sum of infinite commuting flows (a whole hierarchy in fact). The paper [2] has been one of the first
works on this subject. In the fluid-dynamics context, the authors of [2] studied the effect to the NLS evolution given by the
sum of the complex modified Korteweg–de Vries equation which is its first symmetry. The key property of this system is
that such sum preserves the integrability of the evolution. A natural question, addressed in [3] for the focusing NLS, is what
happens if one sums a whole hierarchy. In this work we contribute to this research line studying the solutions of the PLR
equation and generalizing the construction to any bi-Hamiltonian hierarchy.

3 As usual the center of mass Xf of a function f is defined as

Xf =

(∫
R
xf (x)dx

)
/

(∫
R
f (x)dx

)
.

.
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Even though in this work we focus our attention on PLR due to its relevance in the literature, our long term interest is
the analysis of nonlocality properties of integrable systems. We do not see any obstruction to applying our approach to all
of the nonlocal integrable systems obtained using the method of Section 2 starting, for example, from the system (2.20). We
hope that such constructions could give some hint to the study of the Landau–Lifshitz equation, which is another nonlocal
generalization of the nonlinear Schrödinger equation. The main step towards this goal is to find a ‘‘decomposition’’ of the
nonlocality in an infinite number of local flows where the inverse scattering transform applies.

Another interesting research direction involves the study of the nonlocal operators (2.7) naturally arising in the
framework of [2]. They seem to share some properties of the so-called ‘‘inertia operators’’ naturally arising in the study
of some classes of non-evolutionary integrable systems such as the Camassa–Holm equation and, more generally, the tri-
Hamiltonian dual construction discovered by Olver and Rosenau [35]. The study of these operators following the lines
suggested in [35] could lead to the existence of solutions of PLR which are not deformations of solutions of the NLS equation.

Finally, a perhaps more technical open question could be the study of nonlocal Poisson structures (2.13) naturally arising
from the flow summation procedure and, in particular, their relation to the analogue generator of Poisson structures related
to the algebra sl2 presented in [24,25].
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Appendix. Time evolution

In this subsection, we establish the time evolution of the scattering data associated to the PLR equation.
Assume that q and its successive (weak) derivatives belong to L1(R), so the potentials q and their successive derivatives

vanish as x → ±∞. Let us define the Jost matrices as those solutions of the ZS system Zx = (−iλσ3 + Q )Z which satisfy
the asymptotic conditions (3.3), (3.6) and (3.7). Then the Jost matrices are given by Ψ = ZC−1Ψ and Φ = ZC−1Φ , where
Z = Z(λ, x; t) is an invertible matrix function satisfying the AKNS pair Zx = UZ and Zt = VZ and CΨ and CΦ do not depend
on x. Then

Ψt = VΨ − Ψ [CΨ ]tC−1Ψ , (A.1a)

Φt = VΦ −Φ[CΦ ]tC−1Φ , (A.1b)

implying

[CΨ ]tC−1Ψ = Ψ
−1VΨ − Ψ −1Ψt , (A.2a)

[CΦ ]tC−1Φ = Φ
−1VΦ −Φ−1Φt . (A.2b)

Now note that the left-hand sides of (A.2) do not depend on x ∈ R, whereas the asymptotic forms of Ψ and V as x→ +∞
and of Φ and V as x→ −∞ are diagonal matrices. To see this, note that V ∼ β(λ)σ3 for a convenient scalar function β(λ),
because the potential q and its successive derivatives vanish as x→±∞. Consequently,

[CΨ ]tC−1Ψ = [CΦ ]tC
−1
Φ =

∞∑
j=0

(
(−iλ)jαj 0

0 (+iλ)jδj

)
=

(
A(λ) 0
0 D(λ)

)
, (A.3)

where

A(λ) =
∞∑
n=0

A(n)(λ) =
∞∑
j=0

(−iλ)jαj, D(λ) =
∞∑
n=0

D(n)(λ) =
∞∑
j=0

(+iλ)jδj.

A(n)(λ) and D(n)(λ) describe the asymptotic behavior as x → ∞ of the evolution operator associated to the nth flux of the
NLS hierarchy. For example, it is easy to verify that the expression of A1(λ) (NLS flow) and A2(λ) (mKdV flow) are given by,
respectively A1(λ) = −D1(λ) = 2iλ2, A2(λ) = −D2(λ) = 4iλ3.

Therefore,

[al]t = [Φ−1Ψ ]t = Φ−1Ψt −Φ
−1ΦtΦ

−1Ψ

= Φ−1
{
VΨ − Ψ [CΨ ]tC−1Ψ

}
−Φ−1

{
VΦ −Φ[CΦ ]tC−1Φ

}
al

= −al[CΨ ]tC−1Ψ + [CΦ ]tC
−1
Φ al,

[ar ]t = [Ψ −1Φ]t = Ψ −1Φt − Ψ
−1ΨtΨ

−1Φ

= Ψ −1
{
VΦ −Φ[CΦ ]tC−1Φ

}
− Ψ −1

{
VΨ − Ψ [CΨ ]tC−1Ψ

}
ar

= −ar [CΦ ]tC−1Φ + [CΨ ]tC
−1
Ψ ar .
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Then (A.3) implies that the diagonal elements of the transmission matrices al(λ; t) =
(

al1(λ; t) al2(λ; t)
al3(λ; t) al4(λ; t)

)
and ar (λ; t) =(

ar1(λ; t) ar2(λ; t)
ar3(λ; t) ar4(λ; t)

)
are time independent, while

al2(λ; t) = e[A(λ)−D(λ)]tal2(λ; 0), al3(λ; t) = e[D(λ)−A(λ)]tal3(λ; 0),

ar2(λ; t) = e[A(λ)−D(λ)]tar2(λ; 0), ar3(λ; t) = e[D(λ)−A(λ)]tar3(λ; 0).

Defining the transmission coefficient Tr (λ; t), the reflection coefficient from the right R(λ; t), and the reflection coefficient
from the left L(λ; t) by Tr = [1/ar1] = [1/al4], R = [al2/al4] = −[ar2/ar1], and L = [ar3/ar1] = −[al3/al4], we see that

Tr (λ; t) = Tr (λ; 0), (A.4a)

R(λ; t) = e[A(λ)−D(λ)]tR(λ; 0), L(λ; t) = e[D(λ)−A(λ)]tL(λ; 0). (A.4b)

Recalling the Fourier representations (3.11)

R(λ; t) =
∫
∞

−∞

dy e−iλyρ(y; t), L(λ; t) =
∫
∞

−∞

dy eiλyℓ(y; t),

we obtain with the help of (A.4b)

ρt (y; t) =
1
2π

∫
∞

−∞

dλ eiλye[A(λ)−D(λ)]t

⎛⎝ ∞∑
j=0

[(−1)jαj − δj](iλ)j

⎞⎠ R(λ; 0)

=

∞∑
j=0

[(−1)jαj − δj]

(
d
dy

)j

ρ(y; t) =
∞∑
j=0

[(−1)jαj − δj]ρ
[j](y; t),

ℓt (y; t) =
1
2π

∫
∞

−∞

dλ e−iλye[D(λ)−A(λ)]t

⎛⎝ ∞∑
j=0

[(−1)jδj − αj](−iλ)j

⎞⎠ L(λ; 0)

=

∞∑
j=0

[(−1)jδj − αj]

(
d
dy

)j

ℓ(y; t) =
∞∑
j=0

[(−1)jδj − αj]ℓ
[j](y; t). (A.5)

Let us assume that there are finitely many poles ik1, . . . , ikn of the transmission coefficient Tr (λ) in the upper plane C+

all of which are assumed to be simple. Following [29] and [31], we let θj stand for the residue of Tr (λ) at λj = ikj, i.e.,

θj = Res
λ=ikj

(Tr (λ)) = lim
λ→ikj

(λ− ikj) Tr (λ)

= lim
λ→ikj

λ− ikj
ar1(λ)− ar1(ikj)

=

(
dar1
dλ

⏐⏐⏐⏐
λ=ikj

)−1
. (A.6)

We then introduce the norming constants cj such that

φ(x, ikj) θj = ψ(x, ikj)
(
icj
)
, j = 1, 2, . . . , n. (A.7)

Differentiating (A.7) with respect to t , we obtain

φt (x, ikj) θj = ψt (x, ikj)
(
icj
)
+ ψ(x, ikj) i[cj]t . (A.8)

Using (A.1) and (A.2), we get{
V (ikj)φ(x, ikj)− A(ikj)φ(x, ikj)

}
θj =

{
V (ikj)ψ(x, ikj)− D(ikj)ψ(x, ikj)

} (
i cj
)

+ ψ(x, ikj) i[cj]t .

Using (A.6) in the preceding equation we obtain

[cj]t =
(
D(ikj)− A(ikj)

)
cj . (A.9)

From (A.9) we easily obtain the time evolution of the norming constants:

cj(t) = e−(A(ikj)−D(ikj))t cj(0) . (A.10)

An analogous relation to (A.10) can be established also for the norming constants corresponding to the poles of the
transmission coefficient T̆l = [1/ar1] = [1/al4] (for the sake of readability, we omitted the argument λ in the preceding
expression).
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As a result of (A.5) and (4.1), we obtain

[Ωl]t (y; t) =
∞∑
j=0

[
(−1)j − δj

]
Ω

(j)
l (y; t) (A.11)

and analogously for Ωr . Using continuous approximation of multiple pole models by simple pole models while keeping
invariant the reflection coefficient R(λ, t), we can prove (A.11) in the multiple pole case as well.
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