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ABSTRACT. An abstract Hilbert space equation is studied, which models many of the stationary, 

one-dimensional transport equations with partial-range boundary conditions. In particular, the 

collision term may be unbounded and nondissipative. A complete existence and uniqueness theory 

is presented. 

1. INTRODUCTION 

Since 1973 an extensive literature has been developed on the solution of time-independent one- 

dimensional linear transport and kinetic equations by mathematically rigorous methods. Particular 

equations for which half-space boundary-value problems have been solved describe such diverse 

processes as neutron transport with angularly-dependent cross-sections [ 1, 2], radiative transfer 

of unpolarized light and of polarized light with Rayleigh scattering [3 -5 ] ,  the BGK kinetic 

equations for mass and heat transfer [6 -8 ] ,  and phonon transport [9], among others. More 

recently, study has been directed to the abstract differential equation 

(T f ) ' ( x )  = - ( A f ) ( x ) ,  0 < x  < ~ (1) 

where T and A are self-adjoint operators on an abstract Hilbert space H, Ker T = 0, and with 

boundary conditions appropriate to the specification of a given incoming flux, either 

(Q+f)(o) =f+, lim Hf(x)ll < oo (2a) 
X ..-.~ o o  
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or 

(Q+f)(0) =f+, lim IIf(x)ll = o. (2b) 
X ~ o o  

Such an abstract equation encompasses all of the particular processes mentioned above, Here Q§ 

is the maximum positive projection associated with the self-adjoint operator T. These studies have 

depended, in an essential way, on the boundedness and positivity of A (and usually of its inverse) 

[5, 10]. 
We announce an existence and uniqueness theory for the boundary-value problems (1) - (2) 

for Tand A both possibly unbounded and A not necessarily positive. The only restrictions are: 

A Fredholm, the nonpositive part of A finite dimensional, and some minor domain requirements 

(but the case T, A, (A 1 Ran A)-  1 all unbounded and A nonpositive is to be excluded). These are 

the first existence and uniqueness results for boundary-value problems of the sort (1) - (2) which 

include problems for which half-range completeness in the sense of Case [ 11 ] may fail (due to the 

unboundedness of Q• in HK). Complete proofs will appear elsewhere. 

2. H A L F - R A N G E  EXPANSIONS 

To better understand the implications for applications, it is convenient to consider separately 

three cases (always T, A self-adjoint, Ker T = 0): 

(i) A positive Fredholm, T bounded; 

(ii) A positive Fredholm, T unbounded; 

0ii) A Fredholmwith finite-dimensional negative part, T bounded. 

The case (i) is typical, for example, of sub-critical and critical neutron transport and radiative 

transfer, T being multiplication by an angle cosine. The case (ii) is typical of gas kinetics, involving 

an unbounded velocity coordinate, and (iii) is relevant to supercritical media [ 11, 12]. 

Let K = T - 1 A .  For ~ an eigenvalue of K, denote by Zx(K ) the root linear manifold Zx(K ) = 

{ f E H I ( K  - M ) n f  = 0 for some n E Z+). IfA is positive and B: Zo(K) ~ Zo (K) is invertible, let 

P: H ~ Z  o (K*)• be the projection of H onto Z0 (K*) • along Zo (K), and put A B = A B  + T B - I ( I - P ) .  

Then B may be chosen in such a way that A B will be a strictly positive operator, i.e., A B >1 O, 

Ker A B = 0. Introduce the Hilbert spaces H A = D(A~/2) with inner product (x, y)A B = (ABX, y) ,  

H K the completion of D(A~ 1 T) in H A with inner product (x, y )K B = (IA~ 1Tlx, Y)AB, and H T 

the completion of D(T) with inner product (x, Y)T = (I TIx, y).  The B's are suppressed in symbols 

for the spaces because of equivalence of norms. 
IfA is not positive, the definition of P is more complicated, and involves a search for maximal 

negative K invariant subspaces M x ofZx(K ) with respect to the indefinite metric (x, Y)A = (Ax, y )  

defined on D(A). Let Nx denote the extension ofM x to all vectors from Jordan chains of K inter- 

secting M x and Z(K) the direct sum of all Zx(K ) for ~ a nonreal eigenvalue of K and of all N x for 

a nonzero (regular) critical point of K and of Zo(K). Then P is defined to be the projection of 

H onto (TZ(K)) • along Z(K), A n as before, and again B may be chosen in such a way that A B 

will be strictly positive. 
The following simple lemma is immediate: 
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LEMMA 1. If(i), then K n = T - l A B  is essentially self-ad]oint on H A. 

I f  (ii) and also 

(iia) D(T) n D(A)  c H densely, Zo (K) C D(T),  and KZ  o (K) has a complement in Ker A that is 

nondegenerate with respect to the indefinite metric [x, y] = (Tx, y) ,  

then K B is symmetric on H A . I f  either A or A -1 is bounded, or i f  there exists a signature operator 

on H (J = J*,  j2  =/ )  which commutes with A and anti-commutes with T, then K s has self-ad]oint 

extensions. 

I f  (iii) and also 

(iiia) Z x ( T - 1 A )  nondegenerate with respect to ( , ) A  for  all real eigenvalues ~, and 

dim Z o ( T - 1 A )  .<oo 

then K s is essentially self-ad]oint on H A . 

Note that the Fredholm condition on A guarantees K is densely defined, and the first part of 

(iia) guarantees it is closable. The conditions (iiia) assure H A is a Pontrjagin space [13] OfA  non- 

invertible) and eliminate irregular critical points [14] in the real spectrum o fK  A . 

Let P• denote the maximal positive/negative projections associated with self-adjoint extensions 

K B of T - l A B  on H A . Let Q• denote the maximal positive/negative projections associated with 

the self-adjoint operator T on H. The projections P+ and Q• extend to orthogonal projections on 

H K and HT, respectively, and P extends to a bounded projection on H K . 

For cases (i) and (ii), the solution of the half-space problems (1) - (2) is intimately connected 

to the invertibility of the (unbounded) operator V: H K -~ H T defined by V = Q+P+ + Q_P_,  

although it is not at all transparent that Vis even well-defined. However, we have in these cases, 

and assuming in (ii) a self-adjoint extension o f K  n is specified, the following lemma: 

LEMMA 2. Assuming (i) or (ii) - (iia), there exists a unique albedo operator E : H T ~ H  K that is 

bounded, in]ective, and satisfies Q+_EQ• = Q• and P~EQ• = 0 on D(T). Further, E is bounded as 

an operator E: H T -* H T. 

I.emma 2 is an operator theoretic formulation of the so-called 'half-range completeness theorems'. 

The proof of the I_emma follows from a detailed study of the symmetric quadratic form defmed 

by V= E -1 . Earlier methods, both on specific applications and on the abstract problem, either 

were perturbative, e.g., A a compact perturbation of the identity, or depended on the equivalence 

of the norms in H K and HT. In these cases, V: H r ~ H r is bounded. In the general setting, the 

boundedness of V is lost, which, physically speaking, implies that not all outgoing fluxes result 

from the stationary problem, but only a dense subset of them. 

3. UNIQUENESS AND EXISTENCE THEORY 

The half-space problem to be solved is actually a weakened version of (1) - (2), in the sense that 

the solution is to be found in HK, rather than the original space H. An exact statement of the 

problem is the following: given f§ C Ran Q+, construct a continuous function f :  [0, ~) ~ H K with 

both KPfand  ( I -  P)f  differentiable on (0, oo), such that 



d 
~ f  = - K f  (1') 

on H K, f(O) E HT, and 

(Q+f) (0)  =f+,  lira II(ef)(x)ll  K < 0% lim I1((I - e ) f ) (x) l l  < oo (2a') 

o r  

(Q+f)(O) =f+, lim tl(ef)(x)llg = 0, lim I1((I - e)f)(x)ll = 0. (2b') 

THEOREM 1. Assume 0). Then the half-space problem (1 ') - (2a') is soivable for every f+ E Q+(Hr). 

The measure of  nonuniqueness ~ + = dim [Ran PP+ �9 Ran Q_ ] n Ker A is equal to the dimension of 

a maximal strictly negative subspace of  KerA with respect to the indefinite metric [, ]. The half- 

space problem (1') - (2b') has always at most one solution. The measure of noncompleteness 

(nonexistence) 7; = codimH r Ran (PP+ �9 Ran Q_) as f§ ranges over Q+(HT) is equal to the 

dimension of  a maximal nonnegative subspace of  Ker A with respect to [, ]. 

THEOREM 2. Assume (ii) - (iia) and a fixed self-ad]oint extension of  K n, or equivalently, a fixed 

(,)A'Self'adioint extension of T-1A[Zo (K *)• Then all of  the conclusions of Theorem 1 are valid. 

For case (riO, neither uniqueness nor existence for either of the problems (1') - (2a') or 

(1)  - (2b)  is assured. Define M = {;tL Zxl (K)} KerA, M0 = *xo Zx~ (K), N = {~ht Zx~ (K)) *KZo(K), 

No = ~, Zx, (K), where X~, X2, Xs, X4 run over, respectively, the~closed right-half plane deleted of 

zero, the open right-half plane, the open left-half plane, the closed left-half plane. 

THEOREM 3. Assume (iii) - (iiia). Then the measure of  nonuniqueness ~ § for the solution of the 

half-space problem (1') - (2a') is equal to the dimension of a maximal strictly negative subspace of  

M The measure of  noncompleteness 7 + is equal to the dimension of a maximal strictly positive 

subspace of  N. The measure of nonuniqueness 5~ for the solution of the half-space problem 

(1 ' ) - (2b') is equal to the dimension of a maximal strictly negative subspace of Mo. Tile measure 

of noncompleteness y~ is equal to the dimension of  a maximal strictly positive subspace of  No. 

Positivity/negativity here is with respect to the indefinite metric [, ]. 

For most applications, a signature operator J is provided by the physical symmetries of the 

transport problem. Thus the self-adjoint extension of T-1A IZ 0 (K*)• in Theorem 2 is provided 

uniquely. We note also that, by virtue of Theorem 3, the one-speed neutron transport equation 

relevant to supercritical media fails to have a uniquely solvable half-space problem. 

4. DISCUSSION 

The use of the finite-dimensional linear transformation B to eliminate Ker A appears first in [5]. 
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The spaces H T and H K were introduced by Beals [10]. Strong solutions (in H) for A a compact 

perturbation of the identity have been studied by Hangelbroek [15] and by Van der Mee [5]. 

Noncompleteness and nonuniqueness results are important in physical applications. For 

example, the one-dimensional linear BGK model equation for strong evaporation gives a measure 
of noncompleteness 2 below Mach number 1 and 3 above Mach number 1, and the three- 
dimensional equation gives 7~ = 4 below Mach number 1 and 7~ = 5 above. However, conservation 
laws at the boundaries reduce the dimensionality by two for the one-dimensional model (con- 
servation of mass and energy) and four for the three-dimensional model (conservation of mass, 
energy, and two momenta). This breakdown of existence at Mach number 1 for stationary 

solutions has been observed in numerical experiments, and was first obtained in the linear theory 
by Cercignani [16, 17]. 

The measures of nonuniqueness and noncompleteness ~+, ~ ,  7 +, 3~ are related to the sign 

characteristics [18] of the self-adjoint matrix T-1A IZ(K) with respect to the indefinite metric 
[, ]. Thus it is possible to obtain explicit formulae for these measures in terms of the Jordan 
decomposition of this matrix. 
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