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Abstract
A certain symmetry is exploited in expressing exact solutions to the focusing
nonlinear Schrödinger equation in terms of a triplet of constant matrices.
Consequently, for any number of bound states with any number of multiplicities
the corresponding soliton solutions are explicitly written in a compact form
in terms of a matrix triplet. Conversely, from such a soliton solution
the corresponding transmission coefficients, bound-state poles, bound-state
norming constants and Jost solutions for the associated Zakharov–Shabat
system are evaluated explicitly. These results also hold for the matrix nonlinear
Schrödinger equation of any matrix size.

PACS numbers: 02.30.Ik, 05.45.Yv, 47.35.Fg
Mathematics Subject Classification: 37K15, 35Q51, 35Q55

1. Introduction

Consider the focusing cubic nonlinear Schrödinger (NLS) equation

iut + uxx + 2|u|2u = 0, (1.1)

where the subscripts denote appropriate partial derivatives. It arises in applications as diverse
as wave propagation in nonlinear media [15], surface waves on sufficiently deep waters
[14, 15] and signal propagation in optical fibers [10–12]. Its initial-value problem is known to
be solvable by the inverse scattering transform method [1, 2, 13, 15]. In other words, certain
solutions to (1.1) can be viewed as a potential in the Zakharov–Shabat system

dϕ(λ, x, t)

dx
=

[ −iλ u(x, t)

−u(x, t)∗ iλ

]
ϕ(λ, x, t), (1.2)

where an asterisk is used to denote complex conjugation, and u(x, t) can be recovered from
u(x, 0) with the help of the scattering data sets for (1.2) at t = 0 and at time t.
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Exact solutions to nonlinear partial differential equations are of great interest. Such
solutions may be helpful to better understand the corresponding nonlinearity, and they may
also be useful in producing testing means to determine accuracy of numerical methods for
solving nonlinear partial differential equations. This paper is related to exact solutions
to (1.1).

In previous papers [3, 6–8] we presented a method to construct exact solutions to (1.1)
that are globally analytic on the entire xt-plane and decay exponentially as x → ±∞ at each
fixed t ∈ R. This has been achieved by using a matrix triplet (A,B,C), where all eigenvalues
of A have positive real parts. A similar method was applied to the Korteweg–de Vries equation
on the half-line [4]. The same method is also applicable to various other nonlinear partial
differential equations that are integrable by the inverse scattering transform with the help of a
Marchenko integral equation.

In this paper we analyze the method of [3] when the eigenvalues of the matrix A in the
triplet (A,B,C) do not all have positive real parts. It is already known that if one or more
eigenvalues of A are purely imaginary, the corresponding scattering coefficients for (1.2)
contain discontinuities at some real values of λ and hence the corresponding u(x, t) cannot
be analytic on the entire xt-plane. Furthermore, it is already known that for soliton solutions
to (1.1), the corresponding transmission coefficients for (1.2) must have a pole and a zero
appearing as a pair located symmetrically with respect to the real axis, which implies that a
pair (or more pairs) of eigenvalues of A cannot be located symmetrically with respect to the
imaginary axis. Thus, in our paper we mainly concentrate on the case where eigenvalues of
A may occur anywhere on the complex plane, but no eigenvalues of A are on the imaginary
axis and no pairs of eigenvalues are located symmetrically with respect to the imaginary axis.
For such triplets (A,B,C) we show that there is an equivalent triplet (Ã, B̃, C̃) yielding
the same solution u(x, t) to (1.1), where all eigenvalues of Ã have positive real parts. The
corresponding solutions u(x, t) are then analytic on the entire xt-plane and they are soliton
solutions with any number of poles in the corresponding transmission coefficients and with
any multiplicities of such poles. For such triplets we also explicitly evaluate the corresponding
transmission coefficients, bound-state norming constants and the corresponding Jost solutions
to (1.2).

Our paper is organized as follows. In section 2 we present the preliminary material
by providing an outline of the method of [3] and introduce exact solutions u(x, t) to (1.1)
constructed via a triplet (A,B,C). In section 3 we exploit a certain symmetry in such exact
solutions and show that some (or all) eigenvalues of A can be chosen either on the right or on
the left half complex plane without changing u(x, t). In section 4 we show that such solutions
are solitons with any number of poles in the corresponding transmission coefficients and with
any multiplicities of such poles. We also explicitly evaluate the corresponding transmission
coefficients and bound-state norming constants and the Jost solutions to (1.2). Finally, we
conclude in section 5 with an explicit example, which was earlier studied as example 7.2 of [3].
Since one of the eigenvalues of A in that example has a negative real part, we earlier conjectured
that it might be a nonsoliton solution. Using our current results, we verify in section 5 that it is
a two-soliton solution and we explicitly evaluate the corresponding transmission coefficients,
the bound-state norming constants and the Jost solutions to (1.2).

We state the results of sections 2– 4 carefully so that they remain valid for the matrix NLS
equation

iut + uxx + 2uu†u = 0,

where u is now m × n matrix valued, the dagger denotes the matrix adjoint (matrix transpose
and complex conjugate) and the associated Zakharov–Shabat system is given by
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dϕ(λ, x, t)

dx
=

[ −iλIm u(x, t)

−u(x, t)† iλIn

]
ϕ(λ, x, t),

with In denoting the n × n identity matrix.

2. Preliminaries

In this section we establish our notation and provide the preliminaries for certain exact solutions
to the focusing NLS equation. Such exact solutions are expressed [3] in terms of a triplet of
matrices (A,B,C).

Consider any triplet (A,B,C), where A is a p × p (complex-valued) constant matrix,
B is a p × 1 (complex-valued) constant matrix and C is a 1 × p (complex-valued) constant
matrix. For short, we will refer to such a triplet as a triplet of size p. From such a triplet,
construct the auxiliary p × p matrices Q and N by solving the respective Lyapunov equations{

QA + A†Q = C†C,

AN + NA† = BB†.
(2.1)

Note that if (Q,N) satisfies the system in (2.1), so does (Q†, N †); hence, there is no loss of
generality in assuming that the solution matrices Q and N to (2.1) are self-adjoint. Then form
the p × p matrix F(x, t) and the scalar quantity u(x, t) as

F(x, t) := e2A†x−4i(A†)2t + Q e−2Ax−4iA2tN, (2.2)

u(x, t) := −2B†F(x, t)−1C†. (2.3)

Let us also define the p × p matrix G(x, t) and the scalar quantity v(x, t) as

G(x, t) := e−2Ax−4iA2t + N e2A†x−4i(A†)2tQ, (2.4)

v(x, t) := −2CG(x, t)−1B. (2.5)

Theorem 2.1. Given a triplet (A,B,C) of size p, let (Q,N) be a self-adjoint solution to the
system in (2.1). Then u(x, t) defined as in (2.3) satisfies the NLS equation (1.1) at any point
on the xt-plane where F(x, t) is invertible. Similarly, v(x, t) defined in (2.5) satisfies (1.1) at
any point on the xt-plane where G(x, t) is invertible.

Proof. Let us only give the proof for v because the proof for u is similar. In fact, v(x, t) turns
into u(−x, t) by replacing (A,B,C) with (A†, C†, B†), which can also be used for the proof
related to u(x, t). Let us drop the arguments of the functions involved and write (2.4) and its
adjoint as

G = e−β + N eβ†
Q, G† = e−β†

+ Q eβN, (2.6)

where we have defined

β := 2Ax + 4iA2t. (2.7)

Note that v in (2.5) is well defined as long as G−1 exists. Taking appropriate partial derivatives,
from (2.5) and (2.6) we obtain

ivt + vxx + 2vv†v = −2CG−1PG−1B, (2.8)

P := −iGt − Gxx + 2GxG
−1Gx + 8BB†(G†)−1C†C.

3



J. Phys. A: Math. Theor. 43 (2010) 025202 T Aktosun et al

From (2.6) we get

Gt = −4iA2 e−β − 4iN(A†)2 eβ†
Q, Gx = −2A e−β + 2NA† eβ†

Q, (2.9)

Gxx = 4A2 e−β + 4N(A†)2 eβ†
Q, (2.10)

eβ†
QG−1 = (G†)−1Q eβ, eβN(G†)−1 = G−1N eβ†

. (2.11)

With the help of (2.1), (2.6), and (2.9)–(2.11), one can verify that P = 0, and hence the
right-hand side of (2.8) is zero. �

There are several questions that can be raised. For example, are the Lyapunov equations
given in (2.1) solvable; if they are solvable, are they uniquely solvable? Are the matrices F
and G defined in (2.2) and (2.4), respectively, invertible? The answers to these questions are
affirmative under appropriate restrictions on the triplet (A,B,C), as we will see.

Let us note that u and v defined in (2.3) and (2.5), respectively, are analytic functions of x
and t at any point on the xt-plane as long as the matrices F and G, respectively, are invertible
at that point. This is because the entries of those matrices and hence also their determinants
can be written as sums of products of sine, cosine, exponential and polynomial functions of
linear combinations of x and t.

Consider the scalar function � defined as

�(x) := C e−AxB. (2.12)

The right-hand side is called a matrix realization of � in terms of the triplet (A,B,C). Without
changing �(x), it is possible to increase the value of p in the size of the triplet (A,B,C) by
padding the matrices A, B, C with zeros or by modifying A, B, C in some other fashion (cf
[8], section 2.4). Conversely, it might also be possible to reduce the value of p in the triplet
(A,B,C) so that the quantity �(x) will remain unchanged. The matrix realization in (2.12)
is said to be minimal if the value of p in the triplet (A,B,C) is the smallest and yet �(x)

remains unchanged by the choice of p. The triplet (A,B,C) is minimal if and only if [5] the
intersections of the kernels of CAj and of the kernels of B†(A†)j for j = 0, 1, 2, . . . are trivial,
i.e.

{ξ ∈ Cp : CAjξ = 0 for j � 0} = {0} = {η ∈ Cp : B†(A†)jη = 0 for j � 0}. (2.13)

It is also known [5] that a triplet yielding a minimal realization in (2.12) is unique up to a
similarity transformation (A,B,C) �→ (EAE−1, EB,CE−1) for some unique matrix E.

The results in the next theorem are known [3], but they are collected here in a summarized
form and a brief proof is included for the benefit of the reader.

Theorem 2.2. Assume that the triplet (A,B,C) of size p corresponds to a minimal realization
in (2.12) and that the eigenvalues of A all have positive real parts. Then

(i) The Lyapunov equations in (2.1) are uniquely solvable.
(ii) The solutions Q and N are p × p self-adjoint matrices.

(iii) Q and N can be expressed in terms of the triplet (A,B,C) as

Q =
∫ ∞

0
ds [C e−As]†[C e−As], N =

∫ ∞

0
ds [e−AsB][e−AsB]†. (2.14)

(iv) Q and N are invertible matrices.
(v) Any square submatrix of Q containing the (1,1)-entry or (p, p)-entry of Q is invertible.

Similarly, any square submatrix of N containing the (1,1)-entry or (p, p)-entry of N is
invertible.

(vi) The p×p matrix quantities F and G defined in (2.2) and (2.4), respectively, are invertible
at every point on the xt-plane.
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Proof. By introducing the parameter α, let us write the first equation in (2.1) as

−Q(αI − A) + (αI + A†)Q = C†C,

or equivalently as

−(αI + A†)−1Q + Q(αI − A)−1 = (αI + A†)−1C†C(α − A)−1, (2.15)

where I is the p × p identity matrix. Since A and (−A†) have eigenvalues on the right and
left complex half planes, respectively, we can integrate (2.15) along a simple and positively
oriented contour γ lying on the right half complex plane and enclosing all eigenvalues of A.

Thus, we obtain Q uniquely as

Q = 1

2π i

∫
γ

dα (αI + A†)−1C†C(αI − A)−1.

Similarly, the solution to the second equation in (2.1) is unique and is obtained as

N = 1

2π i

∫
γ

dα (αI − A)−1BB†(αI + A†)−1.

Thus, (i) is proved. From (2.1) it is seen that (Q†, N †) is a solution to (2.1) whenever (Q,N)

is a solution and hence from the uniqueness of the solution we obtain (ii). From (2.14) we see
that

QA + A†Q = −
∫ ∞

0
ds

d

ds
[e−A†sC†C e−As] = −e−A†sC†C e−As

∣∣∞
s=0 = C†C,

where we have used the fact that all eigenvalues of A have positive real parts. A similar
argument for N completes the proof of (iii). From their self-adjointness and positivity as seen
from (2.14), it follows that all eigenvalues of Q and N are nonnegative. Moreover, (2.13)
implies that zero is not an eigenvalue of Q or N. Hence Q and N are invertible, proving (iv).
The positivity of all eigenvalues also implies (v). The invertibility of F follows from using
theorem 4.2 of [3] in (2.2), and the proof of invertibility for G is similar. �

The results in the next theorem are useful in extracting the scattering data for (1.2) from
the corresponding potential u(x, t), which is also a solution to (1.1). For the benefit of the
reader we state such results in a summarized and unified form. The proofs of these results are
available in theorems 3.1 and 3.3 of [3], and hence they will not be given here.

Theorem 2.3. Assume that the triplet (Ã, B̃, C̃) of size p corresponds to a minimal realization
in (2.12) and that the eigenvalues of Ã all have positive real parts. Further, assume that Ã

has m distinct eigenvalues α1, . . . , αm and the multiplicity of αj is nj . Then:

(i) There exists a unique triplet (A,B,C), where A is in a Jordan canonical form with each
Jordan block containing a distinct eigenvalue and having −1 in the superdiagonal entries,
and the entries of B consist of zeros and ones. More specifically, we have

A =

⎡
⎢⎢⎢⎣

A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...

0 0 · · · Am

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

B1

B2

...

Bm

⎤
⎥⎥⎥⎦ , C = [C1 C2 · · · Cm ],

Aj :=

⎡
⎢⎢⎢⎢⎢⎣

αj −1 0 · · · 0
0 αj −1 · · · 0
0 0 αj · · · 0
...

...
...

. . .
...

0 0 0 · · · αj

⎤
⎥⎥⎥⎥⎥⎦ , Bj :=

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
...

1

⎤
⎥⎥⎥⎥⎥⎦ , Cj := [cj (nj −1) · · · cj1 cj0 ],

5



J. Phys. A: Math. Theor. 43 (2010) 025202 T Aktosun et al

where Aj has size nj ×nj , Bj has size nj × 1, Cj has size 1 ×nj and the constants cj (nj −1)

are nonzero.
(ii) The triplet (A,B,C) can be constructed from (Ã, B̃, C̃) via

Ã = MAM−1, B̃ = MSB, C = C̃MS, (2.16)

where M is a matrix whose columns are formed from the generalized eigenvectors of (−Ã)

and S is an upper triangular Toeplitz matrix commuting with A, is uniquely determined
by M and B̃, and has the form

S =

⎡
⎢⎢⎢⎣

S1 0 · · · 0
0 S2 · · · 0
...

...
. . .

...

0 0 · · · Sm

⎤
⎥⎥⎥⎦ , Sj :=

⎡
⎢⎢⎢⎣

θjnj
θj (nj −1) · · · θj1

0 θjnj
· · · θj2

...
...

. . .
...

0 0 · · · θjnj

⎤
⎥⎥⎥⎦ ,

for some constants θjs .

(iii) The triplets (A,B,C) and (Ã, B̃, C̃) yield the same solution u(x, t) to (1.1).
(iv) The complex constants (iαj ) correspond to the bound-state poles on the upper half

complex plane of the transmission coefficients Tl and Tr appearing in (4.2)–(4.5) of
section 4.

(v) For each j, the complex constants cjs for s = 0, 1, . . . , (nj −1) appearing in C correspond
to the bound-state norming constants associated with the bound-state pole (iαj ) of the
transmission coefficients.

3. Symmetries for the NLS equation

In this section we exploit a certain symmetry in (2.2) and show that without changing the value
of the scalar u(x, t) in (2.3) it is possible to transform the triplet (A,B,C) in such a way that
some or all eigenvalues of A can be reflected from the right half complex plane to the left half
complex plane. The same result holds for the scalar v(x, t) given in (2.5); namely, it remains
unchanged when the triplet (A,B,C) is transformed so that some or all eigenvalues of A are
reflected with respect to the imaginary axis on the complex plane.

For repeated eigenvalues of A, the aforementioned transformation must be applied to
all the multiplicities in such a way that after the transformation we should not have any
eigenvalue pairs symmetrically located with respect to the imaginary axis of the complex
plane. As mentioned in section 1, eigenvalue pairs symmetrically located with respect to the
imaginary axis cannot yield soliton solutions to (1.1). For such pairs, it is already known [9]
that (2.1) is not uniquely solvable.

Let us write (2.2) as

F(x, t) = Q[e−2Ax−4iA2t + Q−1 e2A†x−4i(A†)2tN−1]N. (3.1)

Comparing (2.2) and (3.1), we next prove that u(x, t) appearing in (2.3) remains invariant
under the transformation

(A,B,C,Q,N) �→ (−A†,−N−1B,−CQ−1,−Q−1,−N−1),

where all the eigenvalues of A are reflected with respect to the imaginary axis on the complex
plane as a result of A �→ (−A†).

Theorem 3.1. Assume that the triplet (A,B,C) corresponds to a minimal realization in
(2.12) and that all eigenvalues of A have positive real parts. Consider the transformation

(A,B,C,Q,N,F,G, u, v) �→ (Ã, B̃, C̃, Q̃, Ñ, F̃ , G̃, ũ, ṽ), (3.2)
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where (Q,N) corresponds to the unique solution to the Lyapunov system in (2.1), the quantities
in (F,G, u, v) are as in (2.2)–(2.5),

Ã = −A†, B̃ = −N−1B, C̃ = −CQ−1, Q̃ = −Q−1, Ñ = −N−1,

(3.3)

and (F̃ , G̃, ũ, ṽ) is as in (2.2)–(2.5) but by using (Ã, B̃, C̃, Q̃, Ñ) instead of (A,B,C,Q,N)

on the right-hand sides. We then have the following:

(a) The quantities F and G are transformed as

F̃ = Q−1FN−1, G̃ = N−1GQ−1. (3.4)

(b) Q̃ and Ñ satisfy the respective Lyapunov equations{
Q̃Ã + Ã†Q̃ = C̃†C̃,

ÃÑ + ÑÃ† = B̃B̃†.
(3.5)

(c) The matrices Q̃ and Ñ are self-adjoint and invertible.
(d) The matrices F̃ and G̃ are invertible at every point on the xt-plane.
(e) ũ(x, t) = u(x, t) and ṽ(x, t) = v(x, t).

Proof. Using (3.3) in (2.2) and (2.4) we get (a). Using (2.1) and (3.3), it can directly be
verified that (3.5) is satisfied, proving (b). Using (ii) and (iv) of theorem 2.2 in (3.3), it follows
that (c) holds. The invertibility in (d) follows from (3.4) by using the invertibility of Q and
N stated in (c) and the invertibility of F and G stated in (vi) of theorem 2.2. Finally, (e) can
be proved by using (2.3) and (2.5) with the help of (3.3), the self-adjointness of Q and N,
and (3.4). �

Next, we show that even if we reflect some of eigenvalues of A from the right to the
left half complex plane, theorem 3.1 remains valid by choosing the transformation in (3.2)
appropriately. For this purpose, let us again start with a triplet (A,B,C) of size p and
corresponding to a minimal realization in (2.12), where the eigenvalues of A all have positive
real parts. Without loss of any generality, let us partition A, B, C as

A =
[
A1 0
0 A2

]
, B =

[
B1

B2

]
, C = [C1 C2], (3.6)

so that the q ×q block diagonal matrix A1 contains the eigenvalues that will remain unchanged
and A2 contains the eigenvalues that will be reflected with respect to the imaginary axis on the
complex plane, the submatrices B1 and C1 have sizes q × 1 and 1 × q, respectively, and hence
A2, B2, C2 have sizes (p − q) × (p − q), (p − q) × 1, 1 × (p − q), respectively, for some
integer q not exceeding p. Let us write the corresponding respective solutions to (2.1) as

Q =
[
Q1 Q2

Q3 Q4

]
, N =

[
N1 N2

N3 N4

]
, (3.7)

where Q1 and N1 have sizes q × q, Q4 and N4 have sizes (p − q) × (p − q), etc. Note that
because of the self-adjointness of Q and N stated in theorem 2.2, we have

Q
†
1 = Q1, Q

†
2 = Q3, Q

†
4 = Q4, N

†
1 = N1, N

†
2 = N3, N

†
4 = N4.

(3.8)

Furthermore, from theorem 2.2 (v) it follows that Q1, Q4, N1 and N4 are all invertible.
Let us clarify our notational choice in (3.6) and emphasize that the partitioning in (3.6) is

not the same partitioning used in (i) of theorem 2.3.

7
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Theorem 3.2. Assume that the triplet (A,B,C) partitioned as in (3.6) corresponds to a
minimal realization in (2.12) and that all eigenvalues of A have positive real parts. Consider
the transformation (3.2) with (Ã, B̃, C̃) having similar block representations as in (3.6),
(Q,N) as in (3.7) corresponding to the unique solution to the Lyapunov system in (2.2),

Ã1 = A1, Ã2 = −A
†
2, B̃1 = B1 − N2N

−1
4 B2, B̃2 = −N−1

4 B2, (3.9)

C̃1 = C1 − C2Q
−1
4 Q3, C̃2 = −C2Q

−1
4 , (3.10)

and (Q̃, Ñ) given as

Q̃1 = Q1 − Q2Q
−1
4 Q3, Q̃2 = −Q2Q

−1
4 , Q̃3 = −Q−1

4 Q3, Q̃4 = −Q−1
4 ,

(3.11)

Ñ1 = N1 − N2N
−1
4 N3, Ñ2 = −N2N

−1
4 , Ñ3 = −N−1

4 N3, Ñ4 = −N−1
4 ,

(3.12)

and (F̃ , G̃, ũ, ṽ) as in (2.2)–(2.5) but by using (Ã, B̃, C̃, Q̃, Ñ) instead of (A,B,C,Q,N)

on the right-hand sides. We then have the following:

(a) The quantities F and G are transformed according to

F̃ =
[
I −Q2Q

−1
4

0 −Q−1
4

]
F

[
I 0

−N−1
4 N3 −N−1

4

]
, (3.13)

G̃ =
[
I −N2N

−1
4

0 −N−1
4

]
G

[
I 0

−Q−1
4 Q3 −Q−1

4

]
. (3.14)

(b) Q̃ and Ñ satisfy the respective Lyapunov equations in (3.5).
(c) The matrices Q̃ and Ñ are self-adjoint and invertible.
(d) The matrices F̃ and G̃ are invertible at every point on the xt-plane.
(e) ũ(x, t) = u(x, t) and ṽ(x, t) = v(x, t).

Proof. Let us use I to denote the identity matrix not necessarily having the same dimension
in every appearance in the proof, but that dimension will be apparent to the reader. Note that
(3.13) and (3.14) can be verified by using (3.8)–(3.12) in (2.2) and (2.4), which proves (a).
The proof of (b) is by direct substitution in (3.5) and by using (2.1) and (3.6)–(3.12) and by
noting that

B̃ =
[
I −N2N

−1
4

0 −N−1
4

]
B =

[
I −N2

0 −N4

]−1

B, (3.15)

C̃ = C

[
I 0

−Q−1
4 Q3 −Q−1

4

]
= C

[
I 0

−Q3 −Q4

]−1

, (3.16)

where the invertibility of Q4 and N4 is also used, which follows from theorem 2.2 (v). The
self-adjointness of Q̃ and Ñ follows from (3.7), (3.8), (3.11) and (3.12). The invertibility of
Q̃ and Ñ can be seen from (3.11) and (3.12) by writing

Q̃ =
[
Q1 Q2

0 I

] [
I 0

−Q−1
4 Q3 −Q−1

4

]
=

[
Q−1

1 −Q−1
1 Q2

0 I

]−1 [
I 0

−Q3 −Q4

]−1

, (3.17)
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and a similar expression for Ñ and the fact that Q1, Q4, N1, N4 are all invertible. Thus, (c)
is proved. The invertibility in (d) follows from (3.13) and (3.14) by using the invertibility
of Q4 and N4 stated in (v) of theorem 2.2 and the invertibility of F and G stated in (vi) of
theorem 2.2. Finally, we evaluate F̃ (x, t) by using (Ã, B̃, C̃, Q̃, Ñ) instead of (A,B,C,Q,N)

on the right-hand side of (2.2) and evaluate ũ(x, t) by using (B̃, F̃ , C̃) instead of (B, F,C)

on the right-hand side of (2.3). With the help of (3.7)–(3.17), it is straightforward to show that
ũ(x, t) simplifies to u(x, t); similarly, ṽ(x, t) simplifies to v(x, t), completing the proof of (e).

�

Finally in this section, we show that u and v defined in (2.3) and (2.5), respectively, can
be transformed into each other by transforming the triplet (A,B,C) in a particular way.

Theorem 3.3. Assume that the triplet (A,B,C) corresponds to a minimal realization in
(2.12) and that all eigenvalues of A have positive real parts. Consider the transformation
(3.2) where (Q,N) corresponds to the unique solution to the Lyapunov system in (2.1) and
(F,G, u, v) is as in (2.2)–(2.5),

Ã = A, B̃ = Q−1C†, C̃ = B†N−1, Q̃ = N−1, Ñ = Q−1, (3.18)

and (F̃ , G̃, ũ, ṽ) is as in (2.2)–(2.5) but by using (Ã, B̃, C̃, Q̃, Ñ) instead of (A,B,C,Q,N)

on the right-hand sides. We then have the following:

(a) Q̃ and Ñ satisfy the respective Lyapunov equations given in (3.5).
(b) The matrices Q̃ and Ñ are self-adjoint and invertible.
(c) ũ(x, t) = v(x, t) and ṽ(x, t) = u(x, t).

Proof. Using (2.1) and (3.18), it can directly be verified that (3.5) is satisfied. The self-
adjointness and invertibility of Q̃ and Ñ follow from (3.18) because Q and N have those
properties, as stated in theorem 2.2 (ii) and (iv); hence, (b) holds. Finally, (c) is proved by
direct substitution in (2.3) and (2.5) with the help of the self-adjointness of Q and N. �

4. The scattering coefficients and Jost solutions

In this section, we evaluate the Jost solutions and the corresponding scattering coefficients for
the Zakharov–Shabat system (1.2) associated with the NLS equation (1.1) when the potential
is given by (2.3) or (2.5). In analyzing (1.2), we will use the notation ϕ = [

ϕ1

ϕ2

]
, where the

subscripts 1 and 2 denote the first and second components. If ϕ(λ, x, t) and ϕ̄(λ, x, t) are any
two solutions to (1.2), their Wronskian [ϕ; ϕ̄] is independent of x, where we have defined

[ϕ; ϕ̄] := ϕ(λ∗, x, t)†ϕ̄(λ, x, t). (4.1)

We stress that an overbar does not indicate complex conjugation.
Recall [13, 15] that the Jost solutions ψ, ψ̄, φ and φ̄ are defined as those vector solutions

to (1.2) with asymptotics

ψ(λ, x, t) =
[

0
eiλx

]
[1 + o(1)], ψ̄(λ, x, t) =

[
e−iλx

0

]
[1 + o(1)], x → +∞,

φ(λ, x, t) =
[

e−iλx

0

]
[1 + o(1)], φ̄(λ, x, t) =

[
0

eiλx

]
[1 + o(1)], x → −∞.

When u(·, t) is integrable for each fixed t, the four Jost solutions exist and their asymptotics
at the other end of the real axis yield the scattering coefficients R, L, Tl, Tr via

9
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ψ(λ, x, t) =
[
LT −1

l e−iλx

T −1
l eiλx

]
[1 + o(1)], x → −∞, (4.2)

ψ̄(λ, x, t) =
[ (

T
†

r
)−1

e−iλx

−L†(T †
r
)−1

eiλx

]
[1 + o(1)], x → −∞, (4.3)

φ(λ, x, t) =
[
T −1

r e−iλx

RT −1
r eiλx

]
[1 + o(1)], x → +∞, (4.4)

φ̄(λ, x, t) =
[
−R†(T †

l

)−1
e−iλx(

T
†

l

)−1
eiλx

]
[1 + o(1)], x → +∞. (4.5)

The scattering coefficients can equivalently be obtained with the help of the Wronskian defined
in (4.1); in fact, we have

LT −1
l = (

RT −1
r

)† = [φ;ψ], T −1
l = [φ̄;ψ], T −1

r = [ψ̄;φ]. (4.6)

For the Zakharov–Shabat system (1.2) we have Tl = Tr if the scalar potential u(x, t) vanishes
as x → ±∞. However, we will retain the separate notations for Tl and Tr for a subsequent
generalization to the matrix case, where Tl and Tr may differ.

The Jost solutions ψ and ψ̄ and the potential u(x, t) are recovered [13, 15] as

ψ(λ, x, t) =
[

0
eiλx

]
+

∫ ∞

x

dy K(x, y, t) eiλy,

ψ̄(λ, x, t) =
[

e−iλx

0

]
+

∫ ∞

x

dy K̄(x, y, t) e−iλy,

u(x, t) = −2[1 0]K(x, x, t) = 2 K̄(x, x, t)†
[

0
1

]
,

from the solutions to the Marchenko integral equations

K̄(x, y, t) +

[
0

�l(x + y, t)

]
+

∫ ∞

x

dy K(x, z, t)�l(z + y, t) =
[

0
0

]
, y > x, (4.7)

K(x, y, t) −
[
�l(x + y, t)†

0

]
−

∫ ∞

x

dy K̄(x, z, t)�l(z + y, t)† =
[

0
0

]
, y > x. (4.8)

The Jost solutions ψ and ψ̄ corresponding to u(x, t) given in (2.3) with (A,B,C) = (Al, Bl, Cl)

can be evaluated by solving (4.7) and (4.8) with

�l(y, t) = Cl e−Aly−4iA2
l tBl.

Since

�l(x + y, t) = Cl e−Alx e−Aly−4iA2
l tBl,

the Marchenko equations in (4.7) and (4.8) have integral kernels separable in z and y and
hence they can be solved explicitly by algebraic methods, yielding

ψ(λ, x, t) =
[

iB†
l Fl(x, t)−1

(
λI + iA†

l

)−1
eiλxC

†
l

eiλx − iCl[Fl(x, t)†]−1Nl e−2A
†
l x+4i(A†

l )
2t
(
λI + iA†

l

)−1
eiλxC

†
l

]
, (4.9)

10
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ψ̄(λ, x, t) =
[

e−iλx + iB†
l e−2A

†
l x+4i(A†

l )
2tQl[Fl(x, t)†]−1(λI − iAl)

−1 e−iλxBl

iCl[Fl(x, t)†]−1(λI − iAl)
−1 e−iλxBl

]
. (4.10)

Similarly, the Jost solutions φ and φ̄ and the potential v(x, t), in the form given in (2.5),
are recovered as

φ(λ, x, t) =
[

e−iλx

0

]
+

∫ x

−∞
dy M(x, y, t) e−iλy,

φ̄(λ, x, t) =
[

0
eiλx

]
+

∫ x

−∞
dy M̄(x, y, t) eiλy,

v(x, t) = 2[1 0]M̄(x, x, t) = −2 M(x, x, t)†
[

0
1

]
,

from the solutions to the Marchenko integral equations

M̄(x, y, t) +

[
�r(x + y, t)

0

]
+

∫ x

−∞
dy M(x, z, t)�r(z + y, t) =

[
0
0

]
, y < x, (4.11)

M(x, y, t) −
[

0
�r(x + y, t)†

]
−

∫ x

−∞
dy M̄(x, z, t)�r(z + y, t)† =

[
0
0

]
, y < x. (4.12)

Corresponding to the potential v(x, t) given in (2.5) with (A,B,C) = (Ar, Br, Cr) we have

�r(y, t) = Cr eAry+4iA2
r tBr,

which yields an integral kernel separable in z and y in (4.11) and (4.12) and hence allows us
to solve those integral equations explicitly by algebraic methods, yielding

φ(λ, x, t) =
[

e−iλx − iCrGr(x, t)−1Nr e2A
†
r x−4i(A†

r )
2t (λI + iA†

r )
−1 e−iλxC

†
r

iB†
r [Gr(x, t)†]−1

(
λI + iA†

r
)−1

e−iλxC
†
r

]
,

φ̄(λ, x, t) =
[

iCrGr(x, t)−1(λI − iAr)
−1 eiλxBr

eiλx + iB†
r [Gr(x, t)†]−1Qr e2Arx+4iA2

r t (λI − iAr)
−1 eiλxBr

]
.

Proposition 4.1. Assume that the triplet (A,B,C) corresponds to a minimal realization in
(2.12) and that all eigenvalues of A have positive real parts. Let (Q,N) correspond to the
unique solution to the Lyapunov system (2.1) and let (F,G) be as in (2.2) and (2.4). We then
have the following:

(a) F(x, t)−1 → 0 and G(x, t)−1 → 0 as x → ±∞.

(b) e−2A†x+4i(A†)2tQ[F(x, t)†]−1 → N−1 as x → −∞.
(c) [F(x, t)†]−1N e−2A†x+4i(A†)2t → Q−1 as x → −∞.
(d) [G(x, t)†]−1Q e2Ax+4iA2t → N−1 as x → +∞.
(e) G(x, t)−1N e2A†x−4i(A†)2t → Q−1 as x → +∞.

Proof. The proofs involving G are obtained by using (2.6) the same way as in the proofs for
F, and hence we will only give the proofs for F. Using (2.2) and (2.7) we see that

F = eβ†
+ Q e−βN, F † = eβ + N e−β†

Q,

11



J. Phys. A: Math. Theor. 43 (2010) 025202 T Aktosun et al

and hence

F = eβ†
[I + e−β†

Q e−βN ], Q−1FN−1 eβ = I + Q−1 eβ†
N−1 eβ, (4.13)

F †Q−1 eβ†
N−1 = [I + eβQ−1 eβ†

N−1], eβ†
N−1F † = [I + eβ†

N−1 eβQ−1]Q. (4.14)

Forming the inverses from (4.13) and (4.14) we obtain

F−1 = [I + e−β†
Q e−βN ]−1 e−β†

, F−1 = N−1 eβ[I + Q−1 eβ†
N−1 eβ]−1Q−1, (4.15)

e−β†
Q(F †)−1 = N−1[I + eβQ−1 eβ†

N−1]−1, (4.16)

(F †)−1N e−β† = Q−1[I + eβ†
N−1 eβQ−1]−1. (4.17)

By letting x → ±∞ in (4.15) we prove (a). By letting x → −∞ in (4.16) and (4.17) we
prove (b) and (c), respectively. The remaining proofs involving G are obtained in a similar
manner. �

The results in the following two propositions are needed in proving theorem 4.4, and we
refer the reader to [5, 9] for such results and their proofs.

Proposition 4.2. For any triplet of matrices (A,B,C) with sizes p × p, p × n and n × p,

respectively, we have

[In + C(λIp − A)−1B]−1 = In − C(λIp − A + BC)−1B.

Proposition 4.3. For any matrices U and V with sizes n × p and p × n, respectively, we
have the determinant identity

det(In + UV ) = det(Ip + V U).

Theorem 4.4. Assume that the triplet (A,B,C) corresponds to a minimal realization in
(2.12) and that all eigenvalues of A have positive real parts. Let (Q,N) correspond to
the unique solution to the Lyapunov system in (2.1), (F, u) be as in (2.2) and (2.3) and the
scattering coefficients be defined as in (4.2)–(4.5). We then have the following:

(a) u(x, t) → 0 as x → ±∞.

(b) For λ ∈ R, the transmission coefficients Tl and Tr appearing in (4.2) and (4.4),
respectively, and their inverses are given by

T −1
l = 1 − iCQ−1(λI + iA†)−1C†, (4.18)

Tl = 1 + iC(λI − iA)−1Q−1C†, (4.19)

T −1
r = 1 − iB†(λI + iA†)−1N−1B, (4.20)

Tr = 1 + iB†N−1(λI − iA)−1B, (4.21)

and hence they are functions of λ alone and do not depend on t.

(c) The reflection coefficients L(λ, t) and R(λ, t) appearing in (4.2) and (4.4) are both
identically zero.

(d) The transmission coefficients can be written as the ratio of two determinants as

Tl(λ) = det(λI + iA†)

det(λI − iA)
, Tr(λ) = det(λI + iA†)

det(λI − iA)
. (4.22)

12
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Proof. Let us compare (4.2) and (4.3) with (4.9) and (4.10) by ignoring the subscript l in (4.9)
and (4.10). Using proposition 4.1 (a) in the first component of (4.9), we see that LT −1

l = 0.

Then, with the help of (4.6), we also conclude RT −1
r = 0. Using proposition 4.1 (c) in the

second component of (4.9) we obtain (4.18), and similarly by using proposition 4.1 (b) in the
first component in (4.10) we obtain(

T −1
r

)† = 1 + iB†N−1(λI − iA)−1B.

Applying proposition 4.2 on (4.18) and (4.20) and simplifying the resulting expressions with
the help of (2.1), we obtain (4.19) and (4.21). We then get (c) from LT −1

l = 0 and RT −1
r = 0.

Applying proposition 4.3 onto (4.19) and (4.21) and using (2.1) we obtain (4.22). �

5. An example

We conclude our paper by providing an application of theorem 3.2 to a specific case. In
example 7.2 of [3] we evaluated the exact solution to the NLS equation corresponding to the
triplet (A,B,C) with

A =
[

2 0
0 −1

]
, B =

[
1
1

]
, C = [1 −1]. (5.1)

We incorrectly conjectured in that example that we had a nonsoliton solution because one of
the eigenvalues of A was not positive. Using the result of theorem 3.2 of the present paper,
we are now able to confirm that that solution is indeed a two-soliton solution. For this, we
proceed as follows.

Using the triplet (A,B,C) of (5.1), we solve (2.1) in a straightforward manner and get

Q =
[

1/4 −1
−1 −1/2

]
, N =

[
1/4 1
1 −1/2

]
.

We then construct (Ã, B̃, C̃, Q̃, Ñ, F̃ ) via (3.9)–(3.13) and obtain

Ã =
[

2 0
0 1

]
, B̃ =

[
3
2

]
, C̃ = [3 −2 ], (5.2)

Q̃ =
[

9/4 −2
−2 2

]
, Ñ =

[
9/4 2
2 2

]
,

F̃ =
[

e4x−16it + 81
16 e−4x−16it − 4 e−2x−4it 9

2 e−4x−16it − 4 e−2x−4it

− 9
2 e−4x−16it + 4 e−2x−4it e2x−4it − 4 e−4x−16it + 4 e−2x−4it

]
.

As seen from (5.2), the eigenvalue (−1) of A is transformed into the eigenvalue (+1) of Ã.

The potential ũ(x, t), or equivalently u(x, t), is then constructed via (2.3) and we get

u(x, t) = 8 e4it (9 e−4x + 16 e4x) − 32 e16it (4 e−2x + 9 e2x)

−128 cos(12t) + 4 e−6x + 16 e6x + 81 e−2x + 64 e2x
,

agreeing with the potential of example 7.2 of [3]. For this potential, the transmission
coefficients are evaluated via (4.22) as

Tl(λ) = Tr(λ) = (λ + 2i)(λ + i)

(λ − 2i)(λ − i)
,

because the real parts of all eigenvalues of Ã in the associated triplet (Ã, B̃, C̃) are positive.
As for the norming constants associated with the bound states at λ = 2i and λ = i, we need

13
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to transform the triplet (Ã, B̃, C̃) of (5.2) into another triplet (A,B,C), different from (5.1),
so that we will have B = [ 1

1

]
. By using (2.16) we obtain

M =
[

1 0
0 1

]
, S =

[
3 0
0 2

]
, A =

[
2 0
0 1

]
, B =

[
1
1

]
, C = [9 −4].

Thus, the norming constant at λ = 2i is 9 and the norming constant at λ = i is −4. Finally, the
Jost solutions ψ(λ, x, t) and ψ̄(λ, x, t) to the Zakharov–Shabat system (1.2) are obtained via
(4.9) and (4.10), respectively, by using (Ã, B̃, C̃, Q̃, Ñ, F̃ ) for (Ãl, B̃ l, C̃ l, Q̃l, Ñ l, F̃ l) there.
For example, for the Jost solution ψ we get

ψ(λ, x, t) =
[

0
eiλx

]
+

[
4i e−4x+4it g1(λ, x, t)

4i g2(λ, x, t)

]
eiλx

(λ + 2i)(λ + i)[−128 cos(12t) + 4 e−6x + 16 e6x + 81 e−2x + 64 e2x]
,

where we have defined

g1(λ, x, t) := 36(λ + i) e6x+12it + 16(λ − i) e2x+12it − 16(λ + 2i) e8x − 9(λ − 2i),

g2(λ, x, t) := 48(λ + i) e12it + 48(λ + 2i) e−12it − 6λ e−6x − 81(λ + i) e−2x − 32(λ + 2i) e2x.
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