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Abstract We characterize the scattering data of the AKNS system with vanishing boundary
conditions. We prove a 1,1-correspondence between L1-potentials without spectral singu-
larities and Marchenko integral kernels which are sums of an L1 function (having a reflection
coefficient as its Fourier transform) and a finite exponential sum encoding bound states and
norming constants. We give characterization results in the focusing and defocusing cases
separately.

Keywords AKNS system · Characterization problem · Scattering data · Zakharov-Shabat
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1 Introduction

The direct and inverse scattering theory of the AKNS system [1, 3, 4, 7, 11, 21, 25] is a
powerful tool in solving the initial-value problem of matrix generalizations of the nonlinear
Schrödinger (NLS) equation. By means of the inverse scattering transform (IST) [3, 11, 17,
21, 28], it allows one to convert this initial-value problem into the elementary time evolution
of the scattering data. Varying the time evolution of the scattering data, other nonlinear
integrable systems, such as the modified Korteweg-de Vries (mKdV) [27], sine-Gordon [2,
29], Hirota [12], and Sasa-Satsuma equations [22] can be solved. An important ingredient
in providing a mathematical justification of the IST is to solve the characterization problem
of establishing a 1,1-correspondence between a sufficiently extensive class of coefficients
(“potentials”) of the AKNS system and a sufficiently extensive class of scattering data.

In this article we study the characterization problem for the AKNS system

iJ
∂X

∂x
(λ, x) − V (x)X(λ, x) = λX(λ,x), (1.1)

F. Demontis (B) · C. van der Mee
Dip. Matematica e Informatica, Università di Cagliari, Viale Merello 92, 09123 Cagliari, Italy
e-mail: fdemontis@unica.it

mailto:fdemontis@unica.it


30 F. Demontis, C. van der Mee

where

J =
(

Im 0m×n

0n×m −In

)
, V (x) =

(
0m×m iq(x)

ir(x) 0n×n

)
, (1.2)

the potentials q(x) and r(x) have their entries in L1(R), and λ is a spectral parameter.
In the defocusing case we have r(x) = −q(x)† and hence V (x)† = V (x); in the focusing
case r(x) = q(x)† and hence V (x)† = −V (x). Here and from now on, daggers denote the
complex conjugate transpose of a matrix and asterisks the complex conjugate of a scalar.
Although in the literature one can find a fairly complete direct and inverse scattering theory
of the AKNS system [1, 3, 4, 11, 21], the characterization problem of establishing a 1,1-
correspondence between a sufficiently extensive class of potential pairs {q(x), r(x)} and the
scattering data remains unsolved, even in the defocusing and focusing cases.

In most of the literature, the scattering data for the AKNS system are formulated in terms
of one n × m or m × n reflection coefficient, the bound state poles, and the corresponding
n × m or m × n bound state norming constants. It is usually assumed that the transmission
coefficients only have simple poles, so that the complication of having to deal with non-
diagonal Jordan structure at the discrete eigenvalues can be avoided. It is then easily seen
that the integral kernels of the Marchenko integral equations solving the inverse scattering
problem codify the scattering data in a unique way, which is also the case if the transmis-
sion coefficients have multiple poles (see [9] for more details). We therefore seek a 1,1-
correspondence between the potential pairs {q(x), r(x)} having their entries in L1(R) and
a suitable class of Marchenko integral kernel pairs {Ω(x + y), Ω̆(x + y)}. In the focusing
and defocusing cases, where the potentials and the Marchenko kernels satisfy the symmetry
relations {

r(x) = +q(x)†, Ω̆(x + y) = −Ω(x + y)†, focusing case,

r(x) = −q(x)†, Ω̆(x + y) = +Ω(x + y)†, defocusing case,
(1.3)

we seek a 1,1-correspondence between potentials q(x) having their entries in L1(R) and
suitable Marchenko kernels Ω(x + y).

To be able to formulate a Marchenko theory in the first place, we need to assume that
there are no spectral singularities. Here by a spectral singularity we mean a point λ ∈ R

where at least one of the two transmission coefficients is discontinuous. In the absence of
spectral singularities, there is a finite number of isolated (and necessarily nonreal) eigenval-
ues of (1.1), the so-called bound state poles, all of which have finite algebraic multiplicity.
Although in principle a spectral singularity is a property of the scattering data, we shall of-
ten use the terminology “potential (pair) without spectral singularities” instead of the rather
cumbersome “potential (pair) leading to scattering data without spectral singularities.”

In the absence of spectral singularities the Marchenko equations have the following form
[3, 4, 8, 11]:

K(x,y) +
(

0m×n

In

)
Ω(x + y) +

∫ ∞

x

dzK(x, z)Ω(z + y) = 0(m+n)×m, (1.4a)

K(x,y) +
(

Im

0n×m

)
Ω̆(x + y) +

∫ ∞

x

dzK(x, z)Ω̆(z + y) = 0(m+n)×n, (1.4b)

where y ≥ x. Once these equations have been solved, the potential pair is obtained by using
the identities

q(x) = −2
(
Im 0m×n

)
K(x,x), r(x) = 2

(
0n×m In

)
K(x,x). (1.5)
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Either Marchenko kernel can be written as the sum of the Fourier transform of a reflection
coefficient and bound state terms. In fact, we write

Ω(x + y) = ρ(x + y) + Ce−(x+y)AB, (1.6a)

Ω̆(x + y) = ρ̆(x + y) + C̆e−(x+y)ĂB̆, (1.6b)

where ρ(x) and ρ̆(x) have their entries in L1(R) and (A,B,C) and (Ă, B̆, C̆) are triplets of
size compatible matrices such that A and Ă only have eigenvalues with positive real parts.
By expanding the matrix exponentials for matrices A which are not necessarily diagonaliz-
able, the bound state terms can be written in the form (see [8] for details)

Ce−xAB =
N∑

j=1

νj −1∑
l=0

Cj,l

xl

l! e−κj x,

where κ1, . . . , κN are distinct numbers with positive real parts, νj are the orders of the poles
of the transmission coefficient at the discrete eigenvalues iκj , and Cj,l are the so-called
norming constants. In the literature it is customary to employ as scattering data the reflection
coefficients

R(λ) =
∫ ∞

−∞
dy e−iλyρ(y), R̆(λ) =

∫ ∞

−∞
dy eiλyρ̆(y), (1.7)

together with the bound state poles iκ1, . . . , iκN , and the norming constants, but we shall
employ the more convenient Marchenko kernels (1.6a), (1.6b) instead.

Analogously, in the absence of spectral singularities another pair of Marchenko equations
has the following form:

M(x,y) +
(

0m×n

In

)
Ξ̆(x + y) +

∫ x

−∞
dzM(x, z)Ξ̆(x + y) = 0(m+n)×m, (1.8a)

M(x,y) +
(

Im

0n×m

)
Ξ(x + y) +

∫ x

−∞
dzM(x, z)Ξ(z + y) = 0(m+n)×n, (1.8b)

where y ≤ x. Once these equations have been solved, the potential pair is obtained using the
identities

q(x) = 2
(
Im 0m×n

)
M(x,x), r(x) = −2

(
0n×m In

)
M(x,x). (1.9)

Either Marchenko kernel can be written as

Ξ(x + y) = 	(x + y) + Ce(x+y)AB, (1.10a)

Ξ̆(x + y) = 	̆(x + y) + C̆e(x+y)ĂB̆, (1.10b)

where 	(x) and 	̆(x) have their entries in L1(R) and (A,B,C) and (Ă, B̆, C̆) are triplets of
size compatible matrices such that A and Ă only have eigenvalues with positive real parts.
For later use, we define the reflection coefficients

L(λ) =
∫ ∞

−∞
dy eiλy	(y), L̆(λ) =

∫ ∞

−∞
dy e−iλy 	̆(y). (1.11)
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An analogous characterization problem can be studied for the Schrödinger equation on
the line. This characterization problem has been solved by Marchenko [18, Sect. 3.5] for po-
tentials in L1(R; (1 + x2)dx). A full characterization for Faddeev class potentials was given
by Melin [20] using microlocal analysis. For the AKNS system (1.1) there are only partial
results. In [6] a unique defocusing L1-potential was reconstructed under the assumption that
the reflection coefficient R(λ) satisfies

sup
λ∈R

∥∥R(λ)
∥∥ < 1 (1.12)

and is the Fourier transform of an L1-function ρ(y) which satisfies the estimate∫ ∞
x

dy ‖ρ(y)‖2 < +∞ for each x ∈ R. The same result, but without the contractivity con-
dition (1.12), was obtained in [24] for focusing L1-potentials without bound states. In
[26] a focusing L1-potential having transmission coefficients with simple poles was re-
constructed by assuming that the scalar function

Ω̃(y) = ess sup
z≥y

∥∥Ω(z)
∥∥

has a right L1-tail. In [19] a characterization result for AKNS systems on the half-line was
given, yielding a focusing potential with an L1-tail (cf. [19, Eq. (1.14)]) instead of a potential
with entries in L1(R+).

In this article we prove the existence of a 1,1-correspondence between

(1) potential pairs {q(x), r(x)} with L1 entries and without spectral singularities, and
(2) Marchenko kernel pairs {Ω(x + y), Ω̆(x + y)} of the form (1.6a), (1.6b), where the

reflection coefficients R(λ) and R̆(λ) are Fourier transforms of L1-functions.

In the focusing case the result boils down to a 1,1-correspondence between L1 poten-
tials q(x) without spectral singularities and Marchenko kernels Ω(x + y) of the form
(1.6a), (1.6b), where ρ(x) has L1-entries. In the defocusing case, where there are neither
bound states nor spectral singularities, the result will be a 1,1-correspondence between L1-
potentials q(x) and reflection coefficients R(λ) that are Fourier transforms of L1-functions
and satisfy (1.12). Similar characterization results will relate potentials with L1 entries and
Marchenko kernel pairs {Ξ(x + y), Ξ̆(x + y)}.

Let us describe the contents of this article. In Sect. 2 we present the essential direct and
inverse scattering theory of the AKNS system (1.1). In this presentation we maximize the
use of matrices for the sake of conciseness. In Sect. 3 we prove characterization results in
terms of right or left scattering data. In Sect. 4 we state the main characterization results,
those without symmetries, those in the focusing case, and those in the defocusing case.
In the final Sect. 5 we pose the open problem of having a characterization result which is
invariant under the time evolution of the scattering data. The three appendices are devoted to
the compactness properties of the Marchenko integral operators on various function spaces,
to the uniform limit of a sequence of Volterra operators being a Volterra operator, and to the
power compactness of a certain integral operator. In this way most of the functional analysis
applied has been relegated to the appendices.

Let us introduce some notations. We denote the upper and lower open complex half-
planes by C

+ and C
− and the corresponding closed half-planes by C± = C

± ∪R. We parti-
tion matrices M having m + n rows as follows:

Mup = (
Im 0m×n

)
M, Mdn = (

0n×m In

)
M,
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where 0p×q denotes the p × q matrix having only zero elements. By Ip we denote the
identity matrix of order p. A generic identity operator is written as I . The range and null
space of a linear operator T will be denoted by ImT and KerT , respectively.

2 Preliminaries

In this section we present some well-known results from the scattering theory of the AKNS
system (1.1), since they will be instrumental in proving the characterization results in
Sects. 3 and 4. The proofs can be found in [4, 7, 11], albeit often in different notations.

1. Jost Functions and Transition Coefficients Let us define the (m + n) × m and (m +
n) × n Jost functions from the right ψ(λ,x) and ψ(λ,x), the (m + n) × m and (m + n) × n

Jost functions from the left φ(λ, x) and φ(λ, x), and the (m + n) × (m + n) Jost matrices
Ψ (λ,x) and Φ(λ,x) from the right and the left as those solutions to the AKNS system (1.1)
satisfying the asymptotic conditions

Ψ (λ,x) = (
ψ(λ,x) ψ(λ, x)

) =
{

e−iλJx[Im+n + o(1)], x → +∞,

e−iλJxal(λ) + o(1), x → −∞,
(2.1a)

Φ(λ,x) = (
φ(λ, x) φ(λ, x)

) =
{

e−iλJx[Im+n + o(1)], x → −∞,

e−iλJxar(λ) + o(1), x → +∞.
(2.1b)

Then the system of (1.1) being first order implies

Φ(λ,x) = Ψ (λ,x)ar(λ), Ψ (λ, x) = Φ(λ,x)al(λ). (2.2)

We shall call al(λ) and ar(λ) transition matrices from the left and the right, respectively, to
distinguish them from the scattering matrices.

2. Volterra Integral Equations and Analyticity Writing the AKNS system (1.1) in the form

∂

∂y

(
e−iλJ (x−y)X(λ, y)

) = −iJ e−iλJ (x−y)V (y)X(λ, y),

we get

Ψ (λ,x) = e−iλJx + iJ

∫ ∞

x

dy eiλJ (y−x)V (y)Ψ (λ, y), (2.3a)

Φ(λ,x) = e−iλJx − iJ

∫ x

−∞
dy e−iλJ (x−y)V (y)Φ(λ, y). (2.3b)

The Volterra integral equations (2.3a), (2.3b) can be used to prove the existence and unique-
ness of the solutions Ψ (λ,x) and Φ(λ,x) to (1.1) that satisfy the asymptotic conditions
(2.1a), (2.1b). In the well-known proof it is used in an essential way that the spectral param-
eter λ is real and the entries of the potential V (x) belong to L1(R).

Write

Ψ (λ,x) = e−iλJx +
∫ ∞

x

dy αl(x, y)e−iλJy, (2.4a)
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Φ(λ,x) = e−iλJx +
∫ x

−∞
dy αr(x, y)e−iλJy, (2.4b)

where

αl(x, y) = (
K(x,y) K(x, y)

)
, αr(x, y) = (

M(x,y) M(x, y)
)
.

Using (2.4a), (2.4b) to convert (2.3a), (2.3b) into equations for the blocks of αl(x, y) and
αr(x, y), we obtain the four pairs of coupled Volterra integral equations

K
up

(x, y) = −
∫ ∞

x

dz q(z)K
dn

(z, z + y − x), (2.5a)

K
dn

(x, y) = 1

2
r

(
1

2
(x + y)

)
+

∫ 1
2 (x+y)

x

dz r(z)K
up

(z, x + y − z), (2.5b)

Kup(x, y) = −1

2
q

(
1

2
(x + y)

)
−

∫ 1
2 (x+y)

x

dz q(z)Kdn(z, x + y − z), (2.5c)

Kdn(x, y) =
∫ ∞

x

dz r(z)Kup(z, z + y − x), (2.5d)

and

Mup(x, y) =
∫ x

−∞
dz q(z)Mdn(z, z + y − x), (2.6a)

Mdn(x, y) = −1

2
r

(
1

2
(x + y)

)
−

∫ x

1
2 (x+y)

dz r(z)Mup(z, x + y − z), (2.6b)

M
up

(x, y) = 1

2
q

(
1

2
(x + y)

)
+

∫ x

1
2 (x+y)

dz q(z)M
dn

(z, x + y − z), (2.6c)

M
dn

(x, y) = −
∫ x

−∞
dz r(z)M

up
(z, z + y − x). (2.6d)

Equations (1.5) and (1.9) are immediate from (2.5a)–(2.5d) and (2.6a)–(2.6d), respectively.
Indeed, using (2.5c) we get for α > 0

∫ ∞

−∞
dx

∥∥∥∥Kup(x, x + α) + 1

2
q

(
x + 1

2
α

)∥∥∥∥

≤
∫ ∞

−∞
dx

∫ x+ 1
2 α

x

dz
∥∥q(z)

∥∥∥∥Kdn(z,2x + α − z)
∥∥

=
∫ ∞

−∞
dz

∥∥q(z)
∥∥∫ z

z− 1
2 α

dx
∥∥Kdn(z,2x + α − z)

∥∥

=
∫ ∞

−∞
dz

∥∥q(z)
∥∥∫ z+α

z

dw
∥∥Kdn(z,w)

∥∥,

where the last member vanishes as α → 0+, because of the convergence of the integral∫ ∞
z

dw ‖Kup(z,w)‖. Thus the first of (1.5) can be justified in the L1 sense. Similar justifi-
cations can be given for the second of (1.5) and for either identity (1.9).
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Defining

μ+(K; z) =
∫ ∞

z

dw
∥∥K(z,w)

∥∥, μ−(M; z) =
∫ z

−∞
dw

∥∥M(z,w)
∥∥,

for blocks of αl(x, y) and αr(x, y), respectively, we can derive straightforward estimates for
the solutions of the Volterra systems (2.5a), (2.5b) and (2.6a), (2.6b) which allow us, after
applying Gronwall’s inequality [4, 7], to prove the unique solvability of these equations. As
a result, we obtain

ess sup
x∈R

(∫ ∞

x

dx
∥∥αl(x, y)

∥∥ +
∫ x

−∞
dy

∥∥αr(x, y)
∥∥)

< +∞. (2.7)

It is now easily verified that for each x ∈ R the Jost functions ψ(λ,x) and φ(λ, x) are
continuous in λ ∈ C+, are analytic in λ ∈ C

+, and converge as |λ| → +∞ from within
C+. Analogously, for each x ∈ R the Jost functions ψ(λ,x) and φ(λ, x) are continuous in
λ ∈C−, are analytic in λ ∈C

−, and converge as |λ| → +∞ from within C−.
Taking the limit of (2.3a) as x → +∞ and the limit of (2.3b) as x → −∞ and substi-

tuting (2.4a) and (2.4b), respectively, we arrive at Fourier representations for (the blocks of)
the transition matrices al(λ) and ar(λ). In fact,

al(λ) = Im+n +
∫ ∞

−∞
dy βl(y)e+iλJy,

ar(λ) = Im+n +
∫ ∞

−∞
dy βr(y)e−iλJy,

where the entries of βl(x) and βr(x) belong to L1(R). The diagonal blocks of βl(x) and
βr(x) are supported on the positive half-line, whereas their off-diagonal blocks are usually
supported on the whole real line. Using the block representations

al(λ) =
(

al1(λ) al2(λ)

al3(λ) al4(λ)

)
= Im+n +

( ∫ ∞
0 dy eiλyβl1(y)

∫ ∞
−∞ dy e−iλyβl2(y)∫ ∞

−∞ dy eiλyβl3(y)
∫ ∞

0 dy e−iλyβl4(y)

)
,

ar(λ) =
(

ar1(λ) ar2(λ)

ar3(λ) ar4(λ)

)
= Im+n +

( ∫ ∞
0 dy e−iλyβr1(y)

∫ ∞
−∞ dy eiλyβr2(y)∫ ∞

−∞ dy e−iλyβr3(y)
∫ ∞

0 dy eiλyβr4(y)

)
,

we see that al1(λ) and ar4(λ) are continuous in λ ∈ C+, are analytic in λ ∈ C
+, and tend

to the identity matrix as |λ| → +∞ from within C+. In the same way we see that ar1(λ)

and al4(λ) are continuous in λ ∈ C−, are analytic in λ ∈ C
−, and tend to the identity matrix

as |λ| → +∞ from within C−. The remaining blocks al2(λ), al3(λ), ar2(λ), and ar3(λ) are
continuous in λ ∈R and vanish as λ → ±∞.

3. Reflection and Transmission Coefficients The above analyticity properties imply that for
each x ∈R the modified Jost matrices F±(λ, x) defined by

F+(λ, x) = (
φ(λ, x) ψ(λ, x)

)
, F−(λ, x) = (

ψ(λ,x) φ(λ, x)
)
, (2.8)

are continuous in λ ∈ C±, are analytic in C
±, and converge as |λ| → +∞ from within C±.

The two modified Jost matrices are related as follows:

F−(λ, x) = F+(λ, x)JS(λ)J, F+(λ, x) = F−(λ, x)J S̆(λ)J, (2.9)
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where the scattering matrices S(λ) and S̆(λ) are each other’s inverses. By writing them as
the block matrices

S(λ) =
(

Tr(λ) L(λ)

R(λ) Tl(λ)

)
, S̆(λ) =

(
T̆l(λ) R̆(λ)

L̆(λ) T̆r (λ)

)
,

we obtain the reflection coefficients R(λ) and R̆(λ) from the right, the reflection coefficients
L(λ) and L̆(λ) from the left, and the transmission coefficients Tl(λ) and Tr(λ) meromorphic
in λ ∈C

+, and the transmission coefficients T̆l(λ) and T̆r (λ) meromorphic in λ ∈ C
−.

We recall that λ ∈ R is a spectral singularity if at least one of the diagonal blocks al1(λ),
al4(λ), ar1(λ), and ar4(λ) of the transition matrices is a singular matrix. The points λ ∈
C

+, where al1(λ) and ar4(λ) are singular matrices, are exactly the isolated eigenvalues of
the system (1.1) in C

+. On the other hand, the points λ ∈ C
−, where ar1(λ) and al4(λ)

are singular matrices, are exactly the isolated eigenvalues of (1.1) in C
−. We note that, in

general, detal1(λ) = detar4(λ) and detar1(λ) = detal4(λ). In the defocusing case there do
not exist spectral singularities of (1.1). There do not exist neither spectral singularities as
well if

max

(∫ ∞

−∞
dx

∥∥q(x)
∥∥,

∫ ∞

−∞
dx

∥∥r(x)
∥∥)

<
π

2
, (2.10)

irrespective of the symmetries on the potential pair [13, 14].
If there are no spectral singularities, the scattering matrices are continuous functions

of λ ∈ R which tend to Im+n as λ → ±∞. Further, in that case the number of isolated
eigenvalues of the system (1.1) is finite. Moreover, the reflection coefficients can be written
in the form (1.7) and (1.11), where the entries of ρ(y), ρ̆(y), 	(y), and 	̆(y) belong to L1(R).

4. Marchenko Equations Suppose there are no spectral singularities. Then the kernel func-
tions K(x,y) and K(x,y) satisfy the Marchenko integral equations (1.4a), (1.4b), where
the Marchenko kernels can be expressed in the reflection coefficients from the right, the iso-
lated eigenvalues in C

+, and the norming constants as in (1.6a), (1.6b). Once the Marchenko
equations have been solved, the potential pair {q(x), r(x)} follows by applying (1.5). On the
other hand, the kernel functions M(x,y) and M(x,y) satisfy the Marchenko integral equa-
tions (1.8a), (1.8b) where the Marchenko kernels can be expressed in the reflection coeffi-
cients from the left, the isolated eigenvalues in C

−, and the norming constants as in (1.10a),
(1.10b). Once the Marchenko equations have been solved, the potential pair {q(x), r(x)}
follows by applying (1.9). The potential pair {q(x), r(x)} can alternatively be constructed
from the solution to the Marchenko equations (1.4a), (1.4b) (by using (1.5)) or from the
solution to the Marchenko equations (1.8a), (1.8b) (by using (1.9)).

It is well-known that the Marchenko equations are uniquely solvable in any Lp setting
(1 ≤ p ≤ +∞), provided we are in the defocusing case [6, 7, 26] or in the focusing case [7,
24, 26].

3 Characterization Results

In this section we derive the characterization results pertaining to half-line data. First we
prove the existence of a right (resp., left) L1-tail of the potentials under the assumption that
the Marchenko kernels {Ω(x + y), Ω̆(x + y)} (resp., {Ξ(x + y), Ξ̆(x + y)}) have right
(resp., left) L1-tails. We then go on to prove a general characterization theorem based on
half-line data.
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3.1 Constructing Potentials with an Integrable Tail

In this subsection we prove that the potential pair {q(x), r(x)} has a right or left integrable
tail when evaluating it from the Marchenko kernels by solving the Marchenko equations and
equating the arguments of the solutions.

Proposition 3.1 (Right L1-tail) Suppose the Marchenko equations (1.4a), (1.4b) are
uniquely solvable for x ≥ x0 and have Marchenko kernels of the form (1.6a), (1.6b), where
ρ(x) and ρ̆(x) have their entries in L1(R) and the matrices A and Ă only have eigenvalues
with positive real parts. Then there exists x1 ≥ x0 such that the potential pair {q(x), r(x)}
obtained by solving the Marchenko equations (1.4a), (1.4b) and applying (1.5) satisfies

∫ ∞

x1

dx
(∥∥q(x)

∥∥ + ∥∥r(x)
∥∥)

< +∞.

Proof Suppose that the Marchenko equations (1.4a), (1.4b) are uniquely solvable for x ≥ x0.
Then, according to Proposition A.1, we obtain, for x ≥ x0, matrix functions K(x,y) and
K(x,y) supported on y ≥ x such that

ess sup
x≥x0

∫ ∞

x

dy
(∥∥K(x,y)

∥∥ + ∥∥K(x,y)
∥∥)

< +∞. (3.1)

Moreover, since the norm of the Marchenko integral operators involved in (1.4a), (1.4b) van-
ishes as x → +∞ [cf. Appendix B, last paragraph], the essential supremum of the integral
appearing in (3.1) vanishes as x0 → +∞. Writing (2.5b) as an integral equation to evaluate
the potential r(x) from known K(x,y), we obtain the straightforward estimate

∫ ∞

x

dy
∥∥r(y)

∥∥ ≤ μ+
(
K

dn;x) +
∫ ∞

x

dz
∥∥r(z)

∥∥μ+
(
K

up; z).

Since ess supz≥x μ+(K
up; z) vanishes as x → +∞, we can choose x1 ≥ x0 such that

ess sup
x≥x1

μ+
(
K

up;x)
< 1.

Thus, by solving (2.5b) for r(x) for x ≥ x1, we see that
∫ ∞

x1
dy ‖r(y)‖ < +∞, as

claimed. Likewise, by considering (2.5c) as an integral equation for q(x), we prove that∫ ∞
x1

dy ‖q(y)‖ < +∞ for a large enough x1. �

In the same way we prove

Proposition 3.2 (Left L1-tail) Suppose the Marchenko equations (1.8a), (1.8b) are uniquely
solvable for x ≤ x0 and have Marchenko kernels of the form (1.10a), (1.10b), where 	(x)

and 	̆(x) have their entries in L1(R) and the matrices A and Ă only have eigenvalues
with positive real parts. Then there exists x1 ≤ x0 such that the potential pair {q(x), r(x)}
obtained by solving the Marchenko equations (1.4a), (1.4b) and applying (1.9) satisfies

∫ x1

−∞
dx

(∥∥q(x)
∥∥ + ∥∥r(x)

∥∥)
< +∞.
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3.2 Characterization Based on Half-Line Data

In this subsection we obtain characterization results based on half-line data.

Theorem 3.3 Suppose the Marchenko equations (1.4a), (1.4b) are uniquely solvable for
x ≥ x0 and have Marchenko kernels of the form (1.6a), (1.6b), where ρ(x) and ρ̆(x) have
their entries in L1(R) and the matrices A and Ă only have eigenvalues with positive real
parts. Then the potential pair {q(x), r(x)} obtained by solving the Marchenko equations
(1.4a), (1.4b) and applying (1.5) satisfies

∫ ∞

x0

dx
(∥∥q(x)

∥∥ + ∥∥r(x)
∥∥)

< +∞. (3.2)

Proof In view of Proposition 3.1, it suffices to prove that

∫ x1

x0

dy
(∥∥q(y)

∥∥ + ∥∥r(y)
∥∥)

< +∞

for any x1 > x0. Writing w = 1
2 (x + y) in (2.5b) and rearranging terms we get

r(w) = 2K
dn

(x,2w − x) − 2
∫ w

x

dz r(z)K
up

(z,2w − z). (3.3)

We intend to study (3.3) as an integral equation for r(w) in the function space
L1((x0, x1);Cn×m).

In this proof we will be dealing with integral operators on vector function spaces or,
said otherwise, matrices of integral operators on (scalar) function spaces. Using the norm
‖{xj,l}‖ = ∑

j,l |xj,l | for complex matrices when dealing with integral operators on L1 vec-
tor function spaces and the norm ‖{xj,l}‖ = maxj,l |xj,l| for complex matrices when dealing
with integral operators in L∞ vector function spaces or in spaces of continuous matrix func-
tions, the usual exact expressions for the operator norms of an integral operator on an L1

space or an L∞ space can be applied.
Suppose first that K

up
(z,2w − z) is a bounded continuous function in (z,w), where

x0 ≤ z ≤ w ≤ x1. Then ‖Kup
(z,2w − z)‖ ≤ κ for all such (z,w). Then it is easily verified

that the iterates of the integral operator

(Lr)(w) = 2
∫ w

x

dz r(z)K
up

(z,2w − z) (3.4)

satisfy ∫ x1

x

dw
∥∥(
Lmr

)
(w)

∥∥ ≤ (x1 − x)mκm

m!
∫ x1

x

dz
∥∥r(z)

∥∥.

As a result,

∥∥Lm
∥∥1/m ≤ (x1 − x0)κ

m
√

m! ,

which vanishes as m → +∞. Consequently, L has a zero spectral radius and therefore∫ x1
x0

dy ‖r(y)‖ < +∞.
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Let us discuss the general case. The norm of the integral operator L defined by (3.4) is
given by

ess sup
x0≤z≤x1

2
∫ x1

z

dw
∥∥K

up
(z,2w − z)

∥∥ = ess sup
x0≤z≤x1

∫ 2x1−z

2x0−z

dy
∥∥K

up
(z, y)

∥∥,

which is bounded above by ess supz≥x0
μ+(K

up; z). We now approximate the matrix func-

tion K
up

(z,2w − z) by a sequence of essentially bounded matrix functions K
up
n (z,2w − z)

such that

lim
n→+∞ ess sup

x0≤z≤x1

2
∫ x1

z

dw
∥∥K

up
(z,2w − z) − K

up
n (z,2w − z)

∥∥ = 0,

where the details of the approximation will be given below. When doing so, we approximate
the integral operator L defined by (3.4) by a sequence of integral operators Ln of the same
type such that ‖Ln − L‖ → 0 as n → +∞ in the operator norm on L1((x0, x1);Cn×m).
However, each approximating operator Ln has a zero spectral radius and has a compact
operator as its square. Using Theorem B.2 we conclude that L has a zero spectral radius and
hence that

∫ x1
x0

dy ‖r(y)‖ < +∞. In the same way, using (2.5c) as an integral equation to

compute q(x), we prove that
∫ x1

x0
dy ‖q(y)‖ < +∞.

It remains to give the details of the approximation. Let us approximate the matrix func-
tions ρ(x) and ρ̆(x) appearing in (1.6a), (1.6b) in the L1 norm by continuous matrix func-
tions which vanish as x → ±∞, without changing the triplets (A,B,C) and (Ă, B̆, C̆). By
Proposition A.1 applied to E = C0, we would obtain uniquely solvable Marchenko equa-
tions of the form (1.4a), (1.4b) whose solutions K(x,y) and K(x,y) would be continuous in
y ∈ [x,+∞) and vanish as y → +∞, with a supremum norm which is uniformly bounded
in x ∈ [x0,+∞). The corresponding integral operators L defined as in (3.4) would then
converge to the given L in the operator norm on L1((x0, x1);Cn×m) and have bounded con-
tinuous integral kernels. By virtue of Proposition C.1, the approximating operators L would
then have compact operators as their squares and have a zero spectral radius. According to
Corollary B.3, also the original L has a zero spectral radius. As a result, (3.3) has a unique
solution r(w) in L1((x0, x1);Cn×m), as claimed. This completes the proof. �

In the same way we prove

Theorem 3.4 Suppose the Marchenko equations (1.8a), (1.8b) are uniquely solvable for
x ≤ x0 and have Marchenko kernels of the form (1.10a), (1.10b), where 	(x) and 	̆(x) have
their entries in L1(R) and the matrices A and Ă only have eigenvalues with positive real
parts. Then the potential pair {q(x), r(x)} obtained by solving the Marchenko equations
(1.4a), (1.4b) and applying (1.9) satisfies

∫ x0

−∞
dx

(∥∥q(x)
∥∥ + ∥∥r(x)

∥∥)
< +∞. (3.5)

4 Main Characterization Theorems

In [5] a theory of Darboux transformation is developed which departs from the Darboux
transformations of the Marchenko [or Gelfand-Levitan] integral kernels and arrives at the
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Darboux transformations of the Jost solutions and the potentials. When applying this article
to the Marchenko integral equations for the AKNS system, it has been shown that a poten-
tial pair {q(x), r(x)} satisfying (3.2) and without spectral singularities lead to Marchenko
equations (1.4a), (1.4b) which are uniquely solvable for x ≥ x0. In fact, the existence of a
solution to these Marchenko equations implies its uniqueness. The structure (1.6a), (1.6b)
of the Marchenko kernels is a well-known result (see e.g. [4, 7]). Analogously, when ap-
plying this article to the Marchenko integral equations (1.8a), (1.8b), it has been shown
that a potential pair {q(x), r(x)} satisfying (3.5) and without spectral singularities lead to
Marchenko equations (1.8a), (1.8b) which are uniquely solvable for x ≤ x0. The structure
(1.10a), (1.10b) of the Marchenko kernels is a well-known result [4, 7].

We now combine the contents of the above paragraph and Theorems 3.3 and 3.4 to arrive
at the following three characterization results: the first without symmetries on the potentials,
the second for the focusing case, and third for the defocusing case.

Theorem 4.1 (Without symmetries) Let x0 ∈ R. Then there exists a 1,1-correspondence
between (i) potential pairs {q(x), r(x)} with entries in L1(R) and without spectral singu-
larities and (ii) scattering data of the type

{
Ω(x + y), Ω̆(x + y)

}
x,y≥x0

and
{
Ξ(x + y), Ξ̆(x + y)

}
x,y≤x0

,

where

a. For x, y ≥ x0, the Marchenko kernels Ω(x + y) and Ω̆(x + y) have the form (1.6a),
(1.6b), where ρ(x) and ρ̆(x) have their entries in L1(R) and the triplets (A,B,C) and
(Ă, B̆, C̆) of size compatible matrices are such that A and Ă have only eigenvalues with
positive real parts;

b. For x ≥ x0 the Marchenko integral equations (1.4a), (1.4b) are uniquely solvable;
c. For x, y ≤ x0, the Marchenko kernels Ξ(x + y) and Ξ̆(x + y) have the form (1.10a),

(1.10b), where 	(x) and 	̆(x) have their entries in L1(R) and the triplets (A,B,C) and
(Ă, B̆, C̆) of size compatible matrices are such that A and Ă have only eigenvalues with
positive real parts;

d. For x ≤ x0 the Marchenko integral equations (1.8a), (1.8b) are uniquely solvable.

In the focusing case, the symmetry relations (1.3) lead to the following simplification
of Theorem 4.1. We recall that in the focusing case the Marchenko equations are always
uniquely solvable [7, 24, 26].

Theorem 4.2 (Focusing case) Let x0 ∈R. Then there exists a 1,1-correspondence between
(i) potentials q(x) with entries in L1(R) and without spectral singularities and (ii) scattering
data of the type

Ω(x + y) for x, y ≥ x0 and Ξ(x + y) for x, y ≤ x0,

where

a. For x, y ≥ x0, the Marchenko kernel Ω(x + y) has the form

Ω(x + y) = ρ(x + y) + Ce−(x+y)AB,

where ρ(x) has its entries in L1(R) and the triplet (A,B,C) of size compatible matrices
is such that A has only eigenvalues with positive real parts;
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b. For x, y ≤ x0, the Marchenko kernel Ξ(x + y) has the form

Ξ(x + y) = 	(x + y) + Ce(x+y)AB,

where 	(x) has its entries in L1(R) and the triplet (A,B,C) of size compatible matrices
is such that A has only eigenvalues with positive real parts.

In the defocusing case the nonexistence of spectral singularities and the absence of the
matrix triplets pertaining to the bound states greatly simplify the above results. In this case
the scattering matrix is uniquely solvable and the reflection coefficients R(λ) and L(λ) sat-
isfy

sup
λ∈R

∥∥R(λ)
∥∥ = sup

λ∈R

∥∥L(λ)
∥∥ < 1,

while the transmission coefficients Tr(λ) and Tl(λ) are continuous in λ ∈ C
+

, are analytic
in λ ∈C

+, and tend to the identity matrix as |λ| → +∞ from within C+.

Theorem 4.3 (Defocusing case) There is a 1,1-correspondence between (i) potentials q(x)

with entries in L1(R) and (ii) reflection coefficients from the right R(λ) satisfying

sup
λ∈R

∥∥R(λ)
∥∥ < 1, R(λ) =

∫ ∞

−∞
dx e−iλxρ(x),

where ρ(x) has its entries in L1(R). Similarly, there is a 1,1-correspondence between (i) po-
tentials q(x) with entries in L1(R) and (ii) reflection coefficients from the left L(λ) satisfying

sup
λ∈R

∥∥L(λ)
∥∥ < 1, L(λ) =

∫ ∞

−∞
dx eiλx	(x),

where 	(x) has its entries in L1(R).

5 Conclusions

We emphasize that the characterization results for (a) the Schrödinger equation on the line
treated in [18, 20] and (b) the characterization results for the AKNS system discussed above
do not involve the time variable in any respect. They regard 1,1-correspondences between
a class of potentials and a class of scattering data. As a matter of fact, time evolution of
the Schrödinger potential according to the KdV equation could make the scattering data
leave the class indicated in [18, 20]. Analogously, time evolution of the matrix Zakharov-
Shabat potential (pair) according to the matrix NLS equation could cause the corresponding
scattering data to leave the class indicated in Theorems 4.1–4.3.

Let us explain in more detail why the characterization results obtained so far are not
time-evolution-proof. Here we make the following two points:

(1) Even though the reflection coefficient R(λ) is the Fourier transform of the L1-function
ρ(y) [cf. (1.5)], for the NLS time evolved reflection coefficient R(λ)e4iλ2t we do not
necessarily have

R(λ)e4iλ2t =
∫ ∞

−∞
dy e−iλyρ(y; t),

where for each t > 0 the function ρ(y; t) has its entries in L1(R).
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(2) We cannot exclude the occurrence of spectral singularities at some time t > 0 in situ-
ations where they do not exist at t = 0. For instance, the initial potential (pair) could
satisfy (2.10) and hence not have spectral singularities, whereas at some t > 0 the con-
dition (2.10) could be violated and a spectral singularity could occur.

It would therefore be desirable to solve a time-evolution-proof version of the characteri-
zation problem in which both the class of potentials and the class of scattering data remain
invariant under the time evolution according to the IST scheme of e.g. the matrix NLS
equation. At present no such time-evolution-proof characterization is known, although it is
implied in the literature [11] that Schwarz class AKNS potentials correspond to Schwarz
class scattering data and that this remains the case under time evolution according to the
NLS system. An additional complication is that the solution of such a time-evolution-proof
characterization problem may depend on the nonlinear integrable evolution equation solved
by using the IST method.
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grant No. 20083KLJEZ–003, and by the Autonomous Region of Sardinia (RAS) under grant No. CRP3–138.

Appendix A: Analysis of Marchenko Operators

The boundedness and compactness properties of Marchenko operators on various function
spaces, as given before in [6, 7, 26], are immediate from Proposition A.1 below.

Proposition A.1 Suppose ω ∈ L1(2x,+∞) and let the space identifier E stand for one of
Lp (1 ≤ p ≤ +∞), BC, or C0, or AC. Then the Marchenko integral operator K [x]

ω defined
by

(
K [x]

ω f
)
(y) =

∫ ∞

x

dzω(y + z)f (z)

is compact on E[x] and its nonzero spectrum and the Jordan structure of each nonzero
eigenvalue do not depend on the choice of function space.

Proof It is easy to bound the operator norm of K [x]
ω on L1(x,+∞) and L∞(x,+∞) above

by
∫ ∞

2x
dz |ω(z)|. By the M. Riesz interpolation theorem [16], we get the same norm upper

bound of K [x]
ω on Lp(x,+∞). Next, for each f ∈ L∞(x,+∞) we have

∣∣(K [x]
ω f

)
(y1) − (

K [x]
ω f

)
(y2)

∣∣ ≤
∫ ∞

x

dz
∣∣ω(y1 + z) − ω(y2 + z)

∣∣ ∣∣f (z)
∣∣

≤ ‖f ‖∞
∫ ∞

x

dz
∣∣ω(y1 + z) − ω(y2 + z)

∣∣;
a dominated convergence argument implies that K [x]

ω maps L∞(x,+∞) into C0[x,+∞).
Next, consider the operator norm of K [x]

ω on AC[x]. Indeed, for bounded absolutely
continuous f : [x,+∞) → C such that the a.e. existing derivative f ′ ∈ L1(x,+∞), we
obviously have K [x]

ω f ∈ BC[x] and K [x]
ω f ′ ∈ L1[x]. Also, for a.e. x we have

(
Kx]

ω f
)′
(x) = −ω(2x)f (x) +

∫ ∞

x

dy ω′(x + y)f (y)
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= −ω(2x)f (x) + [
ω(x + y)f (y)

]∞
y=x

−
∫ ∞

x

dy ω(x + y)f ′(y)

= −2ω(2x)f (x) −
∫ ∞

x

dy ω(x + y)f ′(y).

Hence

∥∥K [x]
ω f ′∥∥

L1[x] ≤
(∫ ∞

2x

dy
∥∥ω(y)

∥∥){‖f ‖BC[x] + ∥∥f ′∥∥
L1[x]

}
,

which proves the boundedness of K [x]
ω on AC[x].

It is easily verified that

∫ ∞

x

dy

∫ ∞

x

dz
∣∣ω(y + z)

∣∣2 =
∫ ∞

2x

ds (s − 2x)
∣∣ω(s)

∣∣2
. (A.1)

So, if this integral is finite, the operator K [x]
ω is Hilbert-Schmidt and hence compact on

L2(x,+∞). By approximating K [x]
ω with arbitrary L1 kernels by such Hilbert-Schmidt op-

erators, we prove that K [x]
ω is a compact operator on L2(x,+∞). By compact interpolation

[15], we then prove that, for 1 < p < +∞, K [x]
ω is compact on Lp(x,+∞).

Next, it is obvious that K [x]
ω has separated variables if

ω(y + z) = Ce−(y+z)AB (A.2)

for some complex p × p matrix A having only eigenvalues with positive real part, some
complex p × 1 matrix B , and some complex 1 × p matrix C. Thus in this case K [x]

ω is
a compact operator on Lp(x,+∞) (1 ≤ p < +∞) and, because the Banach dual of K [x]

ω

is K [x]
ω itself, also on L∞(x,+∞); by taking restrictions, it follows that K [x]

ω is compact
on BC[x,+∞) and C0[x,+∞) as well. Since functions of the type (A.2) are dense in
L1(2x,+∞) [23, Sect. 7.3.2], a simple approximation argument yields that, for general L1

kernels, K [x]
ω is a compact operator on any of the above E[x].

The final statement of the proposition can be based on the following:

Let E1 and E2 be two complex Banach spaces, where E2 is continuously and densely
imbedded in E1. Suppose F is a Fredholm operator of index zero on E1 such that
F [E2] ⊂ E2. Suppose also that the restriction of F to E2 is a Fredholm operator of
index zero on E2. Then these two operators F are both invertible or both noninvert-
ible.

For m = 1,2,3, . . . and λ ∈C, this property can now be applied to F = [I −λK [x]
ω ]m, where

the class of space identifiers contains Lp (1 ≤ p < +∞), BC, C0, and the intersection of
any two such spaces endowed with the sum of the norms. These operators F are obviously
Fredholm of index zero on E[x] for E as in the statement of this proposition, but also on the
intersection of any two such spaces. To extend this result to E = L∞ we use the fact that F

maps L∞ continuously into C0. �

To compare K [x]
ω for various x ∈ R we apply shift operators to define the Marchenko

operators on E[0]. In that case K [x]
ω is to be replaced by

(
K̃ [x]

ω f
)
(y) =

∫ ∞

0
dzω(2x + y + z)f (z),



44 F. Demontis, C. van der Mee

but the translational similarity applied to modify the operators does not affect their bound-
edness and compactness properties nor does it affect their spectra. It is now quite obvious
that K̃ [x]

ω depends on x ∈R in the operator norm (on each E[0]) and vanishes in the operator
norm as x → +∞.

Appendix B: Limits of Volterra Operators

In this appendix we prove that the uniform limit of a sequence of Volterra operators (i.e.,
compact operators having a zero spectral radius) is a Volterra operator.

We need the following lemma. Here we recall that a projection is a bounded linear oper-
ator P satisfying P 2 = P .

Lemma B.1 If P and Q are projections defined on a complex Banach space X satisfying
‖P − Q‖ < 1, then ImP and ImQ have the same dimension.

Proof Put

V = PQ + (I − P )(I − Q), W = QP + (I − Q)(I − P ).

Then

I − V W = I − PQP − (I − P )(I − Q)(I − P )

= I − PQP − (I − Q − P + QP) + (P − PQ − P + PQP)

= Q + P − QP − PQ = (P − Q)2,

I − WV = I − QPQ − (I − Q)(I − P )(I − Q)

= I − QPQ − (I − Q − P + PQ) + (Q − QP − Q + QPQ)

= Q + P − QP − PQ = (P − Q)2.

Thus under the hypothesis of the lemma we have

max
(‖I − V ‖,‖I − W‖) ≤ ‖P − Q‖2 < 1,

which proves that V and W are invertible. Since V obviously maps ImQ = Ker(I −Q) into
ImP = Ker(I − P ) and KerQ = Im(I − Q) into KerP = Im(I − P ), it is clear that V is
an invertible linear operator mapping the range of Q onto the range of P . Consequently, the
ranges of P and Q have the same dimension. �

The main result of this appendix is the following.

Theorem B.2 The limit of a sequence of Volterra operators with respect to the operator
norm is a Volterra operator.

Proof Let {Kn}∞
n=1 be a sequence of Volterra operators, defined on a complex Banach

space X, such that ‖Kn − K‖ → 0 as n → +∞ for some bounded linear operator K

on X. Then K is the uniform limit of compact operators and hence a compact operator
[10, Lemma VI.5.3]. Suppose K has a positive spectral radius. Then K has at least one
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nonzero isolated eigenvalue λ of finite algebraic multiplicity. Assuming the deleted closed
disk {z ∈C : |z − λ| ≤ ε} \ {λ} to be free of eigenvalues of K , put

δ = max
|z−λ|=ε

∥∥(z − K)−1
∥∥.

Letting P stand for the projection P = 1
2πi

∮
|z−λ|=ε

dz (z − K)−1 and choosing n0 such that

‖Kn − K‖ < [δ(1 + εδ)]−1 for n ≥ n0, we obtain
∥∥∥∥ 1

2πi

∮
|z−λ|=ε

dz (z − Kn)
−1 − 1

2πi

∮
|z−λ|=ε

dz (z − K)−1

∥∥∥∥
<

1

2π
2πε max

|z−λ|=ε

∥∥(z − Kn)
−1 − (z − K)−1

∥∥

<
1

2π
2πε

δ2‖Kn − K‖
1 − δ‖Kn − K‖ < 1.

Thus for n ≥ n0 the projection Pn = 1
2πi

∮
|z−λ|=ε

dz (z−Kn)
−1 commutes with Kn and satis-

fies ‖Pn − P ‖ < 1. According to Lemma B.1, for n ≥ n0 the projection Pn has the algebraic
multiplicity of the eigenvalue λ of K as its rank. As a result, for n ≥ n0 each Kn has at least
one eigenvalue in the open disk {z ∈ C : |z−λ| < ε}, which is a contradiction. Consequently,
K has a zero spectral radius. �

The proof of the following corollary is now immediate.

Corollary B.3 Let m be a positive integer and let {Kn}∞
n=1 be a sequence of linear operators

having compact m-th powers and zero spectral radii such that ‖Kn − K‖ → 0 as n → +∞
for some bounded linear operator K . Then K has a zero spectral radius.

Proof Apply Theorem B.2 to the operators Km
n approximating Km. �

Appendix C: Power Compactness of an Integral Operator

In this appendix we prove the following elementary result.

Proposition C.1 Suppose the function K(x,y) is continuous for x0 ≤ x ≤ y ≤ x1. Then the
integral operator L defined on L1(x0, x1) by

(Lψ)(x) =
∫ x1

x

dy K(x, y)ψ(y)

has a compact operator as its square.

Proof It is well-known [10, Theorem IV.8.5] that L∞(x0, x1) is the dual Banach space of
L1(x0, x1) in the sense that the bounded linear functionals on L1(x0, x1) can be isometrically
identified with the elements of L∞(x0, x1). In that case the dual operator L′ is defined on
L∞(x0, x1) by

(
L′ϕ

)
(x) =

∫ x

x0

dy K(y, x)ϕ(y).
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Also, L′ maps L∞(x0, x1) into its closed subspace C[x0, x1] of continuous functions. By the
Ascoli-Arzelà theorem [10, Theorem IV.6.7], the operator L′ is compact when defined on
C[x0, x1]. Using the diagram of bounded operators

L∞(x0, x1)
L′−−−−→ C[x0, x1] L′−−−−→ C[x0, x1] inclusion−−−−→ L∞(x0, x1),

we immediately see that [L′]2 is a compact operator on L∞(x0, x1) [10, Theorem VI.5.4].
But then its adjoint L2 is a compact operator on L1(x0, x1) (cf. [10, Theorem VI.5.2]), as
claimed. �
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