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Abstract

In this article we derive explicit solutions of the matrix integrable discrete nonlinear
Schrödinger equation under a quasiscalarity condition by using the inverse scattering
transform and the Marchenko method. The Marchenko equation is solved by separation
of variables, where the Marchenko kernel is represented in the form

CA−(n+j+1)eiτ(A−A−1)2B,

(A,B,C) being a matrix triplet where A has only eigenvalues of modulus larger than one.

The class of solutions obtained contains the N -soliton and breather solutions as special

cases. Unitarity properties of the scattering matrix are derived.

Keywords: Integrable discrete nonlinear Schrödinger equation, Marchenko

equation, inverse scattering transform.
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1. Introduction.

In this article we derive explicit solutions of the system of integrable
discrete nonlinear Schrödinger (IDNLS) equations

i
d

dτ
un = un+1 − 2un + un−1 − un+1wnun − unwnun−1,(1a)

−i d
dτ
wn = wn+1 − 2wn +wn−1 −wn+1unwn −wnunwn−1,(1b)

where n is an integer labeling “position” and un and wn are N ×M and
M ×N matrix functions depending on “time” τ ∈ R. We assume that the
potentials {un}∞n=−∞ and {wn}∞n=−∞ satisfy the quasiscalarity condition

(2) unwn = wnun = cnIN , n ∈ Z,
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where N = M , IN is the identity matrix of order N , and, for each n ∈ Z,
cn is an unknown complex number distinct from 1. Under this condition
the system of IDNLS equations can be written in the form

i
d

dτ
un = (1− cn) [un+1 + un−1]− 2un,(3a)

−i d
dτ
wn = (1− cn) [wn+1 +wn−1]− 2wn,(3b)

where {un}∞n=−∞ and {wn}∞n=−∞ are unknown sequences. In the scalar
case (N = M = 1) the system of IDNLS equations (1) reduces to (2)+(3),

because (2) is trivially satisfied. The focusing case occurs if wn = −u†n for
each integer n, where the dagger denotes conjugate matrix transposition;
in this case 1− cn is a constant such that 1− cn > 0.

The system of scalar (N = M = 1) IDNLS equations was first studied by
Ablowitz and Ladik [1–3] by the inverse scattering transform (IST) method.
The matrix equations (2)+(3) were studied in detail using the IST method
by Ablowitz, Prinari, and Trubatch [4, Ch. 5] and by Tsuchida, Ujino,
and Wadati [5]. The second set of authors has also derived the N -soliton
and breather solutions to (2)-(3) in terms of solutions to N × N linear
systems [5, Eq. (3.43)]. Breather solutions to (2)-(3) were also constructed
by using the Hirota method [6].

When viewing the matrix IDNLS equation as a finite difference approx-
imation of the matrix NLS equation, it has the same applications as the
matrix NLS equation, namely electromagnetic wave propagation in non-
linear media [7,8], surface waves on sufficiently deep waters [7], and signal
propagation in optical fibers [9,10]. Apart from that, the matrix IDNLS
equation has applications to the dynamics of a discrete curve on an ultra-
spherical surface [11], the dynamics of triangulations of surfaces [12], and
Hamiltonian flows [13,14].

The IST method associates (2)+(3) to the discrete Zakharov-Shabat
system

(4) vn+1 =

(
zIN un
wn z−1IN

)
vn,

where z is the (complex) spectral parameter and the potentials {un}∞n=−∞
and {wn}∞n=−∞ satisfy the `1-condition

(5)

∞∑
n=−∞

{‖un‖+ ‖wn‖} < +∞.

Here ‖ · ‖ denotes any matrix norm. The direct and inverse scattering of
the discrete Zakharov-Shabat system (4) has been studied as early as in
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1981 [15,16]. More complete accounts have been given in [5] and [4, Ch. 5].
In all of these sources it is assumed that the discrete eigenvalues of (10) are
algebraically and geometrically simple.

Under the assumptions (2) and (5), the potential can be easily computed
[4,5] from the unique solutions of the Marchenko equations

κ̄(n, j) +

(
0NN
IN

)
F (n+ j) +

∞∑
j′=n+1

κ(n, j′)F (j + j′) = 02N,N ,(6a)

κ(n, j) +

(
IN

0NN

)
F̄ (n+ j) +

∞∑
j′=n+1

κ̄(n, j′)F̄ (j + j′) = 02N,N ,(6b)

where j ≥ n+ 1 and F and F̄ are the Marchenko kernels. In fact, we have

(7) un = −κ(up)(n, n+ 1), wn = −κ̄(dn)(n, n+ 1),

where, for any K having 2N rows, K(up) and K(dn) denote the submatrices
consisting of the first N rows and the last N rows, respectively.

If we allow the potentials to be time dependent in such a way that
(2)+(3) are satisfied, then the time evolution of the scattering data is such
that the Marchenko kernels F (n; τ) and F̄ (n; τ) satisfy the discrete evolu-
tion equations

i
d

dτ
F (n; τ) = F (n+ 2; τ)− 2F (n; τ) + F (n− 2; τ),(8a)

−i d
dτ
F̄ (n; τ) = F̄ (n+ 2; τ)− 2F̄ (n; τ) + F̄ (n− 2; τ).(8b)

As can be verified by substitution, explicit solutions to (8) can be written
as follows:

F (n; τ) = Ceiτ(A−A−1)2A−(n+1)B,(9a)

F̄ (n; τ) = C̄e−iτ(Ā−Ā−1)2Ān−1B̄,(9b)

where

(i) A, B, and C are complex p× p, p×N , and N × p matrices, respec-
tively, and A is a matrix having only eigenvalues of modulus larger
than one;

(ii) Ā, B̄, and C̄ are complex p̄× p̄, p̄×N , and N × p̄ matrices, respec-
tively, and Ā is a nonsingular matrix which has only eigenvalues of
modulus less than one.
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The matrix functions (9) allow us to solve the time evolved Marchenko
equations (6) explicitly in terms of the two matrix triplets by separation
of variables and then, by using (7), to derive the explicit matrix IDNLS
solutions un(τ) and wn(τ).

The idea to solve a Marchenko system like (6) is not completely new,
as representations of Marchenko kernels of the type

F (x, τ) = Ce−xAeiτϕ(A)B,

where the time factor eiτϕ(A) commutes with A, have been successfully used
to find closed form solutions of integrable nonlinear evolution equations
in terms of matrix exponentials and solutions of Lyapunov equations. We
mention results for the KdV [17], NLS [18,19], and sine-Gordon equations
[20]. We also note that similar results were obtained for pseudo-canonical
systems [21] and the sine-Gordon [22] and Toda lattice equations [23] with
the help of matrix or operator triplets, but without using Marchenko theory.
In the KdV, NLS, and sine-Gordon cases, such explicit solutions provide
a concise way to express closed form solutions, which can equivalently be
expressed in terms of exponential, trigonometric, and polynomials of x and
t by “unpacking” the matrix exponentials and matrix inverses appearing
in these formulas. As the matrix size increases, the unpacked expressions
become very long. However, such expressions can be evaluated explicitly
for any matrix size either by hand or by using computer algebra such as
Mathematica. One of the powerful features of our method stems from the
fact that our explicit solution formulas are valid for any matrix size in the
matrix exponentials. For discrete position variables (Toda lattice, matrix
IDNLS) our method has similar advantages, where integer matrix powers
take the place of matrix exponentials. In other available methods, exact
solutions are attempted in terms of elementary functions without using
matrix exponentials or integer matrix powers. Thus we cannot expect these
methods to produce our solutions when the matrix size is large.

It appears [4,5] that the spectrum of the discrete matrix Zakharov-
Shabat system (4) is invariant under the sign inversion z 7→ −z and that,
as a result, the Marchenko kernels F (n; τ) and F̄ (n; τ) vanish if n is an even
integer. Thus further constraints on the triplets (A,B,C) and (Ā, B̄, C̄) are
required to represent the Marchenko kernels in the form (9). In fact, the
matrix triplets have to be decomposed as in (29) below in terms of matrix
triplets (A,B, C) and (Ā, B̄, C̄), where A and Ā have half the matrix orders
that A and Ā have.

As will be shown soon, our method allows us to state many results
regarding the scattering theory of the discrete Zakharov-Shabat system
without further ado. Most of the proofs can be found in [4, Ch. 5] in virtually
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the same notations or in [5] in somewhat different notations. In contrast
to [4,5], we introduce transmission coefficients, left reflection coefficients,
and a second pair of Marchenko equations. We have given several details
on the sign inversion symmetry reduction of the Marchenko equations to
make the derivation of our solution formulas more transparent. We have
also given new unitarity results for the scattering matrix.

Let us now discuss the contents of the various sections. In Section 2 we
introduce Jost solutions and scattering coefficients along with their basic
properties. We formulate the various analyticity properties by writing the
Jost solutions and scattering coefficients as sums of absolutely convergent
Fourier series. We also derive unitarity properties of the scattering matrix.
In Section 3 we apply sign inversion symmetry to reduce the Marchenko
equations (6) and discuss conjugation symmetry to get a further reduc-
tion specific to the focusing case. In Section 4 we write the matrix IDNLS
solutions un(τ) in terms of matrix triplets (A,B,C) and (Ā, B̄, C̄), both
without symmetries on the potential and in the focusing case. In Section
4.1 we present some illustrative examples.

Notice that overlined quantities constitute an established notation in-
herited from [4] which has nothing to do with complex conjugation. The
complex conjugate of a complex number z is written as z∗, whereas the
conjugate transpose of a matrix A is written as A†.

2. Jost solutions and scattering coefficients.

In this section we define the Jost solutions, the transition coefficients
expressing their linear dependence, and the reflection and transmission coef-
ficients. We essentially follow [4, Ch. 5], although, unlike the authors of [4],
we emphasize continuity and analyticity properties as the natural conse-
quence of dealing with sums of absolutely convergent Fourier series and
define transmission coefficients and scattering matrices explicitly. We also
derive novel unitarity properties of the scattering matrix.

Let us define the four Jost solutions φn(z), φ̄n(z), ψn(z), and ψ̄n(z) as
those 2N ×N matrix solutions to (4) satisfying the asymptotic conditions

φn(z) ∼ zn
(
IN

0NN

)
, φ̄n(z) ∼ z−n

(
0NN
IN

)
, n→ −∞,

ψn(z) ∼ z−n
(

0NN
IN

)
, ψ̄n(z) ∼ zn

(
IN

0NN

)
, n→ +∞.

Since the discrete matrix Zakharov-Shabat system is a homogeneous first
order difference equation, we can reduce any pair of 2N × 2N matrix solu-
tions to each other by postmultiplication by a matrix not depending on n.
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We thus define the transition coefficient matrices T (z) and T̄ (z) by(
φn(z) φ̄n(z)

)
=
(
ψ̄n(z) ψn(z)

)
T (z),(10a) (

ψ̄n(z) ψn(z)
)

=
(
φn(z) φ̄n(z)

)
T̄ (z),(10b)

where T (z) and T̄ (z) are each other’s inverses. Writing

T (z)
def
=

(
a(z) b̄(z)
b(z) ā(z)

)
, T̄ (z)

def
=

(
c̄(z) d(z)
d̄(z) c(z)

)
,

we obtain the N ×N transition coefficients a(z) and c̄(z), b(z) and d̄(z),
ā(z) and c(z), and b̄(z) and d(z).

The Jost solutions can be represented as discrete Fourier transforms
of the solutions of the Marchenko equations (21) below, as shown by the
following

Theorem 2.1. The Jost solutions can be represented as follows:

ψn(z) =

∞∑
j=n

z−jK(n, j), ψ̄n(z) =

∞∑
j=n

zjK̄(n, j),(11a)

φn(z) =
n∑

j=−∞
zjL(n, j), φ̄n(z) =

n∑
j=−∞

z−jL̄(n, j),(11b)

where

∞∑
j=n

{
‖K(n, j)‖+ ‖K̄(n, j)‖

}
< +∞,

n∑
j=−∞

{
‖L(n, j)‖+ ‖L̄(n, j)‖

}
< +∞.

As a result, znψn(z) and z−nφn(z) are continuous in |z| ≥ 1, are analytic in
|z| > 1, and tend to K(n, n) and L(n, n) as |z| → +∞. Similarly, z−nψ̄n(z)
and znφ̄n(z) are continuous in |z| ≤ 1 and analytic in |z| < 1.

In the sequel we can restrict our discussion to quantities derived from
the Jost solutions ψn(z) and ψ̄n(z). With some effort one may verify that

(12) K(n, n) =

(
0NN

Ω−1
n IN

)
, K̄(n, n) =

(
Ω−1
n IN
0NN

)
,

where

(13) Ωn =
n∏

j=−∞
(1− cj)
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and the absolute convergence of the infinite product in (13) can be derived
from the `2-condition

(14)

∞∑
n=−∞

{
‖un‖2 + ‖wn‖2

}
< +∞

on the potentials {un}∞n=−∞ and {wn}∞n=−∞. In the focusing case the ab-
solute convergence of the infinite products in (13) is equivalent to (14). In
the sequel we always assume our potentials to satisfy both of the sufficient
conditions (5) and (14).

Using the analyticity properties of the Jost solutions we can write (10)
as the Riemann-Hilbert problems(

ψ̄n(z) φ̄n(z)
)

=
(
φn(z) ψn(z)

)
JS(z)J, |z| = 1,(

φn(z) ψn(z)
)

=
(
ψ̄n(z) φ̄n(z)

)
JS̄(z)J, |z| = 1,

where J =
(

IN 0NN
0NN −IN

)
and

(15) S(z) =

(
tr(z) `(z)
ρ(z) tl(z)

)
, S̄(z) = S(z)−1 =

(
t̄l(z) ρ̄(z)
¯̀(z) t̄r(z)

)
,

are called scattering matrices. The N ×N matrices tr(z), tl(z), t̄l(z), and
t̄r(z) are called transmission coefficients, while ρ(z), `(z), ρ̄(z), and ¯̀(z)
are called reflection coefficients.

A complex number z of modulus 1 is called a spectral singularity if at
least one of the “diagonal” transition coefficients a(z), ā(z), c(z), and c̄(z)
is nonsingular.

Theorem 2.2. Suppose there are no spectral singularities. Then the fol-
lowing is true:

(i) The reflection coefficients are continuous in |z| = 1 and are in fact
sums of absolutely convergent Fourier series.

(ii) The transmission coefficients tr(z) and tl(z) are continuous in |z| ≥
1, are meromorphic in |z| > 1 with at most finitely many poles, and
tend to IN and

∏∞
k=−∞ (1− ck)IN , respectively, as |z| → +∞. They

are sums of absolutely convergent Fourier series.
(iii) The transmission coefficients t̄r(z) and t̄l(z) are continuous in |z| ≤

1, are meromorphic in |z| < 1 with at most finitely many, nonzero,
poles, and tend to IN and

∏∞
k=−∞ (1−ck)IN , respectively, as z → 0.

They are sums of absolutely convergent Fourier series.
(iv) The transmission coefficients tl(z) and tr(z) have the same poles

and pole orders for |z| > 1, while t̄l(z) and t̄r(z) have the same
poles and pole orders for 0 < |z| < 1.
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Letting vn(z) satisfy the integrable discrete Zakharov-Shabat system
(4) and v̆n(z) its dual system

(16) v̆n+1(z) = v̆n(z)

(
z−1IN un
wn zIN

)
,

we easily derive that

v̆n+1(z)Jvn+1(z)J = v̆n(z)

(
z−1IN un
wn zIN

)(
zIN −un
−wn z

−1IN

)
Jvn(z)J

= v̆n(z)

(
IN − unwn 0NN

0NN IN −wnun

)
Jvn(z)J

= (1− cn)v̆n(z)Jvn(z)J,

where (2) has been used in an essential way. Putting

ω+
n =

∞∏
k=n

(1− ck), ω−n =

[
n−1∏
k=−∞

(1− ck)

]−1

,

we see that
ω±n v̆n(z)Jvn(z)J

does not depend on n ∈ Z. On the other hand, in the focusing case any
solution v̆n(z) leads to a solution J v̆n(1/z∗)†J of (4), whereas any solution
vn(z) of (4) leads to a solution Jvn(1/z∗)†J of (16). Putting

ω
def
=

∞∏
k=−∞

(1− ck),

it can be shown that, in the focusing case where ω is an infinite product of
positive numbers and hence positive, the matrix ω−1/2T (z) is unitary and
the matrix ω1/4S(z)ω−1/4, with ω = diag(ω1/2IN , ω

−1/2IN ), is J-unitary.
In other words,

Theorem 2.3. Suppose there are no spectral singularities. Then in the
focusing case we have the following conjugation relations for |z| = 1:

T (z)† = ωT (z)−1,(17a)

S(z)†Jω1/2S(z) = Jω−1/2,(17b)

Moreover,

(17c) S̄(z) = S(z)−1 = ω1/2JS(z)†Jω1/2, |z| = 1.

8
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Proof. In the focusing case the square matrix of order 2N

ω+
n vn(1/z∗)†vn(z) = J

(
ω+
n v̆n(z)Jvn(z)

)
J

does not depend on n. Taking vn(z) =
(
φn(z) φ̄n(z)

)
and using the n →

±∞ asymptotic relations we get

T (z)†T (z) = ωI2N , |z| = 1,

which implies (17a) as well as ωd(z) = b(z)†.
Using the relationships(

IN b̄(z)
0NN ā(z)

)
=

(
a(z) 0NN
b(z) IN

)
JS(z)J,(

c̄(z) 0NN
d̄(z) IN

)
=

(
IN d(z)

0NN c(z)

)
JS̄(z)J

between transition coefficients and scattering matrices, we obtain after te-
dious calculations

JS(z)†Jω1/2S(z)ω−1/2 = ω−1,

which implies (17b) and (17c).

Using (15) we obtain the conjugation symmetry relations

ρ̄(z) = −ρ(z)†, ¯̀(z) = −`(z)†,(18a)

t̄l(z) = ω tr(z)
†, t̄r(z) =

1

ω
tl(z)

†.(18b)

3. Marchenko equations.

In this section we write down the Marchenko equations in terms of
the scattering data. The Marchenko kernels are the sums of two contribu-
tions, one derived from the Fourier coefficients of a reflection coefficient and
the other derived from the poles of a transmission coefficient and so-called
norming constants. We again follow [4, Ch. 5], but we move beyond the
rather restrictive assumption that the poles of the transmission coefficients
are simple. In the second half of this section we shall exploit the invariance
of the discrete Zakharov-Shabat spectrum under the sign inversion λ 7→ −λ
to reduce the number of quantities to be computed by a factor of two.

9
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Assuming there are no spectral singularities, we write the reflection
coefficients as the absolutely convergent Fourier series

ρ(z) =
∞∑

s=−∞
zsρ̂(s), ρ̄(z) =

∞∑
s=−∞

z−sˆ̄ρ(s),(19a)

¯̀(z) =
∞∑

s=−∞
zsˆ̄̀(s), `(z) =

∞∑
s=−∞

z−sˆ̀(s).(19b)

Under the condition that the poles of the transmission coefficients are all
simple, we define the Marchenko kernels

(20) F (j) = ρ̂(j) +
∑
k

ζ
−(j+1)
k Ck, F̄ (j) = ˆ̄ρ(j)−

∑
k

ζ̄j−1
k C̄k.

Here ζk, with |ζk| > 1, are the finitely many simple poles of tr(z) and tl(z),
whereas ζ̄k, with 0 < |ζ̄k| < 1, are the finitely many simple poles of t̄l(z)
and t̄r(z). The quantities Ck and C̄k are called the norming constants.
Using the Kronecker delta δnj , the Marchenko equations are then given by

K̄(n, j) =

(
IN

0NN

)
δnj −

∞∑
j′=n

K(n, j′)F (j′ + j),(21a)

K(n, j) =

(
0NN
IN

)
δnj −

∞∑
j′=n

K̄(n, j′)F̄ (j′ + j),(21b)

where j ≥ n. The potentials can then be expressed in terms of the solutions
to (21) as follows:

un = −K(up)(n, n+ 1)K(dn)(n, n)−1,(22a)

wn = −K̄(dn)
(n, n+ 1)K̄

(up)
(n, n)−1.(22b)

In the focusing case the two systems of Marchenko equations are easily seen
to be uniquely solvable [4].

If the transmission coefficients have multiple poles, the Marchenko equa-
tions (21) and the expressions (22) for the potentials in terms of their so-
lutions do not change. The bound state terms in (20) become much more
complicated, because each pole term gets replaced by a number of terms
equal to the corresponding pole order [cf. (27) below].

It is easily verified that, for each solution vn(z) of (4), also ṽn(z) =
(−1)nJvn(−z) is a solution of (4). As a result, we get for the Jost functions

10
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and transition coefficient matrices the sign inversion symmetries(
ψ̄n(−z) ψn(−z)

)
= (−1)nJ

(
ψ̄n(z) ψn(z)

)
J,(

φn(−z) φ̄n(−z)
)

= (−1)nJ
(
φn(z) φ̄n(z)

)
J,

T (−z) = JT (z)J, T̄ (−z) = J T̄ (z)J,

so that the transmission coefficients are even functions of z (and hence the
discrete Zakharov-Shabat spectrum is invariant under sign inversion) and
the reflection coefficients are odd functions of z. Therefore the functions
ρ̂(s), ˆ̄ρ(s), ˆ̀(s), and ˆ̄̀(s) appearing in (19) vanish if s is even. Using (11)
together with the sign inversion symmetry of the Jost functions, we get(

K̄(n, j) K(n, j)
)

= (−1)j−nJ
(
K̄(n, j) K(n, j)

)
J,(

L(n, j) L̄(n, j)
)

= (−1)n−jJ
(
L(n, j) L̄(n, j)

)
J.

Therefore,K(up)(n, j), K̄
(dn)

(n, j), L(dn)(n, j), and L̄
(up)

(n, j) vanish if j−n
is even, while K(dn)(n, j), K̄

(up)
(n, j), L(up)(n, j), and L̄

(dn)
(n, j) vanish if

j − n is odd. From these symmetry properties we see that the Marchenko
kernels F (s) and F̄ (s) vanish if s is even.

Breaking up the Marchenko equations (21) for quantities like K(n, j)
into separate equations for quantities like K(up)(n, j) and K(dn)(n, j) and
executing one iteration of each resulting coupled pair of equations in or-
der to get them decoupled, we arrive at so-called uncoupled Marchenko
equations whose Marchenko kernels have the form

K(j, j′)
def
=

∞∑
j′′=n

F 1(j′ + j′′)F 2(j′′ + j).

These kernels K(j, j′) vanish if one of j, j′ is even and the other is odd.
As a result, the uncoupled Marchenko equations can be decoupled further.
Before doing so we first modify the Marchenko kernels K(j, j′).

Using (13) to put

(23) K(n, j) = Ω−1
n κ(n, j), K̄(n, j) = Ω−1

n κ̄(n, j),

we write (21) as follows:

κ̄(n, j) = −
(

0NN
IN

)
F (n+ j)−

∞∑
j′=n+1

κ(n, j′)F (j′ + j),(24a)

κ(n, j) = −
(
IN

0NN

)
F̄ (n+ j)−

∞∑
j′=n+1

κ̄(n, j′)F̄ (j′ + j),(24b)

11
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where j ≥ n+ 1. Then the potentials are given by

(25) un = −κ(up)(n, n+ 1), wn = −κ̄(dn)(n, n+ 1).

Let us decouple (24) further as follows:

κ̄(up)(n, n+ 2σ) =
∞∑

σ′′=0

F̄ (2[n+ σ′′] + 1)F (2[n+ σ′′ + σ] + 1)

(26a)

+
∞∑
σ′=1

κ̄(up)(n, n+ 2σ′)

∞∑
σ′′=0

F̄ (2[n+ σ′ + σ′′] + 1)F (2[n+ σ′′ + σ] + 1),

κ(up)(n, n+ 2σ + 1) = −F̄ (2[n+ σ] + 1)

(26b)

+
∞∑
σ′=0

κ(up)(n, n+ 2σ′ + 1)
∞∑

σ′′=1

F (2[n+ σ′ + σ′′] + 1)F̄ (2[n+ σ′′ + σ] + 1),

κ̄(dn)(n, n+ 2σ + 1) = −F (2[n+ σ] + 1)

(26c)

+
∞∑
σ′=0

κ̄(dn)(n, n+ 2σ′ + 1)
∞∑

σ′′=1

F̄ (2[n+ σ′ + σ′′] + 1)F (2[n+ σ′′ + σ] + 1),

κ(dn)(n, n+ 2σ) =
∞∑

σ′′=0

F (2[n+ σ′′] + 1)F̄ (2[n+ σ′′ + σ] + 1)

(26d)

+
∞∑
σ′=1

κ(dn)(n, n+ 2σ′)
∞∑

σ′′=0

F (2[n+ σ′ + σ′′] + 1)F̄ (2[n+ σ′′ + σ] + 1).

Equations (26a) and (26d) are valid for σ ≥ 1, whereas (26b) and (26c) are
valid for σ ≥ 0. This distinction in the ranges of the summation index σ is
to bear in mind when deriving exact solutions to (2)+(3).

4. IDNLS solutions in terms of matrix triplets.

In this section we write the solutions of the Marchenko equations in
terms of suitable matrix triplets if the reflection coefficients vanish. Once
the time evolution of the scattering data has been taken into account as well
as the maximal reduction of the Marchenko equations, we quickly arrive at
explicit IDNLS solutions.

12
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Using two matrix triplets, we generalize the expressions (20) for the
Marchenko kernels as follows:

(27) F (j) = ρ̂(j) + CA−(j+1)B, F̄ (j) = ˆ̄ρ(j) + C̄Āj−1B̄,

where the triplets (A,B,C) and (Ā, B̄, C̄) have the following properties:

(i) A, B, and C are p × p, p × N , and N × p matrices, respectively,
and A is a matrix having only eigenvalues of modulus larger than
one,

(ii) Ā, B̄, and C̄ are p̄× p̄, p̄×N , and N × p̄ matrices, respectively, and
Ā is a nonsingular matrix which has only eigenvalues of modulus
less than one.

If the poles of the transmission coefficients are all simple, we can recover
the original expressions (20) by taking

A = diag(ζ1, · · · , ζp), B =

1
...
1

 , C =
(
C1 · · · Cp

)
,(28a)

Ā = diag(ζ̄1, · · · , ζ̄p̄), B̄ =

C̄1
...
C̄ p̄

 , C̄ =
(
−1 · · · −1

)
,(28b)

where the norming constants are encoded by C and B̄. Here p is the number
of poles of tr(z) or tl(z) and p̄ is the number of poles of t̄l(z) or t̄r(z).

Because the Marchenko kernels F (s) and F̄ (s) vanish if s is even, we
need to restrict the class of matrix triplets by writing

A =

(
A 0
0 −A

)
, B =

(
B
B

)
, C =

(
C C
)
,(29a)

Ā =

(
Ā 0
0 −Ā

)
, B̄ =

(
B̄
B̄

)
, C̄ =

(
C̄ C̄
)
.(29b)

If the transmission coefficients only have simple poles, then the triplets (28)
can be made to correspond to (29) by properly ordering the poles, because
norming constants corresponding to± pairs of poles coincide. Consequently,

F (j) = ρ̂(j) + [1 + (−1)j+1]CA−(j+1)B,(30a)

F̄ (j) = ˆ̄ρ(j) + [1 + (−1)j+1]C̄Āj−1B̄.(30b)

13
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In the focusing case, we have the following conjugation symmetry rela-
tions for the Marchenko kernels:

(31) F̄ (j) = −F (j)†.

Equation (31) leads to uniquely solvable Marchenko equations and focusing
potentials. Relating the matrix triplets to each other in the following way:

(32) Ā = A†−1
, B̄ = A†−1C†, C̄ = −B†A†−1

,

we get Marchenko kernels of the form (27) that satisfy the conjugation
symmetry relations (31).

Returning to the general case, we now put

(33) Q =

∞∑
σ=0

Ā2σB̄CA−2σ, N =

∞∑
σ=0

A−2σBC̄Ā2σ.

Because the spectral radii of A−1 and Ā are strictly less than one, the series
in (33) are absolutely convergent. It is immediate that Q and N are the
unique solutions of the matrix equations (cf. [24, Thm. 18.1], using that A2

and Ā2 do not have eigenvalues in common)

Q− Ā2QA−2 = B̄C, N −A−2NĀ2 = BC̄.

Suppose the Marchenko kernels are given by (30), where the reflection
coefficients vanish. In other words, assume the Marchenko kernels to be
given in terms of suitable matrix triplets. Then each of the four uncou-
pled Marchenko equations (26) can be solved by separation of variables,
using well-known techniques detailed in [18,19]. The results will be listed
in Proposition 4.1 and Theorems 4.1 and 4.2 below.

Proposition 4.1. Suppose the Marchenko kernels are given by (30), where
the reflection coefficients vanish. Then the Marchenko equations (26) have
the solutions

κ̄(up)(n, n+ 2σ) = 4C̄[I − 4Ā2nQA−2(n+2)NĀ2]−1Ā2nQA−2(n+σ+1)B,
κ(up)(n, n+ 2σ + 1) = −2C̄Ā−2[I − 4Ā2(n+1)QA−2(n+2)N ]−1Ā2(n+σ+1)B̄,
κ̄(dn)(n, n+ 2σ + 1) = −2CA2[I − 4A−2(n+2)NĀ2(n+1)Q]−1A−2(n+σ+2)B,
κ(dn)(n, n+ 2σ)=4C[I − 4A−2(n+1)NĀ2(n+1)QA−2]−1A−2(n+1)NĀ2(n+σ)B̄.

provided the matrix inverses appearing in these expressions exist. In this
case the potentials are given by

un = 2C̄[Ā−2n − 4QA−2(n+2)NĀ2]−1B̄,
wn = 2C[A2(n+1) − 4NĀ2(n+1)QA−2]−1B.

14
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Let us now take into account the time dependence of the scattering data.
Then for odd j the Marchenko kernels (30) are to be modified as follows:

F (j; τ) =
1

2πi

∮
dz
ρ(z)

zj+1
eiτ(z−z−1)2 + 2CA−(j+1)eiτ(A−A−1)2B,(34a)

F̄ (j; τ) =
1

2πi

∮
dz zj−1ρ̄(z)e−iτ(z−z−1)2 + 2C̄e−iτ(Ā−Ā−1)2Āj−1B̄,(34b)

where the contour integration is performed over the unit circle.
We now easily arrive at the following main theorem.

Theorem 4.1. Suppose the Marchenko kernels are given by (34), where the
reflection coefficients vanish. Then the integrable discrete nonlinear Schrö-
dinger solutions are given by

un(τ) = 2C̄[Ā−2neiτ(Ā−Ā−1)2 − 4QA−2(n+2)eiτ(A−A−1)2NĀ2]−1B̄,
(35a)

wn(τ) = 2C[A2(n+1)e−iτ(A−A−1)2−4N e−iτ(Ā−Ā−1)2Ā2(n+1)QA−2]−1B.
(35b)

Proof. It is sufficient to prove Theorem 4.1 for τ = 0 and then to make
the following changes in the final result:

B 7→ eiτ(A−A−1)2B, C̄ 7→ C̄e−iτ(Ā−Ā−1)2 , N 7→ eiτ(A−A−1)2N e−iτ(Ā−Ā−1)2 ,

whereas A, C, B̄, and Q remain unchanged.

Let us now return to the focusing case, where we recall (32). Define the
nonnegative selfadjoint matrices

(36) Q =
∞∑
σ=0

A†−2σC†CA−2σ, N =
∞∑
σ=0

A−2σBB†A†−2σ
,

so that
Q = A†−1

Q, N = −NA†−1
.

Then Q and N are the unique solutions of the Stein equations [24]

(37) Q−A†−2
QA−2 = C†C, N −A−2NA†−2

= BB†.

Using (31), (32), and (36) we now specialize Theorem 4.1 to the focusing
case as follows.

15
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Theorem 4.2 (Focusing case). Suppose the Marchenko kernel is given
by

F (2s+ 1) = −F̄ (2s+ 1)† = 2CA−2(s+1)eiτ(A−A−1)2B,

Then the potential is given by
(38)

un(τ) = −2B†[A†2(n+1)
eiτ(A†−A†−1

)2+4QA−2(n+2)eiτ(A−A−1)2NA†−2
]−1C†,

where the matrix inverses exist for every n ∈ Z. Moreover,

(39) wn(τ) = −un(τ)†, n ∈ Z.

Proof. Let us define the additional triplet (Ā, B̄, C̄) by (32). Then (38)
follows immediately from (35a) and (36). Using (35b), (32), and (36) we
derive
(40)

wn(τ) = 2C[A2(n+1)e−iτ(A−A−1)2 +4NA†−2(n+2)
e−iτ(A†−A†−1

)2QA−2]−1B,

which implies (38).

4.1. Examples.

In this section we work out some illustrative examples. First, we point
out that certain choices of the triplets (A,B, C) lead to certain IDNLS
solutions. For instance, the one-soliton occurs if p = 1 (i.e., if A is a scalar),
the N -soliton soliton (as given by [5]) occurs if B and C do not have zero
entries and A is a diagonal matrix containing diagonal elements αj for
which the numbers α2

j are distinct, and the breather solution occurs if A is
2× 2 and has complex conjugate eigenvalues.

Example 4.1 (Two-soliton interaction). Consider the focusing case

A =

(
α 0
0 β

)
, B =

(
1
1

)
, C =

(
c1 c2

)
,

where |α| > 1, |β| > 1, α2 6= β2, c1 6= 0, and c2 6= 0. For the moment we
assume α, β, c1, and c2 to be complex numbers.

We have

Q =
∞∑
σ=0

(
|α|−4σ|c1|2 (α∗β)−2σc∗1c2

(αβ∗)−2σc1c
∗
2 |β|−4σ|c2|2

)
=


|c1|2

1− |α|−4

c∗1c2

1− (α∗β)−2

c1c
∗
2

1− (αβ∗)−2

|c2|2

1− |β|−4

 ,

16
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N =


1

1− |α|−4

1

1− (αβ∗)−2

1

1− (α∗β)−2

1

1− |β|−4

 , eiτ(A−A−1)2 =

(
eiτ(α−α−1)2 0

0 eiτ(β−β−1)2

)
.

According to (38) we have un(τ) = −2B†Γ−1C†, where

Γ = A†2(n+1)
eiτ(A†−A†−1

)2 + 4QA−2(n+2)eiτ(A−A−1)2NA†−2
.

Let us now compute the four elements of Γ−A†2(n+1)
eiτ(A†−A†−1

)2:

(1, 1) :
4(α∗)−2|c1|2α−2(n+2)eiτ(α−α−1)2

[1− |α|−4]2
+

4(α∗)−2c∗1c2β
−2(n+2)eiτ(β−β−1)2

|1− (α∗β)−2|2
,

(1, 2) :
4(β∗)−2|c1|2α−2(n+2)eiτ(α−α−1)2

(1− |α|−4)(1− (αβ∗)−2)
+

4(β∗)−2c∗1c2β
−2(n+2)eiτ(β−β−1)2

(1− |β|−4)(1− (α∗β)−2)
,

(2, 1) :
4(α∗)−2c1c

∗
2α
−2(n+2)eiτ(α−α−1)2

(1− |α|−4)(1− (αβ∗)−2)
+

4(α∗)−2|c2|2β−2(n+2)eiτ(β−β−1)2

(1− |β|−4)(1− (α∗β)−2)
,

(2, 2) :
4(β∗)−2c1c

∗
2α
−2(n+2)eiτ(α−α−1)2

|1− (αβ∗)−2|2
+

4(β∗)−2|c2|2β−2(n+2)eiτ(β−β−1)2

[1− |β|−4]2
,

where

A†2(n+1)
eiτ(A†−A†−1

)2 = diag
[
(α∗)2(n+1)eiτ(α∗−α∗−1)2 , (β∗)2(n+1)eiτ(β∗−β∗−1)2

]
.

The determinant of Γ contains 13 terms without cancellations if α, β,
c1, and c2 are complex constants. This number can be reduced to 10 if α,
β, c1, and c2 are real. We then get

det Γ = (αβ)2(n+1)eiτ(α−α−1)2eiτ(β−β−1)2 +
4(αβ)−2c1c2e

2iτ(α−α−1)2

[1− (αβ)−2]2

+
4α2(n+1)β−2(n+3)c2

2e
iτ(α−α−1)2eiτ(β−β−1)2

(1− β−4)2

+
4α−2(n+3)β2(n+1)c2

1e
iτ(α−α−1)2

(1− α−4)2
+

4(αβ)−2c1c2e
2iτ(β−β−1)2

(1− (αβ)−2)2

+
32(α−2 − β−2)2c2

1c
2
2e
iτ(α−α−1)2eiτ(β−β−1)2(αβ)−2(n+3)

(1− α−4)2(1− β−4)2(1− (αβ)−2)2
.

Writing cofac Γ for the cofactor matrix of Γ, the IDNLS solution un(τ)
is the ratio of the numerator −2B†[cofac Γ]C† consisting of 10 terms without
simplifications (even if α, β, c1, and c2 are real) and a denominator of 10
(6 if α, β, c1, and c2 are real) terms.
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If the matrix triplets are more complicated, it becomes impractical to
write down explicit IDNLS solutions by hand or by using computer algebra.
For this reason we have applied Mathematica to write down the focusing
IDNLS solutions (38), performing the following steps:

a. Input the matrix triplet (A,B, C). All eigenvalues ofA have modulus
larger than one and A has no ± pair among its eigenvalues.

b. Compute the solutions Q and N of the Stein equations (37).
c. Use (38) to compute un(τ) for various values of τ and substitute the

result in the focusing IDNLS equation (1), where wn(τ) = −un(τ)†.
Doing so, we have always found our solutions to satisfy (1) within
an error of at most 10−10.

d. Plot |un(τ)| for various values of τ .

Example 4.2 (Breather solutions). Let us consider the focusing case,

where A =

(
3 2
−2 3

)
, B =

(
1
1

)
, and C =

(
2 1
)
. Solving the corresponding

Stein equations we get

Q =

(
4499
1120

953
480

953
480

3403
3360

)
, N =

(
561
560

239
240

239
240

1697
1680

)
.

Substituting the exact solution (38) into (1) we conclude that this equation
is satisfied. In Figure 1 we have plotted |un(τ)| for four different values of
τ .
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Figure 1. Breather solutions for four values of τ .
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Example 4.3 (Double-pole solutions). Consider the focusing case,

where A =

(
3− i −1

0 3− i

)
, B =

(
0
1

)
, and C =

(
3 2
)
. The corresponding

Stein equations admit as solutions

Q =

(
100
11

740
121 + i 20

1089

740
121 − i

20
1089

447560
107811

)
, N =

(
4040

970299
20

3267 + i 20
9801

20
3267 − i

20
9801

100
99

)
.

Substituting the exact solution (38) into (1) we conclude that the IDNLS is
satisfied. In Figure 2 we have plotted |un(τ)| for four different values of τ .

-15 -10 -5 5 10

5

10

15

-5 5 10 15 20 25

1

2

3

4

5

(a) τ = 0 (b) τ = 4

20 30 40

1

2

3

4

5

30 40 50 60

1

2

3

4

5

(c) τ = 10 (d) τ = 20

Figure 2. Double pole solutions for four values of τ .
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