
Numerical Solution of the Direct Scattering  Problem
for the Nonlinear Schrödinger Equation

Luisa Fermo∗, Cornelis van der Mee∗, Sebastiano Seatzu∗∗ Department of Mathematics and Computer Science, University of Cagliari
Viale Merello 92, 09123 Cagliari

Email: fermo@unica.it, cornelis@krein.unica.it, seatzu@unica.it

Abstract—We illustrate a numerical method to compute the
scattering data for the Zhakarov-Shabat system associated to the
initial value problem for the nonlinear Schrödinger equation.
This numerical method which, to our best knowledge, is the first
method proposed to compute all scattering data under general
assumptions, is based on the version of the Inverse Scattering
Transform method proposed by one of the authors.

I. INTRODUCTION

The problem we are addressing is the initial value problem
for the nonlinear Schrödinger equation{

iut + uxx ± 2|u|2u = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,
(1)

where i denotes the imaginary unit, u(x, t) is the unknown
potential, the subscripts x and t designate partial derivatives
with respect to position and time and u0 ∈ L1(R) is the
initial potential. The plus sign regards the focusing case and
the minus sign the defocusing case.

This equation, a prototype of the important class of non-
linear partial differential equations of integrable type, has
important physical applications. In fact, it arises in modeling
signal processing in optical  bers [1] as well as surface waves
on deep waters [2].

In 1972 Zakharov and Shabat [3] showed that (1) can be
associated to the  rst order linear system{∂ψ1

∂x + iλψ1 = u(x, t)ψ2,
∂ψ2

∂x − iλψ2 = ∓u∗(x, t)ψ1,
(2)

where λ is the spectral parameter and the asterisk denotes
complex conjugation. With the help of this system, known as
the ZS system, the solution u(x, t) of (1) can be obtained from
the initial potential u(x, 0) by means of the inverse scattering
transform (IST) technique. More precisely, it can be obtained
by performing the following three steps:

a. Solve the direct scattering problem for the ZS system,
i.e., determine the initial scattering data from the
initial potential u(x, 0);

b. Evolve the initial scattering data in time;

c. Solve the corresponding inverse scattering problem for
the ZS system, i.e., determine the potential u(x, t)
from the scattering data evolved in time.

Considering that an effective method to solve steps b-c has
been proposed in [4], under the hypothesis that the initial

scattering data are known, in this paper we illustrate a nu-
merical method to solve the direct problem associated to (1).
Although, in large part, it coincides with that proposed in [5],
it contains the following important novelty: it allows us to
compute the scattering data whenever the initial potential has
jump discontinuities.

The paper is organized as follows. In Section II we recall
the de nition and the properties necessary for the illustration
of the method. In Section III we illustrate the main steps of
our numerical method. In Section IV we report the numerical
results and in Section V we give the conclusions.

II. DEFINITION AND PROPERTIES

For the sake of clarity, let us recall the de nition and
properties most important for this paper. We start recalling
that the Jost solutions [6] [7] are those 2× 2 matrix solutions
to the ZS system (2) which satisfy the asymptotic conditions

(Ψ̄(λ, x),Ψ(λ, x)) = e−iλJx [I+ o(1)], x→∞ (3)

(Φ(λ, x), Φ̄(λ, x)) = e−iλJx [I+ o(1)], x→ −∞ (4)

where λ ∈ R, J = diag(1,−1), I denotes the identity matrix
and the overbar is used to distinguish two different functions.

Since the Jost solutions (3) and (4) satisfy the same linear
 rst order system, there exist transition matrices

A�(λ) =

(
a�1(λ) a�2(λ)
a�3(λ) a�4(λ)

)
, (5)

Ar(λ) = A�(λ)
−1 =

(
ar1(λ) ar2(λ)
ar3(λ) ar4(λ)

)
(6)

such that

(Ψ̄(λ, x),Ψ(λ, x)) = (Φ(λ, x), Φ̄(λ, x))A�(λ).

These matrices are essential to the computation of the so-
called scattering matrix

S(λ,0) ≡ S(λ) =

(
T (λ) L(λ)
R(λ) T (λ)

)
(7)

where T (λ) represents the (initial) transmission coef cient and
L(λ) and R(λ) stand for the (initial) re ection coef cients
from the left and the right, respectively. This matrix for λ ∈ R
satis es the following symmetric properties [6] [7]

S†(λ)S(λ) = S(λ)S†(λ) = I, (8)
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in the defocusing case and

S†(λ)JS(λ) = S(λ)JS†(λ) = J, (9)

in the focusing case where the dagger symbol denotes the
matrix conjugate transpose.

If T (λ) has no poles in the complex upper half-plane
C
+, there are no discrete spectral data to identify. Otherwise,

denoting by λ1, . . . , λn the so-called bound states, i.e., the
 nitely many poles of T (λ) in C+, and by m1, . . . ,mn the
corresponding multiplicities, we have to identify the parame-
ters {n,mj , λj} as well as the coef cients {(Γl)js, (Γr)js} of
the initial spectral sums from the left and from the right

Sl(α) =

n∑
j=1

eiλjα

mj−1∑
s=0

(Γl)js
αs

s!
, α ≥ 0, (10)

Sr(α) =

n∑
j=1

eiλjα

mj−1∑
s=0

(Γr)js
αs

s!
, α ≤ 0. (11)

In (10) and (11) the coef cients (Γl)js and (Γr)js are the
so-called norming constants from the left and from the right,
respectively, and 0! = 1. In the IST method a crucial role is
played by the initial Marchenko kernels from the left Ωl(α)
and from the right Ωr(α) which are connected to the above
scattering coef cients and spectral sums as follows:

Ωl(α) = ρ(α) + Sl(α), for α ≥ 0, (12)

Ωr(α) = �(α) + Sr(α), for α ≤ 0, (13)

where, using Fourier transforms and their inverses,

ρ(α) = F−1{R(λ)}, �(α) =
1

2π
F{L(λ)}. (14)

III. NUMERICAL METHOD

As shown in [5], the scattering data consisting of S(λ, 0),
the bound states with their multiplicity and the norming
constants can be computed by means of the following four
consecutive steps:

Step 1: Starting from the initial potential u(x, 0), we
compute, for y ≥ x, the pairs of auxiliary functions
(K

up
(x, y),K

dn
(x, y)) and (Kup(x, y),Kdn(x, y)) and, for y ≤

x, the two pairs of auxiliary functions (M
up
(x, y),M

dn
(x, y))

and (M up(x, y),M dn(x, y)). The  rst two pairs of functions can
be obtained by solving the following systems of two structured
Volterra integral equations (see, for instance, [7] and [8]):

K
up
(x, y) +

∫ ∞

x

u0(z)K
dn
(z, z + y − x) dz = 0, (15a)

K
dn
(x, y)−

∫ 1
2 (x+y)

x

u0(z)K
up
(z, x+ y − z) dz

= 1
2v0(

1
2 (x+ y)), (15b)

and for the pair (Kup,Kdn) the structured Volterra system

Kup(x, y) +

∫ 1
2 (x+y)

x

u0(z)K
dn(z, x+ y − z) dz

= − 1
2u0(

1
2 (x+ y)),

(16a)

Kdn(x, y)−
∫ ∞

x

v0(z)K
up(z, z + y − x) dz = 0. (16b)

Notice that v0(x) = ±u0(x), according to the ± sign in (1).
Similarly, for y ≤ x, the pairs (M

up
,M

dn
) and (M up,M dn)

of auxiliary functions are the solutions of analogous systems
of two structured Volterra equations. Considering that the
auxiliary functions are, basically, the Fourier transforms of the
Jost functions, these equations have been obtained by using
the analyticity properties of the Jost functions [6] [7].

Step 2: The entries of the scattering matrix S(λ, 0) can be
computed by resorting to the following representation [7]:

T (λ) =
1

al4(λ)
=

1

ar1(λ)
, (17)

L(λ) =
al2(λ)

al4(λ)
= −ar2(λ)

ar1(λ)
, R(λ) = −al3(λ)

al4(λ)
=

ar3(λ)

ar1(λ)
,

(18)

where the {alj(λ)}j and {arj(λ)}j denote the entries of the
transition matrices from the left and the right, respectively. As
shown in [5], these entries can be computed as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a�1(λ) = 1−
∫
R+

e−iλz Φ̄dn(z)dz,

a�2(λ) = −
∫
R

e2iλyu0(y)dy −
∫
R

eiλzΦdn(z)dz,

a�3(λ) =

∫
R

e−2iλyv0(y)dy +

∫
R

e−iλzΦ̄up(z)dz,

a�4(λ) = 1 +

∫
R+

eiλzΦup(z)dz,

(19)

where

Φ̄dn(z) =

∫
R

u0(y)K̄
dn(y, y + z)dy, (20)

Φdn(z) =

∫ z
2

−∞
u0(y)K

dn(y, z − y)dy, (21)

Φup(z) =

∫
R

v0(y)K
up(y, y + z)dy, (22)

Φ̄up(z) =

∫ z
2

−∞
v0(y)K̄

up(y, z − y)dy. (23)

In other words, once the auxiliary functions {K̄up, K̄dn} and
{Kup,Kdn} have been obtained, the entries {a�,j(λ)}j of the
transition matrix for the left can be computed by resorting to
proper quadrature formulae. An analogous procedure allows us
to compute the entries {ar,j(λ)}j of the transition matrix from
the right [5]. After that the spectral matrix can be computed
by using the procedure before illustrated.

In the literature other methods have been proposed to
compute the transition matrices such as the T -matrix method
[9] which is theoretically exact whenever the initial potential
is piecewise constant. To our best knowledge, our method is
the only one that allows one to compute the transition matrices
under general hypotheses.

Step 3: De nition (14) suggests to compute ρ(α) and �(α) by
resorting to the inverse and direct discrete Fourier transform.
However, this procedure is effective whenever the initial po-
tential is continuous, that is u0 ∈ C(R). If this is not the case,
that is if u0 ∈ L1(R) but u0 	∈ C(R), the Fourier transforms
ρ(α) and �(α) can be approximated by solving the following
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structured Fredholm integral equations [5]

ρ(α) +

∫ ∞

0

Φup(z) ρ(z + α)dz = −1
2
v0

(α

2

)
− Φ̄up(α),

(24)

�(α) +

∫ ∞

0

Φup(z) �(α− z)dz = −1
2
u0

(α

2

)
− Φdn(α) (25)

where Φup, Φ̄up and Φdn are given in (21)-(23).

Step 4: Following [7, (2.50a)-(2.50b)], we can claim [5] that
for y ≥ x ≥ 0 the Marchenko kernel Ωl is connected to the
auxiliary functions K

dn
and Kdn as follows:

Ωl(x+ y) +

∫ ∞

x

Kdn(x, z)Ωl(z + y) = −K
dn
(x, y). (26)

Assuming the auxiliary functions are known, (26) can be
interpreted as a structured Fredholm integral equation hav-
ing the initial Marchenko kernels Ωl as its unknown. For
y ≤ x ≤ 0 the Marchenko kernel Ωr is connected to the
auxiliary functions M

dn
and M dn by an analogous equation.

It is important to note that, from the computational point of
view, each Marchenko kernel can be treated as a function of
only one variable, as we only have to deal with the sum of
the two variables. As a result, the computation of Ωl and Ωr

can be carried out maintaining the accuracy of the auxiliary
functions [5].

Step 5: Once the inverse and direct Fourier transforms ρ(α)
and �(α) of re ection coef cients R(λ) and L(λ) have been
computed we can identify the parameters and coef cients of
the spectral sums Sl(α) and Sr(α), noting that

Sl(α) = Ωl(α)− ρ(α), Sr(α) = Ωr(α)− �(α). (27)

In fact, setting M = m1 + ... + mn, the matrix-pencil
method proposed in [10] allows one to compute the parameters
{n,mj , λj} and the coef cients {(Γl)js}, given S�(α) in 2N
(N > M ) equidistant points αj = a+ jh, j = 0, 1, ..., 2N −1
of an interval [a, b] under the assumption that a reasonable
overestimate M̃ of M is known.

The coef cients {(Γl)js} can then be computed by solving
in the least square sense a linear system of order N ×M .

IV. NUMERICAL RESULTS

Let us now present some results concerning three examples.

A. Example 1

The  rst example is the one-soliton potential

u0(x) = 2iη ei(2ξx+φ)sech(x0 − 2ηx), (28)

where ξ, φ, x0 ∈ R and 0 	= η ∈ R. In the numerical results
reported below x0 = φ = 0, ξ = 0.1 and η = 2, so that the
peak point position is μ0 ≡ x0

2η = 0. As the initial scattering
data associated to (28) can be obtained exactly [3], [1], we
can compute very accurately the relative approximation error
for all scattering data. In particular, assuming L large enough
to have

|u0(x)| < 10−16, |x| > L,

and assuming the symbol ∼ to denote the computed approxi-
mation of Marchenko kernels, we have obtained

max
x∈[0,L]

∣∣∣∣∣
Ω̃�(x)− Ω�(x)

Ω�(x)

∣∣∣∣∣ � max
x∈[−L,0]

∣∣∣∣∣
Ω̃r(x)− Ωr(x)

Ωr(x)

∣∣∣∣∣
� 3.2e− 07.

Moreover, adopting analogous distinctions between exact
and computing data, and assuming M̃ = 5 we have obtained

n = 1, m1 = 1, |ρ(α)| ≤ 10−16,
|λ̃− λ|
|λ| = 4.11e− 09

|Γ̃� − Γ�|
|Γ�| = 3.24e− 07, |Γ̃r − Γr|

|Γr| = 3.24e− 07.

B. Example 2

As a second example we consider the initial potential

u0(x) = q0e
iμxe−x2/σ,

where q0 > 0, σ > 0, and μ ∈ R which has been considered
in [11] in the defocusing case.

We consider both the focusing case and the defocusing case
with more values of q0, μ, and σ.

In the focusing case with q0 = 2.5, μ = 1, and σ = 2,
as shown in [5], we have two simple bound states {λ1, λ2}
whose real part is − 1

2 . Assuming [−8, 8] as the support of
the initial potential, our method recognizes these two simple
bound states having real part equal to − 1

2 . In fact, in our case
we obtain λ1 = −0.50 + 1.97i and λ2 = −0.50 + 0.79i.

In the defocusing case, our method recognizes that there
are no bound states. Taking q0 = 1.9, μ = 1 and σ = 2, for
example, we obtain

max
α∈[0,16]

|Ω�(α)− ρ(α)| � max
α∈[−16,0]

|Ωr(α)− �(α)| � 10−10,

which means that S�(α) = Sr(α) = 0. Moreover, we have
checked the numerical validity of the algebraic symmetry
properties (8). The results are at all satisfactory as Figure 1
shows where the behavior of the error function

E(λ) =

∥∥∥∥12(S†(λ)S(λ) + S(λ)S†(λ))− I

∥∥∥∥ ,

in the Gaussian defocusing case is depicted in the interval
λ ∈ [−16, 16], being |u0(x)| < 10−16 for |x| > 8.

C. Example 3

Let us now consider the initial truncated potential

u0,τ (x) =

{
0, x < τ,

u0(x), x > τ,
(29)

where u0 is the initial potential de ned in (28) with x0 =
φ = 0, ξ = 0.1, η = 2, and μ0 = 0. It is easy to prove
that u0,τ (x) has a bound state if τ < 0 and we have no bound
states if τ > 0. By choosing τ = −1 and τ = 1, we obtain two
truncated potentials whose behaviors are depicted in Figures
2 and 3, respectively. Let us also remark that, because the
initial potential has a jump of discontinuity, the inverse and
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Fig. 1. E in semi logarithmic scale

direct Fourier transform of the re ection coef cients have been
computed by solving equations (24)-(25) rather than (14) and
(18).

In the case τ = −1, our method recognizes that we have a
single bound state at λ = 1.99 + 0.1i with norming constants
Γ� = 4.00i and Γr = −4.00i, and it also numerically veri es
the symmetry property (9).

In the case τ = 1, the method recognizes that the re ection
coef cients are different from zero and also that there are no
bound states.
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Fig. 2. Truncated one-soliton potential (τ = −1)
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Fig. 3. Truncated one-soliton potential (τ = 1)

V. CONCLUSIONS

Our method allows us to effectively compute the scattering
data for the NLS equation with continuous initial potential as
well as when it has jump discontinuities.
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