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In this paper we propose a matrix-pencil method for the numerical identification of the
parameters of monomial-exponential sums in one and two variables. While in the univari-
ate case the proposed method is a variant of that developed by the authors in a preceding
paper, the bivariate case is treated for the first time here. In the bivariate case, the method
we propose, easily extendible to more variables, reduces the problem to a pair of univariate
problems and subsequently to the solution of a linear system. As a result, the relative errors
in the univariate and in the bivariate case are almost of the same order.
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1. Introduction

In many problems concerning the applied sciences and engineering, it is important to identify the parameters and coef-
ficients fn; ff jg

n
j¼1
; fcjgn

j¼1g in the exponential sums
hðxÞ ¼
Xn

j¼1

cjef jx; ð1Þ
where n is a positive integer, fcjgn
j¼1 are complex or real coefficients and ff jg

n
j¼1

are distinct complex or real parameters, given

a set of 2N (2N P n) values of hðxÞ in equidistant points of R.
This problem arises, in particular, in the propagation of signals [1] [2], electromagnetics [3] [4] and high-resolution

imaging of moving targets [5]. The two methods used most are Prony-like (or polynomial) methods and matrix-pencil
methods. The first ones are based on the paper by de Prony [6] who was the first to investigate this problem, under the
hypothesis that n is known and the data are exact. Several extensions and variants of this method have been proposed
to consider the case where n is only approximately known or the data are affected by noise (see, for instance,
[7, pp. 458–462], [8–14]). For the matrix-pencil methods, which have been proposed more recently (see, for instance,
[15,16]), some attempts to recover the parameters in extended exponential polynomials of the type
gðxÞ ¼
Xn

j¼1

cjðxÞef jx;
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where cjðxÞ is a polynomial, have been made in particular in [17,18] where no proof of unique reconstruction of the para-
meters from the data matrix has been given.

More recently, the authors have proposed a matrix-pencil method [19] to estimate the parameters of a monomial-expo-
nential sum of the form
hðxÞ ¼
Xn

j¼1

Xmj�1

s¼0

cjsxsef jx; ð2Þ
where fcjsg
n;mj�1
j¼1;s¼0 and ff jg

n
j¼1

are complex or real parameters and fmjgn
j¼1 are positive integers. In the case

m1 ¼ m2 ¼ � � � ¼ mn ¼ 1, the monomial exponential sum hðxÞ, of course, reduces to the exponential sum (1). More precisely,
setting
M ¼ m1 þm2 þ � � � þmn;
the problem is to recover the M þ n parameters of h given 2N (N P M) observed data. In [19] the uniqueness of the recovery
of parameters from the data matrix has been proved.

This problem is of primary interest, for instance, in the direct scattering problem concerning the solution of nonlinear
partial differential equations (NPDEs) of integrable type [20] [21].

In this paper we propose a new technique to compute the eigenvalues of the matrix-pencil, that is to identify the para-
meters ff jg and the order fmjg of the monomials. Our numerical experiments (see Section 4) show that it is as effective as the
two techniques proposed in [19], though its computational complexity is lower.

Furthermore we introduce a method to identify the parameters of the following bivariate monomial-exponential sums
hðx1; x2Þ ¼
Xn1

j1¼1

Xm1j1
�1

s1¼0

Xn2

j2¼1

Xm2j2
�1

s2¼0

cðj1 ;s1Þ;ðj2 ;s2Þ x
s1
1 ef 1j1

x1 xs2
2 ef 2j2

x2 ; ð3Þ
which of course reduces to bivariate exponential sums whenever m1j1 � m2j2 � 1 which is the case treated for instance in
[22,23]. This method, which reduces the problem to a pair of univariate problems solvable by the method proposed in
the univariate case, can easily be extended to more variables.

Let us now outline the organization of the paper. In Section 2 we illustrate our method in the one-variable case and in
Section 3 we explain how to treat the bivariate case. Section 4 is devoted to the numerical results and Section 5 to the
conclusions.

2. The numerical method for univariate sums

The numerical method we propose to recover the parameters of the monomial-exponential sum (2) reduces the non-lin-
ear approximation problem to two problems of linear algebra. The first one is a generalized eigenvalue problem, which
allows us to recover n; f j and mj. The second one is the solution of a linear system with a Casorati matrix to compute the
parameters cjs.

Firstly we note that, setting zj ¼ ef j – 0, we can rewrite the monomial exponential sum (2) as a monomial-power sum
hðxÞ ¼
Xn

j¼1

Xmj�1

s¼0

cjsxsz x
j : ð4Þ
For the sake of clarity let us assume initially that 2N sampled data with N P M; M ¼ m1 þ � � � þmn,
hðkÞ ¼
Xn

j¼1

Xmj�1

s¼0

cjsk
szk

j ; 00 � 1 ð5Þ
are given for the 2N integer values k ¼ k0; k0 þ 1; . . . ; k0 þ 2N � 1 with k0 2 Nþ ¼ f0;1;2; . . . ; k0; . . .g. As we will show in
Section 2.3, the problem can be treated as well whenever hðxÞ is known in 2N equidistant points of any interval ½a; b�. As

generally happens in applications, we assume to know a reasonable overestimate bM of M and N P bM . Under this hypothesis,

preliminarily, we arrange the 2N given data in the following Hankel matrices of order N � bM
H0

NbM ¼
hðk0Þ hðk0 þ 1Þ . . . hðk0 þ bM � 1Þ

hðk0 þ 1Þ hðk0 þ 2Þ . . . hðk0 þ bMÞ
..
. ..

. ..
. ..

.

hðk0 þ N � 1Þ hðk0 þ NÞ . . . hðk0 þ bM þ N � 2Þ

0BBBBBBB@

1CCCCCCCA ¼ h0;h1; . . . ; ;hbM�1

h i
; ð6Þ
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H1

NbM ¼
hðk0 þ 1Þ hðk0 þ 2Þ . . . hðk0 þ bMÞ
hðk0 þ 2Þ hðk0 þ 3Þ . . . hðk0 þ bM þ 1Þ

..

. ..
. ..

. ..
.

hðk0 þ NÞ hðk0 þ N þ 1Þ . . . hðk0 þ bM þ N � 1Þ

0BBBBB@

1CCCCCA ¼ h1;h2; . . . ;hbMh i
: ð7Þ
Notice that H1

NbM is essentially a shift of H0

NbM , as the first bM � 1 columns of H1

NbM coincide with the last bM � 1 columns of

H0

NbM , apart from the last entry.

Under the hypothesis that the sampled data are noiseless the following two properties are satisfied [19, Lemma 2.1]:

(a) The matrices (6) and (7) have rank M, that is
rank H0

NbM� �
¼ rank H1

NbM� �
¼ M: ð8Þ
(b) The following relation holds true
H1
NM ¼ H0

NM CMðPÞ ð9Þ

where

CMðPÞ ¼

0 0 . . . 0 �p0

1 0 . . . 0 �p1

..

. ..
. ..

. ..
.

0 0 . . . 1 �pM�1

0BBBB@
1CCCCA

is the companion matrix of the associated Prony polynomial, i.e. of the monic polynomial of degree M

PðzÞ ¼
Yn

j¼1

ðz� zjÞmj ¼
XM

k¼0

pkzk; pM � 1 ð10Þ

having zj as the jth zero with multiplicity mj. This polynomial is associated to the Hankel matrices (6) and (7) in the
sense that it is straightforward to proveXM�1

k¼0

pkhk þ hM ¼ 0: ð11Þ
Let us now recall the next theorem, proved in [19], which contains two results that are basic to our method.

Theorem 2.1. The zeros of the Prony polynomial, with their multiplicities, are exactly the eigenvalues, with the same multiplicity,
of the matrix-pencil
HMMðzÞ ¼ H0
NM

� ��
H1

NM � zH0
NM

� �
; ð12Þ
where the asterisk denotes the conjugate transpose.
Moreover, the coefficients cjs appearing in (2) are the solutions of the linear system
K0
MMc ¼ h0 ð13Þ
where c ¼ ½c1 0; . . . ; c1 m1�1; . . . ; cn 0; . . . ; cn mn�1�T ; h0 ¼ ½hðk0Þ; hðk0 þ 1Þ; . . . ; hðk0 þM � 1Þ�T and K0
MM is the Casorati matrix
K0
MM ¼

zk0
1 k0zk0

1 . . . km1�1
0 zk0

1 . . . zk0
n k0zk0

n . . . kmn�1
0 zk0

n

zk1
1 k1zk1

1 . . . km1�1
1 zk1

1 . . . zk1
n k1zk1

n . . . kmn�1
1 zk1

n

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

zkM�1
1 kM�1zkM�1

1 . . . km1�1
M�1 zkM�1

1 . . . zkM�1
n kM�1zkM�1

n . . . kmn�1
M�1 zkM�1

n

0BBBBB@

1CCCCCA: ð14Þ
2.1. Computation of fn; zj; mjg

The starting point for the computation of the parameters fn; zj; mjg, is the factorization of the augmented Hankel matrix
HN;Mþ1 ¼ ½h0;h1; . . . ;hM� ¼ H0
NM; hM

h i
¼ h0; H1

NM

h i
; ð15Þ
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by means of the QR decomposition, unlike in [19] where it is factorized by applying the SVD (Singular Value Decomposition)
technique.

Proceeding in this way we obtain
HN;Mþ1 ¼ ½q0;q1; . . . ;qM�

r11 r12 . . . r1;Mþ1

0 r22 . . . r2;Mþ1

..

. ..
. ..

. ..
.

0 0 . . . rMþ1;Mþ1

0BBBB@
1CCCCA ¼ Q N;Mþ1 RMþ1;Mþ1;
where qi 2 CN for each i ¼ 0;1;2; . . . ;M with ðQ N;Mþ1Þ
�Q N;Mþ1 ¼ IMþ1;Mþ1, (identity matrix of order M þ 1), and RMþ1;Mþ1 is an

upper triangular matrix of order M þ 1.
Hence, as
H0
NM ¼ ½h0;h1; . . . ;hM�1�;
we have
H0
NM ¼ Q 0

NMR0
NM; ð16Þ
where Q 0
NM ¼ ½q0;q1; . . . ;qM�1� and R0

NM is obtained from RMþ1;Mþ1 by simply deleting its last row and its last column.
Similarly
H1
NM ¼ ½h1;h2; . . . ;hM� ¼ Q N;Mþ1

bR1
Mþ1;M ;
where bR1
Mþ1:M is obtained from RMþ1;Mþ1 by simply deleting its first column.

Furthermore, noting that
H0
NM

� ��
H1

NM ¼ R0
NM

� ��
Q 0

NM

� ��
Q N;Mþ1

bR1
Mþ1;M ¼ R0

NM

� ��
R1

MM;
where R1
MM is obtained from bR1

Mþ1;M by simply ignoring its last row, that is from RMþ1;Mþ1 by ignoring both its first column and
its last row. Moreover, as
H0
NM

� ��
H0

NM ¼ R0
MM

� ��
Q 0

NM

� ��
Q 0

NM R0
MM ¼ R0

MM

� ��
R0

MM
and R0
MM is not singular, the matrix pencil (12) can be written as follows:
HMMðzÞ ¼ R0
MM

� ��
R0

MM R0
MM

� ��1
R1

MM � zI
� �

:

Furthermore, R1
MM can be factorized as follows
R1
MM ¼ R0

MM AMM
where
AMM ¼

0 0 . . . 0 a0

1 0 . . . 0 a1

..

. ..
. ..

. ..
.

0 0 . . . 1 aM�1

0BBBB@
1CCCCA
is a companion matrix whose last column a ¼ ½a0; a1; . . . ; aM�1�T is the solution of the system
R0
MMa ¼ rMþ1 ð17Þ
where rMþ1 ¼ ½r1;Mþ1; r2;Mþ1; . . . ; rM;Mþ1�T , that is the last column of RMþ1;Mþ1 while ignoring its last element. As a result,
HMMðzÞ ¼ R0
MM

� ��
R0

MM ðAMM � zIMMÞ: ð18Þ
A comparison between AMM and CMðPÞ allows us to note that pj ¼ �aj, j ¼ 0;1; . . . ;M � 1.
As a result, the computation of fn; zj; mjg and the coefficients of the Prony’s polynomial, via QR factorization reduces to:

1. The QR factorization of the Hankel matrix HN;Mþ1.
2. The solution of the upper-triangular system (17).
3. The computation of the eigenvalues of the companion matrix AMM .
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Note that the computational cost for the parameter identification is dominated by the cost of the QR algorithm which is

OðN bM2Þ. Hence, it is generally lower with respect to that based on the SVD algorithm, as in [19].

2.2. Computation of fcjsg

Once the parameters fn; zj; mjg have been computed, we evaluate the coefficients cjs, given hðkÞ in M distinct points
fk0; k0 þ 1; . . . ; k0 þM � 1g. Indeed, we write down the Casorati matrix and then solve the linear system (13).

Although theoretically not necessary, our numerical experiments suggest to use more than 2M data. For this reason,
whenever it is possible we prefer to use 2N (N > M) sampled data and to compute the coefficients by solving, in the least
squares sense, the overdetermined linear system
K0
2N;Mc ¼ h0; ð19Þ
where h0 ¼ ½hðk0Þ; hðk0 þ 1Þ; . . . ; hðk0 þ 2N � 1Þ� and K0
2N;M is the Casorati matrix of order 2N �M (N > M), obtained as a nat-

ural extension of (14). As can be expected, this extension is increasingly important as the noise/signal ratio increases.

2.3. Sampling hðxÞ in N points of an interval

Let us now explain how the method described in the previous paragraphs, with simple variants, can be applied as well in

2N (N > bM) equidistant points of an interval ½a; b� instead of in 2N integer values. Under this hypothesis, setting
xk ¼ x0 þ kd; k ¼ 0;1; . . . ;2N; d ¼ b� a
2N
by (4) we have
hðkÞ � hðxkÞ ¼
Xn

j¼1

Xmj�1

s¼0

cjsðx0 þ kdÞszx0þkd
j ¼

Xn

j¼1

zx0
j

Xmj�1

s¼0

cjs

Xs

‘¼0

s

‘

� �
xs�‘

0 d‘k‘
 !

zkd
j ¼

Xn

j¼1

Xmj�1

s¼0

djsk
snk

j ; ð20Þ
where nj ¼ zd
j and djs ¼ zx0

j

Pmj�1
t¼s

t
s

� �
xt�s

0 cjt

� �
ds with 0

0

� �
¼ 1.

As a consequence, recalling that our matrix-pencil method applied to (20) allows us to recover the set of parameters
fn;mj; nj; djsg, we can estimate the parameters fzjgn

j¼1 with their multiplicities and then the coefficients fcjsg by means of
the following backward recursion:
dj;mj�1 ¼ zx0
j

mj � 1
mj � 1

� �
cj;mj�1 dmj�1;

dj;mj�2 ¼ zx0
j

mj � 2
mj � 2

� �
cj;mj�2 þ

mj � 1
mj � 2

� �
x0 cj;mj�1

� �
dmj�2;

..

. ..
. ..

.

dj1 ¼ zx0
j

1
1

� �
cj;1 þ . . .þ

mj � 1
1

� �
x

mj�2
0 cj;mj�1

� �
d

dj0 ¼ zx0
j cj0 þ

1
0

� �
x0cj;1 þ . . .þ

mj � 1
0

� �
x

mj�1
0 cj;mj�1

� �
:

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

This procedure based on the sampling of hðxÞ in an interval can be effective, as happens in Example 3, also if the sum could be
sampled in the integers. This occurs, in particular, when the sampling on N integers generates an extended Hankel matrix
whose rows or columns are not scaled among them.

3. The numerical method for bivariate sums

In this section we generalize the technique developed in the previous section to the bivariate case, that is to the tensor
product of two monomial-exponential sums
hðx1; x2Þ ¼
Xn1

j1¼1

Xm1j1
�1

s1¼0

Xn2

j2¼1

Xm2j2
�1

s2¼0

cðj1 ;s1Þ;ðj2 ;s2Þ x
s1
1 ef 1j1

x1 xs2
2 ef 2j2

x2 ; ð21Þ
which reduces to a bivariate sum of exponentials whenever m1j1 ¼ m2j2 ¼ 1. The problem consists of recovering the para-
meters and coefficients



L. Fermo et al. / Applied Mathematics and Computation 258 (2015) 576–586 581
n1; n2; m1j1 ; m2j2 ; f 1j1
; f 2j2

; cðj1 ;s1Þ;ðj2 ;s2Þ

n o

knowing hðx1; x2Þ in a set of points fðx1 k1 ; x2 k2 Þg of a regular grid of a rectangle ½a1; b1� � ½a2; b2� where
x1k1
¼ a1 þ k1d1; k1 ¼ 0;1;2; . . . ;2N1; d1 ¼

b1 � a1

2N1
; N1 > M1 ¼ m11 þ � � � þm1n1 ;

x2k2
¼ a2 þ k2d2; k2 ¼ 0;1;2; . . . ;2N2; d2 ¼

b2 � a2

2N2
; N2 > M2 ¼ m21 þ � � � þm2n2 :
Following a ‘‘cascade-like’’ technique, fixing x2 we put
hx2 ðx1Þ ¼
Xn1

j1¼1

Xm1j1
�1

s1¼0

aj1 ;s1 ðx2Þxs1
1 ef 1j1

x1 ð22Þ
where x2 is a parameter and x1 is a variable that, for each fixed value x2k2 of x2, assumes the 2N1 values x1k1 ,
k1 ¼ 0;1;2; . . . ;2N1.

Similarly, inverting the roles of x1 (parameter) and x2 (variable) we can write
hx1 ðx2Þ ¼
Xn2

j2¼1

Xm2j2
�1

s2¼0

bðj2 ;s2Þðx1Þxs2
2 ef 2j2

x2 ; ð23Þ
where for each value x1k1 of x1; x2 assumes the values x2k2 ; k2 ¼ 0;1;2; . . . ;2N2. Fixing x2; hðx1; x2Þ is a monomial-exponen-
tial sum whose parameters fn1; m1j1 ; f 1j1

g can be recovered by applying our matrix pencil method as hðx1k1 ; x2k2 Þ is assumed
to be known for k1 ¼ 0;1;2; . . . ;2N1 with N1 P M1. As the coefficients cannot be exactly the same for each value of x2 we
ignore them. Applying the same procedure to hðx1; x2Þ with x1 fixed, we can recover the parameters fn2; m2j2 ; f 2j2

g.
At this point, having recovered all the parameters fn1; n2; m1j1 ; m2j2 ; f 1j1

; f 2j2
g, it remains to estimate M1 �M2 coefficients

fcðj1 ;s1Þ;ðj2 ;s2Þg, that is to solve a linear approximation problem. Indeed, we have to solve in the least squares sense the overde-
termined linear system
Fc ¼ h; ð24Þ
where the rows of F as well as the entries of h depend on the pair ðk1; k2Þ, while the columns of F as well as the entries of c
depend on the pair ðj1; s1Þ; ðj2; s2Þ. For this reason the equations are sorted on the basis of the lexicographical order between
k1 and k2, that is fixing k2 ¼ 0;1;2; . . . ;2N2 we put k1 ¼ 0;1;2; . . . ;2N1. Similarly, the columns of F as the entries of c are
sorted on the basis of the lexicographical order between the pairs ðj1; s1Þ and ðj2; s2Þ k1, which means that fixing
j2 ¼ 1; . . . ;n2 with s2 ¼ 0;1; . . . ;m2j2 � 1, we put j1 ¼ 1;2; . . . ;n1 and for each of them s1 ¼ 0;1; . . . ;m1j1 � 1.

This technique generalizes immediately to the case of more variables. If h ¼ ðx1; x2; x3Þ, for example, fixing x2 and x3 we
apply the univariate method to hx2 ;x3 ðx1Þ to recover the parameters pertaining to x1, then, fixing, x1 and x3 we apply the same
method to compute the parameters pertaining x2, as well as, fixing x1 and x2 we compute the parameters pertaining x3. At
this point it remains to solve a linear system for computing the coefficients.

4. Numerical results

In this section, to highlight the effectiveness of the proposed method, we illustrate the results of its applications to some
examples in one and two variables. Concerning the univariate case, its effectiveness will be compared with that of the tech-
niques proposed in [19]. More precisely, recalling that in [19] the factorization of the augmented Hankel matrix H

N;bMþ1
is

obtained by the SVD, while here it is obtained by the QR technique, and the simultaneously factorization of H0

N;bM and

H1

N;bM in [19] is obtained by the GSVD (Generalized Singular Value Decomposition), to distinguish between them in the tables

of the results we will write via QR, via SVD and via GSVD.
In the first two examples, which deal with the univariate case, we consider the noisy data
hðkÞ ¼ h�ðkÞ þ dek; k ¼ k0; . . . ; k0 þ 2N � 1; ð25Þ
where hðkÞ � hðxkÞ and h�ðkÞ � h�ðxkÞ denote the noisy and exact values of the monomial-exponential sum in xk; ek 2 ½0; 1� is
a normally distributed random array and d is the standard deviation of the sampled data. In each example we assume that

only a reliable estimate bM of M is known. As in [19], to compute the relative errors of the parameters and coefficients, we
adopt the error estimators
eðfÞ ¼ max
j¼1; ...;n

1�
f j

f �j

�����
�����; eðcÞ ¼ max

j¼1; ...;n
s¼0; ...; mj�1

1� cjs

c�js

�����
����� ð26Þ
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where f �j and c�js denote the exact values of the parameters. Moreover, by using our estimates f j and cjs of f �j and c�js, we eval-
uate the relative error of the monomial-exponential sum h as follows:
eðhÞ ¼max
x2X

1� hðxÞ
h�ðxÞ

���� ���� ð27Þ
where h� is the exact sum and X ¼ fxi ¼ i b
50 ; i ¼ 1; . . . ; 50g.

In other words we adopt the error estimators typical of a worst case analysis. Hence their values are expected to be larger
than those obtained by using other estimators appearing in the literature. In [12], for example, instead of the expression for
eðfÞ in (26) the following estimator
eðfÞ ¼
maxj¼1; ...;n f j � f �j

��� ���
maxj¼1; ...;njf �j j

ð28Þ
has been adopted. The same consideration holds true for the error expression of eðcÞ in (26) and for the expression for eðhÞ in
(27).

In the bivariate case, to highlight the dependence of our results on the level of the noise on the data, extending the above
procedure, we assume
hðk1; k2Þ ¼ h�ðk1; k2Þ þ dðek1
þ ek2

Þ; ð29Þ
where hðk1; k2Þ � hðx1 k1
; x2 k2

Þ denotes the noisy data in ðx1 k1
; x2 k2

Þ, h�ðk1; k2Þ � h�ðx1 k1
; x2 k2

Þ represents the exact one in
ðx1 k1 ; x2 k2 Þ and d, as well as ek1 and ek2 , are as before.

The expressions of the error estimators are the natural extensions to the bivariate case of the univariate expressions of the
error estimators in (26) and (27), so that
eðfÞ ¼ max max
j1¼1; ...;n1

1�
f 1j1

f �1j1

�����
�����; max

j2¼1; ...;n2

1�
f 2j2

f �2j2

�����
�����

( )
;

eðcÞ ¼ max
ðj1 ;s1Þ;ðj2 ;s2Þ

1� cðj1 ;s1Þðj2 ;s2Þ

c�ðj1 ;s1Þðj2 ;s2Þ

�����
����� j1 ¼ 1; . . . ;n1; s1 ¼ 0; . . . ; mj1�1 j2 ¼ 1; . . . ; n2; s2 ¼ 0; . . . ; mj2�1

( )
;

where f �1j1
; f �2j2

and c�ðj1 ;s1Þðj2 ;s2Þ denote the exact values of the parameters and coefficients. Similarly, the relative error estima-

tor of h in the rectangle ½a1; b1� � ½a2; b2� is
eðhÞ ¼max 1� hðx1 i1 ; x2 i2 Þ
h�ðx1 i1 ; x2 i2 Þ

���� ����; x1 i1 ¼ i1
b1 � a1

50
; x2 i2 ¼ i2

b2 � a2

50
; i1 ¼ i2 ¼ 0;1; . . . ;50

	 

; ð30Þ
where h�ðx1 i1 ; x2 i2 Þ denote the noisy and exact values of hðx1; x2Þ in ðx1 i1 ; x2 i2 Þ. Hence, also in the bivariate case the error esti-
mators adopted are able to reveal the presence of a single point, among those sampled, in which the approximation is not
satisfactory.

All computations were carried out in MATLAB version 8.1 (R2013a) 64-bit for Linux in double precision arithmetic.

Example 1 (An application to NPDEs of integrable type). As remarked in [19], an extensive area where effective methods for
parameter identification in sums of monomial-exponential functions can be very useful is represented by the important class
of non-linear partial differential equations (NPDEs) of integrable type [20,21].

In this context it is very important to identify the parameters fn; aj; mjg and the coefficients fðC‘Þjs; ðCrÞjsg of the
monomial exponential sums
X‘ðxÞ ¼
Xn

j¼1

e�ajx
Xmj�1

s¼0

ðC‘Þjs
xs

s!
; x 2 Rþ; ð31Þ

XrðxÞ ¼
Xn

j¼1

eajx
Xmj�1

s¼0

ðCrÞjs
xs

s!
; x 2 R�; ð32Þ
where 00 � 1 and aj are complex or real parameters with ReðajÞ > 0.

The application of our method to X‘ allows us to estimate fn;mj; ðC‘Þjsg, knowing X‘ in 2N (N > bM) positive integer points,
and then to recover ðCrÞjs by solving, in the least squares sense, a linear system of order N �M, given Xr in 2N (N > M)
negative integer nodes. The same results can of course be obtained as well by applying first the method to XrðxÞ to identify
fn;mj; ðCrÞjsg and then to X‘ðxÞ to identify ðC‘Þjs.
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In Tables 1 and 2 we give the error estimates that we obtain in the identification of X‘ parameters and coefficients in the
following two cases (representative of four-solitons with 4 simple bound states and with two double bound states):

(a) n ¼ 4, m1 ¼ . . . ¼ m4 ¼ 1,
a ¼ 1

10 ½1þ 7i;1� 7i;1:4þ 4i;1:4� 4i� and C‘ ¼ ½1þ i;1� i;3þ i;3� i�;
(b) n ¼ 2, m1 ¼ m2 ¼ 2

a ¼ 1
10 ½1þ 7i;1� 7i� and C‘ ¼ ½1þ i;1� i;2þ i;2� i�.

Notice that mj ¼ 1 means that the jth bound state, identified by the parameter aj, is simple, while mj ¼ 2 means that it is
double. With reference to the Prony polynomial this fact implies that the jth zero is simple if mj=1 and double whenever
mj ¼ 2.

In both cases we considered ½0; 5� as the interval of effective interest and then assumed b ¼ 5.
The results reported in Tables 1 and 2, obtained with the QR technique, highlight that the identification of parameters and

coefficients is satisfactory not only in the simpler case (a) but also in the presence of multiple bound states (case (b)) which
represents a more difficult situation, as people working in the NPDEs area of integrable type well know. In fact, the results

that we obtain are very good in the absence of noise and reliable in the presence of noise, although bM is a large overestimate
of M. Furthermore Tables 1 and 2 make evident that good results can be obtained by taking a relatively small number of
sampling data i.e. N ¼ 4M. The results obtained via the SVD or via the GSVD have not been reported as they are nearly
indistinguishable from those obtained via QR.
Example 2. Let hðxÞ be the exponential sum (4), already considered in [13],
Table 1
Numeri

N

8
16
32

8

16

32

8

16

32
c ¼ e15i

3:1
9:9
6:0
2:8
17

26666664

37777775; z ¼ 2 � 10�5

�208� 2p1379i

�256� 2p685i

�197� 2p271i

�117þ 2p353i

�808þ 2p478i

26666664

37777775; ð33Þ
where n ¼ 5 and mj ¼ 1 for each j. The errors estimates, reported in Table 3, clearly show that the results obtained via QR, via
SVD and via GSVD are very good. Moreover, being essentially the same, they validate each other. Notice that, as to be expect-
ed, the number of sampling points needed to obtain satisfactory results increases as the level of noise increases.
Example 3. Let us now consider the bivariate exponential-sum
hðx1; x2Þ ¼
X2

j1¼1

X3

j2¼1

cj1 ;j2 ef 1j1
x1þf 2j2

x2 ;
where
c ¼
1 2 3
4 5 6

� �
; f1 ¼ ½2;4�; f2 ¼ ½1;3;5�: ð34Þ
Proceeding as explained in Section 3, fixing x2 we apply the univariate method to estimate the parameters ff 1j1
g

of the sum
cal results for Example 1 (case (a)).

d bM eðfÞ eðcÞ eðhÞ

0 7 3.05e�14 9.32e�14 1.32e�13
0 7 2.25e�14 6.73e�14 5.68e�13
0 7 2.58e�14 8.75e�14 2.82e�13

10�9 7 2.93e�09 1.44e�08 4.73e�08

10�9 7 5.49e�10 3.93e�09 3.60e�09

10�9 7 4.82e�10 2.79e�09 6.87e�08

10�7 7 4.55e�07 2.02e�06 8.61e�07

10�7 7 9.21e�08 4.93e�07 2.88e�06

10�7 7 4.88e�08 3,33e�07 1.21e�06



Table 2
Numerical results for Example 1 (case (b)).

N d bM eðfÞ eðcÞ eðhÞ

8 0 7 4.04e�08 4.76e�07 3.81e�07
16 0 7 7.46e�08 3.06e�06 1.20e�06
32 0 7 4.19e�08 1.35e�06 2.55e�07

8 10�9 7 1.09e�05 1.98e�04 3.19e�05

16 10�9 7 4.99e�06 1.82e�04 6.47e�05

32 10�9 7 8.15e�06 2.90e�04 6.82e�05

8 10�7 7 1.45e�04 1.73e�03 9.02e�04

16 10�7 7 7.09e�05 2.65e�03 8.93e�04

32 10�7 7 2.38e�05 7.79e�04 2.11e�04

Table 3
Numerical results for Example 2.

N d bM eðfÞ eðcÞ eðhÞ

via QR 10 0 5 2.09e�05 6.84e�05 2.00e�07
50 0 5 7.34e�08 2.93e�07 3.09e�09
100 0 5 2.04e�09 8.25e�09 1.00e�09
10 10�11 8 7.54e�03 2.50e�02 4.83e�05

50 10�11 8 2.00e�06 7.88e�06 1.46e�07

100 10�11 8 9.08e�08 5.60e�07 2.35e�08

10 10�9 8 2.33e�01 5.43e�01 1.68e�03

50 10�9 8 1.17e�04 4.78e�04 7.15e�06

100 10�9 8 7.18e�06 4.52e�05 1.90e�06

via SVD 10 0 5 2.38e�05 7.81e�05 2.21e�07
50 0 5 7.39e�08 3.01e�07 4.46e�09
100 0 5 1.23e�09 1.06e�08 8.25e�10
10 10�11 8 4.13e�03 1.40e�02 2.63e�05

50 10�11 8 1.00e�06 3.70e�06 9.56e�08

100 10�11 8 6.00e�08 3.86e�07 1.44e�08

10 10�9 8 1.24e�01 5.14e�01 8.74e�04

50 10�9 8 2.99e�05 1.30e�04 1.45e�06

100 10�9 8 1.89e�06 1.20e�05 2.74e�07

via GSVD 10 0 5 3.95e�05 1.31e�04 3.19e�07
50 0 5 3.62e�08 1.52e�07 1.69e�09
100 0 5 5.33e�09 3.42e�08 1.38e�09
10 10�11 8 4.36e�02 1.70e�01 1.13e�03

50 10�11 8 9.82e�06 5.01e�05 5.40e�08

100 10�11 8 2.14e�07 1.15e�06 7.92e�08

10 10�9 8 3.28e�02 1.31e�01 7.27e�04

50 10�9 8 1.44e�06 4.19e�06 5.42e�09

100 10�9 8 3.16e�07 1.65e�06 1.12e�07
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hx1 ðx2Þ ¼
X2

j1¼1

aj2 ðx2Þef 1j1
x1
and then, fixing x1, the parameters ff 2j2
g are estimated by applying the same method to the sum
hx2 ðx1Þ ¼
X3

j2¼1

bj1 ðx1Þef 2j2
x2 :
The coefficients are then estimated by solving in the least squares sense, the linear system (24), where
ðFÞij ¼ ef 1j1
x1iþf 2j2

x2i ; ðcÞj ¼ cj1 ;j2 ; ðhÞi ¼ hðx1i; x2iÞ
with i ¼ i1 þ 1þ ð2N1Þi2; i1 ¼ 0;1; . . . ;2N1 for i2 ¼ 0;1; . . . ;2N2 and j ¼ j1 þ 2ðj2 � 1Þ; j1 ¼ 1;2 for j2 ¼ 1;2;3.
The results concerning this example are reported in Table 4.



Table 4
Numerical results for Example 3 with the QR technique.

N d bM1
bM2 eðfÞ eðcÞ eðhÞ

8 0 5 5 1.68e�13 9.09e�13 1.46e�11
16 0 5 5 3.08e�12 4.35e�12 5.02e�11

8 10�9 5 5 6.72e�10 6.43e�10 2.53e�09

16 10�9 5 5 7.01e�10 8.84e�10 2.41e�09

8 10�7 5 5 3.00e�08 3.33e�08 1.08e�07

16 10�7 5 5 2.93e�08 8.18e�09 1.38e�08

Table 5
Numerical results for Example 4 with the QR technique.

N d bM1
bM2 eðfÞ eðcÞ eðhÞ

16 0 6 6 1.69e�08 1.40e�05 2.83e�04
32 0 6 6 1.85e�08 5.97e�05 1.07e�03
64 0 6 6 1.88e�08 2.71e�04 6.80e�03

16 10�9 6 6 6.54e�07 2.74e�04 2.21e�05

32 10�9 6 6 4.11e�07 4.84e�04 5.57e�05

64 10�9 6 6 2.09e�07 9.93e�04 1.07e�04

16 10�7 6 6 6.80e�06 2.34e�03 2.11e�04

32 10�7 6 6 4.79e�06 6.14e�03 7.04e�04

64 10�7 6 6 2.12e�06 1.15e�02 1.59e�03

L. Fermo et al. / Applied Mathematics and Computation 258 (2015) 576–586 585
As could be expected, the exponential parameters being positive and not small enough, the method is more effective
whenever we sample hðx1; x2Þ in regular nodal points of an interval. The results reported in Table 4, in particular, have been
obtained assuming hðx1; x2Þ sampled in the square ½0; 2� � ½0; 2�. The results obtained proceeding via QR are very good even
though M1 and M2 are largely overestimated. Furthermore, our experiments show that they are indistinguishable from those
obtained via SVD and GSVD, not reported here. The identification of the parameters, in this example, turns out to be
relatively easy, provided the largest distance between the sampling points is not too large. This conclusion is not surprising
as the monomial factors are not present, that is as the zeros of the corresponding Prony polynomials are simple.
Example 4. Let us consider the bivariate monomial-exponential sum
hðx1; x2Þ ¼
X2

j1¼1

X1

s1¼0

X2

j2¼1

X1

s2¼0

cðj1 ;s1Þ;ðj2 ;s2Þ x
s1
1 ef 1j1

x1 xs2
2 ef 2j2

x2

¼ e0:48pix1 ð1þ 2x2Þe0:52pix2 þ ð3þ 4x2Þe0:80pix2
� �

þ x1e0:48pix1 ð1:2þ 1:4x2Þe0:52pix2 þ ð1:6þ 1:8x2Þe0:80pix2
� �

þ e2pix1 ð2:2þ 2:4x2Þe0:52pix2 þ ð2:6þ 2:8x2Þe0:80pix2
� �

þ x1e2pipx1 ð3:2þ 3:4x2Þe0:52pix2 þ ð3:6þ 3:8x2Þe0:80pix2
� �

:

It represents a monomial-exponential sum of 16 terms as M1 ¼ M2 ¼ 4 since it has four double parameters for each variable.
The numerical results are given in Table 5. Let us note that the identification of the parameters in this case is more complex
than in the previous example since the zeros of the associated Prony polynomials are double unlike in the previous case in
which they are simple, and the number of terms is also considerably higher. For this reason the results shown in Table 5 can
be considered satisfactory, thought the errors are larger.
5. Conclusions

The contribution of this paper is twofold:

(1) the introduction in our matrix-pencil method of the QR technique for the factorization of the augmented Hankel
matrix in place of the SVD technique or the simultaneous factorization of the two Hankel matrices H0 and H1 by
the GSVD;

(2) the development of a cascade-like technique which reduces the identification of the parameters and coefficients of a
multivariate sum to the solution of a sequence of univariate problems solvable by the matrix-pencil method devel-
oped in the univariate case and the recovery of the coefficients to the solution of a linear system. It is remarkable
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to note that the errors in the identification of the parameters in the multivariate case are essentially equivalent to
those in the univariate case.

As a consequence of the point (1) we have three different and equally reliable techniques which can be used for a mutual
validation of the results in the most difficult situations, i.e. when some zeros zj are multiple or very close to each other.
Moreover, the point (2) states that for the first time an effective method has been proposed for the identification of the
parameters and coefficients of multivariate monomial exponential sums.
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