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Abstract. In this article we formulate the direct and inverse scattering the-

ory for the focusing matrix Zakharov-Shabat system as the construction of

a 1, 1-correspondence between focusing potentials with entries in L1(R) and
Marchenko integral kernels, given the fact that these kernels encode the usual

scattering data (one reflection coefficient, the discrete eigenvalues with positive

imaginary part, and the corresponding norming constants) faithfully. In the
reflectionless case, we solve the Marchenko equations explicitly using matrix

triplets and obtain focusing matrix NLS solutions in closed form.

1. Direct and inverse scattering theory. Consider the focusing matrix nonlin-
ear Schrödinger (NLS) equation

iut + uxx + 2uu†u = 0, (1)

where u = u(x, t) is an m × n matrix function depending on position x ∈ R and
time t ∈ R and the dagger indicates the matrix conjugate transpose. By means of
the inverse scattering transform (IST), (1) is associated with the focusing matrix
Zakharov-Shabat problem

iJ
∂X

∂x
− V (x, t)X(λ, x; t) = λX(λ, x; t), (2)

where

J =

(
Im 0m×n

0n×m −In

)
, V (x, t) =

(
0m×m iu(x, t)
iu(x, t)† 0n×n

)
,

the potential u(x, t) has its entries in L1(R; dx) for each t ∈ R, and λ is a spectral
parameter. For background material we refer to the standard sources (e.g., [2, 1,
11, 13]).

Let us introduce the (m+ n)×m and (m+ n)× n Jost functions from the right
ψ(λ, x) and ψ(λ, x), the (m+ n)×m and (m+ n)× n Jost solutions from the left
φ(λ, x) and φ(λ, x), and the (m+n)×(m+n) Jost matrices Ψ(λ, x) and Φ(λ, x) from

2000 Mathematics Subject Classification. Primary: 35Q55, 37K15.
Key words and phrases. Inverse Scattering Transform, Marchenko equation, Characterization

of Scattering Data.
Research supported by INdAM, MIUR under PRIN grant No. 20083KLJEZ-003, and the

Autonomous Region of Sardinia (RAS) under grant CRP3-138, L.R. 7/2007.
The first author is supported by RAS under grant PO Sardegna 2007-2013, L.R. 7/2007.

343



344 FRANCESCO DEMONTIS AND CORNELIS VAN DER MEE

the right and the left as those solutions of (2) satisfying the asymptotic conditions

Ψ(λ, x) =
(
ψ(λ, x) ψ(λ, x)

)
=

{
e−iλJx[Im+n + o(1)], x→ +∞,
e−iλJxal(λ) + o(1), x→ −∞,

Φ(λ, x) =
(
φ(λ, x) φ(λ, x)

)
=

{
e−iλJx[Im+n + o(1)], x→ −∞,
e−iλJxar(λ) + o(1), x→ +∞.

The system of equations (2) being first order implies that

Φ(λ, x) = Ψ(λ, x)ar(λ), Ψ(λ, x) = Φ(λ, x)al(λ),

where al(λ) and ar(λ) are called transition coefficient matrices. It is easily verified
that, for each (λ, x) ∈ R2, the Jost matrices Ψ(λ, x) and Φ(λ, x) are unitary and have
determinant eiλ(n−m)x. Further, for λ ∈ R, al(λ) and ar(λ) are unitary matrices
with unit determinant, one is the inverse of the other. For later use we partition
the transition coefficient matrices as follows:

al(λ) =

(
al1(λ) al2(λ)
al3(λ) al4(λ)

)
, ar(λ) =

(
ar1(λ) ar2(λ)
ar3(λ) ar4(λ)

)
,

where al1(λ) and ar1(λ) are m×m matrices.
Writing

Ψ(λ, x) = e−iλJx +

∫ ∞
x

dy
(
K(x, y) K(x, y)

)
e−iλJy,

Φ(λ, x) = e−iλJx +

∫ x

−∞
dy
(
M(x, y) M(x, y)

)
e−iλJy,

where∫ ∞
x

dy
(
‖K(x, y)‖+ ‖K(x, y)‖

)
+

∫ x

−∞
dy
(
‖M(x, y)‖+ ‖M(x, y)‖

)
< +∞,

and reshuffling the columns of the Jost matrices as to create square matrix functions

F+(λ, x) =
(
φ(λ, x) ψ(λ, x)

)
, F−(λ, x) =

(
ψ(λ, x) φ(λ, x)

)
,

the former analytic in λ ∈ C+ and the latter analytic in λ ∈ C−, we obtain the
Riemann-Hilbert problem

F−(λ, x) = F+(λ, x)JS(λ)J, (3)

where, for each x ∈ R, F+(λ, x) is continuous in λ ∈ C+ and analytic in λ ∈ C+,

F−(λ, x) is continuous in λ ∈ C− and analytic in λ ∈ C−, and

S(λ) =

(
Tr(λ) L(λ)
R(λ) Tl(λ)

)
is the scattering matrix. Here C+ and C− denote the upper and lower complex open
half-planes. Moreover,

F+(λ, x)eiλJx = Im+n +

∫ ∞
0

dα eiλα
(
M(x, x− α) K(x, x+ α)

)
,

F−(λ, x)eiλJx = Im+n +

∫ ∞
0

dα e−iλα
(
K(x, x+ α) M(x, x− α)

)
,

so that F±(λ, x)eiλJx → Im+n as λ → ∞ from within C±. Under the technical
assumption that there are no spectral singularities (i.e., that, for each λ ∈ R,
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det ar1(λ) = det al4(λ) 6= 0 and det al1(λ) = det ar4(λ) 6= 0), the scattering matrix
S(λ) is J-unitary in the sense that

S(λ)JS(λ)† = S(λ)†JS(λ) = J.

Further, under this assumption we can relate the transmission coefficients Tr(λ)
and Tl(λ) and the reflection coefficients R(λ) and L(λ) to the transition coefficients
as follows:

Tr(λ) = ar1(λ)−1,

Tl(λ) = al4(λ)−1,

R(λ) = −al4(λ)−1al3(λ) = ar3(λ)ar1(λ)−1,

L(λ) = −ar1(λ)−1ar2(λ) = al2(λ)al4(λ)−1.

Traditionally the direct scattering problem is formulated as consisting of the de-
termination, starting from the potential u(x), of the following scattering data: one
reflection coefficient (R(λ) or L(λ)), the discrete eigenvalues in either C+ or C−,
and the corresponding norming constants. Then the inverse scattering problem
consists of the unique evaluation of the potential from these scattering data, either
by solving one of the pairs of coupled Marchenko integral equations (4) below or
by solving the Riemann-Hilbert problem (3). Most practitioners in the field conve-
niently assume that the poles of the transmission coefficients Tr(λ) and Tl(λ), which
must necessarily occur at the discrete eigenvalues in C+, are simple. In that case
there is one norming constant per discrete eigenvalue and the Marchenko integral
equation is easily formulated. Only recently [8, 7] the modifications required in the
case of multiple poles have been indicated.

In the focusing case the Marchenko integral equations are given by

K(x, y) +

(
0m×n
In

)
Ωl(x+ y) +

∫ ∞
x

dz K(x, z)Ωl(z + y) = 0(m+n)×m, (4a)

K(x, y)−
(

Im
0n×m

)
Ωl(x+ y)† −

∫ ∞
x

dz K(x, z)Ωl(z + y)† = 0(m+n)×n, (4b)

M(x, y)−
(

0m×n
In

)
Ωr(x+ y)† −

∫ x

−∞
dzM(x, z)Ωr(z + y)† = 0(m+n)×m, (4c)

M(x, y) +

(
Im

0n×m

)
Ωr(x+ y) +

∫ x

−∞
dzM(x, z)Ωr(z + y) = 0(m+n)×n, (4d)

where the Marchenko kernels Ωr(x+ y) and Ωl(x+ y) depend in a one-to-one way
on the scattering data. The pairs of equations (4a)-(4b) and (4c)-(4d) are easily
seen to be uniquely solvable and the potentials found from their solutions by means
of the identities

u(x) = −2Kup(x, x) = +2K
dn

(x, x)†, (5a)

u(x) = +2M
up

(x, x) = −2Mdn(x, x), (5b)

have their entries in L1(R) [19, 8, 9]. Here Lup =
(
Im 0m×n

)
L and Ldn =(

0n×m In
)
L for any matrix L having m+ n rows. Writing

R(λ) =

∫ ∞
−∞

dy e−iλyρ(y), L(λ) =

∫ ∞
−∞

dy eiλy`(y), (6)
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for certain matrix functions ρ(y) and `(y) with entries in L1(R), we have

Ωl(y) = ρ(y), Ωr(y) = `(y),

provided the matrix Zakharov-Shabat system does not have any discrete eigenvalues.
On the other hand, if the pole λj ∈ C+ of the transmission coefficients has order Nj ,
we need to introduce Nj norming constants from the left and Nj norming constant
from the right corresponding to this pole, resulting in Marchenko kernels of the
form [8, 9]

Ωl(y) = ρ(y) +
∑
j

eiλjy

Nj−1∑
s=0

ys

s!
Nljs, (7a)

Ωr(y) = `(y) +
∑
j

e−iλjy

Nj−1∑
s=0

ys

s!
Nrjs, (7b)

where the summations involve only finitely many terms. Letting

N+ =

∑
j

eiλjy

Nj−1∑
s=0

ys

s!
Njs : {λj} ⊂ C+ finite, {Njs} ⊂ C

 ,

N− =

∑
j

eiζjy
Nj−1∑
s=0

ys

s!
Njs : {ζj} ⊂ C− finite, {Njs} ⊂ C

 ,

we see that Ωl(y) is an n×m matrix function having its entries in L1(R) +N+ and
Ωr(y) is an m× n matrix function having its entries in L1(R) + N−. Further, the
decomposition of a function in L1(R)+N± as the sum of a function in L1(R) and a
function in N± is unique, because only the zero function can belong simultaneously
to L1(R) and to N±. In other words,

Ωl ∈ [L1(R)⊕N+]⊗ Cn×m, Ωr ∈ [L1(R)⊕N−]⊗ Cm×n.

The usual scattering data can be replaced by either Marchenko kernel Ωl(y) or
Ωr(y). Since the pair of Marchenko equations (4a)-(4b) is uniquely solvable, with
the help of (5) we easily get a unique potential having its entries in L1(R). On the
other hand, starting from a focusing potential having its entries in L1(R) we get
Marchenko kernels of the form (7), provided there are no spectral singularities. In
other words, we have the following characterization result:

There is a 1, 1-correspondence between focusing L1-potentials WITH-
OUT spectral singularities and Marchenko kernels Ωl(y) belonging to
[L1(R)⊕N+]⊗Cn×m (resp., Ωr(y) belonging to [L1(R)⊕N−]⊗Cm×n).

If the potential u(x, t) evolves in time as a solution of the focusing matrix NLS
equation (1) and there are no spectral singularities, then the Marchenko kernels
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evolve in time in the following way [2, 11, 4]:

Ωl(y, t) =
1

2π

∫ ∞
−∞

dλR(λ)eiλy+4iλ2t︸ ︷︷ ︸
def
= ρ(y;t)

+
∑
j

eiλjy

Nj−1∑
s=0

ys

s!
Nljs(t),

Ωr(y, t) =
1

2π

∫ ∞
−∞

dλL(λ)e−iλy−4iλ
2t︸ ︷︷ ︸

def
= `(y;t)

+
∑
j

e−iλjy

Nj−1∑
s=0

ys

s!
Nrjs(t),

where the norming constants Nljs(t) and Nrjs(t) evolve in time such that

(Ωl)t + 4i(Ωl)yy = 0, (Ωr)t − 4i(Ωr)yy = 0.

Within the constraints imposed by a scattering theory for L1-potentials, time evo-
lution of the scattering data requires a (presently unknown) restriction of the po-
tentials to a class for which, for each t ∈ R, ρ(y; t) and `(y; t) have their entries in
L1(R).

2. Focusing NLS solutions. It is clear from (6) and (7) that the Marchenko

kernel Ωl(y) faithfully encodes the scattering data {R(λ), λj , {Nljs}
Nj−1
s=0 } and the

Marchenko kernel Ωr(y) faithfully encodes the scattering data {L(λ), λj ,

{Nrjs}
Nj−1
s=0 }. Instead of using norming constants it is convenient to represent the

bound state terms in (7) as “weighting patterns” of autonomous linear systems. In
other words, we write

Ωl(y) = ρ(y) + Cle
−yAlBl,

Ωr(y) = `(y) + Cre
yArBr,

where (Al, Bl, Cl) and (Ar, Br, Cr) are two matrix triplets consisting of square ma-
trices Al and Ar (of orders pl and pr) having only eigenvalues with positive real
parts and Bl, Cl, Br, and Cr are rectangular matrices of respective sizes pl ×m,
n×pl, pr×n, and m×pr. When these triplets are both minimal [6] in the sense that
the matrix orders pl and pr have been minimized without changing the Marchenko
kernels, the matrix triplets are uniquely determined by the Marchenko kernels up
to similarity: Two minimal triplets (Al, Bl, Cl) and (A′l, B

′
l, C
′
l) satisfying

Ωl(y)− ρ(y) = Cle
−yAlBl = C ′le

−yA′
lB′l

are connected by a unique similarity transformation S such that

A′l = SAlS
−1, B′l = SBl, C ′l = ClS

−1.

The same thing is true for minimal matrix triplets appearing in (7b). For mim-
imal matrix triplets (Al, Bl, Cl) yielding (7a) and (Ar, Br, Cr) yielding (7b) the
matrices Al and Ar are necessarily similar, i.e., they have the same Jordan normal
form. These two matrices are diagonalizable whenever the poles of the transmission
coefficients Tr(λ) and Tl(λ) in C+ are all simple.
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Matrix triplets allow one to express the time evolution of the Marchenko kernels
in the following succinct form:

Ωl(y, t) =
1

2π

∫ ∞
−∞

dλR(λ)eiλy+4iλ2t + Cle
−yAle−4itA

2
lBl, (8a)

Ωr(y, t) =
1

2π

∫ ∞
−∞

dλL(λ)e−iλy−4iλ
2t + Cre

yAre4itA
2
rBr. (8b)

These representations preclude the need of describing the time evolution of the
norming constants (as done, for nonsimple poles, in [8, 7] and pioneered in [14, 15]).
Nevertheless, the norming constants can easily be expressed in the matrix triplets.
Let {Plj} be a finite set of projections commuting with Al such that (Al + iλjIpl)
is nilpotent of order Nj and

∑
j Plj = Ipl . Similarly, let {Prj} be a finite set of

projections commuting with Ar such that (Ar+ iλjIpr ) is nilpotent of order Nj and∑
j Prj = Ipr . Then

Ωl(y) =
∑
j

eiλjy

Nj−1∑
s=0

ys

s!
(−1)sCl(Al + iλjIpl)

sPljBl︸ ︷︷ ︸
=Nljs

,

Ωr(y) =
∑
j

eiλjy

Nj−1∑
s=0

ys

s!
Cr(Ar + iλjIpr )sPrjBr︸ ︷︷ ︸

=Nrjs

.

Matrix triplets also permit one to derive closed form solutions of the focusing
matrix NLS equation if the reflection coefficients R(λ) and L(λ) vanish. Iterating
the up components of the pair of equations (4a)-(4b) once we get

Kup(x, y; t)− Ωl(x+ y; t)†

+

∫ ∞
x

dz Kup(x, z; t)

∫ ∞
x

dẑΩl(z + ẑ; t)Ωl(ẑ + y; t)† = 0m×n.

Substituting (8a) with R(λ) ≡ 0 and solving the above integral equation by sepa-
ration of variables, we obtain

Kup(x, y; t) = B†l [e
2xA†

l e−4itA
†
l

2

+Qle
−2xAle−4itA

2
lNl]

−1e−(y−x)A
†
lC†l ,

where

Ql =

∫ ∞
0

dy e−yA
†
lC†l Cle

−yAl , Nl =

∫ ∞
0

dy e−yAlBlB
†
l e
−yA†

l ,

are the unique solutions of the Lyapunov equations

A†lQl +QlAl = C†l Cl, AlNl +NlA
†
l = BlB

†
l .

With the help of (5a) we finally arrive at the matrix NLS solution

u(x, t) = −2B†l [e
2xA†

l e−4itA
†
l

2

+Qle
−2xAle−4itA

2
lNl]

−1C†l , (9)

which is easily seen to decay exponentially as x→ ±∞ for fixed t ∈ R. In the same
way we compute

Mup(x, y; t) = −Cr[e−2xAre−4itA
2
r +Nre

2xA†
re−4itA

†
r
2

Qr]
−1e−(x−y)ArBr,

where

Qr =

∫ 0

−∞
dy eyA

†
rC†rCre

yAr , Nr =

∫ 0

−∞
dy eyArBrB

†
re
yA†

r ,
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are the unique solutions of the Lyapunov equations

A†rQr +QrAr = C†rCr, ArNr +NrA
†
r = BrB

†
r .

Consequently, we get with the help of (5b)

u(x, t) = 2Cr[e
−2xAre−4itA

2
r +Nre

2xA†
re−4itA

†
r
2

Qr]
−1Br, (10)

which is easily seen to decay exponentially as x → ±∞ for fixed t ∈ R. The
expressions (9) and (10) remain solutions of the focusing matrix NLS equation
(1) if the matrix triplets are selected in such a way that Al and Ar do not have
imaginary eigenvalues nor pairs of eigenvalues symmetrically located with respect
to the imaginary axis, without requiring all of the eigenvalues of Al and Ar to have
a positive real part [4]. The solutions (9) and (10) expressed in terms of such more
general matrix triplets can also be expressed in minimal matrix triplets for which
the matrices Al and Ar only have eigenvalues with positive real parts [3].

The above method to derive explicit solutions of nonlinear evolution equations
has been applied to the KdV, (matrix) NLS, and sine-Gordon equations [8, 4,
5]. Matrix or operator triplets to evaluate such solutions, but without solving
Marchenko equations, have been employed for pseudo-canonical systems [12], the
sine-Gordon equation [17], the Toda lattice equations [16], and, more recently, for
the matrix NLS equation [10, 18].
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