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1. Introduction

Over the last 50 years, due to their relevance in applications, much research has been conducted in the field of non-
linear partial differential equations (NPDEs) of integrable type [1,2]. Among them, a special role is played by the nonlinear 
Schrödinger (NLS) equation which governs the signal transmission in fiber optics [5,7], as well as in surface waves on deep 
water [1,2].

The initial value problem (IVP) for the NLS equation can be formulated as follows:{
iut + uxx ± 2|u|2u = 0, x ∈R, t > 0

u(x,0) = u0(x), x ∈R
(1)

where i denotes the imaginary unit, u = u(x, t) is the unknown potential, the subscripts x and t designate partial derivatives 
with respect to position and time, u0 ∈ L1(R) is the initial potential and the ± sign depends on symmetry properties of u. 
The plus sign regards the focusing case and the minus sign the defocusing case. As Zakharov and Shabat proved [11], the 
IVP for the NLS equation can be associated to the first order system of ordinary differential equations

iJ
∂�

∂x
(λ, x) − V(x)�(λ, x) = λ�(λ, x), x ∈R (2)

where λ ∈C is a spectral parameter and

J =
(

1 0
0 −1

)
, V = i

(
0 u0
v0 0

)
(3)

with v0 = u∗
0 in the focusing case and v0 = −u∗

0 in the defocusing case. Here and in the sequel the asterisk denotes the 
complex conjugate.

* Corresponding author.

E-mail addresses: fermo@unica.it (L. Fermo), cornelis@krein.unica.it (C. van der Mee), seatzu@unica.it (S. Seatzu).

http://dx.doi.org/10.1016/j.apnum.2016.09.016
0168-9274/© 2016 IMACS. Published by Elsevier B.V. All rights reserved.



196 L. Fermo et al. / Applied Numerical Mathematics 116 (2017) 195–203
With the help of this system, known as the ZS system, the solution of (1) can theoretically be obtained from the initial 
potential u0 by means of the so-called Inverse Scattering Transform (IST) technique.

An effective method to compute all the scattering data for the ZS system has been recently developed under the hypoth-
esis that u0 ∈ C0(R) [4]. In this paper we propose a variant of this method that allows us to apply the method even in the 
case u0 /∈ C0(R).

The paper is organized as follows. In Section 2 we recall the definition of the scattering data and the properties needed 
to the illustration of our method. In Section 3 we recall the five steps for computing the scattering data [4] under the 
assumption that u0 ∈ C0(R). The technique that allows us to extend the method to the case u0 /∈ C0(R) is illustrated in 
Section 4. In Section 5 we consider an initial potential with a discontinuity jump to illustrate the effectiveness of our 
method. Finally Section 6 is devoted to the conclusions.

2. Scattering data: definitions and properties

We start by recalling the crucial role played in the computation of the scattering data by the Jost solutions [2], that is 
by the solutions of the ZS system (2) which satisfy the asymptotic conditions

(�̄(λ, x), �(λ, x)) = e−iλJx(I + o(1)), x → +∞ (4)

(�(λ, x), �̄(λ, x)) = e−iλJx(I + o(1)), x → −∞ (5)

where λ ∈R, I denotes the identity matrix and J is defined in (3).
Since these solutions satisfy the same linear first order system, there exist transition matrices

A�(λ) =
(

a�1(λ) a�2(λ)

a�3(λ) a�4(λ)

)
, Ar(λ) = A�(λ)−1 =

(
ar1(λ) ar2(λ)

ar3(λ) ar4(λ)

)
(6)

such that

(�̄(λ, x), �(λ, x)) = (�(λ, x), �̄(λ, x))A�(λ)

(�(λ, x), �̄(λ, x)) = (�̄(λ, x), �(λ, x))Ar(λ).

Denoting by C+ and C− the upper and lower half plane and by C̄+ and C̄− their closures, respectively, the following 
analytic properties hold true. The Jost functions �(λ, x) and �(λ, x) are continuous in λ ∈ C̄

+ , are analytic in λ ∈ C
+ , and 

behave as e−iλxJ as λ → ∞ in C̄+ , whereas �̄(λ, x) and �̄(λ, x) are continuous in λ ∈ C̄
− , are analytic in λ ∈ C

− , and 
behave as e−iλxJ as λ → ∞ in C̄− . We can then rewrite (4) and (5) as the Riemann–Hilbert problem

(�̄(λ, x), �̄(λ, x)) = (�(λ, x), �(λ, x)) J S(λ) J

where

S(λ) =
(

T (λ) L(λ)

R(λ) T (λ)

)
. (7)

In (7) T (λ) represents the transmission coefficient, R(λ) denotes the reflection coefficients from the right and L(λ) stands 
for the reflection coefficients from the left.

If T (λ) has no poles in the complex upper half plane C+ (as occurs in the defocusing case), the transmission coefficient 
and the reflection coefficients are the only scattering data to identify. Otherwise, denoting by λ1, . . . , λn the so-called bound 
states, that is the finitely many poles of T (λ) in C+ , and by m1, . . . , mn the corresponding multiplicities, we have to identify 
the parameters {n, m j, λ j} as well as the coefficients {(��) js, (�r) js} of the spectral sums from the left and from the right

S�(α) =
n∑

j=1

eiλ jα

m j−1∑
s=0

(��) js
αs

s! , α ≥ 0,

Sr(α) =
n∑

j=1

eiλ∗
j α

m j−1∑
s=0

(�r) js
αs

s! , α ≤ 0,

where 0! = 1.
The method developed in [4] allows us to compute all the scattering data, i.e. the spectral matrix S introduced in (7)

as well as the discrete scattering data {λ j, (��) js, (�r) js} whenever S�(α) and Sr(α) are known in N ≥ M = m1 + ... + mn

points.
To this end we need to compute the Marchenko kernels from the left ��(α) and from the right �r(α). These two kernels 
are, in fact, connected to the above spectral coefficients and spectral sums as follows:



L. Fermo et al. / Applied Numerical Mathematics 116 (2017) 195–203 197
��(α) = ρ(α) + S�(α), for α ≥ 0

�r(α) = �(α) + Sr(α), for α ≤ 0

where

ρ(α) = 1

2π

+∞∫
−∞

R(λ)eiλαdλ = F−1 {R(λ)} (8)

is the inverse Fourier transform of the reflection coefficient from the right R(λ) and

�(α) = 1

2π

+∞∫
−∞

L(λ)e−iλαdλ = 1

2π
F {L(λ)} , (9)

apart from the factor 1/2π , is the Fourier transform of the reflection coefficient from the left L(λ).
We note that ��(α) and �r(α), respectively, reduce to:

(a) S�(α) and Sr(α) if the reflection coefficients vanish (reflectionless case). This situation occurs for initial potentials 
leading to N-soliton solutions.

(b) ρ(α) and �(α) if there are no bound states. This situation occurs in the defocusing case and whenever ‖u0‖1 =
‖v0‖1 < π

2 [6].

3. The steps for computing the scattering data

1. Auxiliary functions. The first step for computing the Marchenko kernels as well as ρ(α) and �(α) consists of the 
computation of four pairs of auxiliary functions [4]. As explained in [4], for y ≥ x, we have to compute two pairs of auxiliary 
functions

(K̄ up(x, y), K̄ dn(x, y)) and (K up(x, y), K dn(x, y))

and, for y ≤ x, two other pairs of auxiliary functions

(M̄up(x, y), M̄dn(x, y)) and (Mup(x, y), Mdn(x, y)).

As shown in [4], their computation requires the solution of four systems of structured Volterra systems on unbounded 
domains.

2. Initial Marchenko kernels. Following [10, 2.50a and 2.50b] we can say that, for y ≥ x ≥ 0, the Marchenko kernel �� is 
connected to the auxiliary functions K dn and K̄ dn as follows:

��(x + y) +
∞∫

x

K dn(x, z)��(z + y)dz = −K̄ dn(x, y). (10)

Similarly, for y ≤ x ≤ 0, the Marchenko kernel �r is connected to the auxiliary functions Mup and M̄up in this way:

�r(x + y) +
x∫

−∞
Mup(x, z)�r(z + y)dz = −M̄up(x, y). (11)

As a result, assuming known the auxiliary functions, (10) and (11) can be interpreted as structured Volterra integral equa-
tions having the initial Marchenko kernels �� and �r as their unknowns.

Let us remark, that although the initial potential u0 does not appear explicitly in (10) and (11), it is linked to these 
equations via the couples K and M . Under the assumption that the support of u0 is bounded, that is

u0(x) = 0, for a < x < b, (12)

which could be considered acceptable as |u0(x)| → 0 for |x| → ∞, provided |a| and |b| are large enough, an effective method 
to solve numerically (10) and (11) has been developed in [4].

3. Scattering matrix. As proposed in [10], the coefficients of the scattering matrix (7) can be represented as follows:

T (λ) = 1

a�4(λ)
= 1

ar1(λ)
,

L(λ) = a�2(λ) = −ar2(λ)
, R(λ) = ar3(λ) = −a�3(λ)

, (13)

a�4(λ) ar1(λ) ar1(λ) a�4(λ)
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where the {a� j(λ)} and the {arj(λ)} denote the entries of the transition matrices (6) from the left and from the right, 
respectively. The entries of the transition matrix {a� j(λ)} can then be represented in this way:

a�1(λ) = 1 −
∫
R+

e−iλz 
̄dn(z)dz, a�2(λ) = −
∫
R

(e2iλyu0(y) + eiλy
dn(y))dy, (14)

a�3(λ) =
∫
R

(e−2iλy v0(y) + e−iλy
̄up(y))dy a�4(λ) = 1 +
∫
R+

eiλz
up(z)dz, (15)

where the four functions 
̄up, 
̄dn, 
up, 
dn are connected with the auxiliary functions as follows:


̄dn(z) =
∫
R

u0(y)K̄ dn(y, y + z)dy, 
dn(z) =
z
2∫

−∞
u0(y)K dn(y, z − y)dy, (16)


up(z) =
∫
R

v0(y)K up(y, y + z)dy, 
̄up(z) =
z
2∫

−∞
v0(y)K̄ up(y, z − y)dy. (17)

Similarly, we can say that

ar1(λ) = 1 +
∫
R+

eiλz�dn(z)dz, ar2(λ) =
∫
R

(e2iλyu0(y) + eiλy�̄dn(y))dy, (18)

ar3(λ) = −
∫
R

(e−2iλy v0(y) + e−iλy�up(y))dy, ar4(λ) = 1 −
∫
R+

e−iλz�̄up(z)dz, (19)

with

�dn(z) =
∫
R

u0(y)Mdn(y, y − z)dy, �̄dn(z) =
+∞∫
z
2

u0(y)M̄dn(y, z − y)dy, (20)

�up(z) =
+∞∫
z
2

v0(y)Mup(y, z − y)dy, �̄up(z) =
∫
R

v0(y)M̄up(y, y − z)dy. (21)

While the computation of the scattering matrix (7) is relatively simple by following the steps indicated, the approximation 
of the functions ρ and � defined in (8) and (9) is more complicated as explained below.

4. Transforms of the reflection coefficients R(λ) and L(λ)

To approximate ρ(α) and �(α) we have to compute the scattering coefficients by means of (14)–(21), then the reflection 
coefficients R(λ) and L(λ) by using (13) and, finally, ρ(α) and �(α) as indicated in (8) and (9). However, this procedure 
is effective only if the initial potential is smooth enough, that is if u0 ∈ C0(R). If this is not the case, that is if u0 ∈ L1(R)

but u0 /∈ C0(R), as R(λ) and L(λ) decay too slowly as λ → ±∞, the numerical computation of the Fourier transforms ρ(α)

and �(α) requires a too large and expensive integral domain. Then, in order to overcome this problem and accelerate the 
numerical computation of the scattering data, we propose to approximate the Fourier transforms ρ and � by solving the 
structured Fredholm integral equations specified in the following theorem [4]:

Theorem 3.1. The function ρ(α) is the unique solution of the Fredholm integral equation

ρ(α) +
∞∫

0


up(z)ρ(z + α)dz = −1

2
v0

(α

2

)
− 
̄up(α), (22)

and �(α) is of the following

�(α) +
∞∫

0


up(z) �(α − z)dz = −1

2
u0

(α

2

)
− 
dn(α), (23)

being 
up , 
dn and 
̄up defined in (16)–(17).

5. Bound states and norming constants computation. The bound states with their multiplicities, if they exist, as well as the 

associated norming constants can be computed by using the matrix pencil method proposed in [3].
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4. Our technique for computing ρ(α)

Let us now describe the numerical method we propose to approximate ρ(α) by solving (22) under the hypothesis (12). 
As proved in [4], this assumption allows us to characterize the support of the kernel and of the right-hand side of (22). 
In fact, we can easily state that


up(z) 	= 0, z ∈ [0, 2(b − a)]
f (α) = −1

2
v0

(α

2

)
− 
̄up(α) 	= 0, α ∈ [2a, 2b].

Hence equation (22) can be also written as

ρ(α) +
2(b−a)∫

0


up(z)ρ(z + α)dz = f (α). (24)

To solve it, fixing N ∈ N and taking h = b−a
N , we introduce the collocation points

αi = ih, i = 0,±1,±2, ...,±2N, ...,

and write

ρ(αi) +
α2N∫
0


up(z)ρ(z + αi)dz = f (αi), i = 0,±1,±2, ...,±2N, ...,

where, as noted before, f (αi) = 0 for αi < 2a and for αi > 2b.
Approximating the integral by the composite Simpson’s quadrature formula and setting ρi = ρ(αi) and f i = f (αi), we 

obtain

ρi +
2N∑
j=0

â jρi+ j = f i, i ∈ Z, (25)

where ̂a j = w j

up(z j) with w0 = w2N = h

3 , w2k−1 = 4
3 h, k = 1, ..., N and w2k = 2

3 h for k = 1, 2, ..., N − 1.
Let us now write (25) as∑

j∈Z
a jρi+ j = f i, with a0 = 1 + â0 and a j =

{̂
a j, j = 1, ...,2N

0, otherwise.

The matrix of this system is banded and Toeplitz, which implies that we can solve it by resorting to Fourier analysis. More 
precisely, multiplying each equation by zi with |z| = 1, we get∑

j∈Z
a j z

− jρi+ j z
i+ j = f i z

i, i ∈ Z.

Adding the equations we obtain the functional equation

a(z−1)ρ(z) = f (z)

where

a(z−1) =
∑
j∈Z

a j z
− j, ρ(z) =

∑
�≡i+ j∈Z

ρ�z�, f (z) =
∑
i∈Z

f i z
i .

Considering that, for h sufficiently small, a(z−1) has no zeros on the unit circle, we can also write

ρ(z) = u(z−1) f (z), u(z−1) ≡ a(z−1)−1.

Notice that the coefficients of the Fourier series u(z−1) decay exponentially, as the coefficients of a(z−1) are zero for | j|
large enough.

Fixing then a positive integer M value, we approximate u(z−1) by means of the Laurent polynomial of order 2M

uM(z−1) =
M∑

ur z−r (26)

r=−M
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whose coefficients have to be computed. Increasing M , the approximating function uM(z−1) converges very fast to u(z−1), 
because the coefficients of a(z−1)−1 decay exponentially as | j| → ∞.

Setting

ωk = eik 2π
2M+1 , k = 0,1, ...,2M

the 2M + 1 coefficients {ur} can be obtained by imposing that

uM(ω̄k) =
M∑

r=−M

urω̄
r
k = a(ω̄k)

−1, k = 0,1, ...,2M. (27)

In other words, the vector of coefficients {ur} of uM(z−1) defined in (26) is the unique solution of the linear system⎛⎜⎜⎜⎜⎜⎜⎜⎝

ω̄−M
0 ω̄−M+1

0 . . . ω̄M−1
0 ω̄M

0

ω̄−M
1 ω̄−M+1

1 . . . ω̄M−1
1 ω̄M

1
...

... . . .
...

...

ω̄−M
2M−1 ω̄−M+1

2M−1 . . . ω̄M−1
2M−1 ω̄M

2M−1

ω̄−M
2M ω̄−M+1

2M . . . ω̄M−1
2M ω̄M

2M

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
u−M

u−M+1
...

uM−1
uM

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
a(ω̄0)

−1

a(ω̄1)
−1

...

a(ω̄2M−1)
−1

a(ω̄2M)−1

⎞⎟⎟⎟⎟⎟⎠
whose matrix

(F2M+1)i, j = ω̄
j
i , i = 0,1, ...,2M, j = −M,−M + 1, ..., M − 1, M

is a Fourier matrix of order 2M + 1, which implies that [8]

(F2M+1)
∗F2M+1 = (2M + 1)I2M+1,

where I2M+1 is the identity matrix of order 2M + 1.
As a result, setting

uM = (u−M , u−M+1, . . . , uM−1, uM)T

and

bM = (a(ω̄0)
−1,a(ω̄1)

−1, . . . ,a(ω̄2M−1)
−1,a(ω̄2M)−1)

the solution of system (27) is

uM = 1

2M + 1
F∗

2M+1bM .

The approximation of ρ(z) of order 2(M + N) can then be obtained by means of the relation

ρM(z) = uM(z−1) f (z) = (u−M zM + u−M+1zM−1 + . . . uM−1z−M+1 + uM z−M)

× ( f N zN + f N−1zN−1 + ... + f−N+1z−N+1 + f−N z−N)

from which we can deduce that

r2(M+N)(z) ≡ zM+NρM(z) = v2M(z) w2N(z)

= (v2M z2M + v2M−1z2M−1 + ... + v1z + v0)

× (w2N z2N + w2N−1z2N−1 + ... + w1z + w0)

is a polynomial of degree 2(M + N) where{
v� = uM−�, � = 2M,2M − 1, ...,1,0

wr = fr−N , r = 2N,2N − 1, ...,1,0.

Consequently, setting

r2(M+N)(z) = r2(M+N)z2(M+N) + r2(M+N)−1z2(M+N)−1 + · · · + r1z + r0,
the kth coefficient of r2(M+N)(z) can be obtained by convolving the coefficients of v2M (z) and w2N (z), that is by taking
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rk =
k∑

h=0

vk−h wh =
k∑

h=0

uM−k+h fh−N , k = 2(M + N),2(M + N) − 1, ...,1,0.

As a result

ρM(z) =
M+N∑

i=−M−N

ρi z
i, with ρi = ri+N+M .

Considering that uM(z−1) → u(z−1) as M → ∞, we can claim that also ρM(z) → ρ(z) as M → ∞. Hence, the remaining 
problem is to choose M appropriately.

Choosing M
A crucial problem is choosing the optimal value of M , as the effectiveness of the approximation of uM(z) increases 

with M up to a saturation value. To determine the best M we adopt the following test:

(a) fixing M , we consider 2M + 1 additional points to the 2M + 1 points of the unit circle that we used to identify uM (z);

(b) denoting these values by z� = ei� 2π
2(2M+1) , � = 0, 1, ..., 4M + 1 we compute uM(z) in all these points and check if these 

values are close enough to a(z−1
� )−1. To this end, taken ε > 0, we consider M satisfactory if

max
�=0,1,...,4M+1

|uM(z−1
� )a(z−1

� ) − 1| ≤ ε. (28)

If the above relation is satisfied, we assume M to be appropriate. On the contrary, we double M and continue until it 
is satisfied. The smallest value of M that satisfies (28) represents our best choice.

We do not explain how to compute �(α), as the same technique, with minor changes, can be used to solve (23), that is 
to approximate �(α).

5. Numerical results

To assess the effectiveness of our method, we considered the following potential (truncated one soliton potential)

u0,τ (x) =
{

0 x < τ

2iηei(2ξx+φ)sech(x0 − 2ηx) x ≥ τ
(29)

with ξ, φ, x0 ∈ R and 0 	= η ∈ R. In the absence of truncation, u0,τ represents the soliton potential, already considered by 
several authors [9]. The analytical representation of the associated transmission coefficient T (λ) as well as of the reflection 
coefficients associated to u0,τ are known [10]. In fact, setting

a = η + iξ, γ (x) = η tanh(x0 − 2ηx) + iξ and �� = 2iηex0−iφ

we have

Tτ (λ) = λ + ia∗

λ − iγ (τ )
,

Rτ (λ) = i

2
u0(τ )

e−2iλτ

λ − iγ (τ )
Tτ (λ) and Lτ (λ) = − i

2
u∗

0(τ )
e2iλτ

λ − iγ (τ )
.

Moreover, we also have an exact representation of the Marchenko kernels from the right and from the left ��,τ and �r,τ , 
and of the Fourier transforms of the reflection coefficients ρτ (α) and �τ (α) that depend on the initial peak point position 
μ0 = x0

2η with respect to the truncation τ [10]. Indeed, if τ < μ0, for α < 2τ we have

ρτ (α) = 0 and �τ (α) = �∗
� e−2τ (γ (τ )+a∗)

1 + e2(x0−2ητ)
eαγ (τ )

while for α > 2τ

ρτ (α) = ��e−aα − (γ (τ ) + a∗)2(1 + e2(x0−2ητ))

�∗
� e−2τ (γ (τ )+a∗) e−γ (τ )α and �τ (α) = 0.

For τ < μ0, we also have

(γ (τ ) + a∗)2(1 + e2(x0−2ητ)) −γ (τ )α �∗
� e−2τ (γ (τ )+a∗)

γ (τ )α
��,τ (α) = ρτ (α) +
��e−2τ (γ (τ )+a∗) e and �r,τ (α) = �τ (α) +

1 + e2(x0−2ητ)
e .
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The last two relations show that we have only one single bound state, according to the representation of Tτ (λ).
If τ > μ0, for α < 2τ

ρτ (α) = (γ (τ ) + �∗
� )2(1 + e2(x0−2ητ))

�∗
� e−2τ (γ (τ )+�∗

� )
e−γ (τ )α, and �τ (α) = 0

whereas for α > 2τ

ρτ (α) = ��e−aα, and �τ (α) = �∗
� e−2τ (γ (τ )+a∗)

1 + e2(x0−2ητ)
eαγ (τ ).

Moreover if τ > μ0

��,τ (α) = ρτ (α), �r,τ (α) = �τ (α),

as there are no discrete eigenvalues.
Let us now consider the initial potential u0,τ defined in (29) with x0 = φ = 0, η = 2 so that μ0 = 0 and ξ = 0.1.
Fixed at first τ = −1, we noted that the right-hand side appearing in (24) is

f (α) 	= 0, α ∈ [−2,32].
We then fixed N = 3000 so that the distance between two consecutive collocation points is h � 10−3. In order to ap-
proximate ρτ by means of ρτ,M , as specified in (28), we have to compute the optimal value of M and the coefficients {ρi}. 
Following the procedure “Choosing M”, illustrated before, taken ε = 10−12, we obtain that M = 3000 is the best choice for M . 
Moreover, considering that the support of the scattering matrix Sτ (λ) is essentially [−16, 16] and using the superscript ∼
to denote the numerical approximation we verified that

max
λ∈[−16,16] ‖Sτ (λ) − S̃τ (λ)‖∞ = 1.25e − 06.

As theoretically expected our method recognized the single bound state λ = 2 + 0.1i and the norming constant �� = 4i with 
the relative errors

|λ − λ̃|
|λ| = 2.03e − 08,

|�� − �̃�|
|��| = 7.32e − 06.

As a second example, maintaining the same values for ξ, φ, x0 and η we consider τ = 1 in the potential u0,τ which 
implies that we do not have bound states.

In this case we obtain that, as in the previous one, the best choice of M is M = 3000. Using this value, our method 
recognizes that we have not bound states as

max
α∈[0, 16] |�̃�,τ (α) − ρ̃τ (α)| = 4.37e − 07.

The scattering matrix is well approximated in this case too as

max
λ∈[−16,16] ‖Sτ (λ) − S̃τ (λ)‖∞ = 8.94e − 07.

6. Conclusions

The method recently proposed by the authors [4] works well under the assumptions that the initial potential u0 ∈ C0(R)

but not in the presence of discontinuity jumps. The algorithm proposed in Section 4 for solving the structured Fredholm 
integral equations (22)–(23) allows us to overcome this restriction, as the numerical results reported in Section 5 make 
evident.
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