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Abstract
Certain explicit solutions to the Korteweg–de Vries equation in the first
quadrant of the xt-plane are presented. Such solutions involve algebraic
combinations of truly elementary functions, and their initial values correspond
to rational reflection coefficients in the associated Schrödinger equation. In
the reflectionless case such solutions reduce to pure N-soliton solutions. An
illustrative example is provided.

1. Introduction

Consider the celebrated Korteweg–de Vries (KdV) equation

∂u

∂t
+ η

∂u

∂x
− 6u

∂u

∂x
+

∂3u

∂x3
= 0, (1.1)

where x and t denote the spatial and temporal variables, respectively, and η is a nonnegative
constant [1, 2] that can be chosen as 0 or 1. The KdV equation is used to model [3–5] the
propagation of water waves in long, narrow, shallow channels; it also arises in other areas such
as hydromagnetic waves in a cold plasma, ion-acoustic waves and acoustic waves in harmonic
crystals.

The KdV equation is one of the most well-known and most widely analysed nonlinear
partial differential equations. It has many remarkable aspects [4, 5], for example, it possesses
travelling wave solutions known as solitons. The numerical studies on the KdV equation by
Zabusky and Kruskal [3] led to the discovery of multi-soliton solutions, where the individual
solitons interact nonlinearly at close distance and then move away from each other without
changing their shapes. In their celebrated paper [6] Gardner, Greene, Kruskal and Miura
showed that the initial-value problem for the KdV equation can be solved via the ‘inverse
scattering transform’ associated with the Schrödinger equation. This led to the discovery that
certain nonlinear partial differential equations are ‘completely integrable’: they can be solved
via an inverse scattering transform and they have some interesting common properties such as
possessing soliton solutions, Lax pairs and infinitely many conserved quantities.
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A pure N-soliton solution to the KdV equation can be written explicitly as [4, 5, 7, 8]

u(x, t) = −2
∂2 log(det �(x; t))

∂x2
, (1.2)

where �(x; t) is the N × N matrix whose (j, l) entry is given by [9]

�jl = δjl +
cj e−2κj x+8κ3

j t+2ηκj t

κj + κl

, 1 � j, l � N, (1.3)

with δjl denoting the Kronecker delta, κj are N distinct positive constants corresponding to
the bound states of u(x, 0) and cj are N positive constants known as the bound-state norming
constants. Pure soliton solutions are trivial in the sense that the potential u(x, 0) corresponds
[3–5] to a zero reflection coefficient in the Schrödinger equation. There are many important
ways explicit solutions to the KdV equation may help us to understand nonlinearity better. For
example, it is of great importance [1, 10] to determine function spaces containing the initial
data u(x, 0) so that u(x, t) is globally well behaved (i.e., does not blow up during t ∈ [0, +∞))
or only locally well behaved (i.e., remains finite during t ∈ [0, τ ) and blows up at some finite
time τ ), and explicit solutions may help us to understand the global or local well-posedness
of initial-value problems for the KdV equation. Explicit solutions may contribute to the
development or improvement of numerical methods for (1.1) and they may also be useful to
check the accuracy of existing numerical methods.

In this paper, we present a method leading to certain explicit solutions to the KdV equation
in the first quadrant of the xt-plane. Let us emphasize that our aim is not to solve the initial-
boundary-value problem for (1.1) in the quarter plane. Instead, we are interested in producing
some explicit solutions to (1.1) in terms of truly elementary functions. We produce certain
explicit solutions to (1.1) with the form (1.2), where �(x; t) is the matrix appearing in (4.1).
From (4.1) it is seen that �(x; t) can be constructed explicitly by specifying a constant P × P

matrix A, a constant P-row vector C and a constant P-column vector B. We also show that
such solutions can equivalently be written as in (4.9). In fact, it is straightforward (but tedious)
to verify that the right-hand side in (4.9) is a (formal) solution to (1.1) no matter how A,B

and C are chosen. However, as seen from (4.1), an arbitrary choice for A may not guarantee
the convergence of the integral in (4.1); even if �(x; t) obtained from (4.1) exists by choosing
A appropriately, that particular choice for A and arbitrary choices for B and C may not assure
the existence of �(x; t)−1 appearing in (4.9) for x ∈ [0, +∞) and t ∈ [0, τ ) for some τ > 0
or τ = +∞. One of our tasks in this paper is to indicate how we may choose A,B,C in order
to assure the existence of �(x; t) and the positivity of its determinant for all x ∈ [0, +∞) and
t ∈ [0, τ ), which in turn assures the existence and well-posedness of the solution u(x, t) given
in (4.9).

One set of possible choices for A,B,C corresponds to the initial values u(x, 0) for
x ∈ [0, +∞) in such a way that u(x, 0) becomes the potential belonging to a certain class in
the one-dimensional Schrödinger equation. For example, u(x, 0) may be viewed as a fragment
of a real-valued and integrable potential, which has a finite first moment and which corresponds
to a rational reflection coefficient. Other choices may be possible, e.g., we may further require
that the corresponding one-dimensional potential u(x, 0) vanishes identically for x < 0. In
fact, in section 3 we outline how A,B,C can be explicitly constructed from such a potential.
All such choices guarantee the existence of the integral in (4.1) for all x ∈ [0, +∞) and each
fixed t. This is because such choices, as a result of using (3.2), assure that each eigenvalue of
A has a positive real part. Hence, the matrix �(x; t) defined in (4.1) exists for all x ∈ [0, +∞)

and each fixed t, its determinant det �(x; t) is continuous in t for every x ∈ [0, +∞), and
also det �(x; t) → 1 as x → +∞ for each fixed t. Furthermore, for such choices it is already
known [11] that the resulting u(x, 0) is analytic in x and det �(x; 0) > 0 for all x ∈ [0, +∞).
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Consequently, we have det �(x; t) > 0 for all x ∈ [0, +∞) and t ∈ [0, τ ) for some positive
τ. It is remarkable that, for certain choices of A,B,C, we can have τ = +∞, as we see from
the example in section 5.

As seen from the analysis in section 3, in case the relevant reflection coefficient is zero, our
solution u(x, t) reduces to the pure N-soliton solution given in (1.2)–(1.3). This is equivalent
to choosing in (4.1) and (4.9) the matrix A as the N × N diagonal matrix with κj appearing
in the (j, j) entry, B as the column N-vector having the number 1 in each entry and C as the
row N-vector with cj appearing in the j th entry.

This paper is organized as follows. In section 2, we mention some of the other methods
to solve the KdV equation and give a brief comparison. In section 3, we provide a physical
motivation for the derivation of our solutions and show how they may be related to some
scattering data. In section 4, we show how our solutions can be obtained by solving the
Marchenko integral equation. Finally, in section 5 we present an example to illustrate our
method.

2. Some other methods for the KdV equation

As seen from section 3, our method is based on using the inverse scattering transform,
exploiting the degeneracy of the kernel of the Marchenko integral equation as indicated
in (4.7) and solving the Marchenko equation (4.4) algebraically. There are also methods
to solve the KdV equation without using the inverse scattering transform; for example, the
technique [12, 13] based on using the Bäcklund transformation, the technique [8, 14] using the
Darboux–Crum transformation, the Wronskian techniques and their generalizations [7, 15–18]
and the Hirota method [19]. Such methods are also used to produce certain exact solutions
to the KdV equation. The idea behind the methods using the transformations of Bäcklund
and Darboux–Crum is to obtain new solutions to the KdV equation from other previously
known solutions. The basic idea behind the Wronskian methods and the Hirota method is to
represent the solution to the KdV equation in a particular form so that certain functions in
the representation satisfy certain linear differential equations even though the solution itself
satisfies a nonlinear differential equation. The explicit solutions produced by our method have
the same representation (1.2) or (4.2) as in the Wronskian methods; however, our matrix �(x; t)

(or a part of it) does not necessarily satisfy a linear partial differential equation as expected
in the Wronskian methods. In the method based on the Darboux–Crum transformation, the
solution to the KdV equation has the same representation as in (1.2) or (4.2), provided the
initial solution is chosen as zero; there is certainly some connection between that method
and our method because they both yield the N-soliton solution in the easiest case; however,
any possible connection in the more general case is not clear at the moment and requires a
detailed analysis, which we plan to do in the future. For the time being, we only emphasize
that our exact solutions satisfy the half-line KdV equation with the drift term ηux where we
can choose η = 0 or η > 0 at will, they include some global-in-time solutions as well as some
local-in-time solutions, and they are algebraic combinations of truly elementary functions.
One advantage of our method is that it can be generalized to obtain certain explicit solutions to
the matrix KdV equation as well as to the scalar and matrix nonlinear Schrödinger equations.

Some other explicit solutions to the KdV equation known in the literature include algebraic
solitons [20–22], rational solutions [22, 23], various singular solutions [24–26] such as positons
and negatons, solutions [22] to the periodic and other KdV equations, solutions [27] that are
not quite as explicit but expressed in terms of certain projection operators and various other
solutions [28, 29]. It is already known that some rational solutions can be obtained by letting
the bound-state energies go to zero in the N-soliton solutions. We plan to do in the future
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a detailed comparison between our solutions (and their possible generalizations) and exact
solutions obtained by other methods. Some generalizations of our solutions might be obtained
by letting the dimension of the matrix A in (3.3) go to infinity, by choosing the entries of A

and C given in (3.3) in some particular way or by letting some entries go to certain limits such
as zero and by analysing the singularities encountered at t = τ.

3. Some possible choices for A, B, C

In this section, we indicate a possible set of choices for A,B,C appearing in �(x; t) of (4.1)
so that the resulting function u(x, t) given in (1.2) or (4.2), or equivalently that in (4.9), is an
explicit solution to (1.1) for all x ∈ [0, +∞) and t ∈ [0, τ ) with some positive τ.

Starting with the initial value u(x, 0) with x > 0, we extend it to the whole line by
choosing u(x, 0) ≡ 0 for x < 0 and we uniquely determine the corresponding scattering data
{R, {κj }, {cj }}. Here, R(k) is the corresponding right reflection coefficient [30–34], the set
of constants κj with 0 < κ1 < · · · < κN corresponds to the bound states associated with
the full-line potential u(x, 0) and the set of constants cj corresponds to the associated bound-
state norming constants. The construction of {R, {κj }, {cj }} can be accomplished through the
following steps:

(a) Given u(x, 0) for x ∈ [0, +∞), uniquely determine the corresponding Jost solution
fr(k, x) from the right by solving the initial-value problem for the half-line Schrödinger
equation:

d2fr

dx2
+ k2fr = u(x, 0)fr; fr(k, 0) = 1,

dfr(k, 0)

dx
= −ik.

(b) Recover the corresponding right reflection coefficient R and the transmission coefficient
T with the help of the asymptotics [30–34] of fr as x → +∞, namely by using

fr(k, x) = 1

T (k)
e−ikx +

R(k)

T (k)
eikx + o(1), x → +∞.

It is known [30–34] that T is related to R via

T (k) =
N∏

j=1

(
k + iκj

k − iκj

)
exp

(
1

2π i

∫ ∞

−∞
ds

log(1 − |R(s)|2)
s − k − i0+

)
, k ∈ C+, (3.1)

where C+ := C+ ∪ R, C+ is the upper half complex plane and 0+ indicates that the limit
from C+ should be used to evaluate T (k) for real k values.

(c) Construct the set {κj }Nj=1 by using (3.1).
(d) Construct the set of positive constants {cj }Nj=1 by using [30]

cj = −[Res(T , iκj )]
2

[
1

2κj

+
∫ ∞

0
dx fr(iκj , x)2

]
,

where the purely imaginary constant Res(T , iκj ) denotes the residue of T at k = iκj .

Having constructed R which is a rational function of k, we determine all its poles in C+

and the coefficients in the partial fraction expansion of R at such poles. It is known [30–34]
that R(−k∗) = R(k)∗ with the asterisk denoting complex conjugation, and hence such poles
are either located on the positive imaginary axis I+ or they occur in pairs symmetrically located
with respect to I+. Let us use M to denote the number of poles in C+ without counting the
multiplicities, and let us order them in such a way that the first n pairs are located off I+ at
k = ±αj + iβj with αj > 0 and 0 < β1 � · · · � βn; in case several distinct αj values
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correspond to the same βj , we can further arrange αj in increasing order. We choose our
notation so that the remaining M−2n poles occur at k = iωj on I+ with 0 < ω2n+1 < · · · < ωM.

We let mj indicate the multiplicity of the j th pole.
Let �R denote the part of the partial fraction expansion of R containing only the poles in

C+. We have

�R(k) =
n∑

j=1

mj∑
s=1

[
(−i)s(εjs + iγjs)

(k − iβj − αj )s
+

(−i)s(εjs − iγjs)

(k − iβj + αj )s

]
+

M∑
j=2n+1

mj∑
s=1

(−i)srjs

(k − iωj)s
. (3.2)

As a result of R(−k∗) = R(k)∗, the constants εjs, γjs and rjs appearing in (3.2) are all real;
in fact, we have

εjs + iγjs = is

(mj − s)!

dmj −s

dkmj −s
[R(k)(k − αj − iβj )

mj ]

∣∣∣∣
k=αj +iβj

, j = 1, . . . , n,

rjs = is

(mj − s)!

dmj −s

dkmj −s
[R(k)(k − iωj)

mj ]

∣∣∣∣
k=iωj

, j = 2n + 1, . . . , M.

For j = 1, . . . , n, let us define Cj := 2[γjmj
εjmj

· · · γj1 εj1] and

Aj :=




�j −I2 0 . . . 0 0

0 �j −I2 . . . 0 0

0 0 �j . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . �j −I2

0 0 0 . . . 0 �j




, Bj :=




0

...

0

1


 ,

where I2 denotes the 2 × 2 unit matrix, each column vector Bj has 2mj components, each Aj

has size 2mj × 2mj and each 2 × 2 matrix �j is defined as

�j :=
[

βj αj

−αj βj

]
.

Similarly, for j = 2n + 1, . . . ,M, let

Aj :=




ωj −1 0 . . . 0 0

0 ωj −1 . . . 0 0

0 0 ωj . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . ωj −1

0 0 0 . . . 0 ωj




, Bj :=




0

...

0

1


 , Cj := [rjmj

· · · rj1],

where each column vector Bj has mj components and each Aj has size mj × mj . Note that
we can write (3.2) as

�R(k) = −i[C1 · · · CM ]




(k − iA1)
−1 0 . . . 0

0 (k − iA2)
−1 . . . 0

...
...

. . .
...

0 0 . . . (k − iAM)−1







B1

...

BM


 .
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The above expression corresponds to a minimal realization [35] of �R. Associated with the
bound-state data {κj , cj }Nj=1, we let

AM+j := κj , CM+j := cj , BM+j := 1, j = 1, . . . , N.

Let us also define

A :=




A1 0 . . . 0

0 A2 . . . 0

...
...

. . .
...

0 0 . . . AM+N


 , B :=




B1

...

BM+N


 , C := [C1 . . . CM+N ].

(3.3)

Note that A is a P × P block square matrix, B is a column P-vector and C is a row P-vector,
where P is the constant given by

P := N + 2
n∑

j=1

mj +
M∑

j=2n+1

mj .

We also note that all the entries in A,B and C are real constants.

4. Explicit solutions

In this section, we construct our explicit solutions in terms of the three matrices A,B and C.

In section 3, we have described how A,B,C may be related to some scattering data. Let us
define

�(x; t) := IP +
∫ ∞

x

dz e−zABC e−zA e8tA3+2ηAt , (4.1)

where IP is the P × P unit matrix. Our main result is that the quantity u(x, t) given as

u(x, t) = −2
∂

∂x

[
∂
∂x

det �(x; t)

det �(x; t)

]
(4.2)

is a solution to (1.1) as long as det �(x; t) > 0 or, equivalently, as long as the matrix �(x; t)

is invertible. It is known [11] that det �(x; 0) > 0 for x ∈ [0, +∞). As seen from (4.1),
the matrix �(x; t) can be explicitly constructed from A,B and C, and as argued in section 1
we have det �(x; t) > 0 for all x ∈ [0, +∞) and t ∈ [0, τ ) for some τ > 0. There are two
possibilities: if τ = +∞ then the solution u(x, t) given in (4.2) is a global-in-time solution
to (1.1); otherwise, it is a local-in-time solution.

The proof that (4.2) satisfies (1.1) when �(x; t) is invertible can be outlined as follows.
The solution to (1.1) via the inverse scattering transform is obtained as in the diagram

(4.3)

The inverse scattering step in (4.3) for x > 0 can be accomplished by solving the time-evolved
Marchenko equation [4, 5, 9]:

K(x, y; t) + �(x + y; t) +
∫ ∞

x

dz K(x, z; t)�(y + z; t) = 0, y > x > 0, (4.4)
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where the Marchenko kernel �(y; t) is given by

�(y; t) := 1

2π

∫ ∞

−∞
dk R(k) e8ik3t−2iηkt+iky +

N∑
j=1

cj e8κ3
j t+2ηκj t−κj y . (4.5)

If t = 0 in (4.5) then we can explicitly evaluate �(y; 0) in terms of A,B,C given in (3.3), and
this can be accomplished with the help of the generalized Cauchy integral formula by using a
contour integration along the boundary of C+. In general, we cannot evaluate �(y; t) the same
way for all t > 0, although there are cases when we might be able to do this; for example, if
all the eigenvalues of 8A3 + 2ηA have nonpositive real parts, then we might explicitly evaluate
�(y; t) and obtain

�(y; t) = C e8tA3+2ηAt−yAB. (4.6)

It turns out that the evaluation of (4.5) as (4.6) yields (4.9), which is a solution to (1.1) as long
as �(x; t) is invertible. As discussed in section 1, this invertibility holds for all x ∈ [0, +∞)

and t ∈ [0, τ ) for some τ > 0, where the value of τ depends on the value of η and the entries
of the constant matrices A and C given in (3.3). We can write �(x + y; t) as a dot product of
a P-vector not containing x and a P-vector not containing y. This separability is easily seen
from (4.6) by writing

�(x + y; t) = C e8tA3+2ηAt−xA e−yAB, (4.7)

where C e8tA3+2ηAt−xA is a row P-vector and e−yAB is a column P-vector. The degeneracy of
the kernel �(y; t) allows us to solve (4.4) explicitly by algebraic means. In fact, its explicit
solution is given by

K(x, y; t) = −C e8tA3+2ηAt−Ax�(x; t)−1 e−yAB, (4.8)

where �(x; t) is the matrix in (4.1). Finally, the time-evolved potential u(x, t), which is also
a solution to (1.1), is obtained from (4.8) via [4, 5, 9]

u(x, t) = −2
∂K(x, x; t)

∂x
,

leading to

u(x, t) = 2
∂

∂x

[
C e8tA3+2ηAt−Ax�(x; t)−1 e−xAB

]
. (4.9)

From (4.1) and (4.9) we obtain

u(x, t) = −2
∂

∂x
tr

[
�(x; t)−1 ∂

∂x
�(x; t)

]
, (4.10)

where we have used the fact that in evaluating the trace of a product of two matrices we can
change the order in the product. Using theorem 7.3 on p 38 of [36], we can write (4.10) also
as (1.2) or (4.2).

As indicated in section 1, it is somehow surprising that any set of arbitrary choices for
A,B,C in (4.1) and (4.9) yields a formal solution to (1.1). It can independently and directly
be verified that u(x, t) given in (4.9) is a solution to (1.1) in a region in the xt-plane as long
as �(x; t) exists and is invertible in that region. The verification of this can be achieved in a
straightforward way by taking the appropriate derivatives of the right-hand side of (4.9) and
substituting them in the left-hand side of (1.1).
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5. An example

We will now illustrate our method by an explicit example. Consider the scattering data with
no bound states and

�R(k) = −2iε(k − i/2) − √
3γ

(k − i/2)2 − 3/4
, (5.1)

where ε and γ are some positive constants. Using (5.1) in (3.3) we obtain

A =
[

1/2 −√
3/2√

3/2 1/2

]
, B =

[
0

1

]
, C = 2[γ ε]. (5.2)

Alternatively, we can start with A,B,C given in (5.2) without even knowing that they may be
related to some scattering data. The use of (5.2) in (4.1) results in

det �(x; t) = 1 − 3
4 (ε2 + γ 2) e2(η−8)t−2x

+ 1
2 e(η−8)t−x[(

√
3ε − γ ) sin(

√
3ηt −

√
3x) + (ε +

√
3γ ) cos(

√
3ηt −

√
3x)].

(5.3)

Note that det �(x; t) > 0 for all x, t � 0 if (ε2 + γ 2) < 4/9 and 0 � η � 8. It can directly
be verified that u(x, t) obtained as in (4.2) with det �(x; t) given in (5.3) solves (1.1) and
hence it is a global-in-time solution. Not imposing such restrictions on ε, γ and η, we still
obtain solutions to (1.1), which may however be only locally well behaved or may even have
singularities.

For example, by choosing ε = γ = 1/2 and η = 1, we obtain the explicit solution
to (1.1) in the form

u(x, t) = φ(x, t)[
1 − 3

8 e−2(x+7t) + 1√
2

e−(x+7t) cos(
√

3(x − t) + π/12)
]2 ,

where we have defined

φ(x, t) := 6 e−2(x+7t) − 4
√

2 e−(x+7t) sin(
√

3(x − t) − π/12)

− 3√
2

e−3(x+7t) sin(
√

3(x − t) + π/4).

This solution is valid for all x ∈ [0, +∞) and t ∈ [0, +∞), and its Mathematica animation is
available [37].

Adding bound states in our example results in global-in-time solutions containing solitons.
For example, by choosing

A =




1/2 −√
3/2 0√

3/2 1/2 0

0 0 κ1


 , B =




0

1

1


 , C = [2γ 2ε c1], (5.4)

we get another explicit solution to (1.1) valid for all x ∈ [0, +∞) and t ∈ [0, +∞). An explicit
display of u(x, t) corresponding to (5.4) is available in a Mathematica file, but it takes many
pages to display it; its animation with ε = 1/2, γ = 1/2, η = 1, κ1 = 2 and c1 = 3 is
also available in the same Mathematica file [37]. The explicit global-in-time solution and its
Mathematica animation are also available [37] in a Mathematica file for the choices

A =




1/2 −√
3/2 0 0√

3/2 1/2 0 0

0 0 κ1 0

0 0 0 κ2


 , B =




0

1

1

1


 , C = [2γ 2ε c1 c2],

which contains two solitons.
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