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PREFACE

PURPOSE

Over the past several years we have seen a variety of people obtaining a growing
interest in the polarization of light scattered by molecules and small liquid or solid
particles in planetary atmospheres. Some people first enjoyed observing brightness
and colour differences of the clear or clouded sky before starting to wonder whether
polarization effects might also be discerned. Others are attracted by the great po-
tential of polarization measurements – whether from Earth or from spacecraft – for
obtaining information on the composition and physical nature of the atmospheres of
the Earth and other planets orbiting about the Sun or other stars. In addition, it is
realized more and more by atmospheric scientists that significant errors in intensi-
ties (radiances) may occur when polarization is ignored in observations or computa-
tions of scattered light. Finally, many theoreticians of different kinds (astronomers,
oceanologists, meteorologists, physicists, mathematicians) who are familiar with the
already not so simple subject of transfer of unpolarized radiation can hardly resist
the challenge of giving polarization its proper place in radiative transfer problems.

The main purpose of this monograph is to expound in a systematic but concise
way the principal elements of the theory of transfer of polarized light in planetary
atmospheres. Multiple scattering is emphasized, since the existing books on this
topic contain little on polarization. On selecting the material for this book per-
sonal preferences, as always, played a certain role. Yet we have at least tried to
primarily make our choices on the basis of criterions such as simplicity, fruitfulness,
lasting value, practical applicability and potential for extension to more complicated
situations.

READERSHIP

This book is chiefly intended for students and scientists who are interested in light
scattering by substances in planetary atmospheres or other media. The latter in-
volve, for instance, interplanetary and interstellar media, comets, rings around plan-
ets, circumstellar regions, water bodies like oceans and lakes, blood and a variety of
artificial suspensions of particles in air or a liquid investigated in the laboratory. We
expect that many investigators in these fields will find useful material in this book
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for their problems of today and ideas for tomorrow.
The readers are assumed to have at least some basic knowledge of (classical)

physics and mathematics. Some additional mathematical support is given in ap-
pendices. It seems likely that many readers will like to use the book for self-study.
To facilitate this, problems and their solutions have been incorporated. Sometimes
they do not only serve as practicing examples but also contain valuable information
that did not easily fit in the main text.

STRUCTURE

This book deals with basic concepts and practical methods. In Chapter 1 we bring
some order in the bewildering amount of descriptions, definitions and sign con-
ventions used for treating polarized light. Some fundamentals as well as recent
developments regarding single scattering by small particles are briefly discussed in
Chapter 2. The next chapter focuses on scattering in plane-parallel atmospheres.
We hope these three chapters and the appendices to be useful for fairly general
purposes. Chapters 4 and 5 are devoted to practical computational methods and
show how problems involving multiple scattering of polarized light in plane-parallel
atmospheres can be solved. Only fairly general methods which have actually yielded
accurate numbers, and not merely equations, are considered in this part of the book.
First, in Chapter 4 approaches to calculate each order of scattering separately, as well
as their sum, are considered. Chapter 5 is devoted to the adding-doubling method,
which has proved to be of great value for computing the internal and emergent
radiation of plane-parallel atmospheres.

A number of mathematical foundations of the theory of polarized light transfer
in planetary atmospheres are not considered in this book. We intend to do so in a
sequel to this book.

RESTRICTIONS

To keep the book within reasonable limits a number of restrictions had to be made.
We mention the following.

First of all, we restrict ourselves to independent scattering by molecules and small
particles like aerosols and cloud particles in planetary atmospheres and hydrosols in
water bodies like oceans and lakes. In this book independent scattering means that
when a beam of light enters a small volume element filled with particles each particle
scatters light (radiation) independently of the other particles. At each moment the
particles can be considered to be randomly positioned but constantly moving in
space.

Secondly, we only consider elastic scattering, i.e. without changes of the wave-
length, and we do not consider time variations on a macroscopic scale.

In the third place, our treatment of polarized light transfer is based on the
classical radiative transfer theory in which energy is supposed to be transported
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in a medium across surface elements along so called pencils of rays, while small
(differential) volume elements are considered to be the elementary scattering units.
This has turned out to provide sufficiently accurate results for the interpretation of
most photometric and polarimetric observational data in and near the optical part
of the spectrum. The precise relationship between the classical radiative transfer
theory and electromagnetic theory has been obscure for a long time [See e.g Mandel
and Wolf, 1995, Sec. 5.7.4], but it was considerably clarified in recent years, in
particular by M.I. Mishchenko (2002, 2003) and Mishchenko et al. (2004), who
used methods of statistical electromagnetics to give a self-consistent microphysical
derivation of the radiative transfer equation including polarization.

Fourth, we only consider atmospheres that locally can be considered to be plane-
parallel, i.e., built up of horizontal layers of infinite extent so that the optical prop-
erties of the atmosphere can only vary in the vertical direction.

Fifth, a huge amount of literature exists on Rayleigh scattering, i.e., the intensity
and state of polarization of radiation coming from electric dipoles induced by incident
radiation in any type of small entities, such as molecules and particles with sizes small
compared to the wavelength inside and outside the particles [See e.g. Chandrasekhar,
1950; Van de Hulst, 1980]. In this book fairly little attention is given to Rayleigh
scattering; it is only considered as a very special case of a more general theory.

Sixth, in this book we have chosen to refrain from a detailed treatment of appli-
cations of the theory to specific problems of transfer of polarized light in planetary
atmospheres. Instead, we refer to some relevant papers at appropriate places.

GENERAL REMARKS

On choosing concepts, units and symbols for this book an important consideration
has been for us that we wished to bridge and extend existing literature on single
and multiple light scattering in planetary atmospheres and in particular books on
these subjects [See e.g. Chandrasekhar, 1950; Van de Hulst, 1980; Sobolev, 1972].
For reasons of clarity and easy reference we have – following an idea of Van de
Hulst (1980) – arranged certain formulae in a “Display,” which is a collection of
formulae in tabular form. An extensive list of references is provided at the end
of this book. Still, no attempt was made to mention every publication related to
the subject matter of this monograph. Instead, the emphasis was put on books,
review papers and research papers directly related to the text. In particular, we
have been sparing of references to publications on light scattering and radiative
transfer in which polarization was ignored or only very special cases, like Rayleigh
scattering, were considered. English translations of publications in other languages,
whenever known to us, have been mentioned along with the reference to the original
work. Naturally we have tried as much as possible to avoid typos and other errors,
though we cannot completely exclude their existence. Generally, however, we have
given enough information in this book to enable the reader to verify if a particular
statement or equation is correct.
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Chapter 1

Description of Polarized Light

1.1 Intensity and Flux

A medium like a planetary atmosphere or ocean contains electromagnetic radiation.
This situation is commonly referred to by saying that a radiation field exists in the
medium. We will make the basic assumption of the classical theory of radiative
(energy) transfer, namely that energy is transported across surface elements along
so-called pencils of rays. A fundamental quantity in the description of a radiation
field is the intensity at a point in a direction. It may be defined as follows. The
amount of radiant energy, dE, in a frequency interval (ν, ν+dν) which is transported
in a time interval dt through an element of surface area dσ and in directions confined
to an element of solid angle dΩ, having its axis perpendicular to the surface element,
can be written in the form

dE = I dν dσ dΩ dt, (1.1)

where I is the (specific) intensity [See Fig. 1.1]. The intensity allows a proper
treatment of the directional dependence of the energy flow through a surface element.
In practice, it may be determined from a measured amount of radiant energy by
letting dν, dσ, dΩ and dt tend to zero in an arbitrary fashion. In most media the
intensity not only depends on the point but also on the direction considered. Loosely
speaking we may say that the intensity I of a radiation field at a point O in the
direction m of a unit vectorm is the energy flowing at O in the direction m, per unit
of frequency interval, of surface area perpendicular to m, of solid angle and of time.
Evidently, the energy flowing in the direction m through an element of surface area
dσ′ making an angle ε with dσ, per unit of frequency, of solid angle and of time, is
I cos ε dσ′, where I is the intensity at O in the direction m. In SI units the intensity
is expressed in WHz−1m−2sr−1.

Another important quantity in the subject of radiative transfer is the net flux
πΦ. This is the amount of energy flowing at O in all directions per unit of frequency
interval, of surface area and of time. Consequently,

πΦ =
∫

dΩ I cos ε, (1.2)

1



2

m

σ

d

O

d

Ω

Figure 1.1: Surface element dσ and solid angle dΩ used to define the inten-
sity at a point O in the direction m of a unit vector m.

where the integration extends over all solid angles and, generally, I is a function of
direction. By limiting the range of solid angles in the integration, various other fluxes
may be defined, such as the downward flux and the upward flux in a plane-parallel
medium. In SI units fluxes are expressed in WHz−1m−2.

Unfortunately, an enormous variety of names for the concepts of intensity and
flux flourishes in the literature [See, e.g., Chandrasekhar, 1950, Van de Hulst, 1957,
and Hecht, 1998]. In particular, intensity is also called specific intensity or radiance
or, from an observer’s point of view, (surface) brightness, while flux is often called
irradiance or flux density. The important thing to remember in this connection is
that the most fundamental quantity to describe the energy flow in a general radiation
field is the intensity and that, contrary to flux, intensity is something per unit solid
angle.

In a medium that does not absorb, scatter or emit radiation, there is no reason
for the intensity in a direction to depend on the point considered. In other words,
in empty space (vacuum) the intensity in a direction is constant along a line in that
direction.

Often it is convenient to consider a parallel beam, i.e., a beam of light travelling
in only one direction. This is, for instance, a good approximation for the beam of
sunlight entering a planetary atmosphere. The radiation field in a parallel beam can
simply be described by means of the net flux related to a unit area perpendicular
to the direction of propagation. Yet, in some calculations it is useful to employ
the concept of intensity also for this special kind of radiation field. This may be
accomplished by using Dirac delta functions [cf., Chandrasekhar, 1950, Section 13,
and Born and Wolf, 1993, Appendix IV]. An example will be given in Sec. 4.2.

1.2 Polarization Parameters

If polarization is ignored, a radiation field is sufficiently characterized by the intensity
at each point and in every direction. The characterization of the radiation field is
more involved, however, if the state of polarization of the radiation is to be taken
into account. This may be done in various ways, some of which will be considered
in this chapter.
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Sir George Stokes (1852) introduced a set of real parameters which is very useful
to describe a beam of polarized radiation. If these parameters are exactly specified
for a beam of light travelling in a certain direction, one can easily deduce its intensity
and state of polarization, i.e., the degree of polarization, the plane of polarization,
the ellipticity and the handedness. With slight modifications Stokes’ representation
of polarized light has been used by Chandrasekhar (1950) for a systematic treatment
of radiative transfer in a plane-parallel atmosphere in which Rayleigh scattering is
the elementary scattering process. However, Rayleigh scattering is only valid for
particles that are small compared to the wavelength both outside and inside the
particle. In other cases the theory for single scattering is much more complicated, let
alone multiple scattering theory [cf., Van de Hulst, 1980]. Comprehensive treatments
of single scattering by particles have been presented by Van de Hulst (1957), Kerker
(1969), Bohren and Huffman (1983), Mishchenko et al. (2000), and Mishchenko et
al. (2002). Recently two books dealing with several aspects of single and multiple
scattering have been published by Kokhanovsky (2001a, 2003). In all of these books
Stokes parameters were used to represent polarized light.

Kuščer and Ribarič (1959) employed a set of complex polarization parameters
in order to extend Chandrasekhar’s work to more complicated scattering laws than
Rayleigh’s. By also using so-called generalized spherical functions they arrived at an
equation of transfer for polarized light with an analytical expression for the kernel
(the phase matrix) consisting of series of functions having separated arguments [See
Sec. 3.4].

The books of Chandrasekhar (1950) and Van de Hulst (1957, 1980) as well as
the paper of Kuščer and Ribarič (1959) have frequently been used by others to deal
with the transfer of polarized light. However, as shown by Hovenier and Van der
Mee (1983), special care is warranted to establish the relationships between the sets
of polarization parameters used by different authors. In Subsections 1.2.1-1.2.5 we
will define and discuss Stokes parameters and other polarization parameters.

1.2.1 Trigonometric Wave Functions

Consider a strictly monochromatic beam of light. In a plane perpendicular to the
direction of propagation we choose rectangular axes � and r intersecting at some
point O of the beam [See Fig. 1.2]. Defining � and r as the unit vectors along the
positive �- and r-axes, respectively, we assume the direction of propagation to be
the direction of the vector product r× � (i.e., the directions of r, � and propagation
are those of a right-handed Cartesian coordinate system). The components of the
electric field vector at O can be written as

ξl = ξ0
l sin(ωt− εl), ξr = ξ0

r sin(ωt− εr), (1.3)

where ω is the circular frequency, t is time and ξ0
l , ξ0

r , εl and εr are real constants.
Here ξ0

l and ξ0
r are both positive and are called amplitudes. We shall call εl and εr

the initial phases. The arguments of the sine functions are known as phases. We
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define the Stokes parameters by

I =
[
ξ0
l

]2 + [ξ0
r

]2
, (1.4)

Q =
[
ξ0
l

]2 − [ξ0
r

]2
, (1.5)

U = 2ξ0
l ξ

0
r cos(εl − εr), (1.6)

V = 2ξ0
l ξ

0
r sin(εl − εr). (1.7)

A common constant factor, depending on the properties of the medium, has been
omitted from the right-hand sides of Eqs. (1.4)-(1.7), since, in most cases, Stokes
parameters are only used in a relative sense, i.e., compared to other Stokes param-
eters either of the same beam or of another beam, in the same medium. Following
Chandrasekhar (1950) we call I as defined by Eq. (1.4) the intensity. Clearly, Eqs.
(1.4)-(1.7) imply the interrelationship

I2 = Q2 + U2 + V 2. (1.8)

χ

O

r

l

β

Figure 1.2: The vibration ellipse for the electric vector at a point O of a
polarized wave. The direction of propagation is into the paper,
perpendicular to r and �. The polarization is right-handed in
this situation.

The endpoint of the electric vector at a point in the beam describes an ellipse, the
so-called vibration ellipse [See Fig. 1.2], with a straight line and a circle as special
cases. The major axis of the ellipse makes an angle χ with the positive �-axis so
that 0 ≤ χ < π. This angle is obtained by rotating � in the anti-clockwise direction,
as viewed in the direction of propagation, until � is directed along the major axis.
We further use an angle β so that −π/4 ≤ β ≤ π/4. The ellipticity, i.e., the ratio
of the semi-minor and the semi-major axes of the ellipse, is given by | tanβ|. The
sign of β and thus of tanβ is positive for right-handed polarization and negative
for left-handed polarization. For example, β = π/4 means right-handed circular
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polarization, in which case the electric vector at O moves clockwise as viewed by an
observer looking in the direction of propagation [or, in other words, anti-clockwise
when viewing towards the source of the beam of light]. The opposite convention
also occurs in the literature [cf., Clarke, 1974, and Bohren and Huffman, 1983].

In order to deduce β and χ from the Stokes parameters we rotate the (�, r)
coordinate system through an angle χ in the anti-clockwise direction as viewed in
the direction of propagation [cf., Fig. 1.2]. The same vibration as represented by
Eq. (1.3) may then be written in the form

ξma = ξ0 cosβ sinωt, ξmi = ξ0 sinβ cosωt, (1.9)

where the subscripts stand for major and minor axis, respectively, and ξ0 equals the
square root of I. Using the well-known transformation rule for a rotated coordinate
system we find

ξl = ξ0(cosβ sinωt cosχ− sinβ cosωt sinχ), (1.10)

ξr = ξ0(cosβ sinωt sinχ + sinβ cosωt cosχ). (1.11)

These equations can be made identical to Eq. (1.3) by letting

ξ0
l cos εl = ξ0 cosβ cosχ, (1.12)

ξ0
l sin εl = ξ0 sinβ sinχ, (1.13)

ξ0
r cos εr = ξ0 cosβ sinχ, (1.14)

ξ0
r sin εr = −ξ0 sinβ cosχ, (1.15)

as is readily verified by equating the corresponding factors in front of sinωt and
cosωt, respectively. By combining the above equations we find[

ξ0
l

]2 = [ξ0
]2 (cos2 β cos2 χ + sin2 β sin2 χ), (1.16)[

ξ0
r

]2 = [ξ0
]2 (cos2 β sin2 χ + sin2 β cos2 χ), (1.17)

2ξ0
l ξ

0
r cos(εl − εr) =

[
ξ0
]2 cos 2β sin 2χ, (1.18)

2ξ0
l ξ

0
r sin(εl − εr) =

[
ξ0
]2 sin 2β. (1.19)

This is the material needed to write Eqs. (1.4)-(1.7) in the form

I =
[
ξ0
]2

, (1.20)

Q =
[
ξ0
]2 cos 2β cos 2χ, (1.21)

U =
[
ξ0
]2 cos 2β sin 2χ, (1.22)

V =
[
ξ0
]2 sin 2β. (1.23)

Thus, instead of the analytical definition of Stokes parameters given by Eqs. (1.4)-
(1.7) we have now obtained a more geometric one in terms of β, χ and ξ0. It
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should be noted that Eq. (1.9) shows ξ0 to be the distance between an endpoint
of the major axis and an endpoint of the minor axis of the vibration ellipse. The
ellipticity, handedness and plane of polarization (i.e., the plane through the major
axis and the direction of propagation) now follow from [cf., Eqs. (1.21)-(1.23)]

tan 2β = V/(Q2 + U2)1/2, (1.24)
tan 2χ = U/Q. (1.25)

Since |β| ≤ π/4, we have cos 2β ≥ 0, so that according to Eq. (1.21)

sgn (cos 2χ) = sgnQ, (1.26)

where sgn stands for “the sign of.” Therefore, from the different values of χ differing
by π/2 which satisfy Eq. (1.25), we must choose the value which satisfies Eq. (1.26).
If Q = 0 and U �= 0, we have cos 2χ = 0, but then Eq. (1.22) shows that χ = π/4
if U > 0 and χ = 3π/4 if U < 0. If Q = U = 0, χ is indeterminate, but Eq. (1.24)
then yields β = ±π/4, showing that the light is purely circularly polarized. In all
cases a positive value of V corresponds to right-handed polarization and a negative
value of V to left-handed polarization. We can now conclude that the ellipticity,
handedness and plane of polarization can uniquely be determined from the Stokes
parameters.

Apparently, when polarization is to be taken into account, fluxes can also be
generalized (by using integrals of the type occurring in Eq. (1.2)) to sets of four
parameters with the same physical dimension. A beam of light which is exactly
parallel may thus be described by Stokes parameters Φ1, Φ2, Φ3 and Φ4 such that
πΦ1 is the net flux and πΦ2, πΦ3 and πΦ4 are analogous to Q, U and V , respectively.

A strictly monochromatic wave has a well-defined vibration ellipse and the am-
plitudes as well as the initial phases are exactly constant in time. For practical
purposes, however, it is more relevant to consider a beam of quasi-monochromatic
light, i.e., light whose spectral components lie mainly in a circular frequency range
∆ω small compared to the mean value ω. Instead of Eq. (1.3) we now have [See,
e.g., Born and Wolf (1993)]

ξl(t) = ξ0
l (t) sin{ωt− εl(t)}, (1.27)

ξr(t) = ξ0
r (t) sin{ωt− εr(t)}. (1.28)

The relative variations of the amplitudes and the phase difference are small in time
intervals of the order of the mean period 2π/ω [which is of the order of 10−15 seconds
for visible radiation].

For time intervals long compared to the mean period the amplitudes and phase
differences fluctuate independently of each other or with some correlation. If there
are no correlations at all, the light is said to be completely unpolarized. This type of
light is also frequently called natural light, although in nature light is generally not
completely unpolarized. We may visualize quasi-monochromatic light by considering
Eqs. (1.27) and (1.28) to represent an “instantaneous” ellipse whose ellipticity,
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handedness and orientation vary in time. As a result, no preferred vibration ellipse
can be detected under normal circumstances [See, e.g., Hurwitz, 1945] when there
are no correlations at all. In another extreme case the fluctuations are such that
the ratio of the amplitudes ξ0

l (t)/ξ
0
r (t) and the difference of phases εl(t) − εr(t)

remain constant in time. Such a beam of light is called completely polarized, since
the ellipticity, handedness and orientation of each ellipse remain constant in time,
but only the sizes of the vibration ellipses may change in time. Between these two
extremes we have the case of partially polarized light, i.e., light with a certain amount
of preference for ellipticity, handedness and orientation, though the preference is not
100%.

To describe the intensity and state of polarization of a quasi-monochromatic
lightbeam, we now define the Stokes parameters

I = 〈
[
ξ0
l (t)
]2 + [ξ0

r (t)
]2〉, (1.29)

Q = 〈
[
ξ0
l (t)
]2 − [ξ0

r (t)
]2〉, (1.30)

U = 2 〈ξ0
l (t)ξ

0
r (t) cos{εl(t)− εr(t)}〉, (1.31)

V = 2 〈ξ0
l (t)ξ

0
r (t) sin{εl(t)− εr(t)}〉, (1.32)

where the angular brackets stand for time averages over an interval long compared
to the mean period. The time averages may also be taken on the right-hand sides
of Eqs. (1.20)-(1.23), since they equal the right-hand sides of Eqs. (1.4)-(1.7). Thus
we find for a completely polarized quasi-monochromatic beam

I = 〈
[
ξ0(t)

]2〉, (1.33)

Q = 〈
[
ξ0(t)

]2〉 cos 2β cos 2χ, (1.34)

U = 〈
[
ξ0(t)

]2〉 cos 2β sin 2χ, (1.35)

V = 〈
[
ξ0(t)

]2〉 sin 2β, (1.36)

since β and χ are constants. Clearly, the rules to determine the ellipticity, hand-
edness and plane of polarization [cf., Eqs. (1.24)-(1.26)] still hold for the mean
vibration ellipse of completely polarized quasi-monochromatic light. Instead of I
and Q one often uses Il = (I + Q)/2 and Ir = (I −Q)/2, i.e., the intensities in the
directions � and r, respectively.

1.2.2 General Properties of Stokes Parameters for Quasi-mono-
chromatic Light

The Stokes parameters of a beam of quasi-monochromatic light have a number of
general properties. Some of them will be treated in this subsection.

According to Eq. (1.29) we have I ≥ 0, but for physical reasons we are of
course only interested in beams with positive I. For completely polarized light Eqs.
(1.33)-(1.36) imply Eq. (1.8). For completely unpolarized light Eqs. (1.30)-(1.32)
yield

Q = U = V = 0. (1.37)
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An important inequality of the Stokes parameters of an arbitrary quasi-mono-
chromatic beam is the so-called Stokes criterion

I ≥
√

Q2 + U2 + V 2, (1.38)

where the equality sign holds if and only if the light is completely polarized. This
follows immediately [cf., Eqs. (1.29)-(1.32)] from I > 0 and

1
4
{U2 + V 2}

=
[
1
T

∫
dt ξ0

l (t)ξ
0
r (t) cos{εl(t)− εr(t)}

]2
+
[
1
T

∫
dt ξ0

l (t)ξ
0
r (t) sin{εl(t)− εr(t)}

]2
≤ 1

T 2

∫
dt
[
ξ0
l (t)
]2 ∫

dt′
[
ξ0
r (t

′)
]2 cos2{εl(t′)− εr(t′)}

+
1
T 2

∫
dt
[
ξ0
l (t)
]2 ∫

dt′
[
ξ0
r (t

′)
]2 sin2{εl(t′)− εr(t′)}

=
1
4
{I2 −Q2}, (1.39)

where the integrals are taken over a sufficiently long time interval of length T � 2π/ω
and Schwartz’ inequality [See, e.g., Arfken and Weber (2001), Eq. (9.77)] has been
used twice. It also follows from the latter inequality that Eq. (1.39) is an equality if
and only if ξ0

l (t) and ξ0
r (t) cos{εl(t)−εr(t)} as well as ξ0

l (t) and ξ0
r (t) sin{εl(t)−εr(t)}

are proportional with time independent proportionality constants. This clearly im-
plies that the ratio ξ0

l (t)/ξ
0
r (t) as well as cos{εl(t)− εr(t)} and sin{εl(t)− εr(t)} are

constant in time, or in other words that the light is completely polarized. This con-
cludes the proof of the Stokes criterion. An important corollary is that, in absolute
value, the Stokes parameters Q, U and V can never be larger than I and that if one
of these equals ±I, the other two must vanish.

Very often it is convenient to regard the Stokes parameters of a beam as the
elements of a column vector, called the intensity vector:

I =


I
Q
U
V

 , (1.40)

which, to save space in a paper or book, is frequently written as I = {I,Q,U, V }.
Similarly, we have the flux vector πΦ = π{Φ1,Φ2,Φ3,Φ4}.

Two quasi-monochromatic beams are said to be independent if no permanent
phase relations exist between them. It may be shown that when several indepen-
dent quasi-monochromatic beams travelling in the same direction are combined, the
intensity vector of the mixture is the sum of the intensity vectors of the separate
beams. This additivity property of the Stokes parameters is physically obvious for
the intensities and easily understood for the other parameters, since all Stokes pa-
rameters may be determined from simple physical experiments [See, e.g., Bohren



9

and Huffman, 1983, Sec. 2.11.1]. A formal proof may be found in Chandrasekhar
(1950), Ch. I, Sec. 15.2, and in Born and Wolf (1993), Sec. 10.8.2. Additivity
is a very convenient property of Stokes parameters which is often used in radiative
transfer considerations, both in theory and in practice (i.e., in observations and ex-
periments). Thus from hereon we shall only consider independent beams of light,
unless explicitly stated otherwise.

A well-known theorem due to Stokes is that an arbitrary beam of quasi-mono-
chromatic light can be regarded as a mixture of a beam of natural light and a beam
of completely polarized light. We can easily prove this by writing

I = I1 + I2, (1.41)

where
I1 = {I − (Q2 + U2 + V 2)1/2, 0, 0, 0} (1.42)

represents natural light [cf., Eq. (1.39)] and

I2 = {(Q2 + U2 + V 2)1/2, Q, U, V } (1.43)

is the intensity vector of a completely polarized beam [cf., Eq. (1.37)]. It is clear
from Eqs. (1.34)-(1.36) that the ellipticity, handedness and plane of polarization of
the mean vibration ellipse of the second beam follow from Eqs. (1.24)-(1.26) in the
same way as for a strictly monochromatic beam. These are in fact the preferential
ellipticity, handedness and plane of polarization of the original beam characterized
by I. The polarized intensity of the original beam is the first element of I2. The
degree of polarization of the original beam is defined by [cf., Eq. (1.38)]

p = [Q2 + U2 + V 2]1/2/I, (1.44)

so that 0 ≤ p ≤ 1, where p = 0 corresponds to natural light and p = 1 to completely
polarized light . In addition, it is sometimes advantageous to consider the degree of
circular polarization

pc = V/I (1.45)

and the degree of linear polarization

pl = [Q2 + U2]1/2/I. (1.46)

When U = 0 we will also use

ps = −Q

I
=

Ir − Il
Ir + Il

, (1.47)

which is positive when the vibrations in the r-direction dominate those in the �-
direction. Both pl and ps will be called the degree of linear polarization.

The usual analysis of a general quasi-monochromatic beam with given intensity
vector I = {I,Q, U, V } is summarized in Display 1.1. Strictly monochromatic light
is included as a special case, namely as the case in which p = 1 and the amplitudes
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Display 1.1: Analysis of a beam with Stokes parameters I, Q, U and V .
Here sgn stands for “sign of.”

intensity I

degree of polarization p = [Q2 + U2 + V 2]1/2/I

Is the light natural? If p = 0 yes, otherwise continue.

preferential ellipticity tan 2β = V/(Q2 + U2)1/2

preferential handedness


V > 0 : right-handed
V = 0 : only linear polarization
V < 0 : left-handed

preferential direction
of the plane of polarization



If Q = 0 and
U > 0 : χ = π/4,
U = 0 : only circular polarization,
U < 0 : χ = 3π/4.
If Q �= 0 use
tan 2χ = U/Q and
sgn (cos 2χ) = sgnQ.

degrees of linear polarization
{

pl = [Q2 + U2]1/2/I
ps = −Q/I

degree of circular polarization pc = V/I

(ξ0
l , ξ

0
r ) and the initial phases (εl, εr) are constant. In that case the ellipticity, hand-

edness and direction of the plane of polarization are not only preferential, but are,
in fact, constant in time.

Apart from the intensity, the Stokes parameters are more difficult to visualize
than the other quantities given in Display 1.1. The latter, however, are rather
diverse and do not have the additivity property, which makes them less suited for
a systematic treatment of radiative transfer. For that reason, in later chapters we
will only seldom consider the geometric picture associated with a particular intensity
vector, but throughout this book the reader should keep in mind that this can always
be done by employing Display 1.1.

Stokes parameters are always defined with respect to a plane of reference, namely
the plane through � and the direction of propagation. Although the choice of the
reference plane is arbitrary, in principle, observational or theoretical circumstances
may make a certain plane preferable to other planes. Therefore, we now consider a
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rotation of the coordinate axes � and r through an angle α ≥ 0 in the anti-clockwise
direction when looking in the direction of propagation. As a result, we must make
the transformation χ → χ′ where χ′ = χ − α if α ≤ χ [cf., Fig. 1.2]. Equations
(1.20)-(1.23) show that for a strictly monochromatic beam this has no effect on the
Stokes parameters I and V , but that

Q′ = Q cos 2α + U sin 2α, (1.48)
U ′ = −Q sin 2α + U cos 2α, (1.49)

where primes are used to denote the Stokes parameters in the new system. The same
results hold for α > χ, since then χ′ = χ− α + π or χ′ = χ− α + 2π must be used
to have 0 ≤ χ′ < π, but the right-hand sides of Eqs. (1.21) and (1.22) are periodic
in χ with period π. For quasi-monochromatic light we must take time averages
on the right-hand sides of Eqs. (1.4)-(1.7) or Eqs. (1.20)-(1.23) after first making
the transformation χ → χ′. Since α is a constant, however, we can take the factors
cos 2α and sin 2α outside the angular brackets, so that the same transformation rules
are obtained as before. Consequently, the result of the rotation of the coordinate
system for (quasi-)monochromatic light can be written in matrix form as

I ′ = L(α)I, (1.50)

where the rotation matrix

L(α) =


1 0 0 0
0 cos 2α sin 2α 0
0 − sin 2α cos 2α 0
0 0 0 1

 . (1.51)

It should be noted that ps depends on the reference plane chosen, whereas p, pl and
pc do not.

So far we have essentially followed the discussion of the Stokes parameters by
Chandrasekhar (1950), which is based on the original work of Stokes (1852). Some
differences between our treatment and that of Chandrasekhar (1950) are the follow-
ing:

(i) We have restricted the ranges of β [ |β| ≤ π/4] and χ [ 0 ≤ χ < π] from the
beginning in such a way that | tanβ| is always the ratio of the minor and the
major axis of the vibration ellipse and only one pair (β, χ) corresponds to a
specific intensity vector. Another advantage of our treatment is that we can
always use the simple Eq. (1.24) to find the ellipticity and handedness instead
of sin 2β = V/(Q2 + U2 + V 2)1/2.

(ii) We have explicitly stated in what sense χ and α are measured with respect
to the direction of propagation of the beam. This issue is important for a
complete description of polarized light but has often been ignored or poorly
treated in the literature. Our choices agree with those of Chandrasekhar (1950)
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if we assume that the direction of propagation of the beam with respect to the
�- and r-axes in his Fig. 5 [Ch. 1, Sec. 15.1] is the same as in his Fig. 7 [Ch. 1,
Sec. 16]. The agreement with our choices may then be verified by using Eqs.
(141) and (185) in Sections 15.1 and 15.2 of Chandrasekhar (1950) in order to
fix the signs of χ and φ (our α). Henceforth, we shall, indeed, make the above
assumption, so that for all practical purposes there is no difference between
Chandrasekhar (1950) and this book with regard to the definition, usage and
physical meaning of the Stokes parameters I, Q, U and V .

Rotation of coordinate axes often occurs when dealing with polarized light. It
is therefore important to investigate whether it can be done in a simpler way, for
instance, by making linear combinations of the Stokes parameters. An interesting
clue is given by Eqs. (1.50) and (1.51). They show that Q and U transform as if a
rotation through an angle 2α takes place in a Cartesian (Q,U)-coordinate system.
Mathematically, such a rotation may also be described by introducing the two com-
plex quantities Q ± iU where i is the imaginary unit (−1)1/2. Indeed, using Eqs.
(1.50) and (1.51) to express Q′ ± iU ′ in Q± iU , we readily verify that the rotation
amounts to a multiplication of Q ± iU by exp(∓2iα). Hence, a convenient set of
polarization parameters is obtained by introducing the vector

Ic =
1
2


Q + iU
I + V
I − V
Q− iU

 . (1.52)

The factor 1/2 in this expression will be explained later. The effect of a rotation
through any angle α ≥ 0 in the anti-clockwise direction when looking in the direction
of propagation of a (quasi-)monochromatic beam can now be written in the form

I ′c = Lc(α)Ic, (1.53)

where the new rotation matrix is given by

Lc(α) =


e−2iα 0 0 0
0 1 0 0
0 0 1 0
0 0 0 e2iα

 . (1.54)

Hence, the rotation matrix has become purely diagonal, but instead of real Stokes
parameters we now use four other parameters, two of which are, in general, complex.
It is clear that several modifications of Eq. (1.52) are possible that also lead to a
diagonal rotation matrix, such as the set {Q− iU, V, I,Q+ iU}. The only essential
point in these considerations is that Q + iU and Q − iU have simpler rotation
properties than Q and U themselves.



13

1.2.3 Exponential Wave Functions

Following Van de Hulst (1957), we consider a plane monochromatic wave travelling
in the positive z-direction. Choosing axes � and r, as before, with r × � in the
direction of propagation we introduce complex oscillatory functions to write for the
components of the electric field

El = al exp(−iε1) exp(−ikz + iωt)
Er = ar exp(−iε2) exp(−ikz + iωt)

}
(1.55)

where al, ar, ε1 and ε2 are real quantities, al and ar are nonnegative, k = 2π/λ and
λ denotes the wavelength. The physical quantities are assumed to be the real parts
(denote by Re) of these expressions. To clarify the physical meaning of Eq. (1.55) we
consider the electric field vectors of points on a line parallel to the positive z-direction
[See Fig. 1.3]. According to Eq. (1.55) the endpoints of these vectors at a particular
moment lie on a helix with elliptical cross-section. If time increases the electric field
is apparently the same at position-time combinations for which (ωt − kz) has the
same value, so that the helix moves in the positive z-direction (without rotation)
with speed ω/k. Then at a particular point (say O3 in Fig. 1.3) the electric vector
rotates, its endpoint tracing the vibration ellipse considered before. Note that the
handedness of a helix does not depend on the direction from which it is observed and
that a left-handed helix corresponds to right-handed polarization for an arbitrary
point of the beam and vice versa, as is readily verified, e.g., by comparing the
situations at O2 and O3.

The Stokes parameters are now defined as the real quantities

Φ1 = ElEl
∗ + ErEr

∗, (1.56)
Φ2 = ElEl

∗ − ErEr
∗, (1.57)

Φ3 = ElEr
∗ + ErEl

∗, (1.58)
Φ4 = i(ElEr∗ −ErEl

∗), (1.59)

where throughout this book an asterisk denotes the complex conjugate value. A
factor common to all four parameters and depending on the properties of the medium
has again been omitted. In studies of single light scattering by small particles one is
primarily interested in plane and spherical waves, while fluxes rather than intensities
are considered. Consequently, we let πΦ1 represent the net flux. Similarly, πΦ2, πΦ3

and πΦ4 correspond to Q, U and V . Substituting Eq. (1.55) into Eqs. (1.56)-(1.59)
we get

Φ1 = al
2 + ar

2, (1.60)

Φ2 = al
2 − ar

2, (1.61)
Φ3 = 2al ar cos(ε1 − ε2), (1.62)
Φ4 = 2al ar sin(ε1 − ε2). (1.63)
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Figure 1.3: A plane monochromatic wave travelling in the positive z-
direction from O1 via O2 to O3 is characterized at any moment
by a helix located on the surface of an elliptical cylinder. The
arrows starting at O1, O2 and O3 denote the electric field vectors
at a particular moment. The helix is left-handed here, causing
right-handed polarization at e.g. O3 when time increases, since
the helix then moves in the positive z-direction without rotation.

These Stokes parameters are essentially the same as those defined and considered
in the preceding subsection for a particular point in a strictly monochromatic beam
[cf., Eqs. (1.4)-(1.7)]. Formally, this is established by writing

ξl = ξ0
l sin(ωt− εl) = ξ0

l cos(ωt− εl − π/2)

= Re [ξ0
l exp(i(ωt− εl)) exp(−iπ/2)] (1.64)

and a similar expression for ξr.
A word of caution about these complex wave functions is in order, especially

when books or papers of different authors are compared. Suppose we choose El
∗

and Er
∗ to represent the wave, thus containing the time factors e−iωt and leading to
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a complex refractive index with nonnegative imaginary part. Then the real parts are
the same and so are Φ1, Φ2 and Φ3 [cf., Eqs. (1.56)-(1.58)], but Φ4 has the opposite
sign [cf., Eq. (1.59)]. However, Van de Hulst (1957) has used the time factors e+iωt

throughout his book, corresponding to the classical form of the complex refractive
index whose imaginary part is nonpositive, and we adopt the same convention in
this book.

When a wave is not strictly monochromatic, we must again take time averages.
For a quasi-monochromatic plane wave we define the Stokes parameters by

Φ1 = 〈ElEl∗ + ErEr
∗〉, (1.65)

Φ2 = 〈ElEl∗ − ErEr
∗〉, (1.66)

Φ3 = 〈ElEr∗ + ErEl
∗〉, (1.67)

Φ4 = i 〈ElEr∗ − ErEl
∗〉. (1.68)

It is clear that all formulae of the preceding sections for I, Q, U and V remain valid
when these symbols are replaced by πΦ1, πΦ2, πΦ3 and πΦ4, respectively. This is
particularly true for Eq. (1.38) and Display 1.1.

We now wish to discuss the effect of a rotation of the coordinate axes, starting
with El and Er for a strictly monochromatic plane wave. Writing them as elements
of a column vector and rotating the �- and r-axes through an angle α ≥ 0 in the
anti-clockwise direction when looking in the direction of propagation, we find the
new field components (

E′
l

E′
r

)
=
(

cosα sinα
− sinα cosα

) (
El
Er

)
. (1.69)

To simplify this, we note the close analogy with Eqs. (1.48) and (1.49). Thus, if we
define the new components(

E+

E−

)
=

1√
2

(
1 −i
1 i

) (
El
Er

)
, (1.70)

the effect of the rotation is described by(
E′

+

E′
−

)
=
(

eiα 0
0 e−iα

) (
E+

E−

)
. (1.71)

The factor 2−1/2 in Eq. (1.70) will be explained later.
Standard methods of linear algebra may be used to obtain the last two equations

in a more formal way. The 2 × 2-matrix in Eq. (1.69) is then diagonalized by
determining its eigenvalues (eiα and e−iα) and the corresponding eigenvectors [{1, i}
and {1,−i}] which may be normalized to unity by means of a factor 2−1/2. Equation
(1.70) then represents the necessary transformation to replace Eq. (1.69) by the
simpler Eq. (1.71). This entire process may be interpreted as a change of the
basis {1, 0} and {0, 1} to the basis 2−1/2{1, i} and 2−1/2{1,−i}, or, in other words,



16

from two linearly polarized states (with perpendicular planes of polarization) to two
oppositely circularly polarized states. This last statement may be understood by
substituting al = ar and ε1 − ε2 = ±π/2 in Eq. (1.55) and taking the ratio

El
Er

= exp(∓iπ/2) = ∓i. (1.72)

The effect of a rotation of the coordinate axes on the Stokes parameters may
now be deduced as follows. We find from Eq. (1.70) and Eqs. (1.56)-(1.59)

E+E+
∗ =

1
2
(Φ1 +Φ4), (1.73)

E−E−
∗ =

1
2
(Φ1 − Φ4), (1.74)

E−E+
∗ =

1
2
(Φ2 + iΦ3), (1.75)

E+E−
∗ =

1
2
(Φ2 − iΦ3). (1.76)

These quantities have simple properties upon rotating the coordinate system through
an angle α ≥ 0 in the anti-clockwise direction when looking in the direction of
propagation, for E+ and E−

∗ need to be multiplied by eiα and E− and E+
∗ by e−iα

[cf., Eq. (1.71)]. Working this out renders Eqs. (1.52)-(1.54) for the flux vector.
When a wave is not strictly monochromatic, we must take time averages as in Eqs.
(1.65)-(1.68). The averaging process does not change the rotation properties, as
we have seen before. We have thus given a theoretical foundation for Eqs. (1.52)-
(1.54) on the basis of circularly polarized light. It is now clear that the factor
1/2 in Eq. (1.52) has been chosen in view of the normalization constant 2−1/2 for
the vectors {1, i} and {1,−i}. Obviously, Eq. (1.52) may be called a “circular
polarization” (CP) representation of polarized light. It should be kept in mind,
however, that there are other representations which are equally entitled to such a
name, like 1

2{Q− iU, I − V, I + V,Q + iU}.

1.2.4 CP-representation of Quasi-monochromatic Polarized Light

The CP-representation of quasi-monochromatic polarized light is frequently met in
the literature as an alternative to the Stokes parameters. We will now briefly consider
this alternative to the intensity vector I and its components. The flux vector πΦ
can be treated in a completely analogous manner.

The transition from the intensity vector I to Ic can be written in the form [cf.,
Eqs. (1.40) and (1.52)]

Ic = AcI, (1.77)

where

Ac =
1
2


0 1 i 0
1 0 0 1
1 0 0 −1
0 1 −i 0

 . (1.78)
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Conversely, we have
I = A−1

c Ic, (1.79)

where

A−1
c =


0 1 1 0
1 0 0 1
−i 0 0 i
0 1 −1 0

 (1.80)

and the upper index −1 is used to denote the matrix inverse.
For later applications we note that whenever the Stokes parameters of a beam

are changed by some process according to

I† = GI, (1.81)

where G is a 4 × 4-matrix characterizing the process, this can be expressed in the
new parameters by

I†c = GcIc, (1.82)

where
Gc = AcGA−1

c . (1.83)

This follows from Eq. (1.81) by applying Eq. (1.79) twice and premultiplying both
sides by Ac. More generally, it is now clear how a matrix G changes if Stokes
parameters are transformed to some other polarization parameters by means of a
transformation matrix Ac.

In radiative transfer studies Kuščer and Ribarič (1959) have been the first to use
a set of complex polarization parameters in combination with generalized spherical
functions [See Sec. 2.8]. These parameters are defined as 1

2{QKR − iUKR, IKR −
VKR, IKR + VKR, QKR + iUKR} where IKR, QKR, UKR and VKR denote their Stokes
parameters. For the definition of their Stokes parameters Kuščer and Ribarič (1959)
referred to several papers and books, such as Chandrasekhar (1950) and Van de Hulst
(1957). However, if we assume that their Stokes parameters are exactly the same
as those used by Chandrasekhar (1950) and Van de Hulst (1957), several equations
in the paper of Kuščer and Ribarič (1959) cannot be correct [cf., Hovenier and Van
der Mee (1983)]. Unfortunately, they have not explicitly stated how the direction
of propagation and the directions of their electric field components E1 and E2 are
oriented with respect to each other. Yet, it follows from the rotation properties
of the electric field given by Kuščer and Ribarič (1959) and a comparison of their
reference system to ours that [De Rooij, 1985]

E1 = ±El
∗ and E2 = ∓Er

∗, (1.84)

where there is insufficient information as to the choice of the signs. Substituting Eq.
(1.84) in their definitions of the polarization parameters we find for both choices of
the signs in Eq. (1.84)

IKR = I, QKR = Q, UKR = −U, VKR = −V, (1.85)
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which removes the errors in the equations mentioned above [Hovenier and Van der
Mee (1983)]. Consequently, the so-called Kuščer and Ribarič polarization parame-
ters are the same ones as those given by Eq. (1.52) and this is what we shall call
the CP-representation in this book. Unfortunately, it has been assumed in many
papers based on the pioneering work of Kuščer and Ribarič (1959) that their Stokes
parameters are identical to those of Chandrasekhar (1950) and Van de Hulst (1957).
Although this assumption is not true, as we have demonstrated, this does not neces-
sarily affect all results of the papers based on that assumption, because in many cases
only transfer problems for which U = V = 0 or without U and V were considered.
In fact, in most papers the mathematics is correct or at least without contradictions,
but the physical interpretation in terms of preferential ellipticity etc. [See Display
1.1] must be made with care. This is especially true for the interpretation of the
results in terms of handedness and the tilt of the semi-major axis with respect to
the plane of reference.

1.2.5 Alternative Representations of Quasi-monochromatic Polar-
ized Light

As discussed in the preceding sections, the Stokes parameters of a beam of quasi-
monochromatic radiation are linear combinations of time averaged products of the
type 〈EαE∗

β〉, where Eα and Eβ are linear components of the electric field vector.
Sometimes, however, it is advantageous to use a representation of polarized light
which is based on the time averaged products themselves rather than on linear
combinations of these products. The two most widely used possibilities to do so are
as follows. Instead of the intensity vector I we can use

(i) the column vector [See, e.g., O’Neill, 1963, Sec. 9.4]

Is =


〈ElE∗

l 〉
〈ElE∗

r 〉
〈ErE∗

l 〉
〈ErE∗

r 〉

 =
1
2


I + Q
U − iV
U + iV
I −Q

 (1.86)

or

(ii) the 2× 2 matrix

J c =
(
〈ElE∗

l 〉 〈ElE∗
r 〉

〈ErE∗
l 〉 〈ErE∗

r 〉

)
, (1.87)

which is usually called the coherency matrix [See Born and Wolf, 1993, Sub-
section 10.8.1, and Mandel and Wolf, 1995, Ch. 6]. A completely analogous
treatment may be given for the flux vector.

For later use we will now derive an important property of the coherency matrix
[O’Neill, 1963, Sec. 9.5, and Mandel and Wolf, 1995, Sec. 6.2]. It is well-known that
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an arbitrary 2 × 2 matrix can be written as a linear combination of the four Pauli
spin matrices

σ0 =
(
1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, (1.88)

and

σ3 =
(
0 i
−i 0

)
. (1.89)

Consequently, we can write

J c =
1
2

3∑
i=0

siσi. (1.90)

The expansion coefficients, si, may be obtained by multiplying both sides of Eq.
(1.90) by σj , taking the trace (i.e., the sum of the diagonal elements) on both sides
and using the elementary relations

Tr (σiσj) = 2 δij , i, j = 0, 1, 2, 3, (1.91)

where Tr stands for the trace and δij vanishes except when i = j, in which case it
equals one. Thus we find

sj = Tr (J c σj), (1.92)

which in combination with Eq. (1.87) gives

s0 = I, (1.93)
s1 = Q, (1.94)
s2 = U, (1.95)
s3 = −V. (1.96)

Consequently, we can always write

J c =
1
2

4∑
i=1

IiΞi, (1.97)

where Ii is I, Q, U and V for i = 1, 2, 3, 4, respectively, Ξi = σi−1 for i = 1, 2, 3 and
Ξ4 = −σ3. Similarly, we find for the vector Φ that the corresponding coherency
matrix can be written in the form

Jfc =
1
2

4∑
i=1

ΦiΞi. (1.98)

It should be noted that the coherency matrix is closely related to the density
matrix considered in quantum mechanics [See, e.g., Klauder and Sudarshan, 1968].
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Problems

P1.1 The surface of a black body radiates isotropically, i.e., the intensity at the
surface is independent of direction. Show that the emergent flux equals π
times this intensity.

P1.2 Compute the phase difference (εl−εr) of a strictly monochromatic beam with
β = π/8 and χ = π/4.

P1.3 Show that a beam of natural light may be regarded as the sum of two com-
pletely polarized beams with opposite states of polarization, i.e., having vi-
bration ellipses of the same shape, their major axes perpendicular to each
other, and opposite handedness. Should the intensities of the component
beams be equal? Make sketches for the case when one of the two component
beams has β = 0 and χ = 0. Also when tanβ = 1/2 and tanχ = 1, and for
β = π/4.

P1.4 Show that a beam of quasi-monochromatic light with Stokes parameters I,
Q, U and V may be decomposed into two completely polarized beams with
opposite states of polarization. What are the intensities of those beams?

P1.5 For a rapid interpretation of numerical values of Stokes parameters, the fol-
lowing theorems are rather handy. With respect to the plane of reference we
have the following:

a. If Q > 0, the plane of polarization is more vertical than parallel.

b. If Q < 0, the plane of polarization is more parallel than vertical.

c. If U > 0, the plane of polarization is more parallel to χ = 45◦ than to
χ = 135◦.

d. If U < 0, the plane of polarization is more parallel to χ = 135◦ than to
χ = 45◦.

Derive these theorems.

P1.6 Use Display 1.1 to analyse beams with the following intensity vectors:

I1 =


1
0
0
0

 , I2 =


1
1
0
0

 , I3 =


1
0
−1
0

 , I4 =


1
0
0
1

 , I5 =


1
1
2
1
2
1
2

 .

P1.7 To get an idea of the advantages of using Lc(α) instead of L(α), prove

a. L(α1)L(α2) = L(α1 + α2) and L(α)−1 = L(−α);

b. the same properties for Lc(α).

P1.8 Use Eq. (1.83) to obtain Eq. (1.54) from Eq. (1.51).
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P1.9 The set of polarization parameters {Il, Ir, U, V } with Il = (I + Q)/2 and
Ir = (I −Q)/2 is often met in the literature. Show that the rotation matrix
in this system is given by

cos2 α sin2 α 1
2 sin 2α 0

sin2 α cos2 α −1
2 sin 2α 0

− sin 2α sin 2α cos 2α 0
0 0 0 1

 .

P1.10 Prove that the degree of polarization of a lightbeam

p =
[
1− 4

det(J c)
{Tr (J c)}2

]1/2
,

where det(J c) stands for the determinant of the coherency matrix Jc.

Answers and Hints

P1.1 Use dΩ = 2π sin ε dε and d(cos ε) = − sin ε dε.

P1.2 Prove tan(εl − εr) = tan 2β/ sin 2χ. Hence εl − εr = (π/4)± π.

P1.3 Write {I, 0, 0, 0} = {qI,Q, U, V }+{(1− q)I,−Q,−U,−V }. Since p = 1, for
both component beams q = 1− q and hence q = 1/2.

P1.4 Decompose the beam in a completely polarized beam, I1, and a beam of
natural light, I2, and then decompose the latter in two completely polarized
beams [See Problem P1.3] with opposite states of polarization, one of which
is the same as the state of polarization of I1. The intensities of the final
two component beams are 1

2

[
I ± (Q2 + U2 + V 2)1/2

]
.

P1.5 Use, e.g., sgn (cos 2χ) = sgnQ and sgn (sin 2χ) = sgnU .

P1.6 I1 represents natural light. Further, we have

p β χ pl ps pc

I2 1 0◦ 0◦ 1 1 0

I3 1 0◦ 135◦ 1 – 0

I4 1 45◦ – 0 – 1

I5
1
2

√
3 17.6◦ 22.5◦ 1

2

√
2 – 1

2

There is no left-handed polarization.

P1.7 a. Use matrix multiplication to compute the product of L(α1) and L(α2) and
employ the result to show that L(α)L(−α) = L(0), which is the unit matrix.
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b. Do the same thing for Lc(α1) and Lc(α2).

P1.9 See the second sentence below Eq. (1.83).

P1.10 Use Eq. (1.87) to compute Tr (Jc) and det(Jc) in terms of Stokes parame-
ters.



Chapter 2

Single Scattering

2.1 Introduction

As discussed in the Preface, the contents of this book is restricted to independent
light scattering without change of wavelength. Unless stated otherwise, we shall
assume from hereon that the scattering agents are particles (including molecules) or
collections of particles. Our restrictions imply that at any moment the particles are
far from each other compared to wavelength and each particle has sufficient room
to establish its own distant scattered field.

The first basic problem to address is how a particle scatters light coming from
a distant point source when the detector is located at another distant point, so
that the incoming wave may be considered to be parallel and the outgoing wave
to be spherical. Replacing the particle by a collection of particles yields the next
problem. The scattered waves of the individual particles must then somehow be
combined. Here the assumption that the particles are independent scatterers will
be used in a crucial way. Both problems are briefly considered in this chapter, but
multiple scattering effects are not taken into account. A more extensive treatment
of single scattering is given e.g. in the books of Shifrin (1951), Van de Hulst (1957),
Deirmendjian (1969), Kerker (1969), Bayvel and Jones (1981), Bohren and Huffman
(1983), Barber and Hill (1990), Mishchenko et al. (2000), and Mishchenko et al.
(2002), and also in the review paper of Hansen and Travis (1974). A brief overview
of some important aspects of single scattering was given by Bohren (1995). A useful
collection of reprints on single scattering was edited by Kerker (1988).

2.2 Scattering by One Particle

Suppose the origin of a right-handed Cartesian coordinate system is located inside
a particle of arbitrary finite size, shape and composition in a particular orientation,
and suppose this particle is illuminated by a plane-parallel monochromatic wave of
infinite horizontal extent travelling in the positive z-direction [See Fig. 2.1]. The
scattered wave at any point P in the distant field is, in first approximation [See e.g.

23
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Jackson (1975), Sections 16.3 and 16.8], an outgoing spherical wave whose amplitude
is inversely proportional to the distance R between P and the particle. The direction
of scattering, i.e., the direction from the particle to P , is given by the angle Θ which
it makes with the direction of the incident light, and an azimuth angle ψ in the range
[0, 2π]. We have 0 ≤ Θ ≤ π and call this angle the scattering angle. The azimuth
angle ψ is measured clockwise when looking in the direction of the positive z-axis.
On the x-axis one has ψ = 0.

incident wave

x

y

z

Θ
R

ψ H
F

P

G

E

Figure 2.1: Coordinates (x, y, z) and (R,Θ, ψ) used for scattering by an
arbitrary particle in an arbitrary orientation which is illuminated
by a parallel wave propagating in the positive z-direction. The
origins of the two coordinate systems coincide with an arbitrary
point of the particle. The x-, y- and z-axes intersect the sphere
in the points E, F and G, respectively. The angles corresponding
to ArcGP and ArcEH are Θ and ψ, respectively.

The plane through the direction of the incident beam and that of the scattered
beam is called the scattering plane. For both beams we choose the unit vectors r
and � along axes, perpendicular and parallel to this plane, respectively, so that r×�
points in the direction of propagation [cf. Section 1.2.1]. To remember the difference
between the r- and the �-axes, it is useful to note that the letters r and � are the
last letters of the words “perpendicular” and “parallel,” respectively.

The components of the electric field of the incident wave may be written in vector
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form as [cf. Eq. (1.55)](
E0
l

E0
r

)
= e−ikz+iωt

(
a0
l exp(−iε0

1)
a0
r exp(−iε0

2)

)
, (2.1)

and those of the scattered wave as(
El
Er

)
=

e−ikR+ikz

ikR
S(Θ, ψ)

(
E0
l

E0
r

)
. (2.2)

This relation defines the 2 × 2 amplitude matrix S(Θ, ψ), which is independent of
R and z and, in general, complex. It depends on the type and orientation of the
particle and on wavelength. Following the subscript conventions of Van de Hulst
(1957), we write

S(Θ, ψ) =
(

S2(Θ, ψ) S3(Θ, ψ)
S4(Θ, ψ) S1(Θ, ψ)

)
. (2.3)

Using Eqs. (1.56)-(1.59) to compute the Stokes parameters of both the incident
and scattered waves, we find from Eqs. (2.2) and (2.3) an equation of the form

Φ =
1

k2R2
F pΦ0 (2.4)

for scattering by one particle in a fixed orientation. Here πΦ is the flux vector at P of
the scattered beam and πΦ0 is the flux vector of the incident beam. The dependence
of the real 4×4 matrix F p on Θ and ψ has not been written explicitly. We shall call
F p the scattering matrix of the particle in the particular orientation. All elements of
F p are dimensionless. Note that the scattering plane acts as the plane of reference
for both flux vectors. Using the flux vector rather than the intensity vector for the
scattered light at P is quite common, but one can also use the intensity vector

I = R2πΦ, (2.5)

since the particle acts as a point source, so that the light passing through a unit of
surface area at P is contained in the (small) solid angle [cf. Eq. (1.2)]

∆Ω = 1/R2. (2.6)

The scattering matrix F p occurring in Eq. (2.4) depends on the type and orientation
of the particle, the wavelength and the angles Θ and ψ. It contains, in the most
general case, 16 nonvanishing elements F pij , each of which can be expressed in the
elements of S(Θ, ψ).

If we multiply both sides of Eq. (2.2) by ikR exp(ikR − ikz) and compare the
result with Eq. (A.1) of Appendix A, it is clear that for any Θ and ψ the amplitude
matrix of one particle in a fixed orientation is a Jones matrix with the scattering
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matrix F p as the corresponding pure Mueller (PM) matrix . Using Eqs. (1.56)-
(1.59) and Eqs. (2.2)-(2.4) in conjunction with Eqs. (A.11)-(A.26) we find

F p11 =
1
2
(
|S2|2 + |S3|2 + |S4|2 + |S1|2

)
, (2.7)

F p12 =
1
2
(
|S2|2 − |S3|2 + |S4|2 − |S1|2

)
, (2.8)

F p13 = Re (S2S
∗
3 + S1S

∗
4) , (2.9)

F p14 = Im (S2S
∗
3 − S1S

∗
4) , (2.10)

F p21 =
1
2
(
|S2|2 + |S3|2 − |S4|2 − |S1|2

)
, (2.11)

F p22 =
1
2
(
|S2|2 − |S3|2 − |S4|2 + |S1|2

)
, (2.12)

F p23 = Re (S2S
∗
3 − S1S

∗
4) , (2.13)

F p24 = Im (S2S
∗
3 + S1S

∗
4) , (2.14)

F p31 = Re (S2S
∗
4 + S1S

∗
3) , (2.15)

F p32 = Re (S2S
∗
4 − S1S

∗
3) , (2.16)

F p33 = Re (S2S
∗
1 + S3S

∗
4) , (2.17)

F p34 = Im (S2S
∗
1 + S4S

∗
3) , (2.18)

F p41 = Im (S4S
∗
2 + S1S

∗
3) , (2.19)

F p42 = Im (S4S
∗
2 − S1S

∗
3) , (2.20)

F p43 = Im (S1S
∗
2 − S3S

∗
4) , (2.21)

F p44 = Re (S1S
∗
2 − S3S

∗
4) . (2.22)

For further relationships between S(Θ, ψ) and F p we refer to Subsection A.1.1.
Usually one has to deal with quasi-monochromatic light and time averages should

be taken to obtain the Stokes parameters of the incident and scattered waves [See
Eq. (1.65)-(1.68)]. In that case Eqs. (2.4)-(2.22) remain valid, since the amplitude
matrix refers to the scattering properties of the particle and may be taken constant
in the time intervals concerned. The enormous simplification arising from ignoring
polarization in scattering problems follows immediately from Eq. (2.4), since in
that case only fluxes, instead of flux vectors, are considered, so that the scalar F p11,
instead of the matrix F p, suffices to describe the scattering process. We will return
to this issue in later sections.

Equations (2.7)-(2.22) show that the 16 elements of F p can be expressed in at
most 7 independent real quantities, namely the four moduli and three argument
differences of S1, S2, S3 and S4. Consequently, interrelations exist for the elements
of F p which hold for arbitrary values of Θ and ψ. These and other properties of F p

are discussed in Subsections A.1.2 and A.1.3 and in Sec. A.3.
The scattering matrix F p(Θ, ψ) represents the fundamental scattering properties

of a particle with a particular orientation in a coordinate system. According to Eq.
(2.4) it transforms the Stokes parameters of the incident beam into those of the
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scattered beam (apart from a multiplicative constant) when the scattering plane is
employed as the plane of reference for both beams. However, if we use for the Stokes
parameters of the incident beam a reference plane which is fixed in space, say the
xz-plane in Fig. 2.1, and then write for its flux vector πΦ×, we have [cf. Eq. (1.50)]

Φ0 = L(−ψ)Φ×. (2.23)

Thus, Eq. (2.4) can now be written in the form

Φ(Θ, ψ) =
1

k2R2
F p(Θ, ψ)L(−ψ)Φ×, (2.24)

which is particularly suited when the scattered light is observed or measured for
various values of (Θ, ψ), while the incident beam remains the same. In particular,
we find for the flux of scattered radiation

πΦ1(Θ, ψ) =
π

k2R2

[
F p11(Θ, ψ)Φ×

1 + F p12(Θ, ψ)
{
Φ×

2 cos 2ψ − Φ×
3 sin 2ψ

}
+ F p13(Θ, ψ)

{
Φ×

2 sin 2ψ +Φ×
3 cos 2ψ

}
+ F p14(Θ, ψ)Φ×

4

]
. (2.25)

The scattering cross-section Csca of the particle is defined as the ratio of the total
energy of the scattered radiation to the incident energy. In general, it depends on
the orientation of the particle with respect to the incident wave and on the state of
polarization of the incident wave. By integrating Eq. (2.25) over the whole spherical
surface with radius R and dividing the result by the incident flux πΦ×

1 , we find

Csca =
1
k2

∫ 2π

0
dψ

∫ π

0
dΘ sinΘ

[
F p11(Θ, ψ) + F p12(Θ, ψ)

{
Φ×

2

Φ×
1

cos 2ψ

− Φ×
3

Φ×
1

sin 2ψ
}
+ F p13(Θ, ψ)

{
Φ×

2

Φ×
1

sin 2ψ +
Φ×

3

Φ×
1

cos 2ψ
}
+ F p14(Θ, ψ)

Φ×
4

Φ×
1

]
.

(2.26)

This shows explicitly how the scattering cross-section depends on the state of po-
larization of the incident light. If F p does not depend on ψ, Eq. (2.26) yields

Csca =
2π
k2

∫ π

0
dΘ
{

F p11(Θ) + F p14(Θ)
Φ×

4

Φ×
1

}
sinΘ, (2.27)

which is independent of the state of linear polarization of the incident beam. If also
F p14(Θ) ≡ 0, the scattering cross-section is completely independent of the state of
polarization of the incident light and, therefore, equal to Csca for incident unpolarized
light.

In addition to scattering, light may be removed from a beam by absorption
(transformation into heat or radiation at other wavelengths). Therefore, besides the
scattering cross-section, we have the absorption cross-section Cabs and the extinction
cross-section Cext. All three of them are defined analogously and have the dimension
of area. Thus we can equate the energy of the wave incident on the area Cabs per unit



28

frequency to the absorbed energy per unit frequency, and similarly for Cext, where
extinction refers to the removal of energy from a lightbeam. Energy conservation
implies

Cext = Csca + Cabs. (2.28)

If for Θ = 0
S1(0) = S2(0)

S3(0) = S4(0) = 0

}
, (2.29)

we have
Cext =

4π
k2

Re {S1(0)}. (2.30)

We refer to the literature mentioned in Sec. 2.1, and in particular to Van de Hulst
(1957), for a derivation of this formula. A more detailed discussion of the extinction
cross-section of a single particle was presented by Bohren and Huffman (1983) and
Hu et al. (1987).

So far we have considered scattering by one particle in one particular orientation.
In theoretical as well as experimental work one sometimes considers the scattering
matrix of one particle averaged over a number of orientations. We will not do so,
since such matrices are not pure Mueller matrices but are equivalent to scattering
matrices of collections of particles, which will be treated in the next section.

2.3 Scattering by a Collection of Particles

In this section a collection (assembly) of many independently scattering particles is
considered under the assumption that multiple scattering effects can be neglected.
The particles may differ in size, shape, composition and orientation. The entire
collection is located at the origin of a coordinate system as illustrated in Fig. 2.1,
replacing the particle at the origin by a collection. We consider the effect of scattering
of a plane-parallel beam of (quasi-)monochromatic light travelling in the positive z-
direction by a collection of particles at a large distance R from the collection. In
this section we will not discuss scattering in the special directions Θ = 0 and Θ = π,
but instead postpone this topic until Sec. 2.5.

The independent scattering assumption implies that the scattering by the col-
lection is incoherent in the sense that there are no systematic relations between the
phases of the waves scattered by the individual particles. Consequently, interference
effects are not observed and the Stokes parameters provide excellent means to de-
scribe the situation. We first write down Eq. (2.4) for each particle. Since Φ0 is
constant, we then find by summation a formula of the same type for the collection,
namely

Φ =
1

k2R2
F cΦ0, (2.31)

where
F c =

∑
g

F pg (2.32)
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and the lower index g numbers the individual particles. Specific conditions under
which Eqs. (2.31) and (2.32) are valid were discussed by Mishchenko et al. (2004).
Evidently, Eq. (2.5) remains valid. The scattering matrix of the collection, F c,
belongs to a class of matrices called sums of pure Mueller (SPM) matrices. Prop-
erties of these matrices are considered in Appendix A. A special case is provided by
a collection of identical particles with the same orientation (perfect alignment) or
identical spheres. The scattering matrix of such a collection is a positive scalar mul-
tiple of a pure Mueller (PM) matrix and hence a pure Mueller matrix [See Appendix
A].

When we use a reference plane fixed in space for the incident beam, e.g. the xz-
plane in Fig. 2.1, we find Eqs. (2.23)-(2.25) with F p replaced by F c. By integrating
over all directions we get the scattering cross-section of the collection as the sum
of the corresponding cross-sections of the individual particles. The absorption and
extinction cross-sections of the collection of particles are also obtained by adding
the corresponding cross-sections of the single particles.

2.4 Symmetry Relationships for Single Scattering

The number of quantities to deal with in studies of polarized light transfer is much
larger than when polarization is ignored. In general, we need four parameters to
describe a lightbeam, compared with only one (the intensity or the flux) when po-
larization is ignored. Consequently, a matrix of 16 real elements, instead of one
(the 1-1 element), is needed to describe a process (e.g. scattering) which changes
the beam. As a result, the number of quantities to be handled may soon become
enormous when many changes of a beam of light must be considered, as may hap-
pen in multiple scattering studies. Therefore, it is important to seek principles and
relationships that can be used either to reduce the number of quantities involved
or to provide analytical and numerical checks. Symmetry relationships have been
shown to be very useful in this respect [Hovenier, 1969, 1970] and, therefore, they
will be frequently met in this book.

In this section we will discuss how symmetry considerations may provide relations
involving the elements of two F p-matrices or the elements of one and the same F p-
matrix. First reciprocity is considered and then mirror symmetry.

2.4.1 Reciprocity

The concept of reciprocity plays an important role in many parts of physics, including
astrophysics and geophysics [See e.g. Von Helmholtz, 1859; Rayleigh, 1894]. In the
context of geometrical optics Von Helmholtz, as cited by Chandrasekhar (1950, Sec.
52), formulated the reciprocity principle as the following theorem.

If a ray of light (i) after any number of refractions and reflections at
plane or nearly plane surfaces gives rise (among others) to a ray (e)
whose intensity is a certain fraction fie of the intensity of the ray (i),
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then, on reversing the path of light, an incident ray (e)′ will give rise
(among others) to a ray (i)′ whose intensity is a fraction fei of the ray
(e)′ such that

fei = fie. (2.33)

An important feature of reciprocity is already contained in this early formulation,
namely that it generally refers to fractions of intensities or fluxes.

The reciprocity principle in a more general form was formulated by Van de Hulst,
1980, Sec. 3.1, as follows:

In any linear physical system, the channels which lead from a cause (or
action) at one point to an effect (or response) at another point can be
equally well traversed in the opposite direction.

The reciprocity principle is based on the time-reversal symmetry of elementary phys-
ical processes and the equations describing them. This explains its wide range of
validity. However, for a specific application of the reciprocity principle proper care
must be given to precise formulations and definitions, in particular when polarization
is involved.
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first experiment

second experiment
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Figure 2.2: Illustrating the principle of reciprocity by means of two scat-
tering experiments on the same particle.

In the context of light scattering by a single particle the reciprocity principle
may be used as follows [See Fig. 2.2]. In a first experiment we suppose that an
arbitrary particle is illuminated by a plane monochromatic wave travelling in the
direction of m1, and we detect scattered light at a large distance d moving in the
direction of m2. Here m1 and m2 are unit vectors such that m1 = r1 × �1 and
m2 = r2×�2, where r1 and r2 are unit vectors perpendicular to the scattering plane
and, similarly, �1 and �2 are unit vectors parallel to that plane [See top half of Fig.
2.2]. We consider a point P1 in the incident beam and a point P2 in the scattered
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beam, both at a large distance, d, from the particle. In the first (direct) experiment
we write (

El1
Er1

)
= eikd+iωt

(
Al1
Ar1

)
(2.34)

for the field components of the incident wave at P1 [cf. Eqs. (2.1)-(2.3)] and(
El2
Er2

)
=

e−ikd+iωt

ikd

(
Bl2
Br2

)
(2.35)

for the electric field components of the scattered wave at P2, where the vectors in
the right-hand sides of Eqs. (2.34)-(2.35) are related by(

Bl2
Br2

)
= Sd

(
Al1
Ar1

)
(2.36)

and

Sd =
(

S2 S3

S4 S1

)
(2.37)

stands for the amplitude matrix in this (direct) experiment. In a second (reverse)
experiment the same particle is illuminated by a plane monochromatic wave at P2

travelling in the direction of the unit vectorm3 = −m2 and we detect at P1 scattered
light travelling in the direction of the unit vector m4 = −m1. This is shown in the
lower part of Fig. 2.2, where m3 = r3 × �3 and m4 = r4 × �4. Thus in the second
experiment we write (

El3
Er3

)
= eikd+iωt

(
Cl3
Cr3

)
(2.38)

for the electric field components of the incident wave at P2 and(
El4
Er4

)
=

e−ikd+iωt

ikd

(
Dl4

Dr4

)
(2.39)

for the electric field components of the scattered wave at P1, where the vectors in
the right-hand sides of Eqs. (2.38)-(2.39) are related by(

Dl4

Dr4

)
= Sr

(
Cl3
Cr3

)
(2.40)

and Sr denotes the amplitude matrix in this reverse experiment. Generally, Sr
differs from Sd, since the two scattering problems need not be the same. As shown
in Fig. 2.2, we have r3 = r2, r4 = r1, �3 = −�2 and �4 = −�1.

We can now employ the principle of reciprocity to derive the result of the second
experiment from that of the first experiment. However, we must keep in mind that
a positive action in the direction of �2 equals a negative action in the direction of �3
and similarly for �1 and �4. Thus we find the equality(

−Dl4

Dr4

)
=
(

S2 S4

S3 S1

)(
−Cl3

Cr3

)
, (2.41)
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which is clarified as follows. The possibility of time reversal of the elementary
processes entails for the components of the electric fields, for example, that the
effect of the �-component on the r-component in the first experiment equals the
effect of the r-component on minus the �-component in the second experiment. This
explains why the element S4 is the upper right element of the matrix on the right-
hand side of Eq. (2.41). Using similar reasoning for the elements S1, S2 and S3 of Sd
explains why the 2× 2 matrix on the right-hand side of Eq. (2.41) is the transpose
of Sd. Transposition is typical of all matrices describing linear changes of vectors
when reciprocity holds. Comparing Eqs. (2.40) and (2.41) we find the reciprocity
relation for scattering of a plane monochromatic wave by one particle, i.e.,

Sr =
(

S2 −S4

−S3 S1

)
=
(
1 0
0 −1

)
S̃d

(
1 0
0 −1

)
, (2.42)

where from hereon a tilde above a matrix denotes its transpose. In other words,
transposing Sd and writing minus signs in front of the off-diagonal elements yields
Sr. The reverse experiment is also called the reciprocal experiment.

A more formal proof of Eq. (2.42) may be derived [See e.g. Van de Hulst
(1957), and Bohren and Huffman (1983)] from a related reciprocity relation which
was proved, under certain assumptions, by Saxon (1955a,b), using the time invari-
ance of Maxwell’s equations. Experiments, observations and calculations have not
provided any evidence suggesting that the reciprocity relation given by Eq. (2.42)
would not hold for light scattering in atmospheres and water bodies. It should be
noted that reciprocity as discussed in this section holds for absorbing as well as
non-absorbing particles.

Reciprocity can also be discussed in terms of Stokes parameters. Referring again
to Fig 2.2 and using flux vectors we now write

Φ2 =
1

k2d2
F pdΦ

1 (2.43)

for the light at P2 in the first experiment and

Φ4 =
1

k2d2
F pr Φ

3 (2.44)

for the light at P1 in the second experiment. Before making use of reciprocity we
should pay attention to the way the orientation and handedness of polarized light
are measured, i.e., to the angles χ and β discussed in Subsection 1.2.1. As shown
in Fig. 2.3, the sum of the angles χ2 and χ3 for a particular ellipse at P2 is π.
However, if the polarization of the wave arriving at P2 in the first experiment is
right-handed and we invert time, the resulting wave moves in the opposite direction,
but its polarization is still right-handed. Consequently, there is no sign switch of β,
but χ must be replaced by its supplement π−χ. As a result [cf. Eqs. (1.20)-(1.23)],
the third Stokes parameter changes sign, while the signs of the other three Stokes
parameters remain unchanged. We can now use the principle of reciprocity to derive
the result of the second experiment from that of the first experiment. All we need to
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do is to require that the effect of the i-th component of Φ1 on the j-th component
of Φ2 in the first experiment equals the effect of the j-th component of Φ3 on the
i-th component of Φ4 in the second experiment. In other words,

Φ4
1

Φ4
2

−Φ4
3

Φ4
4

 =
1

k2d2
F̃
p

d


Φ3

1

Φ3
2

−Φ3
3

Φ3
4

 . (2.45)

Comparing Eq. (2.45) with Eq. (2.44) shows that F pd should be transposed and the
signs of the non-diagonal elements of its third row and column reversed if F pr is to
be obtained. In matrix form this can be written as

F pr = ∆3F̃
p

d∆3, (2.46)

where

∆3 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 = ∆̃3 = ∆−1
3 . (2.47)

Note that ∆3 is not a pure Mueller (PM) matrix nor a sum of pure Mueller (SPM)
matrices [cf. Eqs. (A.50) and (A.89)], although the product ∆3F̃

p

d∆3 is a pure
Mueller matrix. For scattering of a plane monochromatic wave by one particle Eq.
(2.46) can also be derived purely mathematically from the reciprocity relation for
the amplitude matrices, i.e., Eq. (2.42), by using Eqs. (2.7)-(2.22) [See Eq. (A.39)].
However, the advantage of the above discussion, using Eq. (2.45), is that it gives us
more insight into the nature of the reciprocity relation for Stokes parameters and has
a wide range of validity, as will be shown in other parts of this book. Evidently, Eq.
(2.46) remains valid when quasi-monochromatic light is used in the experiments.

It is important to realize that in the situation discussed above an incident plane
wave gives rise to a scattered spherical wave. So it follows immediately from con-
servation of energy that reciprocity in the context of scattering does not imply that
if we choose

Φ3 = ∆3Φ2, (2.48)

the irradiance of the light at P1 travelling in the direction of m1 in the first exper-
iment equals the irradiance of the light at P1 travelling in the direction of −m1 in
the second experiment. What really happens, follows from Eqs. (2.43)-(2.44) and
(2.46)-(2.48), namely

Φ4 =
1

k4d4

(
∆3F̃

p

d∆3

) (
∆3F

p
d

)
Φ1, (2.49)

so that 
Φ4

1

Φ4
2

−Φ4
3

Φ4
4

 =
1

k4d4
F̃
p

d F
p
d


Φ1

1

Φ1
2

Φ1
3

Φ1
4

 . (2.50)
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Figure 2.3: Vibration ellipse of a beam of light arriving at P2 from below
the paper and of a beam leaving P2 into the paper. The orien-
tation angles are χ2 and χ3, respectively, and are each others
supplements.

Hence, if we ignore polarization the ratios of the irradiances at P1 in the directions
of −m1 and m1 would be (kd)−4 times the square of the one-one element of F pd.
So even when non-absorbing particles are considered, it is important to emphasize
that reciprocity, as treated in this book, provides theorems on ratios of intensities
and fluxes rather than on intensities and fluxes themselves [cf. Eq. (2.33)].

For a collection of particles we can perform the same experiments as for one
particle. Equation (2.46) then remains valid, since it is equivalent to linear relations
involving elements of F pr and F

p
d and therefore does not get lost on summation over

the individual particles. An interesting case is then presented by a collection of
particles in random orientation. As seen from such a collection, it is immaterial
where the incident light comes from. Hence, if we choose

Φ3 = Φ1 (2.51)

in the second experiment, it is physically clear that the scattered beam must have
the same Stokes parameters as in the first experiment, since now there is no essential
difference between the two scattering problems. Thus Φ4 = Φ2 and consequently
F cr = F cd, so that in view of Eq. (2.46) applied to the collection we have the
reciprocity relation

F c = ∆3F̃
c
∆3 (2.52)

for arbitrary directions of incidence and scattering. Thus, due to reciprocity, there
are at most 10 independent elements of the scattering matrix of a collection of
particles in random orientation instead of 16. Consequently, for a collection of
randomly oriented particles we can write

F c =


F c11 F c12 F c13 F c14
F c12 F c22 F c23 F c24

−F c13 −F c23 F c33 F c34
F c14 F c24 −F c34 F c44

 . (2.53)
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2.4.2 Mirror Symmetry

We now turn to a brief discussion of mirror symmetry. If the amplitude matrix of
an arbitrary particle is

Sp =
(

S2 S3

S4 S1

)
, (2.54)

then the amplitude matrix of its mirror particle, obtained by mirroring with respect
to the plane of scattering, is [See e.g. Van de Hulst (1957), Bohren and Huffman
(1983)]

Sm =
(

S2 −S3

−S4 S1

)
=
(
1 0
0 −1

)
Sp

(
1 0
0 −1

)
(2.55)

for arbitrary directions of incidence and scattering. Using Eqs. (2.4) and (2.7)-(2.22)
we have in terms of F p matrices

F pm = ∆3,4F
p
p∆3,4, (2.56)

where

∆3,4 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 = ∆̃3,4 = ∆−1
3,4. (2.57)

A fast derivation of Eq. (2.56) may be obtained by using Eq. (2.55) and the product
rule for pure Mueller (PM) matrices as given by Eq. (A.32). Equation (2.56) shows
that the only difference between F pp and F

p
m is a sign difference in the elements of

the 2 × 2 matrices in the lower left and upper right corners. Equations (2.55) and
(2.56) can also be understood as follows. Suppose an incident beam E1 = {E1

l , E
1
r}

is scattered by the particle and E2 = {E2
l , E

2
r} represents the scattered beam in

a certain direction. It is now clear for symmetry reasons that if we let the mirror
particle be hit by the mirror image of E1 with respect to the scattering plane, the
result is a scattered beam which is the mirror image of E2 with respect to the
scattering plane. Because of the sign change in the r-components, both before and
after scattering, the off-diagonal elements of Sp should change sign if Sm is to be
obtained. Similarly, using Stokes parameters, sign changes occur for the third and
fourth parameters, since χ → π−χ and β → −β if a beam is mirrored with respect
to a plane perpendicular to the r-axis [See Fig. 2.4]. Note that a basic feature of the
mirroring process is the reversal of handedness. Consequently, F pm and F pp should
only differ as to the signs of the 8 elements of the lower left and upper right 2 × 2
submatrices. This explanation can also be summarized by saying that if

Φ2 =
1

k2R2
F ppΦ

1, (2.58)

then
∆3,4Φ2 =

1
k2R2

F pm∆3,4Φ1, (2.59)
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Figure 2.4: Vibration ellipses of a beam of light (o) and its mirror image
(m) with respect to the plane through � and perpendicular to r.
Both beams are travelling in the direction r×�. The orientations
of the major axes are given by χ and π − χ, respectively, and
the handednesses of the beams are opposite.

which yields Eq. (2.56). It is clear that Eqs. (2.56)-(2.59) also hold for scattering
of quasi-monochromatic light and when comparing a collection of particles with the
collection consisting of its mirror particles. So we have

F cm = ∆3,4F
c
p∆3,4. (2.60)

Now suppose that a collection consists of particles and their mirror particles in
equal numbers and that all particles are in random orientation. Then

F cm = F cp, (2.61)

because the collection remains the same when mirroring with respect to the scatter-
ing plane. Hence, in view of Eq. (2.60) we find for this collection

F c = ∆3,4F
c∆3,4 (2.62)

for arbitrary directions of incidence and scattering. Evidently, this means that the 8
elements of the lower left and upper right 2×2 submatrices of the F c-matrix vanish.
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Combined with reciprocity [cf. Eq. (2.53)] we find F c of the collection to contain
at most 6 non-vanishing elements, i.e., to be of the form

F c =


F c11 F c12 0 0
F c12 F c22 0 0
0 0 F c33 F c34
0 0 −F c34 F c44

 , (2.63)

where each element depends only on Θ. We note that cosΘ is also frequently used
as the independent variable. The same form of F c holds for a collection of randomly
oriented particles, each of which has a plane of symmetry, since these particles are
their own mirror particles.

For a variety of reasons, matrices of the type given by Eq. (2.63) are very
important in studies of single and multiple scattering. We shall return to this point
in later sections. When consulting numerical or experimental results for F c in the
literature one should be aware of the fact that the sign of F c34 may be different, due
to different conventions for the Stokes parameters [See the new paragraph below Eq.
(1.64)].

2.5 Special Scattering Directions and Extinction

We shall now consider light scattering in the forward (Θ = 0) and backward (Θ = π)
directions, respectively. In both cases there is no implicit plane of scattering contain-
ing the directions of the incident and scattered beams. Hu et al. (1987) presented a
comprehensive study of forward and backward scattering by an individual particle
in a fixed orientation. For forward scattering they distinguished sixteen different
symmetry shapes grouped into five symmetry classes and for backward scattering
four different symmetry shapes grouped into two symmetry classes. In this way a
large number of relations for the scattering matrix of a single particle was derived.
In this subsection, however, we consider collections of particles.

Suppose the particles in a collection are in random orientation. The scattering
by the collection may then be described by [cf. Eq. (2.24) and Fig. 2.1]

Φ(Θ, ψ) =
1

k2R2
F c(Θ, ψ)L(−ψ)Φ×, (2.64)

where F c(Θ, ψ) is independent of ψ. Letting Θ tend to zero in this equation for a
fixed value of ψ yields

Φ(0, ψ) =
1

k2R2
F c(0)L(−ψ)Φ×. (2.65)

On the other hand, the scattered beam must be physically the same for all values
of ψ. Hence, we can write

Φ(0, ψ) = L(−ψ)Φ(0, 0), (2.66)
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where πΦ(0, 0) is the flux vector of the scattered beam using the xz-plane as a plane
of reference for the Stokes parameters. Substituting Eq. (2.66) into Eq. (2.65) yields

Φ(0, 0) =
1

k2R2
L(ψ)F c(0)L(−ψ)Φ×. (2.67)

Comparing this with Eq. (2.67), taken for ψ = 0, shows that for arbitrary ψ

F c(0) = L(ψ)F c(0)L(−ψ). (2.68)

For Θ = π we can proceed in a similar manner and derive

F c(π) = L(ψ)F c(π)L(ψ). (2.69)

If we now consider a matrix of the form given by Eq. (2.53) and use Eq. (1.51)
to compute both sides of Eq. (2.68) by matrix multiplication, we find

F c22 = F c33
F c12 = F c13 = F c24 = F c34 = 0

}
if Θ = 0. (2.70)

In an analogous manner we obtain for Θ = π the somewhat different relations

F c22 = −F c33
F c12 = F c13 = F c23 = F c24 = F c34 = 0

}
if Θ = π. (2.71)

Consequently, a matrix of the type given by Eq. (2.63) has the form

F c =


F c11 0 0 0
0 F c22 0 0
0 0 F c22 0
0 0 0 F c44

 if Θ = 0, (2.72)

and

F c =


F c11 0 0 0
0 F c22 0 0
0 0 −F c22 0
0 0 0 F c44

 if Θ = π. (2.73)

Another type of simplification arises from the fact that for Θ = π reciprocity
requires for each particle Sd = Sr [cf. Eqs. (2.37) and (2.42)], since the direct
and reverse experiments refer to the same scattering problem. So we then have
S3 + S4 = 0 and this implies [cf. Eqs. (2.7), (2.12), (2.17) and (2.22)]

F p11 − F p22 = F p44 − F p33, (2.74)

as well as
F c11 − F c22 = F c44 − F c33. (2.75)

Consequently, for matrices of the types given by Eqs. (2.53) and (2.63) we have for
Θ = π

F c44 = F c11 − 2F c22, (2.76)
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as observed and numerically tested by Mishchenko and Hovenier (1995). A similar
simple relation holds for Θ = 0 in the frequently considered case of randomly oriented
rotationally symmetric particles for which each plane through the rotation axis is a
plane of symmetry. We then have [cf. Hovenier and Mackowski, 1998] for Θ = 0

F c44 = 2F c22 − F c11. (2.77)

The special value of F c for Θ = 0 should be interpreted as the limit of F c(Θ) as
Θ tends to 0. In the precise forward direction the scattered waves interfere with the
incident wave, leading to a modified wave propagation. Birefringence (i.e., phase
velocities depending on the state of polarization) as well as dichroism (extinction
depending on the state of polarization) may then occur. Considering an arbitrary
collection of particles we should, in this very special situation, add the components
of the amplitude matrix of the individual particles and not those of F p. If the
resulting Sc-matrix for Θ = 0 contains four different complex numbers, we have
the most general combination of linear birefringence (double refraction), circular
birefringence (optical rotation of the plane of polarization), linear dichroism and
circular dichroism. On the other hand, if the amplitude matrix of the collection for
Θ = 0 is of the type

Sc(0) =
(

Sc1(0) 0
0 Sc1(0)

)
, (2.78)

no birefringence or dichroism of any kind occurs. This happens, for instance, in the
important cases of

(i) a collection of particles and their mirror particles in equal numbers and in
random orientation, and

(ii) a collection of randomly oriented particles each of which has a plane of sym-
metry.

Let us assume that Eq. (2.78) is valid. Then the real and imaginary parts of
Sc1(0) determine the extinction and the real part of the refractive index of the medium
formed by the particles [cf. Van de Hulst (1957), Sec. 5.4]. These two quantities are
the same for any state of polarization of the incident light. The extinction coefficient
is a measure for the attenuation per unit length of a lightbeam directly transmitted
through a medium. It can be written as [cf. Eq. (2.30)]

kext =
4π
k2

Re {Scv1 (0)} = N Cext, (2.79)

where Scv1 (0) is the sum of the elements S1(0) of all particles in a unit volume,
N is the number of particles per unit volume and Cext is the average extinction
cross-section of a particle in the unit volume.

As noted in Sec. 2.3, we can use Eqs. (2.23)-(2.25) for a collection and by
integration over all directions find the scattering cross-section of the collection. For
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a matrix of the type given by Eq. (2.63) we thus find [cf. Eq. (2.27)] the scattering
coefficient

ksca =
2π
k2

∫ π

0
dΘF cv11 (Θ) sinΘ = N Csca, (2.80)

where F cv11 (Θ) is the 1, 1-element of F cv(Θ), i.e., the sum of the matrices F p of
all particles in a unit volume, and Csca is the average scattering cross-section. It
is now clear from Eq. (2.80) and its derivation that for a medium composed of
particles which per unit volume have a matrix of the type given by Eq. (2.63), the
scattering coefficient is independent of the state of polarization of the incident light
and therefore equal to ksca for incident unpolarized light. The absorption coefficient
is defined by

kabs = kext − ksca = N Cabs, (2.81)

where Cabs is the average absorption cross-section. Evidently, all three coefficients
have the dimension of [length]−1. The matrix F cv(Θ) is of course a sum of pure
Mueller matrices (See Appendix A).

If a medium consists of a homogeneous mixture of collections and Eqs. (2.79)
and (2.80) hold for each of them, we should add the individual coefficients kext, ksca

and kabs to obtain the corresponding coefficients for the mixture.

2.6 Some Special Cases of Single Scattering

In this section we will briefly consider a number of special cases of single scattering.
These do not only provide illuminating examples of the more general theory but are
also useful for later reference.

2.6.1 Particles Small Compared to the Wavelength

Consider a particle of arbitrary shape which is small compared to the wavelength
both outside and inside the particle. Such a particle scatters light like an oscillating
dipole. This is usually called Rayleigh scattering. If the polarizability of the particle
α is isotropic, we have the simplest case of light scattering by a particle that nature
provides. The amplitude matrix then is

S(Θ, ψ) = ik3α

(
cosΘ 0
0 1

)
, (2.82)

yielding [cf. Eqs. (2.3) and (2.7)-(2.22)]

F p(Θ) =
k6|α|2

2


1 + cos2 Θ cos2 Θ− 1 0 0
cos2 Θ− 1 1 + cos2 Θ 0 0

0 0 2 cosΘ 0
0 0 0 2 cosΘ

 . (2.83)

If polarization is ignored, only one function, i.e.,

F p11(Θ) =
k6|α|2

2
(1 + cos2 Θ), (2.84)
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needs to be considered. We shall call this case scattering according to Rayleigh’s
scattering function (or phase function). It is one of the prototypes in multiple
scattering studies without polarization.

In general, polarizability is not isotropic and the particle is characterized by a
3 × 3 polarizability tensor with elements αij , which transforms an external electric
field vector into the induced dipole moment vector. Following Van de Hulst (1957)
we let α1, α2 and α3 stand for the main components of the polarizability tensor,
which may be complex. Now consider a unit volume of many (N say) identical small
particles in random orientation, and let F cv(Θ) be the sum of all matrices F p of the
particles. Then, according to Van de Hulst (1957), F cv(Θ) is of the type given by
Eq. (2.63), where

F cv11 (Θ) = Nk6

{
4A + B − 1

2
(2A + 3B) sin2 Θ

}
, (2.85)

F cv12 (Θ) = −Nk6

2
(2A + 3B) sin2 Θ, (2.86)

F cv22 (Θ) = Nk6(2A + 3B)
(
1− 1

2
sin2 Θ

)
, (2.87)

F cv33 (Θ) = Nk6(2A + 3B) cosΘ, (2.88)

F cv44 (Θ) = 5Nk6B cosΘ, (2.89)
F cv34 (Θ) ≡ 0. (2.90)

Here A and B are real quantities that depend on α1, α2 and α3 as follows:

A =
1
15

3∑
i=1

αiαi
∗, (2.91)

B =
1
30

3∑
i,j=1
i�=j

αiαj
∗, (2.92)

where the possibility that α1, α2 and α3 may be complex is taken into account.
Clearly, for incident unpolarized light the scattered light at Θ = 90◦ is linearly
polarized with the degree of linear polarization

ps =
2A + 3B
6A−B

=
1− ρn
1 + ρn

, (2.93)

where the so-called depolarization factor

ρn =
[
〈ElEl∗〉
〈ErEr∗〉

]
Θ=90◦

=
2A− 2B
4A + B

. (2.94)

Applying Eq. (2.80) gives

ksca =
40πNk4

3
A. (2.95)
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The amplitude matrix for Θ = 0◦ is of the type given by Eq. (2.78). Generally, the
particles are absorbing and

α =
1
3
(α1 + α2 + α3) (2.96)

is complex. We then have
kabs = −4πNk Im (α), (2.97)

while kext follows as the sum of ksca and kabs. If α is real, we may write

kext = ksca =
8πNk4 α2

3
f, (2.98)

where f is the so-called King correction factor, i.e.,

f =
3A

A + 2B
=

3(2 + ρn)
6− 7ρn

. (2.99)

We can rewrite Eq. (2.98) in the form

kext = ksca =
8π3

3λ4

(ñ2
r − 1)2

N
f, (2.100)

where ñr is the real part of the refractive index of the medium composed of the
particles.

We may regard particles with isotropic polarizability as the special case of a
diagonal polarizability matrix with diagonal entries

α1 = α2 = α3 = α = α, (2.101)

yielding

A = B = |α|2/5, (2.102)
ρn = 0, f = 1, (2.103)

ksca =
8π
3

Nk4|α|2, (2.104)

kabs = −4πNk Im (α) (2.105)

and, if α is real (no absorption, so that kabs = 0),

kext = ksca =
8π3

3λ4

(ñ2
r − 1)2

N
. (2.106)

If the polarizability is independent of wavelength, ksca is proportional to λ−4 [cf.
Eq. (2.95)] and therefore much stronger for blue light than for red light. This is the
main reason for the colour of the blue sky on a clear day. The extinction coefficients
given by Eqs. (2.100) and (2.106) are proportional to N (as to be expected), since
ñ2
r − 1 = 4πNα in the cases concerned. Equation (2.93) shows that for incident
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unpolarized light the scattered light at Θ = 90◦ is 100% polarized if and only if
ρn = 0, i.e. for isotropic polarizability. This explains the name of the depolarization
factor.

Rayleigh scattering with (ρn �= 0) or without (ρn = 0) depolarization effects
has been studied extensively. Very important applications are light scattering by
free electrons and by molecules in atmospheric gases. To derive bounds for the
depolarization factor, ρn, we observe that for complex αi

A + 2B =
1
15
|α1 + α2 + α3|2 ≤

3
15
{
|α1|2 + |α2|2 + |α3|2

}
, (2.107)

where Eqs. (2.91)-(2.92) and Schwartz’s inequality have been used. Using Eq. (2.91)
we obtain

0 ≤ A + 2B ≤ 3A. (2.108)

Excluding the case ksca = 0 yields A > 0 [cf. Eq. (2.95)] and Eq. (2.108) becomes

−1
2
≤ B

A
≤ 1. (2.109)

These bounds on B/A imply

− 1
13

≤ ps ≤ 1, (2.110)

0 ≤ ρn ≤
6
7
, (2.111)

1 ≤ f ≤ ∞, (2.112)

where Eqs. (2.93), (2.94) and (2.99) have been employed. A special case is provided
by α1 �= 0 and α2 = α3 = 0. We then have B = 0, ps = 1

3 , ρn = 1
2 and f = 3. The

actual values of ρn for molecules are usually much smaller than 1
2 . Measurements for

various kinds of molecules are frequently reported [See e.g. Bridge and Buckingham
(1966), Alms et al. (1975), Baas and Van den Hout (1979), Young (1980), Bates
(1984)], but one often needs to read the description of the experiment, e.g. the
spectral resolution, to determine what kind of depolarization was measured [See
Young, 1981]. Depolarization factors of gases are found to be both wavelength
and pressure dependent. At low pressures (smaller than about 1 atmosphere) and
near 600 nm fairly accurate values of ρn (including the Raman wings) are 0.020 (N2),
0.058 (O2), 0.028 (dry air) and 0.079 (CO2), as derived from the critical discussions of
existing data by Young (1980), Van de Hulst (1980) and De Haan (1987). Figure 2.5
shows the functions ps and f for various values of ρn. It is interesting to see that in
a mixture of small particles (e.g. molecules) and relatively large particles (e.g. cloud
droplets) the contribution of the small particles to the intensity of the scattered light
will grow as their value of ρn increases, whereas the (positive) polarization caused by
the small particles will then decrease. For ρn = 0.028 Eq. (2.93) gives ps = 94.55%,
but the linear polarization of skylight in the visible part of the spectrum at θ = 90◦

is usually much smaller due to the presence of aerosols and multiple scattering.



44

0 0.02 0.04 0.06 0.08 0.1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

ρ
n

p
s

f

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

3

ρ
n

p
s

f

Figure 2.5: The degree of linear polarization, ps, of light scattered under
90◦ if the incident light is unpolarized and the King correction
factor, f , both as functions of the depolarization factor, ρn. The
scales in the two panels are different. Since the values of ρn for
molecules are usually much smaller than 1

2 , we have not plotted
ps and f for the full range of possible values of ρn.

The molecular number density in a planetary atmosphere usually varies strongly
with altitude, z, whereas the scattering cross-section can be assumed to be constant.
Therefore, one often writes [See e.g. Bucholtz (1995)] for the scattering coefficient
at altitude z,

ksca(z) = N(z)Csca, (2.113)

where N(z) is the molecular number density at z and

Csca =
8π3

3λ4

(n2
s − 1)2

N2
s

fs. (2.114)

Here the subscript s refers to certain standard conditions of pressure and tempera-
ture. It may be noted that ns is usually close to one. Then Eq. (2.114) differs little
from the more precise expression which is obtained from Eq. (2.114) by replacing
the factor 8/3 by 24/(n2

s + 2)2. We refer to Bucholtz (1995) for numerical values of
Csca and ksca at various wavelengths for the atmosphere of the Earth.

In this book we do not aim at a comprehensive treatment of Rayleigh scattering.
Rather we will use the fairly simple case of Rayleigh scattering as an example in the
general context of radiative transfer of polarized light in planetary atmospheres.

2.6.2 Spheres

Unless explicitly stated otherwise the word “sphere” is used in this book for a ho-
mogeneous spherical particle made of some nonmagnetic material that is neither
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birefringent nor dichroic. We have for a single sphere [See e.g. Van de Hulst (1957)]

S3(Θ) ≡ S4(Θ) ≡ 0, (2.115)

S1(Θ) =
∞∑
n=1

2n + 1
n(n + 1)

{
a†nπn(cosΘ) + b†nτn(cosΘ)

}
, (2.116)

S2(Θ) =
∞∑
n=1

2n + 1
n(n + 1)

{
b†nπn(cosΘ) + a†nτn(cosΘ)

}
. (2.117)

Here

πn(cosΘ) =
dPn(cosΘ)

d cosΘ
, (2.118)

τn(cosΘ) = cosΘπn(cosΘ)− sin2 Θ
dπn(cosΘ)

d cosΘ
, (2.119)

where Pn(cosΘ) is the usual Legendre polynomial. The coefficients a†n and b†n depend
on the (generally complex) refractive index and the size parameter

x = kr =
2πr

λ
(2.120)

of the sphere, where r denotes its radius and λ is the wavelength. The exact expres-
sions as well as Eqs. (2.115)-(2.119) are part of the so-called Mie theory, also called
Lorenz-Mie theory. Mie (1908) used Maxwell’s theory, along with the appropriate
boundary conditions, to obtain the complete solution for the fields at any point
inside and outside an illuminated sphere of arbitrary size parameter and composi-
tion. We refer to Kerker (1969), Sec. 3.4, for an account of historical aspects of
the theoretical treatment of light scattering by a sphere. The computation of the
so-called Mie coefficients, i.e., a†n and b†n, may be quite laborious, especially for large
values of the size parameter [See e.g. De Rooij and Van der Stap (1984); Bohren
and Huffman (1983), Sec. 4.8].

For n = 1 we have
P1(cosΘ) = cosΘ

π1(cosΘ) = 1
τ1(cosΘ) = cosΘ

 , (2.121)

yielding the first terms in Eqs. (2.116)-(2.117) which suffice for very small spheres
[cf. Eq. (2.82)].

Using Eqs. (2.3) and (2.7)-(2.22) and writing

S1 =
√

i1 eiσ1 , S2 =
√

i2 eiσ2 , (2.122)

we find for an arbitrary sphere

F p =


F p11 F p12 0 0
F p12 F p11 0 0
0 0 F p33 F p34
0 0 −F p34 F p33

 , (2.123)
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where

F p11 =
i1 + i2

2
, (2.124)

F p12 =
i2 − i1

2
, (2.125)

F p33 =
√

i1i2 cos(σ2 − σ1), (2.126)

F p34 =
√

i1i2 sin(σ2 − σ1), (2.127)

and the dependence on Θ has not been written explicitly. Clearly, there must be
one non-trivial interrelation for the elements of F p, since there are essentially only
three independent variables, namely i1, i2 and σ2 − σ1. Equations (2.124)-(2.127)
show at once that

(F p33)
2 + (F p34)

2 = (F p11)
2 − (F p12)

2. (2.128)

This is in complete agreement with the general theory expounded in Appendix A,
since all interrelations reduce to either Eq. (2.128) or a trivial relation. Evidently,
Eq. (2.128) also holds for a collection of identical spheres.

For an arbitrary collection of spheres differing in size or composition we find by
summation that F c is of the same type as given by Eq. (2.123), which is a special
case of the matrix given by Eq. (2.63). We then have for arbitrary Θ [cf. Eq. (A.88)]

(F c33)
2 + (F c34)

2 ≤ (F c11)
2 − (F c12)

2 (2.129)

as well as [cf. Eqs. (2.72)-(2.73)]

F c = diag{F c11, F c11, F c11, F c11} (Θ = 0◦) (2.130)

and
F c = diag{F c11, F c11,−F c11,−F c11} (Θ = 180◦). (2.131)

Equations (2.78)-(2.79) are valid for a collection of spheres and result in

kext =
2π
k2

∑
g

[ ∞∑
n=1

(2n + 1)Re (a†n + b†n)

]
, (2.132)

where
∑
g

stands for the sum over all particles per unit volume. The scattering

coefficient is given by Eq. (2.80) and may be written in the form

ksca =
2π
k2

∑
g

[ ∞∑
n=1

(2n + 1){|a†n|2 + |b†n|2}
]

. (2.133)

Thus, kext and ksca are independent of the state of polarization of the incident light.
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2.6.3 Miscellaneous Types of Particles

Finding the scattering properties of many kinds of particles in various orientations
is of crucial importance in solving (single and multiple) scattering problems. Yet we
are still far from that goal, although rapid progress has been made in recent years,
especially for axisymmetric particles, like spheroids and cylinders, as well as for
clusters (aggregates) of spheres. A variety of theoretical approaches is currently used
for accurate computations of matrices relevant to single scattering by nonspherical
particles, in particular the so-called Discrete Dipole Approximation (DDA) and the
T -matrix method. A detailed discussion of this topic is beyond the scope of this
book. For a comprehensive treatment of theories, measurements and applications of
light scattering by nonspherical particles we refer to Mishchenko et al. (2000) and
Mishchenko et al. (2002).

Matrices describing light scattering by collections of nonspherical, randomly ori-
ented particles often show considerable shape effects. An example is shown in Fig.
2.6, which refers to four collections of randomly oriented identical prolate spheroids
at a wavelength of 0.6328 nm. These particles have a refractive index of 1.53−0.006 i
and an average projected geometrical cross section of 0.286791µm2, which corre-
sponds to a sphere with size parameter 3 at the wavelength considered. The four
monodispersions differ in the aspect ratios, y, of the particles, where y is the ratio
of largest and smallest diameters. The elements of F cv as functions of the scatter-
ing angle shown in Fig. 2.6 are normalized so that the average of the 1, 1-element
over all directions is unity, which makes them elements of the scattering matrix [See
Sec. 2.7]. The computations for this figure were performed by F. Kuik using the
T -matrix method. Inspection of Fig. 2.6 shows that the influence of particle shape
is, in general, appreciable, in particular for the degree of linear polarization, ps,
when the incident light is unpolarized [See the lower left panel].

Analytical expressions, containing only a few parameters, are sometimes used for
the scattering matrix of randomly oriented particles, mostly in studies of multiple
scattering [See e.g. Hovenier (1971), Tomasko and Smith (1982), West et al. (1983),
Tomasko and Doose (1984), Smith and Tomasko (1984), Stammes (1992a), Braak
et al. (2001)]. This is an extension of a similar approach for the scattering function
when polarization is ignored, like the well-known Henyey-Greenstein function [Van
de Hulst, 1980, Chapter 10]. This technique is useful when one tries to deduce at
least some information on the single scattering properties of particles in an atmo-
sphere from the observed brightness and state of polarization of multiply scattered
light.

The equalities and inequalities for the elements of the amplitude matrix, F c,
F cv, and the scattering matrix [See Eqs. (2.72)-(2.77) and Appendix A] provide
welcome checks for computational and experimental investigations of light scattering
by nonspherical particles, because of their general nature. Several strategies for
doing this have been reported by Hovenier and Van der Mee (1996) [See also Sec.
A.3]. The same relationships may also be employed as conditions for the analytic
expressions (parametrized scattering matrices) mentioned above [Braak et al., 2001].
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Figure 2.6: Scattering matrix elements for collections of randomly oriented
prolate spheroids as functions of the scattering angle of various
aspect ratio’s y. The normalization is such that the average of
the 1, 1-element over all directions equals unity. [After Wauben
et al. (1993a), Fig. 1., with permission from Elsevier].

2.7 The Scattering Matrix

Unless stated otherwise, we shall now limit our treatment to an extensive class of
scattering media encompassing many situations of practical interest. Suppose each
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unit volume of the medium contains a collection of particles which has an F c-matrix
of the type given by Eq. (2.63), where each element depends only on Θ, and for
Θ = 0◦ an amplitude matrix of the form given by Eq. (2.78). We shall call such
a medium a macroscopically isotropic medium with mirror symmetry. As shown in
Sec. 2.5, in this case no birefringence or dichroism of any kind occurs and kext [given
by Eq. (2.79)] as well as ksca [given by Eq. (2.80)] are independent of the state
of polarization of the incident light. Among the cases included are, according to
preceding sections, media each volume element of which contains

(i) particles small compared to the wavelength, both inside and outside the par-
ticle, having isotropic polarizability [Rayleigh scattering without depolariza-
tion], or

(ii) as (i), but with anisotropic polarizability and in random orientation [Rayleigh
scattering with depolarization], or

(iii) particles accompanied by their mirror particles in equal numbers and in ran-
dom orientation, or

(iv) randomly oriented particles, each of which has a plane of symmetry.

Very special subcases of the particles mentioned under (iv) are spheres as well as
randomly oriented homogeneous spheroids, ellipsoids, cylinders and cubes, made of
material that is neither birefringent nor dichroic.

Consider a collection of N particles in a unit volume whose scattering properties
are described by ksca and F cv(Θ), which is the sum of all F p matrices of the particles
in a unit volume. We define the (local) scattering matrix (of the medium) by

F (Θ) =
4π

k2 ksca

F cv(Θ). (2.134)

We write this in the form [cf. Eq. (2.63)]

F (Θ) =


a1(Θ) b1(Θ) 0 0
b1(Θ) a2(Θ) 0 0
0 0 a3(Θ) b2(Θ)
0 0 −b2(Θ) a4(Θ)

 , (2.135)

where Eq. (2.80) implies that the average of a1(Θ) over all directions is unity, i.e.,

1
4π

∫
(4π)

dΩ a1(Θ) = 1, (2.136)

or in other words

1
2

∫ π

0
dΘ a1(Θ) sinΘ =

1
2

∫ +1

−1
d(cosΘ) a1(Θ) = 1. (2.137)
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Display 2.1: Sample of relations for a macroscopically isotropic medium
with mirror symmetry.

extinction coefficient: kext =
4π
k2

Re {Scv1 (0)}

scattering coefficient: ksca =
2π
k2

∫ π

0
dΘF cv11 (Θ) sinΘ

scattering matrix: F (Θ) =


a1(Θ) b1(Θ) 0 0
b1(Θ) a2(Θ) 0 0
0 0 a3(Θ) b2(Θ)
0 0 −b2(Θ) a4(Θ)


scattering function: a1(Θ) ≥ 0

[space average is unity]
reciprocity relation: F (Θ) = ∆3F̃ (Θ)∆3

where ∆3 = diag(1, 1,−1, 1)
mirror symmetry relation: F (Θ) = ∆3,4F (Θ)∆3,4

where ∆3,4 = diag(1, 1,−1,−1)
inequalities for arbitrary Θ: a1 ≥ |ai|, a1 ≥ |bj |; i = 2, 3, 4, j = 1, 2

(a3 + a4)2 + 4b2
2 ≤ (a1 + a2)2 − 4b1

2

|a3 − a4| ≤ a1 − a2

|a2 − b1| ≤ a1 − b1

|a2 + b1| ≤ a1 + b1

special directions: b1 = b2 = 0 (Θ = 0, π)

a2 = a3, a1 ≥ |a2|, a1 ≥ |a4|
a4 ≥ 2|a2| − a1

}
(Θ = 0)

a2 = −a3, a1 ≥ a2 ≥ 0
a4 = a1 − 2a2

}
(Θ = π)

The function a1(Θ) is called the scattering function or phase function and is the
only element of F (Θ) needed when polarization is ignored. Note that the elements
of F (Θ) are dimensionless. It is readily verified that, in view of Eqs. (2.31), (2.32)
and (2.134), light scattering by a small volume dV of the medium can now be
described by

Φ =
ksca dV

4πR2
F (Θ)Φ0. (2.138)

Here πΦ should be measured at a point at a distance R from dV . From here on, the
local scattering matrix of the medium, F (Θ), will be called the scattering matrix.
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This matrix differs in general from what we call the phase matrix [See Sec. 3.2].
The elements of F (Θ) satisfy a number of interrelations for arbitrary Θ, since

it is a sum of pure Mueller matrices [See Appendix A]. Due to the special form
of F (Θ), shown in Eq. (2.135), the six inequalities (A.84)-(A.89) reduce to four
inequalities, which coincide with the requirement that the four eigenvalues of the
corresponding Cloude coherency matrix must be nonnegative. For Θ = 0 and Θ = π,
Fij obey the same relations as F cij in Eqs. (2.72)-(2.76). Display 2.1 shows a sample
of relations for a macroscopically isotropic medium with mirror symmetry. If the
particles are rotationally symmetric, the relations for the diagonal elements in the
case θ = 0◦ simplify to 0 ≤ a2 ≤ a1 and a4 = 2a2 − a1 [Hovenier and Mackowski,
1998]. An important difference between F cv and F is that for a homogeneous
mixture of collections the elements of F cv may simply be added but, generally,
those of F may not. For example, we find from Eq. (2.134) for a homogeneous
mixture of two collections (e.g. molecules and cloud particles)

F (Θ) =
[ksca]1 [F (Θ)]1 + [ksca]2 [F (Θ)]2

[ksca]1 + [ksca]2
, (2.139)

where the individual collections are denoted by subscripts 1 and 2, respectively.
Some of the most important formulae for macroscopically isotropic media with mir-
ror symmetry are collected in Display 2.1. For derivations and further details we
refer to Appendix A, Hovenier et al. (1986), and Mishchenko and Hovenier (1995).

Transforming the flux vectors of the incident and scattered beams, respectively,
by means of the matrix Ac [cf. Eqs. (1.77) and (1.78)] yields the corresponding
vectors in the CP-representation. The scattering matrix in this representation is [cf.
Eq. (1.83)]

F c(Θ) = AcF (Θ)A−1
c . (2.140)

Performing the matrix multiplication yields

F c(Θ)=
1
2


a2(Θ) + a3(Θ) b1(Θ) + ib2(Θ) b1(Θ)− ib2(Θ) a2(Θ)− a3(Θ)
b1(Θ) + ib2(Θ) a1(Θ) + a4(Θ) a1(Θ)− a4(Θ) b1(Θ)− ib2(Θ)
b1(Θ)− ib2(Θ) a1(Θ)− a4(Θ) a1(Θ) + a4(Θ) b1(Θ) + ib2(Θ)
a2(Θ)− a3(Θ) b1(Θ)− ib2(Θ) b1(Θ) + ib2(Θ) a2(Θ) + a3(Θ)

 .

(2.141)
This matrix contains four real functions (on both diagonals) and two complex func-
tions which are complex conjugates. Obviously,

F c(Θ) = F̃ c(Θ). (2.142)

This is a reciprocity relation as follows by substituting the reciprocity relation of
F (Θ) [See Display 2.1] in Eq. (2.140), taking the transpose on both sides and using
the relations

∆3Ãc =
1
2
A−1
c (2.143)

and
Ã

−1

c ∆3 = 2Ac, (2.144)
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which result from Eqs. (1.78) and (1.80). As shown by Eq. (2.141), the matrix
F c(Θ) is symmetric with respect to its centre, i.e.,

F c(Θ) = ΞF c(Θ)Ξ, (2.145)

where

Ξ = Ξ̃ = Ξ−1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (2.146)

This corresponds geometrically to mirror symmetry, as readily follows from Eq.
(2.140) and the mirror symmetry relation of F (Θ) [See Display 2.1], taking into
account that

Ac∆3,4A
−1
c = Ξ. (2.147)

Comparing Eqs. (2.135) and (2.141) we see that, apparently, the price we must
pay for simpler rotation properties, as mentioned in Subsection 1.2.3, is a greater
complexity of the scattering matrix.

2.8 Expansion of Elements of the Scattering Matrix in
Generalized Spherical Functions

2.8.1 Introduction

The elements of the scattering matrix given by Eq. (2.135) are functions of the
scattering angle. For analytic and numerical studies it is often advantageous to
specify each function by means of the coefficients in its expansion in some set of
special functions. For this purpose Legendre polynomials are frequently used when
polarization is neglected. A natural extension to polarized light is obtained by
using so-called generalized spherical functions. This was first pointed out by Kuščer
and Ribarič (1959), who used complex polarization parameters instead of Stokes
parameters [cf. Subsection 1.2.4].

Generalized spherical functions are denoted by P lmn(x) (−1 ≤ x ≤ 1) and defined
and discussed in Appendix B. We always limit m, n and l to be integers such that
m,n = −l,−l + 1, · · · , l and l ≥ 0, or, in other words,

l ≥ max(|m|, |n|) = 1
2
(|m + n|+ |m− n|). (2.148)

For other choices of l one defines P lmn(x) = 0. The generalized spherical functions
have several nice properties, one of which is the orthogonality relation [cf. Eq. (B.9)]

(−1)m+n

∫ +1

−1
dxP lmn(x)P

k
mn(x) =

∫ +1

−1
dxP lmn(x)P

k
mn(x)

∗ =
2

2l + 1
δlk, (2.149)

where k, l ≥ max(|m|, |n|) and δlk = 1 if l = k and vanishes if l �= k.
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A precise description of the expansion of functions in generalized spherical func-
tions is given in Sec. B.2. It is shown there that by assuming∫ +1

−1
d(cosΘ) a1(Θ)2 < ∞ (2.150)

we can expand each element of F (Θ) and F c(Θ) in a series of generalized spherical
functions P lmn(cosΘ) where, in principle, we can choose the integers m and n arbi-
trarily though still in agreement with Eq. (2.148). Since no element of the scattering
matrix exceeds a1 in absolute value, Eq. (2.150) implies∫ +1

−1
d(cosΘ) aj(Θ)2 < ∞,

∫ +1

−1
d(cosΘ) bk(Θ)2 < ∞, (2.151)

where j = 1, 2, 3, 4 and k = 1, 2. The vast majority of the scattering matrices
occurring in applications satisfies Condition (2.150) and hence Conditions (2.151).
From Eq. (2.141), the preceding assumptions and the square integrability of sums
and differences of square integrable functions it follows that the elements of F c(Θ)
as functions of cosΘ are also square integrable on [−1,+1].

Following Siewert (1981, 1982) and Hovenier and Van der Mee (1983) we might
first expand the elements of F c(Θ) and then derive expansions of the elements of
F (Θ). We give the results for F (Θ) in Subsection 2.8.2 and present their derivation,
by means of expanding the elements of F c(Θ), separately in Appendix C. We adopt
the notations for the expansion coefficients used by De Haan et al. (1987) and
Mishchenko et al. (2000).

2.8.2 Expansions for the Elements of F (Θ): Results

We have the following expansions with real coefficients αlj (j = 1, 2, 3, 4) and βlj
(j = 1, 2):

a1(Θ) =
∞∑
l=0

αl1 P l00(x) =
∞∑
l=0

αl1 Pl(x), (2.152)

a2(Θ) + a3(Θ) =
∞∑
l=2

(αl2 + αl3)P
l
22(x), (2.153)

a2(Θ)− a3(Θ) =
∞∑
l=2

(αl2 − αl3)P
l
2,−2(x), (2.154)

a4(Θ) =
∞∑
l=0

αl4 P l00(x) =
∞∑
l=0

αl4 Pl(x), (2.155)

b1(Θ) =
∞∑
l=2

βl1 P l02(x) = −
∞∑
l=2

(
(l − 2)!
(l + 2)!

)1/2

βl1 P 2
l (x), (2.156)

b2(Θ) =
∞∑
l=2

βl2 P l02(x) = −
∞∑
l=2

(
(l − 2)!
(l + 2)!

)1/2

βl2 P 2
l (x), (2.157)
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where x = cosΘ. For later use we put α0
2 = α1

2 = α0
3 = α1

3 = β0
1 = β1

1 = β0
2 = β1

2 = 0.
In Eqs. (2.152)-(2.157), Pl(x) = P l00(x) is the Legendre polynomial of degree l [cf.
Eqs. (B.12)-(B.14)], and P l2(x) are associated Legendre functions [cf. Eqs. (B.19)
and (B.20)]. Some of the generalized spherical functions are presented in Figs. 2.7
and 2.8. Using the functions R2

l (x) and T 2
l (x) defined by Eqs. (B.23) and (B.24),

we get the alternative expansions

a2(Θ) =
∞∑
l=2

(
(l − 2)!
(l + 2)!

)1/2 {
αl2R

2
l (x) + αl3T

2
l (x)

}
, (2.158)

a3(Θ) =
∞∑
l=2

(
(l − 2)!
(l + 2)!

)1/2 {
αl3R

2
l (x) + αl2T

2
l (x)

}
. (2.159)
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Figure 2.7: The generalized spherical functions P l00(x) for l = 1, 2, 3, 4 (left)
and P l02(x) for l = 2, 3, 4, 5 (right) as functions of x = cosΘ.

Using the orthogonality relations Eqs. (B.9) or Eqs. (B.30)-(B.33) one may
express the expansion coefficients in the elements of the scattering matrix. One
finds

αl1 =
2l + 1
2

∫ +1

−1
dx a1(Θ)P l00(x) =

2l + 1
2

∫ +1

−1
dx a1(Θ)Pl(x), (2.160)

αl2 + αl3 =
2l + 1
2

∫ +1

−1
dx {a2(Θ) + a3(Θ)}P l22(x), (2.161)

αl2 − αl3 =
2l + 1
2

∫ +1

−1
dx {a2(Θ)− a3(Θ)}P l2,−2(x), (2.162)

αl4 =
2l + 1
2

∫ +1

−1
dx a4(Θ)P l00(x) =

2l + 1
2

∫ +1

−1
dx a4(Θ)Pl(x), (2.163)
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Figure 2.8: The generalized spherical functions P l22(x) (left panel) and
P l2,−2(x) (right panel) for l = 2, 3, 4, 5 as functions of x = cosΘ.
The functions P l2,−2(x) are obtained from P l22(x) by mirror-
ing with respect to the vertical line through zero and (only
for l = 3 and l = 5) the horizontal line through zero, since
P l2,−2(x) = (−1)lP l22(−x).

βl1 =
2l + 1
2

∫ +1

−1
dx b1(Θ)P l02(x)

= −2l + 1
2

(
(l − 2)!
(l + 2)!

)1/2 ∫ +1

−1
dx b1(Θ)P 2

l (x), (2.164)

βl2 =
2l + 1
2

∫ +1

−1
dx b2(Θ)P l02(x)

= −2l + 1
2

(
(l − 2)!
(l + 2)!

)1/2 ∫ +1

−1
dx b2(Θ)P 2

l (x), (2.165)

where x = cosΘ. Note that α0
1 = 1 in view of Eq. (2.137). Alternatively, we have

αl2 =
2l + 1
2

(
(l − 2)!
(l + 2)!

)1/2 ∫ +1

−1
dx {a2(Θ)R2

l (x) + a3(Θ)T 2
l (x)}, (2.166)

αl3 =
2l + 1
2

(
(l − 2)!
(l + 2)!

)1/2 ∫ +1

−1
dx {a3(Θ)R2

l (x) + a2(Θ)T 2
l (x)}. (2.167)

An important quantity in many radiative transfer problems is the so-called asym-
metry parameter or average of the cosines of the scattering angles

〈cosΘ〉 = 1
2

∫ π

0
dΘ a1(Θ) cosΘ sinΘ =

1
2

∫ +1

−1
dxxa1(Θ) =

1
3

α1
1. (2.168)
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2.9 Expansion Coefficients for Rayleigh Scattering

As the major example of the expansion of the elements of the scattering matrix in
generalized spherical functions, we consider Rayleigh scattering with depolarization
effects. Using formulae of Subsection 2.6.1 and Eqs. (2.134) and (2.135) it is readily
verified that we can write in this case

a1(Θ) =
3
4

c (1 + x2) + 1− c, (2.169)

a2(Θ) =
3
4

c (1 + x2), (2.170)

a3(Θ) =
3
2

c x, (2.171)

a4(Θ) =
3
2

d x, (2.172)

b1(Θ) =
3
4

c (−1 + x2), (2.173)

b2(Θ) = 0, (2.174)

where

c =
1
5

(
2 + 3

B

A

)
=

2(1− ρn)
2 + ρn

, (2.175)

d =
B

A
=

2(1− 2ρn)
2 + ρn

=
5 c− 2

3
. (2.176)

By using Eqs. (2.160)-(2.165) or by direct comparison with Eqs. (2.152)-(2.157) it is
easy to derive that in this case α0

1 = 1, α2
1 = c/2, α2

2 = 3 c, α1
4 = 3 d/2, β2

1 = c
√
6/2,

and all remaining expansion coefficients vanish. Using that 0 ≤ ρn ≤ (6/7) [cf. Eq.
(2.111)], we have

1
10

≤ c ≤ 1, (2.177)

−1
2
≤ d ≤ 1. (2.178)

2.10 Some Properties of the Expansion Coefficients

The fundamental importance of the expansion coefficients (αlj for j = 1, 2, 3, 4 and βlj
for j = 1, 2) for single and multiple scattering problems prompted Van der Mee and
Hovenier (1990) to conduct a comprehensive study of their properties. Referring to
their paper for a more extensive account, including derivations, we restrict ourselves
to the following.

Some of the main types of properties of these expansion coefficients are summa-
rized in Display 2.2. Several types of properties can be distinguished. First of all,
in absolute value each coefficient with subscript l equals at most 2l+1. The bounds
on |βl1|/(2l + 1) and |βl2|/(2l + 1) can, however, be sharpened to 1

2

√
2 � 0.707 and
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Display 2.2: Some properties of expansion coefficients.

1. |αl1| ≤ 2l + 1, |αl2| ≤ 2l + 1, |αl3| ≤ 2l + 1, |αl4| ≤ 2l + 1

max(|βl1|, |βl2|) ≤ (2l + 1)
(

(l−2)!
(l+2)!

)1/2
× max

−1≤x≤1
|P 2
l (x)| < 0.7(2l + 1)

2. |βl1 ± βl2 ∓ αl4| ≤ 2l + 1, l ≥ 2

|αl2 ∓ 1
2βl1 ∓ 1

2βl2| ≤ 2l + 1, l ≥ 2

|αl3 ∓ 1
2βl1 ∓ 1

2βl2| ≤ 2l + 1, l ≥ 2
3. For arbitrary 0 ≤ σ ≤ 1

(2l + 1− σαl1)(2l + 1− σαl2)− σ2βl1
2 ≥ 0

(2l + 1− σαl4)(2l + 1 + σαl3)− σ2βl2
2 ≥ 0

(2l + 1 + σαl4)(2l + 1− σαl3)− σ2βl2
2 ≥ 0

(2l + 1− σαl4)(2l + 1− σαl3) + σ2βl2
2 ≥ 0

4.
∑∞
l=0

2
2l+1

(
αl1

2 − αl4
2 − βl1

2 − βl2
2
)
≥ 0∑∞

l=0
2

2l+1

(
2αl1

2 − αl2
2 − αl3

2 − βl1
2 − βl2

2
)
≥ 0

5. For spheres:

αl2 =
∑l
k=0 clkξk,

where ξk = αk1 if l − k is even and ξk = αk4 if l − k is odd, and

αl3 =
∑l
k=0 clkηk,

where ηk = αk4 if l − k is even and ηk = αk1 if l − k is odd. Also

αl2 ± αl3 =
∑l
k=0 (±1)l−kclk(αk1 ± αk4).

Here

clk =
(−1)l−k(4l + 2)(l − 2)!

(l + 2)!
{l(l + 1)− 3k(k + 1)− 2}, 0 ≤ k ≤ l − 1,

cll =
l(l − 1)

(l + 2)(l + 1)
.

even further to ((l − 2)!/(l + 2)!)1/2 max
−1≤x≤1

|P 2
l (x)|, which is, rounded to 3 decimals,

0.612 for l = 2 and 0.527 for l = 3. The second type concerns linear combinations
of coefficients for the same l ≥ 2. Display 2.2 shows 12 of these relationships, which
may be used to derive further inequalities for sums and differences of expansion
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coefficients. The four inequalities of the third type are rather involved. The last
one of them is immediate from the inequalities of the first type, but the others are
rather difficult to derive. Type 4 refers to series of expansion coefficients; only two
examples are given in Display 2.2, where for identical spheres equality signs hold.
The fifth type of property holds for a collection of spheres (identical or not). They
were originally obtained by Herman (1965a, 1965b) and relate αl2 ± αl3 to αk1 ± αk4
where 0 ≤ k ≤ l, and hence αl2 and αl3 to αk1 and αk4 where 0 ≤ k ≤ l. Thus all
expansion coefficients for spheres can, in principle, be computed without using gen-
eralized spherical functions other than associated Legendre functions. Alternatively,
the relations may be used for checking purposes.

For a collection of spheres having different sizes there are, in principle, two
ways to compute the expansion coefficients αlj (j = 1, 2, 3, 4) and βlj (j = 1, 2).
The first method consists of first computing the elements of the scattering matrix
for a monodisperse collection of spheres, i.e., a collection of spheres of the same
size, using Eqs. (2.115)-(2.119) as well as expressions for the Mie coefficients a†n
and b†n, then integrating them with respect to the particle radius using one of the
size distributions given in Appendix D, and finally applying the general procedure
described in Subsection 2.8.2 to find αlj (j = 1, 2, 3, 4) and βlj (j = 1, 2). In the
second method these expansion coefficients for a monodisperse collection of spheres
are obtained directly from the Mie coefficients a†n and b†n using formulae involving
the Clebsch-Gordon coefficients appearing in quantum angular momentum theory.
An integration with respect to the particle radius with one of the size distribution
functions n(r) given in Appendix D as a weight factor then yields the coefficients αlj
(j = 1, 2, 3, 4) and βlj (j = 1, 2) for a collection of spheres with different sizes.

Early work on the second method was done by Herman (1965a, 1965b), Domke
(1975) and Bugayenko (1976). Both procedures were used by De Rooij and Van der
Stap (1984) to obtain coefficients αlj (j = 1, 2, 3, 4) and βlj (j = 1, 2) numerically for
four test models. The second method was found to be about twice as fast as the
first method for the cases considered but should be restricted to smaller particle sizes
due to the larger computer memory requirements. For this reason De Rooij and Van
der Stap (1984) have recommended the use of the first method. Loskutov (1987),
however, has applied Mie series expansions for S1(Θ)±S2(Θ) instead of Eqs. (2.116)
and (2.117) to somewhat reduce the memory requirements of the second method.

Expansion coefficients for four collections of spheres, called Models A, B, C and
D, were computed by De Rooij and Van der Stap (1984). The specifications of these
models are given in Table 2.1 [cf. Appendix D], along with values of the effective size
parameter, xeff, the effective variance, veff, and the asymmetry parameter 〈cosΘ〉.
Model A was used by Kawabata et al. (1980) to analyze Pioneer Venus polarization
data for Venus haze particles at the wavelength λ = 0.55µm. Model B was de-
duced for Venus cloud particles by Hansen and Hovenier (1974a) from Earthbound
polarimetry at λ = 0.55µm. Model C is Deirmendjian’s (1969) water haze L for
λ = 0.70 µm. Model D has a large effective size parameter and sharp features. Ex-
pansion coefficients for collections of spheres were also computed by Vestrucci and
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Table 2.1: Size distribution parameters for six collections of spheres. The
gamma size distribution [See Eq. (D.5)] is used, except for Model
C where the modified gamma distribution [See Eq. (D.6)] is
employed. In all six models, nr is the real part of the refractive
index and the imaginary part is zero. The asymmetry parameter
is tabulated in the last column.

Model nr λ
(µm)

parameters of
size distribution

xeff veff 〈cosΘ〉

A 1.45 0.55 a = 0.23µm
b = 0.18

2.628 0.180 0.72100

B 1.44 0.55 a = 1.05µm
b = 0.07

11.995 0.070 0.71800

C 1.33 0.70 rc = 0.07µm
α = 2, γ = 0.5

4.320 0.418 0.80420

D 1.33 0.70 a = 2.2µm
b = 0.07

19.747 0.070 0.80188

II 1.44 0.951 a = 0.2µm
b = 0.07

1.321 0.070 0.48510

III 1.43 0.782 a = 1.05µm
b = 0.07

8.437 0.070 0.67742

Siewert (1984). The specifications of two of their models, Models II and III, are also
given in Table 2.1.

The expansion coefficients computed by De Rooij and Van der Stap (1984) and
by Vestrucci and Siewert (1984) have been found to be correct with a deviation of at
most one unit of the last significant figure at various occasions, e.g. by Mishchenko
(1987). Moreover, for all six collections of spheres and for l ≤ 10 the expansion
coefficients fulfill the equations of part 5 of Display 2.2 with a deviation of at most
one unit of the last significant figure.

Benchmark tables for the expansion coefficients for monodisperse and polydis-
perse ensembles of randomly oriented spheroids, cylinders and bispheres have been
published by Kuik et al. (1992), Mishchenko (1991), Mishchenko and Mackowski
(1996), Mishchenko et al. (1996), and Mishchenko et al. (2002).

Problems

P2.1 Show that the matrix 
1 − cosΘ 0 0

−1 cosΘ 0 0
0 0 0 0
0 0 0 0


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with 0 < Θ < π transforms any completely polarized beam into a completely
polarized beam, but that no particle exists for which this matrix is its scat-
tering matrix for a fixed orientation.

P2.2 Show that the sums and differences of the elements in the first and second
column of the scattering matrix F p of one particle in a particular orientation
and for an arbitrary direction of the scattered light satisfy the two equations

(F p11 ± F p12)
2 − (F p21 ± F p22)

2 − (F p31 ± F p32)
2 − (F p41 ± F p42)

2 = 0,

and similarly for all 6 combinations involving the first row or the first column.

P2.3 Prove for the scattering matrix of an arbitrary collection of particles:

(a)
(F c11 − F c21)

2 ≥ (F c12 − F c22)
2 + (F c13 − F c23)

2,

(b)
F c11 − F c22 ≥ |F c33 − F c44|.

P2.4 A parallel beam of polarized light is scattered by a collection of randomly
oriented very small particles. What is the degree of circular polarization of
the light scattered once under 90◦?

P2.5 In lidar and remote sensing studies of the atmosphere one is often interested
in the linear depolarization ratio δL and the circular depolarization ratio δC .
If the incident beam is 100% linearly polarized parallel to a plane through the
direction of incidence, then δL is the ratio of the flux of the cross-polarized
component of the backscattered (Θ = π) light relative to that of the copolar-
ized component. Similarly, we can consider a fully circularly polarized incident
beam and define δC as the ratio of the same-helicity component of the backscat-
tered flux relative to that of the opposite-helicity component. Choose a plane
through the directions of incidence as a reference plane for Stokes parameters.

(a) Show that δL = δC = 0 for spheres.

(b) Show that for randomly oriented particles δL = (F c11 − F c22)/(F
c
11 + F c22).

(c) Show that for a mixture of particles and their mirror particles in equal
numbers and in random orientation we have

δC =
F c11 + F c44
F c11 − F c44

=
2δL

1− δL
.

P2.6 Consider a collection of randomly oriented spheroids with scattering matrix
F c.

(a) What is the physical meaning of −F c21/F
c
11?

(b) What is the physical meaning of F c22/F
c
11 if F c12 vanishes for a certain

scattering angle?
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P2.7 Some polarization data of Saturn and Titan have been analyzed assuming a
scattering matrix of the form given by Eqs. (2.135) with a1(Θ) = a2(Θ) =
a3(Θ) and with b1(Θ) not identically zero. Show that such a scattering matrix
is physically not possible for an isotropic medium with mirror symmetry.

P2.8 Compute the Cloude coherency matrix T of the scattering matrix F given
by Eq. (2.135). Show that the eigenvalues of T are nonnegative.

P2.9 Derive the expansion coefficients for expansions of the elements of the scatter-
ing matrix in generalized spherical functions in the case of Rayleigh scattering
with depolarization.

P2.10 Show that the expansion of the scattering matrix in generalized spherical
functions for a macroscopically isotropic medium with mirror symmetry im-
plies that b1 = b2 = 0 for strict forward (Θ = 0) and strict backward (Θ = π)
scattering.

Answers and Hints

P2.1 The transformed beam is always completely polarized, since its first and sec-
ond Stokes parameter have the same absolute value. Equation (A.47) is not
fulfilled, since e.g. 1− 1 �= 1− cos2 Θ for 0 < Θ < π.

P2.2 Use Eq. (A.47) for the squares and Fig. A.1 for the products of the elements
concerned.

P2.3 (a) Use Eq. (A.87) and omit (F c14 − F c24)
2 ≥ 0.

(b) Use Eq. (A.79) and (A.89).

P2.4 Zero, according to Eqs. (2.89) and (2.90).

P2.5 Consider an incident beam with Stokes parameters {1, 1, 0, 0}. Then Eqs.
(2.53) and (2.71) yield for Θ = π

δL =
F c11 − F c22
F c11 + F c22

,

which vanishes for spheres according to Eq. (2.131). Consider an incident
beam with Stokes parameters {1, 0, 0, 1}. Then Eqs. (2.73) and (2.76) give

δC =
F c11 + F c44
F c11 − F c44

=
F c11 − F c22

F c22
,

which vanishes for spheres and equals 2δL/(1−δL) for the mixture considered,
since δL and δC both depend only on F c22/F

c
11.

P2.6 (a) The ratio −F c21/F
c
11 is the degree of linear polarization ps of the scattered

light if the incident light is unpolarized.
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(b) The degree of linear polarization, ps, of the scattered light if the inci-
dent light is completely linearly polarized perpendicular to the scattering
plane.

P2.7 Using the first two inequalities for arbitrary Θ in Display 2.1, we find that if
a1(Θ) = a2(Θ) = a3(Θ), we must have a3(Θ) = a4(Θ) and b1(Θ) = b2(Θ) = 0.
Alternatively, one can consider an incident beam with flux vector {1, 0, 1, 0}.
The degree of linear polarization of the scattered light for a scattering matrix
of the type given by Eq. (2.135) then is {b2

1 + a2
3}1/2/a1, which is larger than

one if a1 = a3 and b1 �= 0.

P2.8 The four eigenvalues of T are

λ1 =
1
2
(a1 + a2) +

1
2
{
(a3 + a4)2 + 4(b2

1 + b2
2)
}1/2

,

λ2 =
1
2
(a1 + a2)−

1
2
{
(a3 + a4)2 + 4(b2

1 + b2
2)
}1/2

,

λ3 =
1
2
(a1 − a2 + a3 − a4),

λ4 =
1
2
(a1 − a2 − a3 + a4).

P2.9 See Sec. 2.9.

P2.10 Use Eqs. (2.156) and (2.157) in conjunction with Eq. (B.19), which shows
that the associated Legendre functions P 2

l (x) vanish for cosΘ = ±1.



Chapter 3

Plane-parallel Media

3.1 Geometrical and Optical Characteristics

In Chapters 1 and 2 we have primarily discussed two topics: the description of
quasi-monochromatic polarized light by means of an intensity vector or flux vector
and single scattering processes within macroscopically isotropic media with mirror
symmetry. This has led to the concept of a scattering matrix which transforms the
flux vector of an incident beam into the flux vector of the scattered beam, where
both flux vectors consist of four Stokes parameters and the scattering plane acts as
a plane of reference. Generally, the scattering matrix depends on the position in the
medium and on the scattering angle. The single scattering process in the medium
concerned is described by a scattering coefficient and by a scattering matrix of the
form (2.135) where the 1, 1-element is normalized by Eq. (2.137).

In this chapter we will develop the formalism to describe multiple scattering
of polarized light in a medium, which, unless stated otherwise, is assumed to be
macroscopically isotropic with mirror symmetry and to be plane-parallel. By a
plane-parallel medium we mean a medium which is stratified in parallel planes of
infinite horizontal extent such that in each plane all macroscopic physical properties
are the same. A plane-parallel medium may be bounded by two parallel planes, in
which case it is called a finite medium or a slab. For the medium under consideration
we will introduce the so-called phase matrix in Sec. 3.2 and discuss properties of
its elements in Sec. 3.3. Fourier series expansions can be made to deal with the
azimuth dependence of the phase matrix. Such so-called Fourier decompositions of
the phase matrix and their properties are treated in Sec. 3.4.

We note that describing a planetary atmosphere, an ocean or a stellar atmo-
sphere as plane-parallel usually constitutes a good approximation, since in most ap-
plications the curvature of the medium under consideration is very small and hence
locally the medium may be considered to be plane-parallel for almost all directions
of illumination and observation. This is the situation prevailing in most of this book.
There exist a few applications, such as the description of twilight phenomena, where
the approximately spherical geometry of the planet comes to the fore, but these
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applications will not be discussed in this book [See Van de Hulst (1980), Sections
19.2.2 and 20.1]. For interpreting observations of the brightness and polarization of
the light reflected by a planetary atmosphere, only the part which is both illumi-
nated and visible is relevant. For such interpretations an integration over directions
of illumination and observation may be necessary when the atmosphere has been
modelled as locally plane-parallel. For general numerical methods to integrate over
the disk of a horizontally homogeneous spherical planet as viewed from Earth we
refer to Horak (1950), Hansen and Hovenier (1974a), Van de Hulst (1980), De Rooij
(1985), and Stam, De Rooij, and Hovenier (2004).

Historically, the different media under consideration have led to natural geomet-
rical descriptions of different kinds for the directions of propagation of the light. Let
us assume that the medium is a planetary atmosphere, the situation we have in mind
in most of the book. It is then natural to choose a global right-handed Cartesian
coordinate system in which some horizontal plane is the xy-plane and the positive
z-axis is directed towards the local zenith. Hence, the negative z-axis is directed
towards the centre of the planet. At an arbitrary point within the medium, or “at-
mosphere” as we will often say, directions are specified by the angles ϑ and ϕ, where
ϑ is measured from the positive z-direction. It is important to specify explicitly the
sense in which the azimuthal angle ϕ is measured [See Hovenier, 1969], although
this is not always done in publications dealing with the transfer of polarized light.
In this book ϕ is measured clockwise when looking in the positive z-direction. The
assumptions we have made imply rotational symmetry of the medium about the
vertical so that the zero direction of the azimuth is arbitrary, or, in other words,
essentially only differences in azimuth are important. Instead of ϑ, we further use
the direction cosine u = − cosϑ and its absolute value µ = |u|. These variables
are restricted to the following ranges: 0 ≤ ϑ ≤ π, 0 ≤ ϕ < 2π, −1 ≤ u ≤ 1 and
0 ≤ µ ≤ 1 [See Fig. 3.1]. Note that positive values of u correspond to downward
directions, in agreement with the conventions used by Sobolev (1972) and Van de
Hulst (1980). If a direction is specified by (µ, ϕ), some extra specification will be
given to indicate whether light travelling upward or downward is meant.

Let us now consider radiation inside a macroscopically isotropic plane-parallel
atmosphere with mirror symmetry. The radiation may be due to external sources,
like the Sun, or to internal sources. The atmosphere contains small particles (in-
cluding molecules) which absorb and scatter radiation. We assume the particles
to be at sufficiently large distances from each other so that each particle is in the
far field for scattering by any other particle. To describe the radiative properties
of the medium we use certain mean (i.e., volume averaged) quantities, such as the
extinction, scattering and absorption coefficients kext, ksca and kabs, respectively (cf.
Sec. 2.5), and the scattering matrix F (Θ) [See Eqs. (2.135)-(2.137)], where Θ is the
scattering angle. Here

kext = ksca + kabs (3.1)
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Figure 3.1: Explanation of optical depth, τ , optical thickness, b, and direc-
tion cosine, u, for a plane-parallel medium.

and all three coefficients may depend on position in the medium. The fraction

a =
ksca

kext

, (3.2)

which by definition satisfies 0 ≤ a ≤ 1, is called the albedo of single scattering. It
represents the fraction of the light lost from an incident beam in an elementary
volume-element as a result of scattering. If a = 1 throughout the medium, it is
called a conservative medium.

The z-coordinate is the only position coordinate on which the macroscopic phys-
ical properties of the medium may depend. In radiative transfer studies it is cus-
tomary to replace the z-coordinate by the dimensionless quantity

τ(z) =
∫ ∞

z
dz′ kext(z′), (3.3)

which is called the optical depth and varies from zero to some finite value called the
optical thickness, b. The atmosphere of a planet like the Earth may extend to large
distances, but, as depicted in Fig. 3.1, we can model the atmosphere by a specific
level called the top for which τ = 0, and one called the bottom for which z = 0
and τ(0) = b. Hence, there is no extinction (no matter) above the top. If there is
no clear bottom surface, like in the case of the giant (Jovian) planets, an arbitrary
level can be chosen as the reference level where z = 0 and τ = b. The optical
thickness is sometimes so large that the atmosphere has in good approximation the
same radiative transfer properties as a semi-infinite atmosphere, i.e., one having a
top surface but no bottom surface so that b =∞. It follows from Eq. (3.3) that

dτ(z)
dz

= −kext(z). (3.4)
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In many books and papers the optical thickness is called the optical depth, but we
shall not do so. The value of z in an atmosphere is usually referred to as the altitude.

As a result of the preceding assumptions, the scattering matrix F (Θ) and the
albedo of single scattering a can only be functions of the optical depth τ . They do
not depend on any other position coordinate. If F (Θ) and a do not depend on τ ,
the medium is called a homogeneous medium. Otherwise, it is called inhomogeneous.
So a medium with the same type of scatterer at each level is called homogeneous,
although the number density of the scatterers may depend on altitude. A particular
type of inhomogeneity occurs in a so-called multilayered medium. This consists of
a finite number of different slabs, each of which is homogeneous. A multilayered
medium is a popular model of a planetary atmosphere when one wishes to take into
account altitude variations of aerosols and clouds.

3.2 The Phase Matrix

To describe the transfer of polarized light in the plane-parallel medium under con-
sideration, we take a small element of volume dV somewhere in the medium. As
explained in Sec. 2.7, the scattering of light by dV can be described by [cf. Eq.
(2.138)]

Φ =
ksca dV

4πR2
F (Θ)Φ0, (3.5)

where πΦ0 is the flux vector of the incident light, F (Θ) is the scattering matrix
pertinent to the particles in dV and πΦ is the flux vector of the light scattered
in a direction Θ with respect to the direction of the incident light. Note that πΦ
should be measured at a point at a distance R from dV as if there were no extinction
between dV and this point. Here the scattering plane acts as a plane of reference
for the Stokes parameters. However, in the plane-parallel medium considered there
is extinction and light may be scattered more than once, so that, generally, many
distances, directions and scattering planes are involved. To deal with this problem
we proceed as follows.

We construct a local right-handed Cartesian coordinate system, fixed in space,
having its origin O in the volume element [See Fig. 3.2] and the same spatial
orientation as the global coordinate system. The direction of a beam is specified by
the angle ϑ (0 ≤ ϑ ≤ π) which it makes with the positive z-axis, and the azimuth
angle ϕ (0 ≤ ϕ < 2π) which is measured in the clockwise sense when looking in the
direction of the positive z-axis. The plane through the beam and the z-axis is then
called the meridian plane of the beam.

When considering the single scattering of a quasi-monochromatic lightbeam by
the volume element, we describe both the incident and the scattered beam by vectors
such that for both beams the �-axis is directed along the meridian plane, the r-axis
is directed perpendicular to the meridian plane and the vector product r × � is
pointing in the direction of propagation of the beam. For either beam the meridian
plane acts as the plane of reference for the Stokes parameters. In Figs. 3.2 and
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Figure 3.2: Scattering by a local volume element at O. The points N ,
P1 and P2 are located on the unit sphere. The direction of
the incident light is OP1(ϑ′, ϕ′). The scattered light is in the
direction OP2(ϑ, ϕ). Here 0 < ϕ′ − ϕ < π [After Hovenier and
Van der Mee (1983), Fig. 2].

3.3 the directions of the incident and scattered beams are represented by points P1

and P2, respectively, on the surface of a unit sphere having O as its centre; in other
words, P1 and P2 are the endpoints of the vectors r×� for the incident and scattered
beams, respectively. Let us now parametrize the direction of the incident beam by
the angles ϑ′ and ϕ′ and the direction of the scattered beam by the angles ϑ and ϕ,
and let us denote the scattering angle by Θ (0 ≤ Θ ≤ π). If we denote the point
where the positive z-axis intersects with the unit sphere by N , then the angles ϑ,
ϑ′ and Θ are the sides of the spherical triangle NP1P2 in Fig. 3.2 or Fig. 3.3. This
means that the rules of spherical trigonometry can be applied to the sides and angles
of the spherical triangle NP1P2 [See e.g. Smart, 1949]. The intensity vector of the
incident beam is denoted by I inc(ϑ′, ϕ′).

Geometrically, the following four situations should be treated separately. First,
if 0 < ϕ′ − ϕ < π, the scattering plane (i.e., the plane through the directions of
the incident and the scattered beam) makes the angle σ1 (at P1) with the meridian
plane of the incident beam and the angle σ2 (at P2) with the meridian plane of the
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Figure 3.3: Same as Fig. 3.2, but here 0 < ϕ− ϕ′ < π [After Hovenier and
Van der Mee (1983), Fig. 3].

scattered beam, where 0 < σ1, σ2 < π. As a result, we obtain the situation depicted
in Fig. 3.2 where the angles of the spherical triangle NP1P2 are σ1, σ2 and ϕ′ − ϕ.
Writing I inc(ϑ′, ϕ′)dΩ′ for the flux vector of the incident light and using Eqs. (2.5)
and (3.5) we find that the energy per unit solid angle, per unit frequency interval
and per unit time of the light scattered by a unit volume in the direction (ϑ, ϕ) is
the first element of the vector

S(ϑ, ϕ;ϑ′, ϕ′) =
ksca

4π
Z(ϑ, ϕ;ϑ′, ϕ′)I inc(ϑ′, ϕ′)dΩ′, (3.6)

where the phase matrix Z(ϑ, ϕ;ϑ′, ϕ′) is defined as

Z(ϑ, ϕ;ϑ′, ϕ′) = L(π − σ2)F (Θ)L(−σ1) (3.7)

and [cf. Eq. (1.51)]

L(π − α) = L(−α) =


1 0 0 0
0 cos 2α − sin 2α 0
0 sin 2α cos 2α 0
0 0 0 1

 . (3.8)
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Clearly, the second, third and fourth components of S(ϑ, ϕ;ϑ′, ϕ′) are analogous
to the Stokes parameters Q, U and V , respectively, and thus specify the state of
polarization of the scattered light. The occurrence of the rotation matrices may be
explained as follows. First a rotation over the angle −σ1 is required to transform
the plane of reference of the incident beam from the meridian plane of the incident
beam into the scattering plane and then a rotation over the angle π−σ2 to transform
the plane of reference of the scattered beam from the scattering plane into the
meridian plane of the scattered beam. The two rotations amount to premultiplying
the intensity vector of the incident beam (with its meridian plane as the plane
of reference) by L(−σ1) and the intensity vector of the scattered beam (with the
scattering plane as the plane of reference) by L(π−σ2) or, equivalently, by L(−σ2),
since this matrix is periodic with period π.

In the second situation we have π < ϕ′−ϕ < 2π or, equivalently, 0 < ϕ−ϕ′ < π.
Since a spherical triangle has no sides larger than π, we do not consider Fig. 3.2 in
the second situation but instead we use Fig. 3.3. We should now take σ1 and σ2

between −π and 0 when executing the rotations of the coordinate axes in deriving
a phase matrix of the form (3.7). Consequently, ϑ, ϑ′ and Θ are the sides of the
spherical triangle NP1P2 in Fig. 3.3 and its angles are the positive quantities −σ1,
−σ2 and ϕ−ϕ′. In either situation, the phase matrix can, according to Eqs. (2.135),
(3.7) and (3.8), be expressed in terms of the scattering matrix as

Z(ϑ, ϕ;ϑ′, ϕ′)

=


a1(Θ) b1(Θ)C1 −b1(Θ)S1 0

b1(Θ)C2 C2a2(Θ)C1 − S2a3(Θ)S1 −C2a2(Θ)S1 − S2a3(Θ)C1 −b2(Θ)S2

b1(Θ)S2 S2a2(Θ)C1 + C2a3(Θ)S1 −S2a2(Θ)S1 + C2a3(Θ)C1 b2(Θ)C2

0 −b2(Θ)S1 −b2(Θ)C1 a4(Θ)

 ,

(3.9)

where
C1 = cos 2σ1, C2 = cos 2σ2

S1 = sin 2σ1, S2 = sin 2σ2

}
. (3.10)

Note that the trigonometric functions of the double angles can always be obtained
from those of the single angles by using

cos 2σ = 2 cos2 σ − 1 (3.11)

and
sin 2σ = 2 sinσ cosσ, (3.12)

or

sin 2σ =

{
2(1− cos2 σ)1/2 cosσ if 0 < ϕ′ − ϕ < π

−2(1− cos2 σ)1/2 cosσ if π < ϕ′ − ϕ < 2π,
(3.13)

where σ is σ1 or σ2. Comparing Eqs. (2.135) and (3.9) shows that only the corner
elements of F (Θ) remain unchanged under the rotations of the reference planes. In
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particular, the 1, 1-element of the phase matrix is the scattering function or phase
function, just like the 1, 1-element of the scattering matrix. It is also clear that the
state of circular polarization of the incident light does not affect the intensity of the
scattered radiation after one scattering event.

To compute Z(ϑ, ϕ;ϑ′, ϕ′) by means of Eq. (3.7) we should relate the angles ϑ,
ϕ, ϑ′ and ϕ′ appearing on the left-hand side to the angles σ1, σ2 and Θ appearing
on the right-hand side. This can be done by using rules of spherical trigonometry
[See e.g. Smart, 1949]. Applying the cosine rule for Θ, ϑ and ϑ′, successively, in
Figs. 3.2 or 3.3, we find

cosΘ = cosϑ cosϑ′ + sinϑ sinϑ′ cos(ϕ′ − ϕ), (3.14)

cosσ1 =
cosϑ− cosϑ′ cosΘ

sinϑ′ sinΘ
, (3.15)

cosσ2 =
cosϑ′ − cosϑ cosΘ

sinϑ sinΘ
, (3.16)

which in conjunction with Eqs. (3.10)-(3.13) allows the calculation of all functions
of σ1 and σ2 occurring on the right-hand side of Eq. (3.9) for given values of ϑ, ϑ′,
ϕ and ϕ′. If we apply the sine rule to the spherical triangle of Fig. 3.2 or Fig. 3.3,
we find the relation

sinσ1

sinϑ
=

sinσ2

sinϑ′ =
sin(ϕ′ − ϕ)

sinΘ
, (3.17)

which can be used instead of Eq. (3.13) to determine sin 2σ1 and sin 2σ2 with the
help of Eq. (3.12). Using the variables

u = − cosϑ, u′ = − cosϑ′, (3.18)

we can write Eqs. (3.14)-(3.16) in the form

cosΘ = uu′ + (1− u2)1/2(1− u′2)1/2 cos(ϕ− ϕ′), (3.19)

cosσ1 =
−u + u′ cosΘ

(1− u′2)1/2(1− cos2 Θ)1/2
, (3.20)

cosσ2 =
−u′ + u cosΘ

(1− u2)1/2(1− cos2 Θ)1/2
. (3.21)

The phase matrix can now be written as a function matrix of three variables, viz.

Z(u, u′, ϕ− ϕ′) = L(−σ2)F (Θ)L(−σ1). (3.22)

In both situations considered, the phase matrix Z(u, u′, ϕ− ϕ′) for any given scat-
tering matrix of the form (2.135) can be computed from Eqs. (3.9)-(3.13) by using
Eqs. (3.19)-(3.21). Instead of Eq. (3.13) one can use Eq. (3.12) and [cf. Eq. (3.17)]

sinσ1

(1− u2)1/2
=

sinσ2

(1− (u′)2)1/2
= − sin(ϕ− ϕ′)

(1− cos2 Θ)1/2
. (3.23)
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Figure 3.4: Scattering by a local volume element at O. The points P1, P2

and P3 are located on a unit sphere and, together with the local
vertical, in one plane. The direction of the incident light is OP1.
The scattered light is in the direction OP2 (ϕ′ − ϕ = 0) or OP3

(ϕ′ − ϕ = π).

In the third situation ϕ′ − ϕ equals 0 or π [See Fig. 3.4]. Thus, the meridian
plane of the incident beam and the meridian plane of the scattered beam coincide
with the scattering plane. In this case no rotations of reference planes are necessary,
or, equivalently, L(−σ1) and L(−σ2) both reduce to the unit matrix, so that

Z(u, u′, 0) = Z(u, u′, π) = F (Θ). (3.24)

The fourth and final situation to be considered concerns perpendicular directions.
For light travelling in a perpendicular direction (up or down) there is no implicit
meridian plane. If either the scattered beam or the incident beam travels in a
perpendicular direction, we can use the meridian plane of the other beam as a
plane of reference for the Stokes parameters of both beams. This plane coincides
with the scattering plane, so that Eq. (3.24) holds again. If both beams travel in
perpendicular directions, we can choose an arbitrary plane through those directions
as the meridian plane for both beams and thus as the scattering plane, so that also
in this case Eq. (3.24) holds, where Θ = 0 if both beams point in the same direction
and Θ = π if they point in opposite directions.
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For reasons of continuity it is clear that the results for the phase matrix in
situations 3 and 4 can also be obtained from those for the first and second situations
by taking the appropriate limits. Note that in all four situations Eq. (3.6) can be
rewritten as

S(u, u′, ϕ− ϕ′) =
ksca

4π
Z(u, u′, ϕ− ϕ′)I inc(u′, ϕ′) dΩ′. (3.25)

The normalization of the phase matrix is determined by Eq. (2.137). If polar-
ization is ignored, only intensities instead of vectors are considered. This gives an
enormous simplification of the phase matrix, since then, in view of Eq. (3.9), the
scattering function a1(Θ) suffices to describe the scattering process.

3.3 Properties of the Elements of the Phase Matrix

The phase matrix given by Eq. (3.22) describes the single scattering of radiation by
a volume-element in a plane-parallel medium and, according to Eq. (3.9), contains
in general 14 different elements that do not vanish identically and depend on three
variables. As mentioned in Sec. 2.4, it is important to seek principles and relation-
ships that can be used to reduce the number of independent quantities involved.
This was discussed in Chapter 2 for the scattering matrix and will be discussed in
this section for the phase matrix. Subsection 3.3.1 is devoted to symmetry rela-
tions, i.e., relations due to reciprocity, mirror symmetry and the effect of turning
a horizontal plane upside down. In Subsection 3.3.2 we consider interrelations for
elements of the phase matrix, i.e., relations in which only different elements having
the same values for the arguments u, u′ and ϕ−ϕ′, are involved. In Subsection 3.3.3
relations are discussed that hold for some special directions, i.e., for some special
values of the variables u, u′ and ϕ− ϕ′.

3.3.1 Symmetry Relations

As shown in Sec. 2.7 [See Display 2.1], the scattering matrix in the medium under
consideration satisfies the reciprocity relation

F (Θ) = ∆3F̃ (Θ)∆3 (3.26)

and the mirror symmetry relation

F (Θ) = ∆3,4F (Θ)∆3,4, (3.27)

where ∆3 = diag(1, 1,−1, 1), ∆3,4 = diag(1, 1,−1,−1) and a tilde above a matrix
denotes transposition. Similar symmetry relations can be derived for the phase
matrix. The following treatment based on algebraic as well as symmetry arguments
largely follows the discussion given by Hovenier (1969).

It is clear from Eq. (3.19) that there are three basic transpositions of the variables
of the phase matrix which leave the scattering angle and thus the scattering matrix
unaltered, namely
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1. interchanging ϕ and ϕ′,

2. interchanging u and u′,

3. changing the signs of u and u′ simultaneously.

Further, it is obvious that two or three of the above operations can be performed
successively in arbitrary order, so that we get seven different operations under which
the scattering matrix is invariant. The behavior of the phase matrix under these op-
erations can now be studied using the equations given in Sec. 3.2 for the elements of
the rotation matrices. In this way we obtain the following seven symmetry relations
for the phase matrix:

Z(u, u′, ϕ′ − ϕ) = ∆3,4Z(u, u′, ϕ− ϕ′)∆3,4, (3.28)

Z(u′, u, ϕ− ϕ′) = ∆3Z̃(u, u′, ϕ− ϕ′)∆3, (3.29)
Z(−u,−u′, ϕ− ϕ′) = ∆3,4Z(u, u′, ϕ− ϕ′)∆3,4, (3.30)

Z(−u′,−u, ϕ′ − ϕ) = ∆3Z̃(u, u′, ϕ− ϕ′)∆3, (3.31)
Z(−u,−u′, ϕ′ − ϕ) = Z(u, u′, ϕ− ϕ′), (3.32)

Z(−u′,−u, ϕ− ϕ′) = ∆4Z̃(u, u′, ϕ− ϕ′)∆4, (3.33)

Z(u′, u, ϕ′ − ϕ) = ∆4Z̃(u, u′, ϕ− ϕ′)∆4, (3.34)

where ∆4 = diag(1, 1, 1,−1). To prove these relations we start with the first three
of them, which correspond to the three basic transpositions of variables.

Proof of Eq. (3.28). From Eqs. (3.11), (3.13), and (3.19)-(3.21) we see that
interchanging ϕ and ϕ′ causes sin 2σ1 and sin 2σ2 to change sign while cos 2σ1 and
cos 2σ2 remain invariant. Now Eq. (3.8) shows that these sign switches can be
obtained by pre- and postmultiplication of the rotation matrices by ∆3,4. Thus in
view of Eqs. (3.22) and (3.27) we have

Z(u, u′, ϕ′ − ϕ) = {∆3,4L(−σ2)∆3,4}F (Θ){∆3,4L(−σ1)∆3,4}
= ∆3,4{L(−σ2)F (Θ)L(−σ1)}∆3,4

= ∆3,4Z(u, u′, ϕ− ϕ′)∆3,4. (3.35)

Proof of Eq. (3.29). It is clear from Eqs. (3.19)-(3.21) that interchanging u and
u′ results in an interchange of the rotation angles σ1 and σ2. Using Eqs. (3.8), (3.22)
and (3.26) we find

Z(u′, u, ϕ− ϕ′) = L(−σ1)F (Θ)L(−σ2)

= {∆3L̃(−σ1)∆3}∆3F̃ (Θ)∆3{∆3L̃(−σ2)∆3}
= ∆3{L̃(−σ1)F̃ (Θ)L̃(−σ2)}∆3

= ∆3Z̃(u, u′, ϕ− ϕ′)∆3. (3.36)
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Proof of Eq. (3.30). Equations (3.11), (3.13), and (3.19)-(3.21) show that chang-
ing the signs of u and u′ simultaneously has exactly the same effect as interchanging
ϕ and ϕ′, so that relation (3.30) can be obtained by replacing Z(u, u′, ϕ′ − ϕ) by
Z(−u,−u′, ϕ− ϕ′) in Eq. (3.35).

Equations (3.31)-(3.34) can now be proved in a similar way or by combining
relations (3.28)-(3.30). For example, relation (3.31) is a combination of Eqs. (3.28)-
(3.30), so that

Z(−u′,−u, ϕ′ − ϕ) = ∆3,4Z(−u′,−u, ϕ− ϕ′)∆3,4

= ∆3,4{∆3,4Z(u′, u, ϕ− ϕ′)∆3,4}∆3,4

= ∆3Z̃(u, u′, ϕ− ϕ′)∆3. (3.37)

We have thus shown that Eqs. (3.28)-(3.30) form a basic set in the sense that
from these three independent relations the other four nontrivial symmetry relations
can be derived. Clearly, one can also choose another basic set. Insight into the
geometrical and physical symmetries involved is probably obtained more easily by
taking as a basic set the three relations expressed by Eqs. (3.28), (3.31) and (3.32).
For each of these relations a simple explanation in terms of symmetries can be given
in the following way.

First, Eq. (3.28) can be explained from mirror symmetry with respect to the
plane of incidence, i.e., the plane through the local vertical and the direction of
incidence. Its explanation is analogous to that of Eq. (3.27) where we used the
scattering plane as a plane of symmetry [See Subsection 2.4.2]. In the present case
we first consider a beam of incident light i1 with Stokes parameters {I0, Q0, U0, V0}
and directional parameters (u0, ϕ0) [See Fig. 3.5]. Suppose this gives rise (among
other things) to a beam of scattered light r1 with Stokes parameters {S1, S2, S3, S4}
and direction (u1, ϕ1). In a second experiment we may then use an incident beam
i2 with Stokes parameters {I0, Q0,−U0,−V0} but unaltered directional parameters
(u0, ϕ0). It follows from the definition of the Stokes parameters that i1 and i2 differ
only in the sign of the position angle of the major axis of the polarization ellipse and
the sense in which the polarization ellipse is traced. Hence, i2 is just the mirror image
of i1 with respect to the plane of incidence. Since our medium is macroscopically
isotropic with mirror symmetry, we must find in the second experiment a scattered
beam r2 which is the mirror image of r1 with respect to the plane of incidence.
This means that r2 must have the Stokes parameters {S1, S2,−S3,−S4} and the
directional parameters (u2, ϕ2) with

u2 = u1 (3.38)

and
ϕ0 − ϕ2 = ϕ1 − ϕ0. (3.39)

Hence we have in the first experiment [cf. Eq. (3.25)]

S = constant×Z(u1, u0, ϕ1 − ϕ0)I0 (3.40)
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Figure 3.5: Illustration of the mirror symmetry relation for the phase ma-
trix. When the incident beam i1 gives rise (among other things)
to the beam of scattered light r1, then the incident beam i2,
which is the mirror image of i1 with respect to the plane of inci-
dence, gives rise (among other things) to the beam of scattered
light r2, which is the mirror image of r1 with respect to the
plane of incidence [After Hovenier (1970)].

and in the second experiment

∆3,4S = constant×Z(u2, u0, ϕ2 − ϕ0)∆3,4I0. (3.41)

By premultiplying the latter equation by ∆3,4 and using Eqs. (3.38) and (3.39), we
find

S = constant×∆3,4Z(u1, u0, ϕ0 − ϕ1)∆3,4I0. (3.42)

On comparing this equation with Eq. (3.40) we obtain Eq. (3.28). We have thus
proved Eq. (3.28) purely on symmetry grounds or, equivalently, explained it in
terms of mirror symmetry. We shall henceforth call Eq. (3.28) the mirror symmetry
relation for the phase matrix.
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Second, relation (3.31) is the reciprocity relation for the phase matrix. As dis-
cussed in Subsection 2.4.1, the reciprocity principle is based on the time-reversal
symmetry of elementary physical processes and the equations describing them. In
the context of radiative transfer a basic element of reciprocity is the reversal of light-
paths [See Eq. (2.33)], which can be used to relate the outcome of one experiment to
that of another (reciprocal) experiment. From our discussion of reciprocity for the
scattering matrix in terms of Stokes parameters [See Eqs. (2.43)-(2.47)] it follows
immediately that in the case of the phase matrix reciprocity means that

a) if we have parameters u, u′ and ϕ−ϕ′ in one experiment, we have parameters
−u′, −u and ϕ′ − ϕ, respectively, in the reciprocal experiment;

b) the phase matrix in one experiment is related to its transpose in the reciprocal
experiment, and

c) pre- and postmultiplication by ∆3 is necessary to cause a sign switch of the
Stokes parameter U , since the angle χ in the direct experiment must be re-
placed by π − χ in the reciprocal experiment.

This explains the reciprocity relation (3.31) and also shows how it can be derived
directly from the reciprocity principle.

Third, Eq. (3.32) expresses the fact that nothing changes in the scattering
process when the horizontal plane through the volume-element considered together
with the incident and scattered beams is turned upside down. Then, not only the
signs of u and u′ change, but there also is a sign switch in the azimuth difference,
because the azimuth angle is always measured clockwise when looking from the
bottom to the top of the atmosphere.

Figure 3.6 illustrates the geometrical and physical explanations of a number of
symmetry relations for the phase matrix. It should be kept in mind that the incident
and scattered beams can be simultaneously rotated about the vertical through an
arbitrary angle without changing the phase matrix, because only the difference of
the azimuth angles is involved. Figure 3.6 not only illustrates the meaning of the
basic equations (3.28), (3.32) and (3.31) but, by way of example, also that of a
more complicated situation corresponding to Eq. (3.34). This is a configuration
in which the directions of the incident and scattered beams are exchanged. Such
an exchange can apparently be obtained from the initial situation by applying the
following three basic operations in arbitrary order: i) turn the horizontal plane
together with the incident and scattered beams upside down, ii) mirror the scattered
beam with respect to the plane of incidence, and iii) apply reciprocity. Hence the
algebraic result that Eq. (3.34) is a combination of Eqs. (3.32), (3.28) and (3.31) is
clear from Fig. 3.6. It is readily verified that similar interpretations can be given for
relations (3.29), (3.33) and (3.30). This is helpful in understanding the nature of the
relations. As an example of the insight obtained now, we observe that Eq. (3.30)
expresses symmetry with respect to the horizontal plane. Referring to Fig. 3.6 we
observe that the incident and scattered beams may be mirrored with respect to the
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Figure 3.6: Symmetry relations for the phase matrix. Picture (a) pertains
to an initial situation. Pictures (b), (c), (d) and (e) refer to Eqs.
(3.28), (3.32), (3.31) and (3.34), respectively.

horizontal plane by applying the operations i) and ii) mentioned above in arbitrary
order. Stated differently, Eq. (3.30) is a combination of Eqs. (3.32) and (3.28). We
can now draw the important conclusion that all of the relations (3.28)-(3.34) can be
explained by symmetry arguments only. Therefore we call them symmetry relations.

A noteworthy corollary of Eq. (3.28) is that the elements Z11, Z12, Z21, Z22,
Z33, Z34, Z43 and Z44 of the phase matrix are even functions of ϕ − ϕ′ and the
remaining elements are odd functions of ϕ − ϕ′. This statement includes the fact
that Z14 ≡ Z41 ≡ 0. As we will see in later chapters, many matrices describing
polarized light transfer satisfy a mirror symmetry relation and can, therefore, be
partitioned into even and odd 2 × 2 matrix functions of ϕ − ϕ′ in the same way
as the phase matrix [See Fig. 3.7]. Because of this occurrence of odd functions of
ϕ − ϕ′ the sense in which the azimuth is measured should be explicitly specified
in polarization studies (cf. Sec. 3.1). This fact was first pointed out by Hovenier
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Figure 3.7: As a result of mirror symmetry, the phase matrix and many

other matrices describing polarized light transfer can be parti-
tioned into four 2 × 2 matrices that are either even functions
of ϕ − ϕ′ (indicated by plus signs) or odd functions of ϕ − ϕ′

(indicated by minus signs).

(1969, 1971), but is still being overlooked by many authors who thus create a source
of possible errors and ambiguities. A corollary of Eq. (3.30) is that the elements
Z11, Z12, Z21, Z22, Z33, Z34, Z43 and Z44 of the phase matrix do not change while
the remaining elements get a minus sign under a simultaneous sign change of u and
u′. Further, Eq. (3.32), which can be regarded as the combined result of Eqs. (3.28)
and (3.30), is useful when comparing formulae of this book with formulae in the well
known book of Chandrasekhar (1950). In Sec. 17 of that book a phase matrix is
introduced with three variables which in our notation would be written as −u, −u′

and ϕ′ − ϕ, so having opposite signs from ours [cf. Subsection 1.2.2 of this book].
Like the scattering matrix, the phase matrix can be defined as a matrix acting

on intensity vectors in the CP-representation with the local meridian plane as the
plane of reference. Clearly, we have for the phase matrix in the CP-representation

Zc(u, u′, ϕ− ϕ′) = Lc(−σ2)F c(Θ)Lc(−σ1), (3.43)

where Lc(α) and F c(Θ) are given by Eqs. (1.54) and (2.141), respectively. On the
other hand [cf. Eqs. (1.77)-(1.83)], we can write

Zc(u, u′, ϕ− ϕ′) = AcZ(u, u′, ϕ− ϕ′)A−1
c . (3.44)

Symmetry relations can also be derived for the phase matrix in the CP-represen-
tation. One way to do so is to apply Eq. (1.83) to Eqs. (3.28), (3.31) and (3.32),
respectively [cf. Eqs. (2.140)-(2.147)]. Then one readily obtains the basic symmetry
relations

Zc(u, u′, ϕ′ − ϕ) = ΞZc(u, u′, ϕ− ϕ′)Ξ−1, (3.45)

where Ξ is defined by Eq. (2.146),

Zc(−u′,−u, ϕ′ − ϕ) = Z̃c(u, u′, ϕ− ϕ′), (3.46)

and
Zc(−u,−u′, ϕ′ − ϕ) = Zc(u, u′, ϕ− ϕ′). (3.47)

The first one of these is the mirror symmetry relation, the second one the reciprocity
relation, and the third one expresses the fact that nothing changes in the scattering
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process when the horizontal plane through the volume element considered, together
with the incident and scattered beams, is turned upside down. Again, four other
symmetry relations exist which are combinations of Eqs. (3.45)-(3.47).

3.3.2 Interrelations

As discussed in Sec. 2.7, there exist interrelations (equalities and inequalities) for the
elements of the scattering matrix, because each scattering matrix can be constructed
from one or more amplitude matrices. Similarly, the elements of the phase matrix
(which in this book always pertains to more than one particle) satisfy interrelations,
because each phase matrix originates from a scattering matrix. An extensive treat-
ment of these interrelations for a phase matrix valid in a macroscopically isotropic
plane-parallel atmosphere with mirror symmetry [See Eq. (3.9)] was presented by
Hovenier and Van der Mee (1988), to which we refer for details. Examples of such
interrelations are shown in Display 3.1.

Display 3.1: Some interrelations for the elements of the phase matrix
Z(u, u′, ϕ− ϕ′) before Fourier decomposition is applied.

Z12Z42 + Z13Z43 = 0

Z12
2 + Z13

2 − Z21
2 − Z31

2 = 0

Z12Z34 + Z21Z43 = 0

Z12Z24 − Z31Z43 = 0

(Z12Z31)Z22 + (Z13Z31)Z23 − (Z12Z21)Z32 − (Z13Z21)Z33 = 0

(Z13Z21)Z22 − (Z12Z21)Z23 + (Z13Z31)Z32 − (Z12Z31)Z33 = 0.

We observed in Sec. 2.7 that the scattering matrix, F (Θ), is a sum of pure
Mueller (SPM) matrices. We will now show that the phase matrix, Z(u, u′, ϕ−ϕ′),
is also an SPM matrix.

Indeed, since, according to Eq. (3.22), the phase matrix is obtained from the
scattering matrix by pre- and postmultiplication by a rotation matrix, we will first
apply the Cloude coherency matrix test [See Sec. A.3] to the rotation matrix L(α)
given by Eq. (1.51). The nontrivial elements of its Cloude coherency matrix T (α)
are given by

T11(α) = 1 + cos 2α, (3.48)
T44(α) = 1− cos 2α, (3.49)
T14(α) = −i sin 2α, (3.50)
T41(α) = i sin 2α. (3.51)



80

It is easily verified that T (α) has the positive eigenvalue 2 and a zero eigenvalue
of multiplicity 3. So, for arbitrary values of α, three of the eigenvalues of T (α)
vanish and one is positive. Hence L(α) is a pure Mueller (PM) matrix. Following
the procedure given in Sec. A.3, we readily find that, apart from an arbitrary scalar
factor of absolute value 1, the Jones matrix corresponding to L(α) is the 2×2 matrix
occurring on the right-hand side of Eq. (1.69). Since a PM matrix is also an SPM
matrix and the product of two SPM matrices is also an SPM matrix (See Sec. A.2),
Eq. (3.22) reveals that the phase matrix Z(u, u′, ϕ−ϕ′) is indeed an SPM matrix.

Display 3.2: Some inequalities for elements of the phase matrix Z(u, u′, ϕ−
ϕ′) before Fourier decomposition is applied.

Z11 ≥ |Zij | for 1 ≤ i, j ≤ 4.

(Z11 ± Z12)2 ≥ (Z21 ± Z22)2 + (Z31 ± Z32)2 + (Z42)2

(Z11 ± Z21)2 ≥ (Z12 ± Z22)2 + (Z13 ± Z23)2 + (Z24)2

(Z11 ± Z22)2 ≥ (Z12 ± Z21)2 + (Z33 ± Z44)2 + (Z34 ∓ Z43)2

4Z11
2 ≥
∑4
i=1

∑4
j=1 Zij

2

(Z11 ± Z13)2 ≥ (Z21 ± Z23)2 + (Z31 ± Z33)2 + (Z43)2

(Z11)2 ≥ (Z21 ± Z24)2 + (Z31 ± Z34)2 + (Z44)2

It is thus clear that the elements of the phase matrix, like the elements of any
SPM matrix, satisfy a large number of inequalities which are discussed in Appendix
A. Some illustrative examples, valid for arbitrary directions, are shown in Display
3.2. The second, third and fourth lines of this display correspond to the six inequal-
ities (A.84)-(A.89). The equality signs in these six inequalities only hold in some
very special cases. As an example we mention scattering by identical spheres. In
that case F (Θ) and Z(u, u′, ϕ − ϕ′) are PM matrices, because the product of two
PM matrices is also a PM matrix [cf. Eq. (A.32)]. By adding the six inequalities in
the second, third and fourth lines of Display 3.2 we find the interesting inequality
in the fifth line. The last two lines of Display 3.2 result directly from applying the
Stokes criterion to incident light with intensity vectors {1, 0,±1, 0} and {1, 0, 0,±1},
respectively.

3.3.3 Relations for Special Directions

The symmetry relations and interrelations considered so far are valid for arbitrary
directions. We have seen that the phase matrix reduces to the scattering matrix
when the beams of the incident and scattered light both lie in the same meridian
plane (situation 3 of Sec. 3.2) or (for perpendicular directions) when the same
plane is used as the meridian plane for both beams and thus as the scattering plane
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(situation 4 of Sec. 3.2). Consequently, for these special cases the phase matrix
equals the scattering matrix [cf. Eq. (3.24)] and its properties are shown in Display
2.1. These situations are e.g. important when sunlight is reflected or transmitted
by an optically thin atmosphere in the so-called principal plane, i.e., the plane
through the direction of the sunlight and the local vertical [See Fig. 3.4 for reflected
light]. Observations of the Earth’s atmosphere of this type are frequently done from
the ground (transmitted light) or from space (reflected light). Special cases are
observations of the zenith (u = 1) and of the nadir (u = −1).

Polarized light sources are provided by (pulsed) lasers, which can be used e.g. for
monostatic (Θ = π) or bistatic (Θ ≤ π) earthbound observations of light reflected
by the Earth’s atmosphere. Here single scattering usually dominates reflection by
clear air or a haze, but multiple scattering may be strong in echoes from fogs or
clouds [cf. Van de Hulst (1980), Sec. 19.3.1]. Similar observations are conducted
with radar in the radio part of the spectrum.

3.4 The Azimuth Dependence

As discussed in Sec. 3.2, the elements of the phase matrix are functions of three
variables, i.e., u, u′ and the azimuth difference ϕ−ϕ′. It is well-known in theoretical
physics that such functions are hard to deal with, both analytically and numerically.
Multiple scattering usually needs to be considered in a plane-parallel medium and
this involves in general products of 4× 4 matrices with different values of the argu-
ments and also integrals of such products [See Chapters 4 and 5]. Therefore, we must
conduct operations with functions of three variables, but it turns out to be advan-
tageous to handle the azimuth dependence by making Fourier series expansions in
the azimuth difference (also called Fourier decompositions). This is already known
to be true in the scalar case, i.e., when polarization is neglected [See e.g. Chan-
drasekhar, 1950, Sobolev, 1972], but then the Fourier decompositions are relatively
simple, containing only cosines of multiples of ϕ−ϕ′. Clearly, the coefficients of the
Fourier series depend on only two variables, namely u and u′ and, if the series can
be terminated after say M0 terms to obtain sufficiently accurate results for a certain
problem in this scalar case, one has to deal with no more than M0 functions of two
variables, instead of one function of three variables. We will now discuss Fourier
decompositions for the vector case, i.e., with polarization taken into account.

In Subsection 3.4.1 two Fourier decompositions of the phase matrix will be in-
troduced. The first such decomposition is straightforward and will be discussed in
Subsection 3.4.1. The second decomposition is based on the behavior of certain
product integrals under Fourier decomposition which will be treated in Subsection
3.4.2. This behavior will play a pivotal role in Chapters 4 and 5.

3.4.1 Derivation of the Components

Since the phase matrix depends on the azimuth difference ϕ− ϕ′ rather than on ϕ
and ϕ′ separately, it allows the Fourier decomposition [See e.g. Arfken and Weber,
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2001]

Z(u, u′, ϕ− ϕ′) =
∞∑
j=0

(2− δj0)
[
Zcj(u, u′) cos j(ϕ− ϕ′) +Zsj(u, u′) sin j(ϕ− ϕ′)

]
,

(3.52)
where δj0 is the Kronecker delta and

Zs0(u, u′) = 0, (3.53)

0 denoting the 4× 4 zero matrix. The Fourier coefficients Zcj(u, u′) and Zsj(u, u′)
are 4 × 4 matrices that can be retrieved by using the orthogonality relations for
trigonometric functions. The result is

Zcj(u, u′) =
1
2π

∫ 2π

0
d(ϕ− ϕ′)Z(u, u′, ϕ− ϕ′) cos{j(ϕ− ϕ′)} (3.54)

Zsj(u, u′) =
1
2π

∫ 2π

0
d(ϕ− ϕ′)Z(u, u′, ϕ− ϕ′) sin{j(ϕ− ϕ′)}. (3.55)

As discussed in Subsection 3.3.1, mirror symmetry implies [cf. Eq. (3.28)] that the
cosine terms of Z(u, u′, ϕ−ϕ′) occur in the 2×2 submatrices in the upper left corner
and the lower right corner and the sine terms occur in the remaining submatrices.
Consequently, each of the coefficient matrices Zcj(u, u′) occurring in Eq. (3.52) has
two zero 2 × 2 submatrices, one in the upper right corner and one in the lower left
corner. Similarly, the matrices Zsj(u, u′) have two zero 2 × 2 submatrices, one in
the upper left corner and one in the lower right corner [See Fig. 3.8]. Combining
Eqs. (3.28) and (3.52) yields the symmetry properties due to mirror symmetry

∆3,4Z
cj(u, u′)∆3,4 = Zcj(u, u′) (3.56)

and

∆3,4Z
sj(u, u′)∆3,4 = −Zsj(u, u′). (3.57)

Since we wish to use the results of this section also for 4× 4 matrices other than the
phase matrix, we do not use the fact that Z14(u, u′, ϕ−ϕ′) = Z41(u, u′, ϕ−ϕ′) ≡ 0.

The Fourier decomposition given by Eqs. (3.52)-(3.55) is straightforward and
has successfully been used for a variety of computations and applications [See e.g.
Hovenier, 1971, Hansen, 1971a, Hansen and Hovenier, 1974a, and Hansen and Travis,
1974]. Similarly to the scalar case (i.e., when polarization is ignored), the expansions
of the elements of the scattering matrix in generalized spherical functions are often
truncated. If M0 is the highest value of l in Eqs. (2.152)-(2.157), we have j ≤ M0 in
Eq. (3.52) and only to deal with 2M0+1 four-by-four coefficient matrices depending
on two variables u and u′ [See also Subsection 3.4.3]. Each of the coefficient matrices
contains at least 8 elements that are identically zero. Hence, for each j > 0 in Eq.
(3.52) we do not need to consider 32 functions of two variables, but at most 16. This
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Figure 3.8: Expanding the phase matrix and any other matrix satisfying

the mirror symmetry relation in a Fourier series in the azimuth
difference ϕ−ϕ′ results in coefficient matrices for the cosines (left
panel) and sines (right panel) with vanishing 2× 2 submatrices.
Here c stands for coefficients of cosine and s for coefficients of
sine terms.

suggests a further reduction, but this time in the number of matrices depending on u
and u′ instead of in the number of arguments. This reduction consists of combining
the 4× 4 Fourier coefficient matrices Zcj(u, u′) and Zsj(u, u′) into one 4× 4 matrix
W j(u, u′) in such a way that, apart from a trivial sign change, the 2 × 2 matrices
in the upper left, upper right, lower left and lower right corners of W j(u, u′) are
precisely the corresponding nonzero 2 × 2 submatrices of Zcj(u, u′) and Zsj(u, u′).
A convenient choice [cf. also Subsection 3.4.2], which was probably first reported by
Siewert (1981), is to define

W j(u, u′) = Zcj(u, u′)−∆3,4Z
sj(u, u′) = Zcj(u, u′) +Zsj(u, u′)∆3,4, (3.58)

where the equivalence of the two expressions forW j(u, u′) follows immediately from
Eq. (3.57). We can rewrite Eq. (3.58) in the form

W j(u, u′) =

(
Zcjul (u, u′) −Zsjur (u, u′)
Zsjll (u, u′) Zcjlr (u, u′)

)
, (3.59)

where the subscripts ul and lr pertain to the 2 × 2 submatrices of Zcj(u, u′) in
the upper left and lower right corners, respectively, and the subscripts ur and ll
pertain to the 2 × 2 submatrices of Zsj(u, u′) in the upper right and lower left
corners, respectively. Naturally, other combinations are possible, such as Zcj(u, u′)+
Zsj(u, u′), but the choice made in Eq. (3.59) is based on the mirror symmetry and is
more convenient for later use [See Subsection 3.4.2]. FromW j(u, u′) we can uniquely
retrieve Zcj(u, u′) and Zsj(u, u′) with the help of Eqs. (3.56)-(3.58). The result is

Zcj(u, u′) =
1
2
{
W j(u, u′) +∆3,4W

j(u, u′)∆3,4

}
(3.60)

Zsj(u, u′) =
1
2
{
W j(u, u′)∆3,4 −∆3,4W

j(u, u′)
}

. (3.61)

It is clear that a Fourier decomposition of Z(u, u′, ϕ − ϕ′) can also be made in
terms of W j(u, u′). For that purpose we first rewrite Eq. (3.52) in the form

Z(u, u′, ϕ− ϕ′) =
∞∑
j=0

(2− δj0)

(
cjZ

cj
ul(u, u′) sjZ

sj
ur(u, u′)

sjZ
sj
ll (u, u′) cjZ

cj
lr (u, u′)

)
, (3.62)
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where

cj = cos j(ϕ− ϕ′) (3.63)

and

sj = sin j(ϕ− ϕ′). (3.64)

We can now treat the first two and the last two columns of Z(u, u′, ϕ−ϕ′) separately
by writing

Z(u, u′, ϕ− ϕ′) =
∞∑
j=0

(2− δj0)

{
Φ1(j(ϕ− ϕ′))

(
Zcjul(u, u′) 0
Zsjll (u, u′) 0

)

+ Φ2(j(ϕ− ϕ′))
(
0 −Zsjur(u, u′)
0 Zcjlr (u, u′)

)}
, (3.65)

where

Φ1(α) = diag(cosα, cosα, sinα, sinα), (3.66)
Φ2(α) = diag(− sinα,− sinα, cosα, cosα), (3.67)

and 0 is the 2× 2 zero matrix. It is now readily verified that Eq. (3.65) yields our
second Fourier decomposition

Z(u, u′, ϕ− ϕ′) =
1
2

∞∑
j=0

(2− δj0)

×
{
Φ1(j(ϕ− ϕ′))W j(u, u′)(1+∆3,4) +Φ2(j(ϕ− ϕ′))W j(u, u′)(1−∆3,4)

}
,

(3.68)

where 1 is the 4× 4 unit matrix, so that 1+∆3,4 = diag(2, 2, 0, 0) and 1−∆3,4 =
diag(0, 0, 2, 2). Using addition formulas for sines and cosines we can rewrite Eq.
(3.68) as

Z(u, u′, ϕ− ϕ′) =
∞∑
j=0

(2− δj0)
{
Φ1(jϕ)W j(u, u′)Φ1(jϕ′)

+ Φ2(jϕ)W j(u, u′)Φ2(jϕ′)
}

(3.69)

The coefficient matrices occurring in Eq. (3.68) can be computed via Eqs. (3.54),
(3.55) and (3.58), but also more directly by using the equality

W j(u, u′) =
1
2π

∫ 2π

0
d(ϕ− ϕ′)

{
Φ1(j(ϕ− ϕ′)) +Φ2(j(ϕ− ϕ′))

}
Z(u, u′, ϕ− ϕ′),

(3.70)
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as is easily verified. Note that the azimuth integrals on the right-hand sides of Eqs.
(3.54), (3.55) and (3.70) either vanish or equal twice the corresponding integrals
from 0 to π.

Symmetry relations for the Fourier components Zcj(u, u′) and Zsj(u, u′) can
readily be obtained by combining Eqs. (3.28)-(3.34) with Eq. (3.52). In this way
we have already derived the mirror symmetry relations (3.56)-(3.57). Thus two
basic symmetries remain to be considered. From Eq. (3.31) we readily obtain the
reciprocity relations

Zcj(−u′,−u) = ∆3Z̃
cj
(u, u′)∆3, (3.71)

Zsj(−u′,−u) = −∆3Z̃
sj
(u, u′)∆3, (3.72)

while from Eq. (3.32) we derive

Zcj(−u,−u′) = Zcj(u, u′), (3.73)

Zsj(−u,−u′) = −Zsj(u, u′), (3.74)

which expresses the fact that nothing changes in the scattering process when the
horizontal plane through the volume element considered, together with the incident
and scattered beams, is turned upside down. From these four relations we easily
deduce the pair of equalities

Zcj(u′, u) = ∆3Z̃
cj
(u, u′)∆3, (3.75)

Zsj(u′, u) = ∆3Z̃
sj
(u, u′)∆3, (3.76)

which can also be derived directly from Eq. (3.29). Thus, we have found on sym-
metry grounds that

(i) interchanging ϕ and ϕ′ reveals the special structure ofZcj(u, u′) andZsj(u, u′),
i.e., that each of them contains at least 8 identically vanishing elements,

(ii) interchanging u and u′ yields Eqs. (3.75)-(3.76), and

(iii) changing the signs of u and u′ simultaneously leads to Eqs. (3.73)-(3.74).

Clearly, each of the three pairs, Eqs. (3.71)-(3.72), (3.73)-(3.74), and (3.75)-(3.76)
can be derived from the two other pairs. It is now a simple matter to employ Eq.
(3.58) and to derive from Eqs. (3.71)-(3.76) the three symmetry relations

W j(−u′,−u) = ∆3W̃
j
(u, u′)∆3, (3.77)

W j(−u,−u′) = ∆3,4W
j(u, u′)∆3,4, (3.78)

W j(u′, u) = ∆4W̃
j
(u, u′)∆4. (3.79)

Note that each of the three relations can be derived from the two other relations. The
mirror symmetry relations Eqs. (3.56)-(3.57) yield no new information onW j(u, u′),
since they were already used to construct it.
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As a result of Eq. (3.53), we have for j = 0

W 0(u, u′) = Zc0(u, u′) =
(
W 0

IQ(u, u′) 0
0 W 0

UV(u, u′)

)
, (3.80)

where W 0
IQ(u, u′) = Zc0ul(u, u′) and W 0

UV(u, u′) = Zc0lr (u, u′) are 2 × 2 matrices. In
particular, we find from Eqs. (3.73) and (3.75) the symmetry relations

W 0
IQ(u, u′) =W 0

IQ(−u,−u′) = W̃
0

IQ(u
′, u) (3.81)

and

W 0
UV(u, u′) =W 0

UV(−u,−u′) = diag(1,−1)W̃ 0

UV(u
′, u)diag(1,−1). (3.82)

3.4.2 Algebraic Properties of the Components

In this subsection we study the behavior of certain integrals over azimuth that
frequently occur if the integrand is subject to a Fourier decomposition [See e.g. Eq.
(4.27)]. In view of later applications the treatment in this subsection will be fairly
general, i.e., pertinent to all 4× 4 matrices obeying mirror symmetry.

Let us consider an arbitrary 4× 4 matrix function L(u, u′, ϕ−ϕ′) satisfying the
mirror symmetry relation

∆3,4L(u, u′, ϕ− ϕ′)∆3,4 = L(u, u′, ϕ′ − ϕ), (3.83)

such as the phase matrix, and let us expand it in the Fourier series

L(u, u′, ϕ− ϕ′) =
∞∑
j=0

(2− δj0)
[
Lcj(u, u′) cos j(ϕ− ϕ′) +Lsj(u, u′) sin j(ϕ− ϕ′)

]
,

(3.84)
where

Ls0(u, u′) = 0 (3.85)

and 0 is the 4×4 zero matrix. Then, as for the phase matrix, Lcj(u, u′) and Lsj(u, u′)
satisfy the mirror symmetry relations

∆3,4L
cj(u, u′)∆3,4 = Lcj(u, u′), (3.86)

∆3,4L
sj(u, u′)∆3,4 = −Lsj(u, u′). (3.87)

We will now prove the following mirror symmetry theorem. When we have two
4×4 matrix functions satisfying the mirror symmetry relation (3.83), L(u, u′, ϕ−ϕ′)
andM(u, u′, ϕ− ϕ′), and a matrix function K(u, u′, ϕ− ϕ′) defined by

K(u, u′, ϕ− ϕ′) =
1
π

∫ +1

−1
u′′ du′′

∫ 2π

0
dϕ′′L(u, u′′, ϕ− ϕ′′)M(u′′, u′, ϕ′′ − ϕ′),

(3.88)
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thenK(u, u′, ϕ−ϕ′) also satisfies the mirror symmetry relation. Indeed, interchang-
ing ϕ and ϕ′ in Eq. (3.88) yields

K(u, u′, ϕ′ − ϕ) = ∆3,4K(u, u′, ϕ− ϕ′)∆3,4, (3.89)

as follows from the substitution ϕ′′ = ϕ + ϕ′ − ψ in Eq. (3.88) and the periodicity
in azimuth. From Eq. (3.88) and the orthogonality relations for sines and cosines
[Arfken and Weber, 2001], we find that the Fourier components are related by [cf.
Hovenier (1971)]

Kcj(u, u′) = 2
∫ +1

−1
u′′ du′′ [Lcj(u, u′′)M cj(u′′, u′)−Lsj(u, u′′)M sj(u′′, u′)

]
,

(3.90)

Ksj(u, u′) = 2
∫ +1

−1
u′′ du′′ [Lsj(u, u′′)M cj(u′′, u′) +Lcj(u, u′′)M sj(u′′, u′)

]
.

(3.91)

Consequently, each matrix in these two equations satisfies a mirror symmetry rela-
tion of the type (3.86) or (3.87) and contains 8 identically vanishing elements. In
view of the special form of the coefficient matrices it seems worthwhile to try to
combine both of these types in one matrix and thus to decouple Eqs. (3.90) and
(3.91). For this purpose we consider the linear combination

Kcj + F̂Ksj , (3.92)

where we have omitted the arguments of Kcj and Ksj and F̂ is some 4× 4 matrix
with constant elements. From Eqs. (3.90) and (3.91) we find

Kcj + F̂Ksj = 2
∫ +1

−1
u′′ du′′

[
(Lcj + F̂Lsj)M cj − (Lsj − F̂Lcj)M sj

]
. (3.93)

This expression can be rearranged to

Kcj + F̂Ksj = 2
∫ +1

−1
u′′ du′′

[
(Lcj + F̂Lsj)(M cj + F̂M sj)

]
, (3.94)

provided
F̂Lcj = LcjF̂ , F̂LsjF̂ = −Lsj . (3.95)

In view of Eqs. (3.86) and (3.87) we can fulfill condition (3.95) by choosing F̂ =
±∆3,4. To stay in line with the conventions adopted in Siewert (1981), Hovenier
and Van der Mee (1983) and De Rooij (1985) we choose

F̂ = −∆3,4. (3.96)

Thus we can reach our goal by defining

Lj(u, u′) = Lcj(u, u′)−∆3,4L
sj(u, u′) = Lcj(u, u′) +Lsj(u, u′)∆3,4 (3.97)
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and Kj(u, u′) andM j(u, u′) in the same way. We can then rewrite Eq. (3.94) as

Kj(u, u′) = 2
∫ +1

−1
u′′ du′′Lj(u, u′′)M j(u′′, u′). (3.98)

Note that in this equation only one matrix multiplication and one integration occurs.
From Lj(u, u′) we can uniquely retrieveLcj(u, u′) andLsj(u, u′) with the help of Eqs.
(3.60) and (3.61) with Zcj , Zsj and W j replaced by Lcj , Lsj and Lj , respectively.
Substituting the resulting expressions for Lcj(u, u′) and Lsj(u, u′) in Eq. (3.84) we
obtain the Fourier decomposition [cf. Eqs. (3.68)]

L(u, u′, ϕ− ϕ′) =
1
2

∞∑
j=0

(2− δj0)×

×
{
Φ1(j(ϕ− ϕ′))Lj(u, u′)(1+∆3,4) +Φ2(j(ϕ− ϕ′))Lj(u, u′)(1−∆3,4)

}
(3.99)

and similar relations for K(u, u′, ϕ − ϕ′) and M(u, u′, ϕ − ϕ′). Using addition for-
mulas for sines and cosines we can rewrite Eq. (3.99) as

L(u, u′, ϕ− ϕ′) =
∞∑
j=0

(2− δj0)
{
Φ1(jϕ)Lj(u, u′)Φ1(jϕ′)

+ Φ2(jϕ)Lj(u, u′)Φ2(jϕ′)
}

(3.100)

and similarly for K(u, u′, ϕ− ϕ′) andM(u, u′, ϕ− ϕ′).
Let us now consider the case when only the first columns of K(u, u′, ϕ−ϕ′) and

M(u, u′, ϕ− ϕ′) in Eq. (3.88) do not vanish or equivalently when they are column
vectors, but L(u, u′, ϕ − ϕ′) is still a 4 × 4 matrix satisfying the mirror symmetry
relation (3.83). Then the first Fourier decomposition given by Eq. (3.84) can also
be used for the column vectors and Eqs. (3.90)-(3.91) remain valid. For the second
Fourier decomposition we should introduce

Kj(u, u′) =Kcj(u, u′)−∆3,4K
sj(u, u′) (3.101)

and similarly for M j(u, u′), but these vectors will in general not have the symme-
try property that its elements are even or odd functions of azimuth. Therefore,
Kcj(u, u′) andKsj(u, u′) together contain in general eight nonzero components and
cannot be uniquely derived from Kj(u, u′), although Eq. (3.98) is still valid. One
way to solve the problem is to compute Lcj(u, u′) and Lsj(u, u′) from Lj(u, u′) via
Eqs. (3.60)-(3.61) with Zcj , Zsj andW j replaced by Lcj , Lsj and Lj , respectively,
and then to use Eqs. (3.90)-(3.91) to obtain Kcj(u, u′) and Ksj(u, u′), provided
M cj(u, u′) andM sj(u, u′) are given.

3.4.3 Separation of Variables in the Components

In the preceding subsections we have discussed the Fourier decomposition of the
phase matrix given by Eq. (3.9). This has led to component phase matrices
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W j(u, u′) which can be expressed in the phase matrix Z by integration with re-
spect to azimuth [cf. Eq. (3.70)]. To avoid such direct integration, an explicit
expression for the matricesW j(u, u′) is required. In particular, we seek expressions
for the matricesW j(u, u′) which involve the coefficients αl1, α

l
2, α

l
3, α

l
4, β

l
1 and βl2 ap-

pearing in the expansions (2.152)-(2.157) for the elements of the scattering matrix.
If polarization is neglected, the solution of this problem amounts to the classical
expansion of the (scalar) scattering kernel pj(u, u′) in products of two associated
Legendre functions [cf. Eq. (3.131)], one in the variable u and one in the variable
u′, as treated e.g. in the textbooks of Chandrasekhar (1950) and Sobolev (1972).
If polarization is taken into account, the problem is much more complicated. Using
complex polarization parameters to represent intensity vectors, Kuščer and Ribarič
(1959) have given an expression for the phase matrix Zc in the CP-representation
which relies on the addition formula (B.48) for generalized spherical functions. This
expression has been employed by Siewert (1981) who was the first to publish ma-
trices W j(u, u′) written as a sum of products of matrix functions having separated
arguments, but his Stokes parameters cannot be interpreted unambiguously because
of an uncertainty in the definition of the azimuth ϕ. Therefore, the present treat-
ment is based on Hovenier and Van der Mee (1983). We remark that partial results
for the case j = 0 have been obtained before by Kuščer and Ribarič (1959), Dave
(1970), and Van de Hulst (1980). The reader who is not interested in the derivation
of the expression for W j(u, u′) is referred to Eqs. (3.128)-(3.131). The quantities
employed in the right-hand side of Eq. (3.128) are defined by Eqs. (3.122) and
(3.125).

To apply the addition theorem for generalized spherical functions we need to use
the phase matrix Zc in the CP-representation. Using Eqs. (3.43) and (1.54) and
numbering m,n = 2, 0,−0,−2, we have

[Zc(u, u′, ϕ− ϕ′)]mn = eimσ2 [F c(Θ)]mneinσ1 , (3.102)

where [F c(Θ)]mn are the elements of the scattering matrix in the CP-representation.
With the help of Eqs. (2.141) and (2.152)-(2.157) we find

[Zc(u, u′, ϕ− ϕ′)]mn =
∞∑

l=max(|m|,|n|)
glmn eimσ2P lmn(cosΘ)e

inσ1 , (3.103)

where the expansion coefficients glmn are given by

gl2,2 = gl−2,−2 =
1
2
(αl2 + αl3), (3.104)

gl2,−2 = gl−2,2 =
1
2
(αl2 − αl3), (3.105)
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gl2,0 = gl−2,−0 = gl0,2 = gl−0,−2 =
1
2
(βl1 + iβl2), (3.106)

gl2,−0 = gl−2,0 = gl−0,2 = gl0,−2 =
1
2
(βl1 − iβl2), (3.107)

gl0,0 = gl−0,−0 =
1
2
(αl1 + αl4), (3.108)

gl0,−0 = gl−0,0 =
1
2
(αl1 − αl4). (3.109)

We now apply Eq. (3.18) and the addition formula (B.48) and obtain

[Zc(u, u′, ϕ− ϕ′)]mn =
∞∑

s=−∞
[Z−s
c (u, u′)]mne−is(ϕ−ϕ

′), (3.110)

where

[Z−s
c (u, u′)]mn = (−1)s

∞∑
l=|s|

glmn P lms(u)P
l
sn(u

′). (3.111)

For the sake of convenience, we also write this equality in matrix form as

Z−s
c (u, u′) = (−1)s

∞∑
l=|s|

P ls(u)G
lP ls(u

′), (3.112)

where [cf. Domke (1973, 1974)]

[P ls(u)]mn = P lms(u)δmn = P lsn(u)δmn (3.113)

and
[Gl]mn = glmn. (3.114)

From Eq. (3.110) we first derive the Fourier expansion

Zc(u, u′, ϕ− ϕ′) = Z0
c(u, u′) +

∞∑
s=1

{[
Zsc(u, u′) +Z−s

c (u, u′)
]
cos s(ϕ− ϕ′)

+ i
[
Zsc(u, u′)−Z−s

c (u, u′)
]
sin s(ϕ− ϕ′)

}
. (3.115)

On the other hand, we find from Eqs. (3.52) and (3.44)

Zc(u, u′, ϕ− ϕ′) = Ac
∞∑
j=0

(2− δj0)
[
Zcj(u, u′) cos j(ϕ− ϕ′)

+ Zsj(u, u′) sin j(ϕ− ϕ′)
]
A−1
c . (3.116)

Comparing these two expressions for Zc yields

W j(u, u′) =
1
2
A−1
c

[
(1− iΞ)Zjc(u, u′) + (1+ iΞ)Z−j

c (u, u′)
]
Ac, (3.117)
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where we have used Eq. (3.58) as well as Eq. (2.147). From Eqs. (2.146) and (3.45)
we easily derive the symmetry relation

ΞZ−j
c (u, u′)Ξ = Zjc(u, u′). (3.118)

Using the latter to eliminate Zjc(u, u′) from Eq. (3.117) we get

W j(u, u′) =
1
2
A−1
c

[
(1+ iΞ)Z−j

c (u, u′)(1− iΞ)
]
Ac. (3.119)

Substituting Eq. (3.112) yields

W j(u, u′) =
1
2
(−1)j

∞∑
l=j

A−1
c (1+ iΞ)P lj(u)G

lP lj(u
′)(1− iΞ)Ac. (3.120)

Thus it remains to simplify the matrix product in each term on the right-hand side.
Using Eqs. (3.114) and (3.104)-(3.109) we first obtain

A−1
c G

lAc = ∆2,3Bl∆2,3, (3.121)

where ∆2,3 = diag(1,−1,−1, 1) and

Bl =


αl1 −βl1 0 0

−βl1 αl2 0 0
0 0 αl3 −βl2
0 0 βl2 αl4

 . (3.122)

Next, observing that P lj(u) = diag(v, x, x, w) where x = P l0j(u), v = P l2j(u) and
w = P l−2,j(u), we find

1
2
(1+ i∆3,4)A−1

c diag(v, x, x, w)Ac(1− i∆3,4)

=


x 0 0 0
0 1

2(v + w) −1
2(v − w) 0

0 −1
2(v − w) 1

2(v + w) 0
0 0 0 x

 , (3.123)

which can also be written as

1
2
(1+ i∆3,4)A−1

c diag(v, x, x, w)Ac(1− i∆3,4) = (i)−j
[
(l − j)!
(l + j)!

]1/2
∆2,3Π

j
l (u),

(3.124)
where

Πj
l (u) =


P jl (u) 0 0 0
0 Rjl (u) −T jl (u) 0
0 −T jl (u) Rjl (u) 0
0 0 0 P jl (u)

 (3.125)
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and Rjl (u) and T jl (u) are the special functions defined by Eqs. (B.23) and (B.24).
The next step is to substitute Eqs. (3.121) and (3.124) into Eq. (3.120) and to use
that Πj

l (u) and ∆2,3 commute, yielding

W j(u, u′)

=
1
2

∞∑
l=j

(l − j)!
(l + j)!

·Πj
l (u)∆2,3(1+ i∆3,4) ·∆2,3Bl∆2,3 · (1− i∆3,4)∆2,3Π

j
l (u

′).

(3.126)

Now remark that the diagonal matrices ∆2,3, (1− i∆3,4) and (1+ i∆3,4) commute
and that ∆−1

2,3 = ∆2,3. Simplifying Eq. (3.126) by removing the factors ∆2,3 and
using the equality

1
2
(1+ i∆3,4)Bl(1− i∆3,4) = Bl (3.127)

we obtain as our final result

W j(u, u′) =
∞∑
l=j

(l − j)!
(l + j)!

Πj
l (u)BlΠ

j
l (u

′). (3.128)

This result coincides with the expression given by Siewert (1981) if we (i) equate
his Asc(µ, µ′) to our W j(u, u′), where s = j, µ = u and µ′ = u′, (ii) let the matrices
pertain to the same Stokes parameters, and (iii) let the azimuth be measured in the
opposite sense.

For j = 0 we use T 0
l (u) ≡ 0, while P 0

l (u) = Pl(u) is a Legendre polynomial and
R0
l (u) = −P l20(u) is a generalized spherical function [cf. Eqs. (B.20) and (B.23)].

Hence, using the 2×2 submatricesW 0
IQ(u, u′) corresponding to the left upper corner

andW 0
UV(u, u′) corresponding to the right lower corner, we find in a straightforward

way

W 0
IQ(u, u′) =

∞∑
l=0

(
Pl(u) 0
0 P l02(u)

) (
αl1 βl1

βl1 αl2

) (
Pl(u′) 0
0 P l02(u

′)

)
, (3.129)

W 0
UV(u, u′) =

∞∑
l=0

(
P l02(u) 0

0 Pl(u)

) (
αl3 βl2
−βl2 αl4

) (
P l02(u

′) 0
0 Pl(u′)

)
. (3.130)

If polarization is neglected, W j(u, u′) reduces to its 1, 1-element pj(u, u′). This
scalar function has the form

pj(u, u′) =
∞∑
l=j

(l − j)!
(l + j)!

αl1 P jl (u)P
j
l (u

′), (3.131)

which is the well-known simple example of separation of variables appearing e.g.
in the textbooks of Chandrasekhar (1950, Sec. 48) and Sobolev (1972, Sec. 1.3).
If the expansions of the elements of the scattering matrix in generalized spherical
functions in Eqs. (2.152)-(2.157) are truncated so that M0 is the highest value of
the summation indices, then j ≤ M0 in Eq. (3.52) and all summations over l in this
subsection running to infinity run no further than M0.
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3.4.4 An Example: Rayleigh Scattering

Let us illustrate the Fourier decomposition of the phase matrix by giving the ex-
pressions for the components W j(u, u′) in the case of Rayleigh scattering [cf. Sec.
2.9 and Subsection 2.6.1]. For Rayleigh scattering we have the following expansion
coefficients:

α0
1 = 1, α2

1 =
c

2
, α2

2 = 3c, α1
4 =

3d
2

, β2
1 =

c
√
6

2
, (3.132)

where c and d are given in terms of the depolarization factor ρn by Eqs. (2.175) and
(2.176). The remaining expansion coefficients are identically zero, so that M0 = 2.
We recall that

d =
5 c− 2

3
=

2(1− 2ρn)
2 + ρn

. (3.133)

From Eqs. (3.129) and (3.130) we obtain

W 0
IQ(u, u′) =

(
1
0

)(
1 0

)
+

1
8
c

(
3u2 − 1
3(u2 − 1)

)(
3u′2 − 1 3(u′2 − 1)

)
=
(
1 + 1

8c (3u2 − 1)(3u′2 − 1) −3
8c (3u2 − 1)(1− u′2)

−3
8c (1− u2)(3u′2 − 1) 9

8c (1− u2)(1− u′2)

)
, (3.134)

W 0
UV(u, u′) =

(
0 0
0 3

2d uu′

)
, (3.135)

where we have used that P0(u) = 1, P1(u) = u, P2(u) = 3
2u2− 1

2 , P 0
02(u) = P 1

02(u) =
0, and P 2

02(u) = −1
4

√
6(1− u2) [cf. Eqs. (B.14) and (B.11)].

Similarly, from Eqs. (3.122) and (3.132) we first derive that

B1 =
3
2
d


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 =
3
2
d


0
0
0
1

(0 0 0 1
)
, (3.136)

B2 =
1
2
c


1 −

√
6 0 0

−
√
6 6 0 0

0 0 0 0
0 0 0 0

 =
1
2
c


1

−
√
6

0
0

(1 −
√
6 0 0

)
. (3.137)

Using Eqs. (3.125) and (3.128), as well as the equalities P 1
1 (u) =

√
1− u2 and

P 1
2 (u) = 3u

√
1− u2 [cf. Eq. (B.19)], R1

1(u) = T 1
1 (u) = 0 [cf. Eqs. (B.23)-(B.24)],

and R1
2(u) = uT 1

2 (u) = −1
2u
√
6
√
1− u2 [cf. Eq. (B.29)], we get an expression

for W 1(u, u′) that can be written as a 2× 2 diagonal matrix with the 3× 3 matrix
W 1

IQU(u, u′) as its first diagonal entry and the scalarW 1
V(u, u′) as its second diagonal
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entry. More specifically, we get

W 1
IQU(u, u′) =

3
4
c

√
(1− u2)(1− u′2)

 u
u
−1

(u′ u′ −1
)

=
3
4
c

√
(1− u2)(1− u′2)

uu′ uu′ −u
uu′ uu′ −u
−u′ −u′ 1

 , (3.138)

W 1
V(u, u′) =

3
4
d

√
(1− u2)(1− u′2). (3.139)

Analogously, using Eqs. (3.125) and (3.128) as well as the equalities P 2
2 (u) = 3(1−

u2), R2
2(u) =

1
2

√
6 (1 + u2) and T 2

2 (u) = u
√
6 [cf. Eqs. (B.22) and (B.29)], we get

W 2(u, u′) =
3
16

c


1− u2

−(1 + u2)
2u
0

(1− u′2 −(1 + u′2) 2u′ 0
)

=
3
16

c


(1− u2)(1− u′2) −(1− u2)(1 + u′2) 2(1− u2)u′ 0
−(1 + u2)(1− u′2) (1 + u2)(1 + u′2) −2(1 + u2)u′ 0

2u(1− u′2) −2u(1 + u′2) 4uu′ 0
0 0 0 0

 .

(3.140)

For j ≥ 3 we have
W j(u, u′) ≡ 0, (3.141)

where 0 is the 4× 4 zero matrix.

Problems

P3.1 Show that

a. Z(u, u, 0) = diag{a1(0), a2(0), a2(0), a4(0)},
b. Z(u,−u, π) = diag{a1(π), a2(π),−a2(π), a4(π)},
c. detZ = detF ,

d.
∑4
i=1

∑4
j=1 Zij

2 =
∑4
i=1

∑4
j=1 Fij

2.

P3.2 Give algebraic proofs for Eqs. (3.32)-(3.34).

P3.3 Make a sketch similar to Fig. 3.6 for the symmetry relations (3.29) and (3.33).

P3.4 Derive the equivalents of Eqs. (3.29)-(3.34) in the CP-representation.

P3.5 Prove
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a. Z21Z24 + Z31Z34 = 0,

b. Z42
2 + Z43

2 − Z24
2 − Z34

2 = 0,

c. Z12Z43 − Z13Z42 + Z21Z34 − Z31Z24 = 0.

P3.6 Give a simple reason why

1
2

∫ 1

0
dµ
{
[W 0(µ, µ0)]11 + [W 0(−µ, µ0)]11

}
= 1,

where the subscript 11 refers to the 1, 1-element.

Answers and Hints

P3.1 a. Use Eq. (3.24) to show that Z(u, u, 0) = F (0) and then use Eq. (2.72).

b. Similarly for Z(u,−u, π) = F (π) and Eq. (2.73).

c. Use Eq. (3.22) and detL(α) = 1.

d. Use Eq. (3.9).

P3.2 See the proof of Eq. (3.37).

P3.3 Regard Eq. (3.29) as a combination of Eqs. (3.28) and (3.34) and regard Eq.
(3.33) as a combination of Eqs. (3.32) and (3.34).

P3.4 Use Eq. (1.83) to mimic the derivations of Eqs. (3.45)-(3.47).

P3.5 Use Eq. (3.9).

P3.6 The normalization of the phase function.





Chapter 4

Orders of Scattering and
Multiple-Scattering Matrices

Throughout this chapter we consider a plane-parallel scattering medium, like an
atmosphere, which is macroscopically isotropic and symmetric, and external light
sources that create radiation fields which are the same at all locations in a horizontal
plane. In particular, we consider a monodirectional beam of light incident at each
point of the top of the medium. This is a good approximation of the light received
from one light source far above the medium, such as the light of the Sun entering
a locally plane-parallel part of a planetary atmosphere. We will assume that there
are no light sources embedded in the medium.

4.1 Basic Equations

Let us consider a unit volume somewhere in the medium. As discussed in Sec. 3.2,
the energy per unit solid angle, per unit frequency interval and per unit time of the
light scattered in the direction (ϑ, ϕ) is the first element of the vector [See Eq. (3.6)]

S(ϑ, ϕ;ϑ′, ϕ′) =
ksca

4π
Z(ϑ, ϕ;ϑ′, ϕ′)I inc(ϑ′, ϕ′)dΩ′, (4.1)

where I inc(ϑ′, ϕ′)dΩ′ is the flux vector of the incident light. In general, the light
comes from all directions and we must perform an integration of the right-hand side
of Eq. (4.1) over all solid angles. Using the direction cosines u and u′, as defined by
Eq. (3.18), we find that the first element of the vector

S(u, ϕ) =
ksca

4π

∫ +1

−1
du′
∫ 2π

0
dϕ′Z(u, u′, ϕ− ϕ′)I inc(u′, ϕ′) (4.2)

is the energy per unit solid angle, per unit frequency interval and per unit time of
the light scattered by a unit volume. Since this is usually expressed as kext times
the so-called source function, we define the source vector

J(u, ϕ) =
S(u, ϕ)

kext

, (4.3)

97
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so that

J(u, ϕ) =
a

4π

∫ +1

−1
du′
∫ 2π

0
dϕ′Z(u, u′, ϕ− ϕ′)I inc(u′, ϕ′), (4.4)

where a is the albedo of single scattering defined by Eq. (3.2). Note that the elements
of the source vector and intensity vector have the same physical dimensions. If the
volume element is located at an optical depth τ , the radiation entering the volume
element can be written as I(τ, u′, ϕ′). In general, the albedo of single scattering and
the phase matrix will also depend on optical depth. Therefore, we rewrite Eq. (4.4)
for the source vector as

J(τ, u, ϕ) =
a(τ)
4π

∫ +1

−1
du′
∫ 2π

0
dϕ′Z(τ, u, u′, ϕ− ϕ′)I(τ, u′, ϕ′). (4.5)

This equation describes the local scattering in a medium. The source vector is a
column vector whose second, third and fourth element are Stokes parameters that
specify the state of polarization.

A

B ϑ

0

τ

τ

b

I(τ ,u, )φ

Figure 4.1: Schematic illustration of the contribution by a volume element
at B to the radiation travelling downward at A in a direction
(u, ϕ). The optical thickness of the plane-parallel medium is b.
Optical depths and optical thickness are indicated at the left.

We now consider two points A and B at optical depths τ and τ ′, respectively.
First, we assume that τ ′ < τ [See Fig. 4.1]. Radiation travelling from B to A
in a direction (u, ϕ) will be attenuated according to Bouger’s exponential law of
attenuation, discovered by him around 1729, i.e., by the factor

exp
[
−
∫ B

A
kext ds′

]
, (4.6)
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where ds′ is an element of length along the line AB. This law is also called the
Lambert-Beer law of extinction. Since

ds′ =
dz′

cos(180◦ − ϑ)
=

dz′

u
, (4.7)

we can rewrite the expression (4.6) as [cf. Eqs. (3.3)-(3.4)]

exp
{
−(τ − τ ′)/u

}
. (4.8)

Now, a small cylinder located at B with length ds′ and unit cross-section will emit
in the direction of A an amount of energy per unit solid angle, per unit frequency
interval and per unit time which equals the first element of

kext J(τ ′, u, ϕ) ds′. (4.9)

Using Eqs. (4.7) and (3.4) in conjunction with Eq. (4.8), we find for the downward
travelling radiation which has been scattered at least once

I(τ, u, ϕ) =
∫ τ

0

dτ ′

u
J(τ ′, u, ϕ) e−(τ−τ ′)/u (u > 0). (4.10)

In an analogous way we find by considering τ ′ > τ for the radiation going upwards
which has been scattered at least once

I(τ, u, ϕ) =
∫ b

τ

dτ ′

(−u)
J(τ ′, u, ϕ) e−(τ ′−τ)/(−u) (u < 0), (4.11)

where b is the optical thickness of the medium. Obviously I(τ, u, ϕ) vanishes at
τ = 0 for u > 0 and at τ = b for u < 0. For the horizontal directions (u = 0) we can
consider points B and A at the same optical depth τ . Using Eqs. (4.6) and (4.9) we
have

I(τ, u, ϕ) = J(τ, u, ϕ)
∫ ∞

0
ds′ kext e

−kexts′ (u = 0), (4.12)

which yields
I(τ, 0, ϕ) = J(τ, 0, ϕ) (u = 0). (4.13)

Equations (4.5) and (4.10)-(4.13) are basic equations for the transfer of polarized
light in a scattering medium. If we differentiate Eqs. (4.10)-(4.11) with respect to
τ , we find the so-called radiative transfer equation (RTE), also called the transport
equation for radiation

u
∂I(τ, u, ϕ)

∂τ
= −I(τ, u, ϕ) + J(τ, u, ϕ), (4.14)

where J(τ, u, ϕ) is given by Eq. (4.5). The RTE is an integro-differential equation
which has traditionally played a major role in the theory of radiative transfer. Many
efforts have been undertaken to solve it for several kinds of scattering media and
with a variety of boundary conditions.
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Equations (4.10) and (4.11) taken together are also called the RTE in integral
form or the “formal solution” of the RTE, since it can be obtained directly from
(4.14) by integration over optical depth. Indeed, replacing τ by τ ′, premultiplying
Eq. (4.14) by the integrating factor e−(τ−τ ′)/u/|u|, and integrating with respect to
τ ′ from 0 to τ if u > 0 and from τ to b if u < 0, one arrives at Eqs. (4.10) and
(4.11). Obviously, the “formal solution” is equivalent to the RTE but not an actual
solution of it, since the source vector J(τ, u, ϕ) depends on I(τ, u, ϕ) according to
Eq. (4.5). It should be noted that I(τ, u, ϕ) in this section refers to light which
has been scattered at least once and does not include the reduced incident radiation
penetrating to the level τ without having suffered any scattering or absorption.

Credit should be given to Lommel (1887) and Chwolson (1889) for their inde-
pendent work in the 1880’s on the first derivation of the RTE. Polarization was
not considered by these authors. Gans (1924), considering Rayleigh scattering and
perpendicularly incident light, was the first to formulate an RTE to describe lin-
ear polarization of multiply scattered light. Chandrasekhar (1946a, 1946b, 1947),
considering Rayleigh scattering, appears to have been the first to publish an RTE
allowing properly for both linear and circular polarization of the scattered radiation.

We have derived the RTE in the traditional heuristic way, since this is easy
to understand and suffices for most applications of light scattering in atmospheres
and oceans [See also the Preface]. For a microphysical derivation from statistical
electromagnetics we refer to Mishchenko (2002, 2003).

4.2 Orders of Scattering for Intensity Vectors

Consider a monodirectional beam of light in a direction (µ0, ϕ0) with µ0 > 0, which
is incident at each point at the top of the medium, arising e.g. from the distant
Sun, but with the possibility of being polarized. We will characterize this plane-
parallel beam by a four-vector F 0 such that the first element of πF 0 is the net
flux of this beam per unit area perpendicular to the direction of incidence and the
other elements are the remaining Stokes parameters. The corresponding irradiance
per unit horizontal area at the top of the atmosphere is the first element of µ0πF 0,
which vanishes for µ0 = 0, i.e., for exactly grazing incidence. Further, we assume
the medium to be bounded below by a perfectly absorbing ground surface. At each
point in the medium there will be light in downward directions (u, ϕ) which has not
been scattered at all. This will be called light of zero order scattering. It can be
represented as [cf. Fig. 4.1 and Eq. (4.8)]

I0(τ, u, µ0, ϕ− ϕ0) =

{
e−τ/u I0(0, u, µ0, ϕ− ϕ0), 0 < u ≤ 1,
0, −1 ≤ u < 0,

(4.15)

where
I0(0, u, µ0, ϕ− ϕ0) = δ(u− µ0)δ(ϕ− ϕ0)πF 0 (4.16)

and δ represents Dirac’s delta function. It is readily verified by integrating both
sides of Eq. (4.16) over all directions that this equation yields the proper net flux
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per unit area perpendicular to the incident beam. The light of zero order scattering
gives rise to light which is scattered once in the medium, which in turn acts as a
source for light of second order scattering and so forth [See e.g. Hovenier, 1971; Van
de Hulst, 1980]. It follows immediately from the discussion in the preceding section
that the relationship between the radiation of scattering orders n and n−1 for n ≥ 1
is governed by the following equations:

Jn(τ, u, µ0, ϕ−ϕ0)=
a(τ)
4π

∫ +1

−1
du′
∫ 2π

0
dϕ′Z(τ, u, u′, ϕ−ϕ′)In−1(τ, u′, µ0, ϕ

′−ϕ0),

(4.17)

In(τ, u, µ0, ϕ− ϕ0) =
∫ τ

0

dτ ′

u
Jn(τ ′, u, µ0, ϕ− ϕ0) exp

{
−(τ − τ ′)/u

}
, (u > 0)

(4.18)

In(τ, u, µ0, ϕ− ϕ0) =
∫ b

τ

dτ ′

(−u)
Jn(τ ′, u, µ0, ϕ− ϕ0) exp

{
−(τ ′ − τ)/(−u)

}
, (u < 0)

(4.19)
In(τ, 0, µ0, ϕ− ϕ0) = Jn(τ, 0, µ0, ϕ− ϕ0). (u = 0) (4.20)

Note that in Eqs. (4.15)-(4.20) the dependence of the intensity and source vectors
on µ0 and ϕ− ϕ0 has been shown explicitly.

In principle, Eqs. (4.15)-(4.20) can be used as an iterative scheme to compute
each order of scattering, where, in general, analytical or numerical integrations over
three variables are needed. Summation over all orders of scattering gives the total
(i.e., scattered plus not scattered) radiation in a medium. Thus physical reasons
demand that all infinite series originating from such summations are convergent. It
should be noted that the method of computing orders of scattering described above
is equivalent to solving the radiative transfer equation by successive approxima-
tions, starting with the light that has been scattered once, since the approximations
correspond to partial sums of orders of scattering.

From hereon in this section, we will assume that the medium is homogeneous, so
that the variable τ can be omitted in a(τ) and Z(τ, u, u′, ϕ−ϕ′). The first iteration
of the scheme given by Eqs. (4.15)-(4.20) is fairly simple now, since all necessary
integrations over τ ′ amount to integrations of exponential functions and, therefore,
can be performed analytically. On introducing the functions

c(τ, u, µ0) =
∫ τ

0

dτ ′

u
e−τ

′/µ0e−(τ−τ ′)/u =


µ0

µ0 − u

(
e−τ/µ0 − e−τ/u

)
, (u �= µ0)

τ

µ0
e−τ/µ0 , (u = µ0)

(4.21)
and

d(τ, u, µ0) =
∫ b

τ

dτ ′

(−u)
e−τ

′/µ0e−(τ ′−τ)/(−u) =
µ0

µ0 − u

(
e−τ/µ0 − e(b−τ)/u e−b/µ0

)
,

(4.22)
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we readily find

I1(τ, u, µ0, ϕ− ϕ0) =
a

4
Z(u, µ0, ϕ− ϕ0)c(τ, u, µ0)F 0, (u > 0) (4.23)

I1(τ, u, µ0, ϕ− ϕ0) =
a

4
Z(u, µ0, ϕ− ϕ0)d(τ, u, µ0)F 0, (u < 0) (4.24)

I1(τ, 0, µ0, ϕ− ϕ0) =
a

4
Z(0, µ0, ϕ− ϕ0) e−τ/µ0F 0. (u = 0) (4.25)

Note that
lim
u→0+

c(τ, u, µ0) = lim
u→0−

d(τ, u, µ0) = e−τ/µ0 . (4.26)

In the same way we can, in principle, compute the intensity vectors for all higher
orders of scattering using analytical integration over τ ′ instead of numerical integra-
tion. In order to achieve this, it is only necessary to eliminate Jn from the iterative
scheme given by Eqs. (4.15)-(4.20) and to make repeated use of Eqs. (4.21)-(4.22).
We shall demonstrate this by considering the second order of scattering. Using Eqs.
(4.23)-(4.25) we readily find for u ≥ 0:

I2(τ, u, µ0, ϕ− ϕ0) =
a2µ0

16π

∫ +1

0
du′
∫ 2π

0
dϕ′×

×

c(τ, u, µ0)− e
−b
(

1
µ0

+ 1
u′
)
c(τ, u,−u′)

µ0 + u′ Z(u,−u′, ϕ− ϕ′)Z(−u′, µ0, ϕ
′ − ϕ0)F 0

+
c(τ, u, µ0)− c(τ, u, u′)

µ0 − u′ Z(u, u′, ϕ− ϕ′)Z(u′, µ0, ϕ
′ − ϕ0)F 0

 . (4.27)

The expression for I2(τ, u, µ0, ϕ − ϕ0) for −1 ≤ u < 0 is obtained from Eq. (4.27)
by replacing c(τ, u, µ0) by d(τ, u, µ0) and c(τ, u,±u′) by d(τ, u,±u′).

It is important to understand how the intensity vectors depend on the albedo of
single scattering, a. Equations (4.17)-(4.20) show that on each successive scattering
the intensity vector in a particular direction at a specific optical depth is multiplied
by a factor a. Therefore, we can write for the total radiation in a homogeneous
atmosphere

I(τ, u, µ0, ϕ− ϕ0) =
∞∑
n=0

In(τ, u, µ0, ϕ− ϕ0) =
∞∑
n=0

anIn(τ, u, µ0, ϕ− ϕ0), (4.28)

where In(τ, u, µ0, ϕ−ϕ0) does not depend on a. We have thus written the intensity
vector as a power series in the albedo of single scattering, which for physical reasons
is always convergent. An important corollary of Eq. (4.28) is that if one knows
all orders of scattering for one value of a, a simple calculation yields them for any
other value of a, provided the scattering matrix and the optical thickness remain
the same.

Analytical integration by means of the above formulae is to be preferred over
numerical integrations, at least for low orders of scattering where the expressions
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for the integrals are not too complex. The described method of eliminating the
numerical integration over τ ′ in iterating the scheme given by Eqs. (4.15)-(4.20)
was first presented by Hovenier (1971). This method is quite general, because

i) it is applicable to scattering with or without polarization,

ii) there are no limitations on the phase matrix or the phase function within the
realm of macroscopically isotropic and symmetric media,

iii) the internal as well as the external (τ = 0 or τ = b) radiation can be computed,

iv) and the medium may have a finite optical thickness or may be semi-infinite
(b =∞).

Other, less general, methods for computing successive orders of scattering for arbi-
trary directions, without numerical integration over τ ′, were published by e.g. Dave
(1964), Van de Hulst (1948, 1980), Uesugi and Irvine (1970), Hansen and Travis
(1974), Kawabata and Ueno (1988), and Tsang et al. (1985). Using the method
of analytical τ -integration described in this section, several people have worked out
explicit formulae for the third order of scattering. It is clear that the complexity
of the explicit formulae grows as the orders of scattering increase. Using one of the
first programs for formula manipulation, a student (J. Vogelzang) in Amsterdam
computed five orders of scattering by analytical integration over optical depth as
described in this section. Formulae for the first few orders of scattering of polarized
light in a homogeneous atmosphere with homogeneously distributed internal sources
radiating isotropically have been reported by Wauben et al. (1993b).

In many multiple-scattering problems a lot of physical insight can be obtained
by considering at least a few low orders of scattering. In this way, many aspects of
the problem may be clarified and often one can make an educated guess as to what
the solution will look like. This holds in particular for polarization studies, since
linear polarization is usually mostly determined by the first few orders of scattering.

The convergence of the series in Eq. (4.28) is very slow for thick layers (b � 1)
and little absorption (a ≈ 1). However, if we ignore polarization, the series becomes

I(τ, u, µ0, ϕ− ϕ0) =
∞∑
n=0

anIn(τ, u, µ0, ϕ− ϕ0) (4.29)

and the higher order terms converge approximately like a geometric series, except
for a semi-infinite atmosphere with a = 1 [See e.g. Van de Hulst, 1980]. Therefore,
we have approximately

I(τ, u, µ0, ϕ− ϕ0) =
l−1∑
n=0

anIn(τ, u, µ0, ϕ− ϕ0)

+ al Il(τ, u, µ0, ϕ− ϕ0)
{
1 + η + η2 + . . .

}
, (4.30)
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where the ratio
η = a

Il+1(τ, u, µ0, ϕ− ϕ0)
Il(τ, u, µ0, ϕ− ϕ0)

. (4.31)

This means that we have to compute only the first l + 2 terms of the series, where
l can be comparatively small, and can estimate the remainder by using Eq. (4.30)
and

1
1− η

= 1 + η + η2 + . . . (|η| < 1). (4.32)

But even with this approximation the number of terms that have to be computed ex-
actly (with analytical or numerical τ -integration) becomes prohibitively large when
there is almost no absorption and the optical thickness exceeds about 5, so that no
accurate solutions can then be obtained by solely computing orders of scattering.
Other methods should then be used, like the adding-doubling method to be dis-
cussed in Chapter 5. In this method one computes one or two orders of scattering
for a very thin layer as a starting point for obtaining the full solution.

Figure 4.2: Degree of linear polarization, pl, of the light reflected by a
slab of optical thickness b = 16 in the principal plane for a test
model. Sunlight is incident at 60◦ with the nadir direction. Solid
curve: exact (all orders of scattering included). Dashes and dots:
singly scattered light, reduced by a factor of 10. Filled circles:
novel approximation based on two orders of scattering for Q and
ignoring polarization for I [After Hovenier (1971)].

Using test models for single scattering by clouds of waterdrops, Hovenier (1971)
found numerical indications that using the first few orders of scattering for summa-
tion as a geometric series works much better for each of the Stokes parameters Q
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and U of reflected light than for I. This finding prompted him to suggest the so-
called novel approximation for computations of the degree of linear polarization of
multiply scattered light for monodirectional incident unpolarized light. To illustrate
this approximation we consider light at the top of the medium which is reflected in
the principal plane, i.e., in the plane through the vertical and the direction of the
incident light. For light reflected in this plane by the medium (after an arbitrary
number of scattering events) we have U = 0, since the incident light is unpolarized.
This is immediate from the mirror symmetry of the problem with respect to the
principal plane. Thus the degree of linear polarization of the light reflected in the
principal plane can be written as

p =
|Q|
I

=
|Q1 + Q2 + Q3 + · · · |

I1 + I2 + I3 + · · · , (4.33)

where the subscripts number orders of scattering. The novel approximation consists
of evaluating the numerator of Eq. (4.33) by computing some low orders of scat-
tering and summing the remainder as a geometric series by using the ratio of the
last two orders of scattering. The denominator of Eq. (4.33) may be obtained in
various ways, for example (i) by computing orders of scattering and summation as
a geometric series with the scheme given by Eqs. (4.15)-(4.20), or (ii) directly from
photometric observations, or (iii) by computations in which polarization is ignored
(neglected), or (iv) as Is −

∑q
n=2 Isn +

∑q
n=2 Ivn, where the subscript s stands for

“scalar,” i.e., with polarization not taken into account, and the subscript v stands
for “vector,” i.e., with polarization taken into account; this is a refinement of (ii)
since for unpolarized incident light one has Is1 = Iv1 , while the difference between
Isn and Ivn becomes smaller in absolute value for increasing n. Figure 4.2 shows the
result of an application of the novel approximation for the degree of linear polariza-
tion, pl, of reflected sunlight of a homogeneous plane-parallel medium with optical
thickness b = 16 [Hovenier, 1971]. The intensities were calculated in this case by
neglecting polarization and the numerator of Eq. (4.33) was computed by summing
the series after two terms as a geometric series with ratio Q2/Q1, depending on
arccosµ. The computing time for obtaining the approximate results was of course
much smaller than for calculating the exact values of pl, which were computed by
means of the adding-doubling method and therefore include all orders of scattering.
The results of this simple version of the novel approximation shown in Fig. 4.2 are
encouraging. Evidently, the series for Q cannot be summed as a geometric series
with ratio Ql+1/Ql for angles where Ql is zero or close to zero. This happens in
the left part of Fig. 4.2 near µ = 30◦. This figure also shows that singly scattered
light alone gives some indication of the general trend of the angular distribution of
the degree of linear polarization, but that using a constant reduction factor to allow
for the multiple scattering may give rise to large errors. Further numerical evidence
that the assumption of a geometric series for low orders of scattering works much
better for computing Q and U than for computing I, was obtained by Hansen and
Travis (1974), using four orders of scattering [See Problem P4.1].
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4.3 Multiple-Scattering Matrices

The light leaving an atmosphere at the top or bottom plays a special role in radiative
transfer studies, since very often this is the only light which has been observed
and can be analyzed. If there is only incident light at the top of a plane-parallel
(homogeneous or inhomogeneous) layer isolated in space (i.e., having no reflecting
surface layers), we call the light emerging at the top (τ = 0) reflected light and
the light emerging at the bottom (τ = b) transmitted light. This can be expressed
by means of a 4 × 4 reflection matrix R(µ, µ0, ϕ − ϕ0) and a 4 × 4 transmission
matrix T (µ, µ0, ϕ − ϕ0), respectively, as follows. Let us use µ = |u| and ϕ to
describe directions, where ϕ (as always) refers to the direction of propagation of
light. Different subscripts will be used to distinguish between upward and downward
travelling light. Hence, the intensity vector of light incident on the top, I(0, u, ϕ),
can be written as I it(µ′, ϕ′). Now the intensity vectors of the total radiation which
emerges at each point of the top and bottom, respectively, are given by

Iet(µ, ϕ) =
1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′R(µ, µ′, ϕ− ϕ′)I it(µ′, ϕ′) (4.34)

and

Ieb(µ, ϕ) = e−b/µI it(µ, ϕ) +
1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′ T (µ, µ′, ϕ− ϕ′)I it(µ′, ϕ′),

(4.35)

where the first term on the right-hand side of the latter equation represents directly
transmitted (i.e., unscattered) radiation and T refers to light that has been scattered
at least once. A special case is provided by a monodirectional beam of light incident
at the top in the direction (µ0, ϕ0). If the first element of πF 0 is the net flux of
this beam per unit area perpendicular to the direction of incidence, we have [cf. Eq.
(4.16)]

I it(µ′, ϕ′) = δ(µ′ − µ0)δ(ϕ′ − ϕ0)πF 0 (4.36)

and Eqs. (4.34)-(4.35) become

Iet(µ, ϕ) = µ0R(µ, µ0, ϕ− ϕ0)F 0, (4.37)

Ieb(µ, ϕ) = e−b/µ0δ(µ− µ0)δ(ϕ− ϕ0)πF 0 + µ0T (µ, µ0, ϕ− ϕ0)F 0. (4.38)

This shows that if the incident light is unpolarized and the incident flux per unit
horizontal area of the plane-parallel layer (i.e., µ0πF0) equals π, the first column of
R(µ, µ0, ϕ − ϕ0) is the intensity vector of the light emerging at the top. A similar
interpretation can be given to T (µ, µ0, ϕ − ϕ0) in terms of the light scattered at
least once. This demonstrates that our reflection matrix is the same matrix as the
one used by Van de Hulst (1980) [Sec. 15.1.5] and our transmission matrix coincides
with the part of his transmission matrix which gives the transmitted light scattered
at least once. When transformed to apply to Stokes parameters {I,Q, U, V } instead
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of {Il, Ir, U, V }, the scattering matrix and the transmission matrix introduced by
Chandrasekhar (1950) [Sec. 17.4] coincide with 4µµ0 times our reflection and trans-
mission matrix, respectively. If polarization is ignored, we only have to deal with
the 1, 1-elements of R and T , which will be called the reflection function and the
transmission function, respectively. The reflection function is identically equal to
one for an ideal white flat surface, also called a nonabsorbing Lambert surface. Note
that we do not use the words diffusely transmitted light if we mean transmitted
light due to scattering, since the directly transmitted light may also travel in all
directions, namely when incident light at the top of the atmosphere comes from all
directions.

In a completely analogous way, we can consider the intensity vector I(b,−µ′, ϕ′)
of light incident from below at the bottom (τ = b) of the layer isolated in space
and write it as I ib(µ′, ϕ′). Note, however, that we always measure the optical depth
from the top downwards and azimuth angles clockwise when looking from bottom
to top. Now suppose that there is no incident light at the top of the layer. We can
introduce the reflection matrix R∗(µ, µ0, ϕ − ϕ0) for incident light from below by
writing

Ieb(µ, ϕ) =
1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′R∗(µ, µ′, ϕ− ϕ′)I ib(µ′, ϕ′) (4.39)

and, similarly, the transmission matrix T ∗(µ, µ0, ϕ−ϕ0) for incident light from below
by writing

Iet(µ, ϕ) = e−b/µI ib(µ, ϕ)+
1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′ T ∗(µ, µ′, ϕ−ϕ′)I ib(µ′, ϕ′), (4.40)

where Ieb(µ, ϕ) and Iet(µ, ϕ) refer to the total light that leaves the layer at the
bottom and at the top, respectively. Here R∗ refers to light travelling downwards
and T ∗ to light travelling upwards that has been scattered at least once.

We can easily extend the concepts of reflection matrix and transmission matrix
to the internal radiation at an optical depth τ , measured from the top (0 ≤ τ ≤
b). Instead of I(τ, u, ϕ) for the intensity vector of this radiation, we now write
I(τ,−µ, ϕ) for the upward travelling part and I(τ, µ, ϕ) for the downward travelling
part, where µ = |u| and the meaning of ϕ is unaltered. If light is only incident at
the top, we can write for the upward travelling radiation

I(τ,−µ, ϕ) =
1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′U(τ, µ, µ′, ϕ− ϕ′)I it(µ′, ϕ′) (4.41)

and for the total downward travelling radiation

I(τ, µ, ϕ) = e−τ/µI it(µ, ϕ) +
1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′D(τ, µ, µ′, ϕ− ϕ′)I it(µ′, ϕ′),

(4.42)
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where U andD are 4×4 matrices that refer to light scattered at least once. Monodi-
rectional incident light specified by Eq. (4.36) yields for the total radiation

I(τ,−µ, ϕ) = µ0U(τ, µ, µ0, ϕ− ϕ0)F 0, (4.43)

I(τ, µ, ϕ) = e−τ/µ0δ(µ− µ0)δ(ϕ− ϕ0)πF 0 + µ0D(τ, µ, µ0, ϕ− ϕ0)F 0. (4.44)

In an analogous manner we introduce the 4× 4 matrices U∗ and D∗ to describe the
total internal radiation at an optical depth τ measured from the top when radiation
is only incident from below at the bottom. We then write for the downward travelling
radiation

I(τ, µ, ϕ) =
1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′U∗(τ, µ, µ′, ϕ− ϕ′)I ib(µ′, ϕ′) (4.45)

and for the total upward travelling radiation

I(τ,−µ, ϕ) = e−(b−τ)/µI ib(µ, ϕ)

+
1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′D∗(τ, µ, µ′, ϕ− ϕ′)I ib(µ′, ϕ′). (4.46)

If there is light incident at both the top and the bottom, we can simply add the
resulting light streams, i.e., Eqs. (4.41) and (4.46), to get the intensity vector of
the upward travelling radiation at the optical depth τ and Eqs. (4.42) and (4.45)
to get the downward travelling radiation at the optical depth τ . Clearly, we have
U(τ, 0, µ′, ϕ− ϕ′) =D(τ, 0, µ′, ϕ− ϕ′) and U∗(τ, 0, µ′, ϕ− ϕ′) =D∗(τ, 0, µ′, ϕ− ϕ′)
when the local scattering properties vary continuously across the horizontal plane
at optical depth τ .

We shall call R, R∗, T , T ∗, U , U∗, D and D∗ multiple-scattering matrices.
They describe properties of the medium in the sense that once they are known, we
readily find the intensity vectors of the internal and external radiation fields when
arbitrarily polarized light enters a macroscopically isotropic and symmetric medium
(homogeneous or not) with optical thickness b, which is isolated in space and has
no internal light sources. The multiple-scattering matrices can be viewed as linear
operators acting on the intensity vectors of incident light to yield intensity vectors
of scattered light. Clearly, R, T , R∗ and T ∗ are just special cases of U , D, U∗ and
D∗, respectively. From Eqs. (4.37) and (4.43) we obtain

U(0, µ, µ0, ϕ− ϕ0) = R(µ, µ0, ϕ− ϕ0), (4.47)
U(b, µ, µ0, ϕ− ϕ0) = 0. (4.48)

On the other hand, Eqs. (4.38) and (4.44) provide

D(0, µ, µ0, ϕ− ϕ0) = 0, (4.49)
D(b, µ, µ0, ϕ− ϕ0) = T (µ, µ0, ϕ− ϕ0). (4.50)

Analogous relations hold for U∗, R∗, D∗ and T ∗.
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For monodirectional unpolarized light incident at the top in the direction (µ0, ϕ0)
as specified by Eq. (4.36) we find for the reflected flux per unit horizontal area at
the top ∫ +1

0
µdµ

∫ 2π

0
dϕ [R(µ, µ0, ϕ− ϕ0)]1,1F0µ0, (4.51)

where the subscript 1, 1 refers to the upper left element. Dividing by the incident
flux per unit of horizontal area, µ0πF0, we find the so-called plane albedo

r(µ0) =
1
π

∫ +1

0
µdµ

∫ 2π

0
dϕ [R(µ, µ0, ϕ− ϕ0)]1,1. (4.52)

Thus, the plane albedo is the fraction of the incident flux of unpolarized light per
unit of horizontal area which is reflected by the atmosphere. For a solid or liquid
surface this albedo is usually called the surface albedo. Clearly, we always have

0 ≤ r(µ0) ≤ 1. (4.53)

4.4 Orders of Scattering for Multiple-Scattering Matri-
ces

The multiple-scattering matrices can be written as infinite sums of orders of scat-
tering, starting with first order scattering. For example, we can write

R(µ, µ0, ϕ− ϕ0) =
∞∑
n=1

Rn(µ, µ0, ϕ− ϕ0). (4.54)

Similar expressions hold for the other multiple-scattering matrices. To find the
contributions to the multiple-scattering matrices R, T , U and D by the various
orders of scattering, we can apply the iteration scheme (4.17)-(4.20) in conjunction
with Eqs. (4.37), (4.38), (4.43) and (4.44). As far as the incident light is concerned,
it is sufficient to consider a monodirectional beam of light incident at the top and
characterized by Eq. (4.16) or by Eq. (4.36). We assume the atmosphere to be
homogeneous in order to be able to perform the τ -integrations in Eqs. (4.18) and
(4.19) analytically to obtain the first two orders of scattering. Then the light of zero
order scattering is described by Eqs. (4.15) and (4.16), the light scattered once by
Eqs. (4.23)-(4.25), and the light scattered twice by Eq. (4.27) and a similar equation
in which the c-functions are to be replaced by d-functions with the same arguments.
Using µ = |u| as well as Eqs. (4.37), (4.38), (4.43) and (4.44) we immediately have
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the following contributions by the light scattered once:

R1(µ, µ0, ϕ− ϕ0) =
a

4µ0
d(µ, µ0)Z(−µ, µ0, ϕ− ϕ0), (4.55)

T 1(µ, µ0, ϕ− ϕ0) =
a

4µ0
c(µ, µ0)Z(µ, µ0, ϕ− ϕ0), (4.56)

U1(τ, µ, µ0, ϕ− ϕ0) =
a

4µ0
d(τ,−µ, µ0)Z(−µ, µ0, ϕ− ϕ0), (4.57)

D1(τ, µ, µ0, ϕ− ϕ0) =
a

4µ0
c(τ, µ, µ0)Z(µ, µ0, ϕ− ϕ0), (4.58)

where the subscript 1 denotes first order only, the two-variable functions c(µ, µ0)
and d(µ, µ0) are given by

c(µ, µ0) = c(b, µ, µ0) =


µ0

µ0 − µ

(
e−b/µ0 − e−b/µ

)
, (µ �= µ0)

b

µ0
e−b/µ0 , (µ = µ0)

(4.59)

d(µ, µ0) = d(0,−µ, µ0) = µ0
1− e

−b( 1
µ0

+ 1
µ

)

µ0 + µ
, (4.60)

and the three-variable functions c(τ, µ, µ0) and d(τ,−µ, µ0) are defined by Eqs.
(4.21) and (4.22). These first order expressions are well-known and have often been
used to take account of polarization in some approximate fashion. For a � 1 and
b � 1 they give a good approximation for the sum over all orders of scattering. If
b/µ and b/µ0 are both very small, one finds by expanding the exponential function
in Eqs. (4.59)-(4.60) and neglecting terms O(b2) and higher

R1(µ, µ0, ϕ− ϕ0) =
ab

4µµ0
Z(−µ, µ0, ϕ− ϕ0), (4.61)

T 1(µ, µ0, ϕ− ϕ0) =
ab

4µµ0
Z(µ, µ0, ϕ− ϕ0), (4.62)

which are useful formulae to determine the effect of adding a thin layer to the top
or bottom of a certain layer.

To derive second order expressions we can use Eq. (4.27) and a similar equation
in which c-functions are replaced by d-functions with the same arguments. To obtain
the result for the second order reflection matrix, we consider the case τ = 0 and
u = −µ, which yields

R2(µ, µ0, ϕ− ϕ0) =
a2

4π

∫ +1

0
dµ′
∫ 2π

0
dϕ′×

×
[
g(µ, µ0, µ

′)Z(−µ,−µ′, ϕ− ϕ′)Z(−µ′, µ0, ϕ
′ − ϕ0)

+ h(µ, µ0, µ
′)Z(−µ, µ′, ϕ− ϕ′)Z(µ′, µ0, ϕ

′ − ϕ0)
]
, (4.63)
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where explicit forms of the functions g(µ, µ0, µ
′) and h(µ, µ0, µ

′) are given by

g(µ, µ0, µ
′) =

1
4(µ0 + µ′)

{
µ0

µ0 + µ

(
1− e

−b
(

1
µ0

+ 1
µ

))
+

µ′

µ− µ′

(
e
−b
(

1
µ′ +

1
µ0

)
− e

−b
(

1
µ

+ 1
µ0

))}
, (µ �= µ′) (4.64)

g(µ, µ0, µ
′) =

1
4(µ0 + µ)

{
µ0

µ0 + µ

(
1− e

−b
(

1
µ0

+ 1
µ

))
− b

µ
e
−b
(

1
µ0

+ 1
µ

)}
, (µ = µ′)

(4.65)

h(µ, µ0, µ
′) =

1
4(µ0 − µ′)

{
µ0

µ0 + µ

(
1− e

−b
(

1
µ0

+ 1
µ

))
− µ′

µ′ + µ

(
1− e

−b
(

1
µ′ +

1
µ

))}
, (µ0 �= µ′) (4.66)

h(µ, µ0, µ
′) =

1
4(µ0 + µ)

{
µ

µ0 + µ

(
1− e

−b
(

1
µ0

+ 1
µ

))
− b

µ0
e
−b
(

1
µ0

+ 1
µ

)}
, (µ0 = µ′)

(4.67)

Specialization to the case τ = b and u = µ provides the second order transmission
matrix

T 2(µ, µ0, ϕ− ϕ0) =
a2

4π

∫ +1

0
dµ′
∫ 2π

0
dϕ′×

×
[
e(µ, µ0, µ

′)Z(µ,−µ′, ϕ− ϕ′)Z(−µ′, µ0, ϕ
′ − ϕ0)

+ f(µ, µ0, µ
′)Z(µ, µ′, ϕ− ϕ′)Z(µ′, µ0, ϕ

′ − ϕ0)
]
, (4.68)

where the functions e(µ, µ0, µ
′) and f(µ, µ0, µ

′) are given by

e(µ, µ0, µ
′) =

1
4(µ0 + µ′)

{
µ0

µ0 − µ

(
e−b/µ0 − e−b/µ

)
− µ′

µ′ + µ

(
e−b/µ0 − e

−b
(

1
µ′ +

1
µ0

+ 1
µ

))}
, (µ �= µ0) (4.69)

e(µ, µ0, µ
′) =

1
4(µ0 + µ′)

{
b

µ0
e−b/µ0 − µ′

µ′ + µ0

(
e−b/µ0 − e

−b
(

1
µ′ +

2
µ0

))}
, (µ = µ0)

(4.70)

f(µ, µ0, µ
′) =

1
4(µ0 − µ′)

{
µ0

µ0 − µ

(
e−b/µ0 − e−b/µ

)
− µ′

µ′ − µ

(
e−b/µ

′ − e−b/µ
)}

,

(µ, µ0, µ
′ different) (4.71)

f(µ, µ0, µ
′) =

1
4(µ0 − µ′)

{
b

µ0
e−b/µ0 − µ′

µ′ − µ0

(
e−b/µ

′ − e−b/µ0

)}
, (µ = µ0 �= µ′)

(4.72)
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f(µ, µ0, µ
′) =

1
4(µ0 − µ)

{
µ0

µ0 − µ

(
e−b/µ0 − e−b/µ

)
− b

µ
e−b/µ

}
, (µ0 �= µ = µ′)

(4.73)

f(µ, µ0, µ
′) =

1
4(µ0 − µ)

{
b

µ0
e−b/µ0 − µ

µ0 − µ

(
e−b/µ0 − e−b/µ

)}
, (µ �= µ0 = µ′)

(4.74)

f(µ, µ0, µ
′) =

b2

8µ0
3

e−b/µ0 . (µ = µ0 = µ′) (4.75)

In order to economize on the number of equations we have omitted grazing directions
(µ = 0, µ0 = 0 or µ′ = 0). They can be handled by taking the appropriate limits, but
in numerical integrations over µ′ they usually do not play a role. Since it is desirable
to have the formulae for R2 and T 2 ready for computation, we have included in Eqs.
(4.64)-(4.67) and (4.69)-(4.75) all limiting cases in which the denominators in the
general expressions approach zero. The functions e(µ, µ0, µ

′), f(µ, µ0, µ
′), g(µ, µ0, µ

′)
and h(µ, µ0, µ

′) satisfy the symmetry relations

e(µ, µ0, µ
′) = e(µ0, µ, µ′), (4.76)

f(µ, µ0, µ
′) = f(µ0, µ, µ′), (4.77)

g(µ, µ0, µ
′) = h(µ0, µ, µ′), (4.78)

as can readily be verified from their definitions. Similar expressions can be obtained
for U2(τ, µ, µ0, ϕ− ϕ0) and D2(τ, µ, µ0, ϕ− ϕ0) [See Wauben et al., 1993b], but we
will not work them out explicitly. It is clear from the preceding treatment that Eqs.
(4.55)-(4.58), (4.63) and (4.68) can be generalized to higher orders of scattering at
the expense of a lot of analytical work. By expanding the exponential functions
in Eqs. (4.64), (4.66), (4.69) and (4.71) one finds that the second order reflection
matrix and transmission matrix for very small b/µ and b/µ0 are not proportional to
b but to b2.

To obtain orders of scattering for R∗, T ∗, U∗ and D∗ for a homogeneous at-
mosphere we can follow a similar procedure as above, but for monodirectional light
entering the isolated medium from below. However, it is then simpler to use sym-
metry relations to be discussed in the next section. Apparently, for homogeneous
atmospheres the series given by Eq. (4.54) and similar series for the other multiple-
scattering matrices are power series in the albedo of single scattering. Numerical
experience has shown that approximate values for the sums of such series can be
obtained by truncating these after one or more terms or by summations as geometric
series (unless a = 1 and b =∞).

In some methods for multiple-scattering computations (e.g. methods based on
solving the radiative transfer equation), intensity or flux vectors are used as input
and output. As shown by Eq. (4.37), we can then employ four beams with different
states of polarization to compute the reflection matrix R(µ, µ0, ϕ − ϕ0). For this
purpose we can use e.g. µ0F 0 being {1, 0, 0, 0}, {1, 1, 0, 0}, {1, 0, 1, 0} and {1, 0, 0, 1}.
The same is true for all other multiple-scattering matrices of homogeneous or inho-
mogeneous atmospheres. A result of this approach is that it is possible to compute
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orders of scattering for all multiple-scattering matrices numerically by using the it-
erative scheme given by Eqs. (4.15)-(4.20) and a similar scheme for incident light
from below for four different input vectors.

4.5 Relationships for Multiple-Scattering Matrices

4.5.1 Symmetry Relations

In this subsection we derive a set of symmetry relations for the multiple-scattering
matrices, some of which are valid only for homogeneous atmospheres and others also
for inhomogeneous atmospheres. The relations for the reflection and transmission
matrices have been found by Hovenier (1971) by using the symmetry relations (3.28)-
(3.34) for the phase matrix and the iteration scheme described by Eqs. (4.15)-
(4.20). We will first consider a homogeneous atmosphere and then an inhomogeneous
atmosphere, both isolated in space.

4.5.1.a Reflection and Transmission by Homogeneous Atmospheres

First we look at the reflection and transmission matrices for light that has been
scattered only once in a homogeneous atmosphere. In view of Eqs. (4.55)-(4.56)
and (4.59)-(4.60) we have

R1(µ, µ0, ϕ− ϕ0) =
a

4(µ0 + µ)

(
1− e

−b
(

1
µ0

+ 1
µ

))
Z(−µ, µ0, ϕ− ϕ0), (4.79)

T 1(µ, µ0, ϕ− ϕ0) =
a

4(µ0 − µ)

(
e−b/µ0 − e−b/µ

)
Z(µ, µ0, ϕ− ϕ0), (µ �= µ0)

(4.80)

T 1(µ, µ0, ϕ− ϕ0) =
ab

4µ2
0

e−b/µ0Z(µ, µ0, ϕ− ϕ0). (µ = µ0)

(4.81)

Considering light incident from below we readily find [See also part c of this subsec-
tion]

R∗
1(µ, µ0, ϕ− ϕ0) =

a

4(µ0 + µ)

(
1− e

−b
(

1
µ0

+ 1
µ

))
Z(µ,−µ0, ϕ− ϕ0), (4.82)

T ∗
1(µ, µ0, ϕ− ϕ0) =

a

4(µ0 − µ)

(
e−b/µ0 − e−b/µ

)
Z(−µ,−µ0, ϕ− ϕ0), (µ �= µ0)

(4.83)

T ∗
1(µ, µ0, ϕ− ϕ0) =

ab

4µ2
0

e−b/µ0Z(−µ,−µ0, ϕ− ϕ0). (µ = µ0)

(4.84)

Note that all scalar functions preceding the phase matrix in Eqs. (4.79)-(4.80) and
(4.82)-(4.83) are symmetric in the variables µ and µ0, i.e., they remain unaltered
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if µ and µ0 are interchanged. From the above equations and the symmetry rela-
tions (3.28)-(3.34) we can easily derive the following six relations if only first order
scattering is important:

a : R∗(µ, µ0, ϕ0 − ϕ) = R(µ, µ0, ϕ− ϕ0), (4.85)
b : T ∗(µ, µ0, ϕ0 − ϕ) = T (µ, µ0, ϕ− ϕ0), (4.86)

c : R(µ0, µ, ϕ− ϕ0) = ∆4R̃(µ, µ0, ϕ− ϕ0)∆4, (4.87)

d : T (µ0, µ, ϕ− ϕ0) = ∆3T̃ (µ, µ0, ϕ− ϕ0)∆3, (4.88)
e : R(µ, µ0, ϕ0 − ϕ) = ∆3,4R(µ, µ0, ϕ− ϕ0)∆3,4, (4.89)
f : T (µ, µ0, ϕ0 − ϕ) = ∆3,4T (µ, µ0, ϕ− ϕ0)∆3,4, (4.90)

where the letters in front of the relations are used to identify the type of relation. By
combining these basic equations or employing similar derivations we find 14 further
equations, which we identify by the letters g through t. All 20 equations are collected
in Display 4.1. For example, relation g is a combination of relations c and e, while
p is a combination of relations b and d. Since all of these relations are based on
fundamental symmetry properties, we expect them to be valid for every order of
scattering. Hovenier (1969) has presented mathematical proofs of their correctness.
Consequently, all relations in Display 4.1 for a homogeneous atmosphere also hold
for the sum over all orders of scattering. For that reason, we have not used the
subscript 1 of first order scattering for the relations a through t. We can divide
these relations into three subsets:

1) Relations with no asterisks (c to h).

2) Relations with two asterisks (i to n).

3) Relations with one asterisk (a, b, and o to t).

In subsets 1) and 2) we have the transpositions i) µ ↔ µ0, ii) ϕ ↔ ϕ0, and iii) µ ↔
µ0 as well as ϕ ↔ ϕ0; in subset 3) the additional possibility of performing no
transposition exists. Thus, the total number of different relationships is (3 × 2) +
(3× 2) + (4× 2) = 20.

Instead of the algebraically attractive basis of the six relations a through f, we
can use a “space-time” basis like the set of relations a, b, e, f, g and p, from which all
other 14 relations can be derived. Here the word “space” refers to spatial symmetries
in three dimensions and “time” to symmetries based on time reversal, i.e., reciprocity
[cf. Subsection 3.3.1]. The symmetries expressed by relations a, b, e, f, g, p, o and
h are sketched in Fig. 4.3 and are quite analogous to those of the phase matrix.

Relations a and b express the fact that light incident at the top of a homogeneous
atmosphere is equivalent to light incident at the bottom only when the azimuth is
counted in the reversed sense. Thus the statement, for a homogeneous atmosphere,
that R = R∗ and T = T ∗, sometimes found in the literature, is incorrect and should
be replaced by relations q and r. This fact has sometimes been overlooked. For
example, Chandrasekhar (1950) first used principles of invariance to derive integral
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Display 4.1: Symmetry Relations for the Reflection and Transmission Ma-
trices. Those valid for homogeneous and inhomogeneous atmo-
spheres are marked (I). The other relations hold for homoge-
neous atmospheres.

a: R∗(µ, µ0, ϕ0 − ϕ) = R(µ, µ0, ϕ− ϕ0)
b: T ∗(µ, µ0, ϕ0 − ϕ) = T (µ, µ0, ϕ− ϕ0)
c: R(µ0, µ, ϕ− ϕ0) = ∆4R̃(µ, µ0, ϕ− ϕ0)∆4 (I)
d: T (µ0, µ, ϕ− ϕ0) = ∆3T̃ (µ, µ0, ϕ− ϕ0)∆3

e: R(µ, µ0, ϕ0 − ϕ) = ∆3,4R(µ, µ0, ϕ− ϕ0)∆3,4 (I)
f: T (µ, µ0, ϕ0 − ϕ) = ∆3,4T (µ, µ0, ϕ− ϕ0)∆3,4 (I)
g: R(µ0, µ, ϕ0 − ϕ) = ∆3R̃(µ, µ0, ϕ− ϕ0)∆3 (I)
h: T (µ0, µ, ϕ0 − ϕ) = ∆4T̃ (µ, µ0, ϕ− ϕ0)∆4

i: R∗(µ0, µ, ϕ− ϕ0) = ∆4R̃
∗
(µ, µ0, ϕ− ϕ0)∆4 (I)

j: T ∗(µ0, µ, ϕ− ϕ0) = ∆3T̃
∗
(µ, µ0, ϕ− ϕ0)∆3

k: R∗(µ, µ0, ϕ0 − ϕ) = ∆3,4R
∗(µ, µ0, ϕ− ϕ0)∆3,4 (I)

l: T ∗(µ, µ0, ϕ0 − ϕ) = ∆3,4T
∗(µ, µ0, ϕ− ϕ0)∆3,4 (I)

m: R∗(µ0, µ, ϕ0 − ϕ) = ∆3R̃
∗
(µ, µ0, ϕ− ϕ0)∆3 (I)

n: T ∗(µ0, µ, ϕ0 − ϕ) = ∆4T̃
∗
(µ, µ0, ϕ− ϕ0)∆4

o: R∗(µ0, µ, ϕ0 − ϕ) = ∆4R̃(µ, µ0, ϕ− ϕ0)∆4

p: T ∗(µ0, µ, ϕ0 − ϕ) = ∆3T̃ (µ, µ0, ϕ− ϕ0)∆3 (I)
q: R∗(µ, µ0, ϕ− ϕ0) = ∆3,4R(µ, µ0, ϕ− ϕ0)∆3,4

r: T ∗(µ, µ0, ϕ− ϕ0) = ∆3,4T (µ, µ0, ϕ− ϕ0)∆3,4

s: R∗(µ0, µ, ϕ− ϕ0) = ∆3R̃(µ, µ0, ϕ− ϕ0)∆3

t: T ∗(µ0, µ, ϕ− ϕ0) = ∆4T̃ (µ, µ0, ϕ− ϕ0)∆4 (I)

equations for the reflection and transmission functions and then stated that these
equations are also valid for polarized light, provided certain scalars were replaced by
certain matrices. Hovenier (1969) pointed out that in general this statement is not
correct and mentioned the necessary modifications. The resulting correct equations
for the reflection matrix and transmission matrix have been published by Hovenier
(1987). The source of the error was the fact that in Chandrasekhar’s mathematical
expressions of the second and third principle of invariance for polarized light the
incorrect statement that R = R∗ and T = T ∗ for a homogeneous atmosphere was
implicitly used.

Relations e and f describe the symmetries with respect to the meridian plane
of incidence and lead to a separation into a set of eight elements that are even
functions of ϕ − ϕ0 (the two 2 × 2 submatrices on the diagonal) and another set
of eight elements that are odd functions of ϕ − ϕ0 (the two 2 × 2 submatrices on
the trailing diagonal), as shown systematically in Fig. 3.7. Relations g and p are
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Figure 4.3: Symmetry relations for the reflection matrix (left side) and the
transmission matrix (right side) of a plane-parallel atmosphere
(layer) when in the initial situation light is incident at the top,
as shown in the two top panels [After Hovenier (1969)].

reciprocity relations. The last two relations visualized in Fig. 4.3 are o and h. These
correspond to an exchange of the incident and outgoing beams; o can be interpreted
as a combination of a, e and g, and h as a combination of b, f and p.

For the same reason as mentioned above, Chandrasekhar (1950) incorrectly
viewed both of the fundamentally different relations g and h to be the result of
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reciprocity.
We could also have considered initial situations with external light incident from

below. Then we would have seen, for example, that the reversal of time, with light
from below, gives relation m, for reflection; for transmission the reversal gives the
relation p as in the case of light from above. Similarly, the exchange of directions
with light from below gives relation o for reflection as in the light-from-above case,
while relation n results for transmission. Hence all 20 relations a through t can be
explained by symmetry arguments only.

4.5.1.b Reflection and Transmission by Inhomogeneous Atmospheres

We now consider an inhomogeneous plane-parallel atmosphere illuminated from
above and isolated in space. From symmetry arguments it follows immediately that
the reciprocity relations g, m and p as well as the relations e, f, k and l, which ex-
press the symmetry with respect to the meridian plane of incidence, remain valid in
this case [See also Appendix E and Sec. 5.6]. By combining the preceding relations
we also find relations c, i and t to be valid, so that generally for an inhomogeneous
atmosphere only 10 of the 20 symmetry relations shown in Display 4.1 are valid. A
very special inhomogeneous atmosphere is one for which the albedo of single scat-
tering and the scattering matrix are both symmetric with respect to the horizontal
plane for which τ = b/2. In that case the reversal of the layer and beams leads
again to a simple result [See Fig. 4.3] and all 20 relations found for a homogeneous
atmosphere hold.

4.5.1.c Matrices Describing the Internal Radiation of a Homogeneous
Atmosphere

For the internal radiation of a homogeneous atmosphere illuminated from above the
first order of scattering can readily be obtained. In view of Eqs. (4.21)-(4.22) and
(4.57)-(4.58) we now have

U1(τ, µ, µ0, ϕ− ϕ0) =
a

4
e−τ/µ0 − e−(b−τ)/µe−b/µ0

µ0 + µ
Z(−µ, µ0, ϕ− ϕ0), (4.91)

D1(τ, µ, µ0, ϕ− ϕ0) =
a

4
e−τ/µ0 − e−τ/µ

µ0 − µ
Z(µ, µ0, ϕ− ϕ0), (µ �= µ0)

(4.92)

D1(τ, µ, µ0, ϕ− ϕ0) =
aτ

4µ2
0

e−τ/µ0 Z(µ, µ0, ϕ− ϕ0). (µ = µ0)

(4.93)

By using Eq. (4.91) for τ = 0 and Eqs. (4.92)-(4.93) for τ = b we retrieve Eqs.
(4.79)-(4.81).

Let us now consider a monodirectional beam of light in a direction (u0, ϕ0)
incident at each point at the bottom (τ = b) of the atmosphere. The first element
of πF 0 is the net flux of this beam per unit area perpendicular to the direction of
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incidence. Since u0 < 0, we can also write (−µ0, ϕ0) for the direction of the incident
beam. Note that the azimuth is always determined by the direction of propagation
of the light measured from an arbitrary starting point in the clockwise sense when
looking from the bottom to the top of the atmosphere. In analogy to the situation
in which light was incident at the top we have for light which has not been scattered
at all

I0(τ, u,−µ0, ϕ− ϕ0) =

{
e−(b−τ)/(−u)I0(b, u,−µ0, ϕ− ϕ0), (u < 0)
0, (u > 0)

(4.94)

where
I0(b, u,−µ0, ϕ− ϕ0) = δ(u + µ0)δ(ϕ− ϕ0)πF 0. (4.95)

Employing Eqs. (4.17)-(4.20) with µ0 replaced by −µ0 we find the first order source
vector

J1(τ, u,−µ0, ϕ− ϕ0) =
a

4
e−(b−τ)/µ0Z(u,−µ0, ϕ− ϕ0)F 0 (4.96)

and the following equations for first order scattering:

U∗
1(τ, µ, µ0, ϕ− ϕ0) =

a e−b/µ0

4
eτ/µ0 − e−τ/µ

µ0 + µ
Z(µ,−µ0, ϕ− ϕ0), (4.97)

D∗
1(τ, µ, µ0, ϕ− ϕ0) =

a

4
e−(b−τ)/µ0 − e−(b−τ)/µ

µ0 − µ
Z(−µ,−µ0, ϕ− ϕ0), (µ �= µ0)

(4.98)

D∗
1(τ, µ, µ0, ϕ− ϕ0) =

a(b− τ)
4µ2

0

e−(b−τ)/µ0 Z(−µ,−µ0, ϕ− ϕ0). (µ = µ0)

(4.99)

By taking τ = b in Eq. (4.97) we obtain Eq. (4.82) as a special case. Similarly,
substituting τ = 0 into Eqs. (4.98)-(4.99) yields Eqs. (4.83) and (4.84), respectively.
It should be noted that the scalar functions preceding the phase matrix are, in
general, not symmetric in µ and µ0 for U1(τ, µ, µ0, ϕ − ϕ0) and U∗

1(τ, µ, µ0, ϕ −
ϕ0). This is an example of the more general theorem that reciprocity relations of
the type valid for reflection matrices and transmission matrices do not generally
hold for matrices describing the internal radiation fields [See Van de Hulst, 1980,
and Sec. 5.2]. However, considering the azimuth dependence, the scalar functions
preceding the phase matrix in Eqs. (4.91)-(4.93) and (4.97)-(4.99) play no role, so
that the mirror symmetry relations e, f, k and l in Display 4.2 hold for the first order
scattering. Moreover, we can obviously turn the atmosphere and light beams upside
down, yielding a situation at optical depth b − τ that is physically identical to the
situation at optical depth τ before the reversal of the atmosphere and beams. This
yields relations a and b of Display 4.2, which for first order scattering also follows
from Eqs. (4.91)-(4.93) and (4.97)-(4.99). Finally, relation q is a combination of
relations a and e, while relation r results from relations b and f. It is shown in
Appendix E that the eight relations shown in Display 4.2 hold for each order of
scattering and thus for their sums over all orders.
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Display 4.2: Symmetry Relations for the Multiple-Scattering Matrices U ,
D, U∗ and D∗. Those valid for homogeneous and inhomoge-
neous atmospheres are marked (I). The other relations hold for
homogeneous atmospheres.

a: U∗(b− τ, µ, µ0, ϕ0 − ϕ) = U(τ, µ, µ0, ϕ− ϕ0)
b: D∗(b− τ, µ, µ0, ϕ0 − ϕ) =D(τ, µ, µ0, ϕ− ϕ0)
e: U(τ, µ, µ0, ϕ0 − ϕ) = ∆3,4U(τ, µ, µ0, ϕ− ϕ0)∆3,4 (I)
f: D(τ, µ, µ0, ϕ0 − ϕ) = ∆3,4D(τ, µ, µ0, ϕ− ϕ0)∆3,4 (I)
k: U∗(τ, µ, µ0, ϕ0 − ϕ) = ∆3,4U

∗(τ, µ, µ0, ϕ− ϕ0)∆3,4 (I)
l: D∗(τ, µ, µ0, ϕ0 − ϕ) = ∆3,4D

∗(τ, µ, µ0, ϕ− ϕ0)∆3,4 (I)
q: U∗(b− τ, µ, µ0, ϕ− ϕ0) = ∆3,4U(τ, µ, µ0, ϕ− ϕ0)∆3,4

r: D∗(b− τ, µ, µ0, ϕ− ϕ0) = ∆3,4D(τ, µ, µ0, ϕ− ϕ0)∆3,4

4.5.1.d Matrices Describing the Internal Radiation of an Inhomoge-
neous Atmosphere

If the albedo of single scattering or the phase matrix depends on optical depth, there
is in general no simple relation between the initial situation and the situation after
reversal of the layer and the beams. From symmetry arguments, however, it follows
immediately that the mirror symmetry relations e, f, k and l remain valid for all
orders of scattering and their sums. Mathematical proofs are given in Appendix
E. Consequently, we have only four general symmetry relations for the matrices
describing the internal radiation field in an inhomogeneous atmosphere [See Display
4.2]. Thus the mirror symmetry relations are the most general symmetry relations
of all multiple-scattering symmetry relations in a microscopically isotropic and sym-
metric medium [See Figs. 3.7 and 3.8]. In the unlikely case when the albedo of single
scattering and the phase matrix are both symmetric with respect to the horizontal
plane at τ = b/2 and the atmosphere is inhomogeneous, all 8 relations valid for a
homogeneous atmosphere hold.

4.5.1.e Applications of Symmetry Relations for Multiple-Scattering Ma-
trices

Each multiple-scattering matrix contains in general 16 different elements, each of
which is a function of 3 variables. Thus the symmetry relations may play an impor-
tant role in dealing with the multiple-scattering matrices. For example, the addition
and subtraction of horizontal layers is a beautiful device for obtaining short deriva-
tions of some complicated formulae in the theory of radiative transfer [See Chapter
5]. Moreover, a numerical method for computing the multiple-scattering matrices is
based on these principles, namely the adding-doubling method discussed in Chapter
5. In applying these principles to polarized light it is important to take into account
the difference between light incident at the top and light incident at the bottom,
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as expressed by relations a and b in Displays 4.1 and 4.2. The same thing is true
when considering e.g. the effect of an ocean underneath an atmosphere on the light
emerging from the atmosphere.

Another application concerns analytical or numerical computations by an arbi-
trary method. Symmetry relations may then be used either as a check or to reduce
the number of computations considerably. For example, if R(µ, µ0, ϕ − ϕ0) is re-
quired for a fixed value of ϕ−ϕ0 (or for a specific Fourier component) and for a grid
of values of 0 ≤ µ, µ0 ≤ 1, it suffices to conduct the computations and/or tabulate
the values for 0 ≤ µ ≤ 1 and µ0 ≤ µ.

EE

A

S S

A

Figure 4.4: A planetary disk observed from Earth when the subsolar point,
S, is to the right of the subearth point E (left panel) and S is to
the left of E (right panel). The phase angles of the planet are the
same in both cases and the horizontal line indicates the intensity
equator, whose center is the center of the planet. The points A
and A′ lie at the top of the horizontally homogeneous planetary
atmosphere and are located symmetrically with respect to the
plane through E perpendicular to the intensity equator.

A very practical application of symmetry relations concerns observations of the
light scattered by a cloud layer or by a whole planet. This light will often have
symmetry properties that can be derived from the given symmetry relations of the
multiple-scattering matrices. This makes it possible to make a quick comparison
between the observations and the theoretical interpretation, giving checks on the
quality of the observations or on assumptions made in the interpretation, like hori-
zontal homogeneity. This was first worked out by Minnaert (1941, 1946, 1961) only
for brightness observations and ignoring polarization, and later by Hovenier (1970)
for polarization studies of planets. One such application of symmetry relations is
illustrated in Fig. 4.4, where the points A and A′ at the top of a planetary atmo-
sphere are observed at the same phase angle, i.e., at the same angle between the
Sun and the Earth as viewed from the planet. If the areas around A and A′ have
the same horizontal and vertical physical properties, their (local) reflection matrices
are R(µ, µ0, ϕ−ϕ0) and R(µ, µ0, ϕ0−ϕ), respectively. Since the incoming sunlight
is unpolarized, the brightness and degree of polarization of the light received from
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A and A′ are the same [See relation e of Display 4.1], but the direction of the linear
polarization and the sense in which the polarization ellipse is traced, are symmetri-
cal with respect to the plane through the subearth point perpendicular to the plane
Earth-planet-Sun.

4.5.2 Interrelations

As discussed in Subsection 3.3.2, the phase matrix Z(τ, u, u′, ϕ−ϕ′) is a sum of pure
Mueller (SPM) matrices for all values of the variables in the relevant ranges. We
will now address the question of whether this is also true for the multiple-scattering
matrices. If a monodirectional beam of light strikes the top of a homogeneous or
inhomogeneous atmosphere isolated in space, the following events may happen:

1) extinction, which according to Bouger’s exponential law, amounts to multipli-
cation by a positive scalar,

2) scattering, which amounts to multiplication by an SPM matrix (the phase
matrix) and a positive scalar (the albedo of single scattering) each time that
scattering occurs, and

3) summation (including integration) of light streams originating at various op-
tical depths and coming from many directions.

As shown in Appendix A, if these operations are applied to an SPM matrix, the
result is still an SPM matrix. So it is clear that not only R1, T 1, U1 and D1 are
SPM matrices, but also the multiple-scattering matrices Rn, T n, Un and Dn for
every order of scattering. A formal mathematical proof is given in Appendix E. By
summation we find that R(µ, µ0, ϕ− ϕ0), T (µ, µ0, ϕ− ϕ0), U(τ, µ, µ0, ϕ− ϕ0) and
D(τ, µ, µ0, ϕ − ϕ0) are SPM matrices for homogeneous as well as inhomogeneous
atmospheres for all relevant values of its arguments. The same thing is true for
R∗(µ, µ0, ϕ−ϕ0), T ∗(µ, µ0, ϕ−ϕ0), U∗(τ, µ, µ0, ϕ−ϕ0) and D∗(τ, µ, µ0, ϕ−ϕ0), as
can be shown analogously. Since all multiple-scattering matrices are sums of pure
Mueller matrices, they obey the interrelations for their elements given in Appendix
A. All of these interrelations can be used for checking purposes. If all 16 elements of
a multiple-scattering matrix are known, one can conduct the so-called Cloude test
as a potent weapon to avoid errors by checking if the matrix is an SPM matrix [See
Appendix A and Cloude (1986)].

4.5.3 Perpendicular Directions

Perpendicular directions in a plane-parallel atmosphere are rather special, both for
the incident light (µ0 = 1) and the scattered light (u = ±1, µ = |u| = 1), since
there is no implicit meridian plane and azimuth for these directions and hence no
implicit plane of reference for the Stokes parameters. For practical purposes these
directions are important, because they are often favored for observations. Examples
are zenith observations of the sky, nadir observations from airplanes and satellites
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of the Earth’s atmosphere and oceans, observations of the subsolar and subearth
regions of a planetary disk and the midpoint of the disk of a planet in opposition
(µ0 = µ = 1).

We have shown in Subsection 3.3.3 that the phase matrix can be simplified
for perpendicular directions, because there is no implicit plane of reference for the
Stokes parameters in this case. Therefore, it is only natural to seek simplifications
for the multiple-scattering matrices if one or both of the directions of incidence and
scattering is perpendicular. We follow Hovenier and De Haan (1985) and refer to
that paper for a more extensive treatment.

Let us consider a plane-parallel homogeneous or inhomogeneous atmosphere iso-
lated in space and first suppose that light is incident at the top in the perpendicular
direction (µ0 = 1) and is specified by πF 0. This implies that a plane of reference
for the Stokes parameters of the incident light has been chosen. Since this plane
contains the vertical, it can be used to define the meridian plane of incidence and
the azimuthal angle ϕ0. Then, in view of Eqs. (4.43)-(4.44), the scattered light in a
nonperpendicular direction going upward at the optical depth τ is given by

I(τ,−µ, ϕ) = U(τ, µ, 1, ϕ− ϕ0)F 0 (4.100)

and that going downward at the optical depth τ by

I(τ, µ, ϕ) =D(τ, µ, 1, ϕ− ϕ0)F 0. (4.101)

On the other hand, consider what would happen if the incident and scattered beams
were both in the ϕ-plane and we would then take the limit as µ0 → 1 while staying
in the ϕ-plane. As a result,

I(τ,−µ, ϕ) = U(τ, µ, 1, ϕ− ϕ0)F 0 = U(τ, µ, 1, 0)L(ϕ− ϕ0)F 0, (4.102)
I(τ, µ, ϕ) =D(τ, µ, 1, ϕ− ϕ0)F 0 =D(τ, µ, 1, 0)L(ϕ− ϕ0)F 0, (4.103)

where we have applied Eqs. (1.50) and (1.51) to rotate the reference plane of the
incident light specified by πF 0. However, because of mirror symmetry [See Display
4.2, relations e and f] we have

U(τ, µ, 1, 0) = ∆3,4U(τ, µ, 1, 0)∆3,4, (4.104)
D(τ, µ, 1, 0) = ∆3,4D(τ, µ, 1, 0)∆3,4, (4.105)

so that U(τ, µ, 1, 0) and D(τ, µ, 1, 0) are block diagonal matrices, i.e., the nondiago-
nal 2× 2 submatrices vanish. Consequently, Eqs. (4.102)-(4.105) imply that we can
write

U(τ, µ, 1, ϕ− ϕ0) =


u11(τ, µ) u12(τ, µ)c2 u12(τ, µ)s2 0
u21(τ, µ) u22(τ, µ)c2 u22(τ, µ)s2 0

0 −u33(τ, µ)s2 u33(τ, µ)c2 u34(τ, µ)
0 −u43(τ, µ)s2 u43(τ, µ)c2 u44(τ, µ)

 , (4.106)
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where the elements of U(τ, µ, 1, 0) have been written as uij(τ, µ) and c2 and s2 are
defined by

c2 = cos 2(ϕ− ϕ0), (4.107)
s2 = sin 2(ϕ− ϕ0), (4.108)

and similarly forD(τ, µ, 1, ϕ−ϕ0) if one replaces the functions uij(τ, µ) by functions
dij(τ, µ). Hence, these matrices have a simple azimuth dependence, which only
consists of azimuth independent elements and elements proportional to cos 2(ϕ−ϕ0)
or sin 2(ϕ− ϕ0).

Now suppose a monodirectional beam of light is incident at the top in a nonper-
pendicular direction (0 < µ0 < 1). The first element of πF 0 is the net flux of this
beam per unit area perpendicular to the direction of incidence. The direction of the
scattered light is perpendicular (µ = 1). A plane through the vertical is chosen for
the Stokes parameters of the scattered light and this defines ϕ. Then the scattered
light going upward at the optical depth τ is given by

I(τ,−1, ϕ) = µ0U(τ, 1, µ0, ϕ− ϕ0)F 0 (4.109)

and that going downward at the optical depth τ by

I(τ, 1, ϕ) = µ0D(τ, 1, µ0, ϕ− ϕ0)F 0. (4.110)

On the other hand, we can take the limit as µ → 1 in the ϕ0-plane and then
transform the Stokes parameters to the ϕ-plane. Thus we have

I(τ,−1, ϕ) = µ0U(τ, 1, µ0, ϕ− ϕ0)F 0 = µ0L(ϕ0 − ϕ)U(τ, 1, µ0, 0)F 0, (4.111)
I(τ, 1, ϕ) = µ0D(τ, 1, µ0, ϕ− ϕ0)F 0 = µ0L(ϕ− ϕ0)D(τ, 1, µ0, 0)F 0. (4.112)

However, from relations e and f in Display 4.2 it follows that U(τ, 1, µ0, 0) and
D(τ, 1, µ0, 0) are block diagonal matrices. Consequently,

U(τ, 1, µ0, ϕ− ϕ0) =


v11(τ, µ0) v12(τ, µ0) 0 0

v21(τ, µ0)c2 v22(τ, µ0)c2 −v33(τ, µ0)s2 −v34(τ, µ0)s2

v21(τ, µ0)s2 v22(τ, µ0)s2 v33(τ, µ0)c2 v34(τ, µ0)c2

0 0 v43(τ, µ0) v44(τ, µ0)

 ,

(4.113)
where the functions vij(τ, µ0) are the elements of U(τ, 1, µ0, 0), and similarly for
D(τ, 1, µ0, ϕ− ϕ0) if one replaces the functions vij(τ, µ0) by the functions eij(τ, µ0)
and s2 by −s2. Consequently, the azimuth dependence is again very simple.

We finally consider the case when the directions of the incident light at the top
and the scattered light are both perpendicular with reference planes given by ϕ0

and ϕ, respectively. This may be regarded as a special case of either preceding case.
We have according to Eqs. (4.100) and (4.109)

I(τ,−1, ϕ) = U(τ, 1, 1, ϕ− ϕ0)F 0. (4.114)
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Now Eqs. (4.102) and (4.111) give two expressions for U(τ, 1, 1, ϕ − ϕ0) which by
subtraction give

U(τ, 1, 1, 0) = L(ϕ0 − ϕ)U(τ, 1, 1, 0)L(ϕ0 − ϕ). (4.115)

Using the fact that the left-hand side of this equation is independent of azimuth, we
find

U(τ, 1, 1, 0) = diag(u11(τ, 1), u22(τ, 1),−u22(τ, 1), u44(τ, 1)). (4.116)

Substituting this into Eqs. (4.102) or (4.111) we obtain

U(τ, 1, 1, ϕ− ϕ0) =


u11(τ, 1) 0 0 0

0 u22(τ, 1)c2 u22(τ, 1)s2 0
0 u22(τ, 1)s2 −u22(τ, 1)c2 0
0 0 0 u44(τ, 1)

 . (4.117)

Similarly, we get for the scattered light travelling downwards [cf. Eqs. (4.103) and
(4.112)]

I(τ, 1, ϕ) =D(τ, 1, 1, ϕ− ϕ0)F 0. (4.118)

According to Eqs. (4.103) and (4.112) we have

D(τ, 1, 1, 0) = L(ϕ− ϕ0)D(τ, 1, 1, 0)L(ϕ0 − ϕ), (4.119)

but since the left-hand side must be azimuth independent we must have

D(τ, 1, 1, 0) = diag(d11(τ, 1), d22(τ, 1), d22(τ, 1), d44(τ, 1)), (4.120)

which according to Eqs. (4.103) or (4.112) provides

D(τ, 1, 1, ϕ− ϕ0) =


d11(τ, 1) 0 0 0

0 d22(τ, 1)c2 d22(τ, 1)s2 0
0 −d22(τ, 1)s2 d22(τ, 1)c2 0
0 0 0 d44(τ, 1)

 . (4.121)

We conclude that the azimuth dependence is again simple and disappears completely
if we choose the same plane of reference for the incident and scattered beams. Then
we have the very simple diagonal matrices expressed by Eqs. (4.116) and (4.120)
which have exactly the same form as the phase matrix for the same directions [See
Sec. 3.2] and the scattering matrix for exactly backward and forward scattering,
respectively [See Eqs. (2.72) and (2.73)]. In all cases the basic reason is that there
is no implicit plane through the directions of the incident and scattered light.

Relations for the reflection matrix and the transmission matrix for perpendicular
directions are readily obtained from the above relations for U and D by taking
τ = 0 and τ = b, respectively. All preceding relations for perpendicular directions
can readily be extended for incident light from below, i.e., for U∗, D∗, R∗ and T ∗,
by proceeding in analogous ways or by using symmetry relations. Some symmetry
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relations can be used to derive new relations. For instance, relation g of Display 4.1,
i.e.,

R(1, µ, ϕ0 − ϕ) = ∆3R̃(µ, 1, ϕ− ϕ0)∆3, (4.122)

combined with Eqs. (4.106) and (4.113) for τ = 0 and ϕ − ϕ0 = 0 leads to the
equalities 

vii(0, µ) = uii(0, µ), (i = 1, 2, 3, 4)
v12(0, µ) = u21(0, µ), v21(0, µ) = u12(0, µ),
v34(0, µ) = −u43(0, µ), v43(0, µ) = −u34(0, µ).

(4.123)

Analogously, relation h of Display 4.1, i.e.,

T (1, µ, ϕ0 − ϕ) = ∆4T̃ (µ, 1, ϕ− ϕ0)∆4, (4.124)

which is valid for homogeneous atmospheres, leads to the equalities
eii(b, µ) = dii(b, µ), (i = 1, 2, 3, 4)
e12(b, µ) = d21(b, µ), e21(b, µ) = d12(b, µ),
e34(b, µ) = −d43(b, µ), e43(b, µ) = −d34(b, µ).

(4.125)

In addition to symmetry relations we can use properties of sums of pure Mueller
matrices. For instance, Eqs. (A.78)-(A.79) and (A.88)-(A.89) of Appendix A yield

u11(τ, 1) ≥ |u22(τ, 1)|, d11(τ, 1) ≥ |d22(τ, 1)|,
u11(τ, 1) ≥ |u44(τ, 1)|, d11(τ, 1) ≥ |d44(τ, 1)|,

u44(τ, 1) ≤ u11(τ, 1)− 2|u22(τ, 1)|, d44(τ, 1) ≥ 2|d22(τ, 1)| − d11(τ, 1).
(4.126)

These inequalities may be compared with those of the scattering matrix and phase
matrix, shown in Display 2.1.

The relations derived in this section are quite general. To clarify their meaning
we consider a number of special cases.

a) Natural (completely unpolarized) light may be represented by the set of Stokes
parameters {1, 0, 0, 0}. When it is perpendicularly incident, Eq. (4.106) and
the corresponding relation for D show that the scattered light is, in general,
linearly polarized and azimuth independent. When the polarization of the
scattered light is ignored, we recover the well-known azimuth independence of
the intensity for perpendicular incidence.

b) When unpolarized light is incident from a nonperpendicular direction, Eq.
(4.113) and the corresponding relation for D show that the scattered light in
perpendicular directions is, in general, linearly polarized and that its Stokes
parameters are azimuth dependent. A well-known illustration of this case is
provided by the light coming from the zenith sky. The azimuth dependence
is solely a consequence of the description of the polarization in terms of the
Stokes parameters and arises from a changing reference plane. The degree of
polarization does not depend on azimuth, as may be readily derived.
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c) Circularly polarized light may be represented by the Stokes parameters {1, 0, 0,
±x}, where 0 < x ≤ 1. For perpendicular incidence of such a beam we find
from Eq. (4.106) and the corresponding relation forD that the scattered light
is, in general, elliptically polarized and always azimuth independent. When
the scattered light is also directed perpendicularly, it is, generally, circularly
polarized, as may be readily verified using Eqs. (4.117) and (4.121). For
nonperpendicular incidence of circularly polarized light Eq. (4.113) and the
corresponding relation for D show that the scattered light in perpendicular
directions is, in general, elliptically polarized and that its Stokes parameters
are azimuth dependent, whereas the degree of polarization is independent of
azimuth.

It should be noted that in this section we have only considered light which has
been scattered at least once. Light which has not been scattered is simply attenuated
incident light.

4.6 Fourier Decompositions

4.6.1 Functions of u, u′ and ϕ− ϕ′

In Subsection 3.4.1 we have introduced a Fourier decomposition of the phase ma-
trix Z(u, u′, ϕ − ϕ′) leading to the component matrices Zcj(u, u′) and Zsj(u, u′)
(j = 0, 1, 2, · · · ) where Zs0(u, u′) = 0 (See Fig. 3.8). The mirror symmetry relation
(3.28) for the phase matrix implies the mirror symmetry relations (3.56) and (3.57)
for these component matrices. In Subsection 3.4.1 we have applied the latter sym-
metry relations to derive a second Fourier decomposition of the phase matrix in the
component matrices, i.e.,

W j(u, u′) = Zcj(u, u′)−∆3,4Z
sj(u, u′) = Zcj(u, u′) +Zsj(u, u′)∆3,4 (4.127)

(j = 0, 1, 2, · · · ), where, according to Eq. (3.80), W 0(u, u′) can in turn be written
as the following matrix with 2× 2 matrix entries:

W 0(u, u′) =
(
W 0

IQ(u, u′) 0
0 W 0

UV(u, u′)

)
. (4.128)

In Subsection 3.4.2 we have derived analogous Fourier decompositions for arbi-
trary 4 × 4 matrix functions of u, u′ and ϕ − ϕ′ satisfying the mirror symmetry
relation given by Eq. (3.83). We also discussed Fourier decompositions for arbi-
trary column vectors in Subsection 3.4.2. All these Fourier decompositions could
be used in Sections 4.1-4.3. This means in particular that each of Eqs. (4.1)-(4.5),
(4.10)-(4.14), (4.15)-(4.20), (4.23)-(4.25), and (4.27)-(4.30) can be split up in a set
of equations, each of which holds for just one Fourier component. Instead of writing
all of the preceding equations in this way, we shall give one fairly general example.
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Suppose we have a relation of the type

V (u, µ0, ϕ− ϕ0) =
∫ d2

d1

du′
∫ 2π

0
dϕ′ k(u, µ0, u

′)X(u, u′, ϕ− ϕ′)Y (u′, µ0, ϕ
′ − ϕ0),

(4.129)
where d1 and d2 are real constants with d1 < d2, V , X and Y are 4 × 4 matrices,
and k(u, µ0, u

′) is some scalar function. After making Fourier series expansions and
using the orthogonality properties of the sines and cosines involved we find the set
of equations [cf. Eqs. (3.90)-(3.91)]

V cj(u, µ0) = 2π
∫ d2

d1

du′ k(u, µ0, u
′)
[
Xcj(u, u′)Y cj(u′, µ0)

− Xsj(u, u′)Y sj(u′, µ0)
]
, (4.130)

V sj(u, µ0) = 2π
∫ d2

d1

dµ′ k(u, µ0, u
′)
[
Xsj(u, u′)Y cj(u′, µ0)

+ Xcj(u, u′)Y sj(u′, µ0)
]
. (4.131)

Thus each Fourier component of V (u, µ0, ϕ − ϕ0) can be computed separately.
Clearly, V and Y may also be column vectors with four components depending
on u and ϕ.

The successive orders of scattering can be computed for each Fourier component
separately. If we were to do so for intensity vectors with the iterative scheme given
by Eqs. (4.15)-(4.20) starting with monodirectional light, we could use [cf. Eqs.
(3.54)-(3.55) and (4.15)-(4.16)]

Icj0 (0, u, µ0) =
1
2
δ(u− µ0)F 0 (4.132)

Isj0 (0, u, µ0) = 0. (4.133)

Evidently, the discussion of the geometric series behaviour in Sec. 4.2 can also be
given for each Fourier component separately.

4.6.2 Functions of µ, µ0 and ϕ− ϕ0

Let us apply the results of the preceding subsection to derive similar Fourier de-
compositions for functions of µ, µ0 and ϕ− ϕ0. Consider an arbitrary 4× 4 matrix
function L(µ, µ0, ϕ − ϕ0), with 0 ≤ µ ≤ 1 and 0 ≤ µ0 ≤ 1, satisfying the mirror
symmetry relation

∆3,4L(µ, µ0, ϕ− ϕ0)∆3,4 = L(µ, µ0, ϕ0 − ϕ). (4.134)

Following the treatment in Subsection 3.4.2 we first write down the Fourier decom-
position

L(µ, µ0, ϕ− ϕ0)=
∞∑
j=0

(2− δj0)
[
Lcj(µ, µ0) cos j(ϕ− ϕ0)+Lsj(µ, µ0) sin j(ϕ− ϕ0)

]
,

(4.135)



128

where

Lcj(µ, µ0) =
1
2π

∫ 2π

0
d(ϕ− ϕ0)L(µ, µ0, ϕ− ϕ0) cos{j(ϕ− ϕ0)}, (4.136)

Lsj(µ, µ0) =
1
2π

∫ 2π

0
d(ϕ− ϕ0)L(µ, µ0, ϕ− ϕ0) sin{j(ϕ− ϕ0)}, (4.137)

and
Ls0(µ, µ0) = 0. (4.138)

Equation (4.134) implies the mirror symmetry relations

∆3,4L
cj(µ, µ0)∆3,4 = Lcj(µ, µ0), (4.139)

∆3,4L
sj(µ, µ0)∆3,4 = −Lsj(µ, µ0). (4.140)

Analogously to the phase matrix, the cosine terms of L(µ, µ0, ϕ − ϕ0) occur in the
2 × 2 submatrices in the upper left corner and the lower right corner and the sine
terms in the remaining submatrices [cf. Fig. 3.8].

The second Fourier decomposition is obtained by defining

Lj(µ, µ0) = Lcj(µ, µ0)−∆3,4L
sj(µ, µ0) = Lcj(µ, µ0) +Lsj(µ, µ0)∆3,4, (4.141)

yielding

L(µ, µ0, ϕ− ϕ0) =
1
2

∞∑
j=0

(2− δj,0)×

×
{
Φ1(j(ϕ− ϕ0))Lj(µ, µ0)(1+∆3,4) +Φ2(j(ϕ− ϕ0))Lj(µ, µ0)(1−∆3,4)

}
,

(4.142)

where Φ1 and Φ2 are given by Eqs. (3.66) and (3.67). We can write L(µ, µ0, ϕ−ϕ0)
in the alternative form [cf. Eq. (3.100)]

L(µ, µ0, ϕ− ϕ0) =
∞∑
j=0

(2− δj0)
{
Φ1(jϕ)Lj(µ, µ0)Φ1(jϕ0)

+ Φ2(jϕ)Lj(µ, µ0)Φ2(jϕ0)
}

. (4.143)

Clearly, L0(µ, µ0) can be written as the following matrix with 2× 2 matrix entries:

L0(µ, µ0) =
(
L0

IQ(µ, µ0) 0
0 L0

UV(µ, µ0)

)
. (4.144)

According to relations e, f, k and l in Displays 4.1 and 4.2, all of the multiple-
scattering matrices R, T , U , D, R∗, T ∗, U∗ and D∗ are examples of a matrix
function L that satisfies the mirror symmetry relation (4.134) [cf. Figs. 3.7 and
3.8], where the optical depth τ should be included as a variable in the cases of
U , D, U∗ and D∗. As mentioned before, the mirror symmetry relation (4.134)
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also holds for each order of scattering of the multiple-scattering matrices. Hence
the Fourier decompositions given by Eqs. (4.135), (4.142) and (4.143) can be used
for all multiple-scattering matrices and for each order of scattering, including the
first order. If a monodirectional beam of unpolarized radiation is incident at the top
and/or bottom of a plane-parallel atmosphere, it follows from Eq. (4.37) and similar
equations that the first two Stokes parameters of all intensity vectors contain only
cosine terms in a Fourier series expansion and the third and fourth Stokes parameters
only sine terms. It is readily verified that if the Fourier series expansion of the
phase matrix is truncated at j = M0, all single- and multiple-scattering matrices
have vanishing Fourier components for j > M0. This occurs, for instance, when
the elements of the scattering matrix are expanded in a finite number of generalized
spherical functions [cf. Subsection 3.4.3].

4.6.3 Symmetry Relations for the Components

The symmetry relations in Displays 4.1 and 4.2, which involve the multiple-scattering
matrices depending on the azimuth difference ϕ−ϕ0, can be converted into symmetry
relations for the Fourier component matrices Lcj(µ, µ0) and Lsj(µ, µ0), where L
stands for one of the multiple-scattering matrices. The result is always one relation
for the component matrices Lcj and one for the component matrices Lsj . Those for
the matrices Lcj are obtained by omitting the azimuth dependence and inserting
the cj superscript. However, those for the matrices Lsj are obtained by omitting
the azimuth dependence, inserting the sj superscript, and inserting a minus sign on
the right-hand side whenever the symmetry relation, which acts as a starting point,
has ϕ0 − ϕ on the left-hand side and ϕ− ϕ0 on the right-hand side. No minus sign
is to be inserted if the symmetry relation in Displays 4.1 or 4.2 acting as a starting
point has ϕ − ϕ0 on either side. For example, relation g in Display 4.1, which has
opposite azimuth differences on either side, leads to the pair of symmetry relations

Rcj(µ0, µ) = ∆3R̃
cj
(µ, µ0)∆3, (4.145)

Rsj(µ0, µ) = −∆3R̃
sj
(µ, µ0)∆3, (4.146)

whereas relation t in Display 4.1, in which the two sides have the same azimuth
difference, implies the pair of symmetry relations

T ∗,cj(µ0, µ) = ∆4T̃
cj
(µ, µ0)∆4, (4.147)

T ∗,sj(µ0, µ) = ∆4T̃
sj
(µ, µ0)∆4. (4.148)

On using the symmetry relation (4.134) to introduce the Fourier component
matrices Lj(µ, µ0), the symmetry relations (4.139) and (4.140) are sacrificed to
arrive at a reduced set of symmetry relations, where the reduction in number is due
to the reduced redundancy present in the component matrices Lj(µ, µ0). To obtain
such a set, we can use

∆3,4L
j(µ, µ0)∆3,4 = Lcj(µ, µ0) +∆3,4L

sj(µ, µ0), (4.149)
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which follows from Eqs. (4.139)-(4.141). The results are shown in Displays 4.3 and
4.4.

Display 4.3: Symmetry Relations for the Fourier components of the Reflec-
tion and Transmission Matrices R, T , R∗ and T ∗. Those valid
for homogeneous and inhomogeneous atmospheres are marked
(I). The other relations hold for homogeneous atmospheres.
The letters in the first column indicate the relations in Dis-
play 4.1 on which the present relations are based. Here, for
instance, a,q means relation a or q.

a,q: R∗j(µ, µ0) = ∆3,4R
j(µ, µ0)∆3,4

b,r: T ∗j(µ, µ0) = ∆3,4T
j(µ, µ0)∆3,4

c,g: Rj(µ0, µ) = ∆4R̃
j
(µ, µ0)∆4 (I)

d,h: T j(µ0, µ) = ∆3T̃
j
(µ, µ0)∆3

i,m: R∗j(µ0, µ) = ∆4R̃
∗j
(µ, µ0)∆4 (I)

j,n: T ∗j(µ0, µ) = ∆3T̃
∗j
(µ, µ0)∆3

o,s: R∗j(µ0, µ) = ∆3R̃
j
(µ, µ0)∆3

p,t: T ∗j(µ0, µ) = ∆4T̃
j
(µ, µ0)∆4 (I)

Display 4.4: Symmetry Relations for the Fourier components of the Mul-
tiple-Scattering MatricesU ,D, U∗ andD∗ that hold for homo-
geneous atmospheres. The letters in the first column indicate
the relations in Display 4.2 on which the present relations are
based. Here, for instance, a,q means relation a or q.

a,q: U∗j(b− τ, µ, µ0) = ∆3,4U
j(τ, µ, µ0)∆3,4

b,r: D∗j(b− τ, µ, µ0) = ∆3,4D
j(τ, µ, µ0)∆3,4

If one (or both) of the directions of incidence and scattering is perpendicular, only
the Fourier components Lc0, Lc2 and Ls2 appear in Eq. (4.135). This follows im-
mediately from Eqs. (4.106) and (4.113) or even from Eqs. (4.102), (4.103), (4.111)
and (4.112), because only the azimuth independent component and the components
containing cos 2(ϕ−ϕ0) and sin 2(ϕ−ϕ0) are present in the Fourier decompositions
of the rotation matrices L(ϕ− ϕ0) and L(ϕ0 − ϕ).

Equation (4.52) shows that only the azimuth independent term of the reflection
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function is needed for the plane albedo and hence we have

r(µ0) = 2
∫ +1

0
µdµ

[
Rc0(µ, µ0)

]
1,1

. (4.150)

Using the principle of reciprocity we can also write

r(µ) = 2
∫ +1

0
µ0dµ0

[
Rc0(µ, µ0)

]
1,1

. (4.151)

By integration over all directions of incidence we find the so-called spherical or Bond
albedo

r = 2
∫ +1

0
µ0dµ0 r(µ0) = 2

∫ +1

0
µdµ r(µ). (4.152)

For a semi-infinite atmosphere (b = ∞) and albedo of single scattering a = 1, all
incident light is ultimately reflected so that r(µ0) ≡ 1 and r = 1. For all other
atmospheres we have at least some losses and the plane albedo and Bond albedo are
both nonnegative scalars smaller than unity.

Problems

P4.1 Dave and Walker (1964) computed 15 orders of scattering for zenith sky radi-
ation for a homogeneous, non-absorbing, plane-parallel Rayleigh atmosphere
with optical thickness 1 and a solar zenith angle of 78.5◦. From their results
we derived the following table for the first three orders of scattering:

n In Qn

1 1.761× 10−2 1.625× 10−2

2 1.233× 10−2 0.705× 10−2

3 0.818× 10−2 0.284× 10−2

total 5.272× 10−2 2.796× 10−2

The total (the sum over all orders of scattering) was obtained from Chan-
drasekhar’s theory. Show that the geometric series approximation, applied to
n = 1, 2, 3, yields a value for the total with an error of 2.88% for the intensity
and only 0.36% for Q.

P4.2 Compute R2(µ, µ0, ϕ − ϕ0) for a homogeneous semi-infinite (b = ∞) isotrop-
ically scattering (a1(Θ) = 1, a2(Θ) = a3(Θ) = a4(Θ) = b1(Θ) = b2(Θ) = 0)
atmosphere.

P4.3 Find the expressions for the reflection and transmission matrices of the light
scattered only once if a(τ) = a0e

−pτ for some constant p > 0 and the phase
matrix does not depend on τ .
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P4.4 What are the reflection matrix and the transmission matrix of light scattered
once by an atmosphere that is illuminated from above and consists of L dif-
ferent layers if the corresponding matrices are known for each of the layers?

P4.5 Show that the second order reflection matrix and transmission matrix of a
homogeneous atmosphere are proportional to b2 for very small values of b/µ
and b/µ0.

P4.6 Write down the symmetry relations for the 2× 2 Fourier components L0
IQ and

L0
UV if L is any of the multiple-scattering matrices R, R∗, T and T ∗.

P4.7 Consider a planetary disk observed from Earth like in the left drawing of Fig.
4.4. The mirror meridian crosses the intensity equator halfway between the
subearth point and the subsolar point. Suppose the points A and B lie at
the top of the horizontally homogeneous planetary atmosphere, symmetrically
with respect to the mirror meridian. Is the degree of polarization of the light
received from A and B the same?

P4.8 Can the surface albedo of a nonabsorbing Lambert surface be smaller than its
Bond albedo?

Answers and Hints

P4.1 Using I3/I2 and Q3/Q2 as the ratios, respectively, we find the approximate
value 5.424× 10−2 for I and 2.806× 10−2 for Q.

P4.2 First note that R2(µ, µ0, ϕ − ϕ0) = R0
2(µ, µ0) and that only the 1, 1-element

is nontrivial. Considering the reflection function we find using Eqs. (4.63),
(4.64) and (4.66)

R0
2(µ, µ0) =

a2

2

∫ 1

0
dµ′ [g(µ, µ0, µ

′) + h(µ, µ0, µ
′)
]

=
a2

8(µ + µ0)

{
µ ln
(

µ + 1
µ

)
+ µ0 ln

(
µ0 + 1

µ0

)}
.

P4.3 Let a beam of light specified by Eq. (4.16) be incident at the top. Using Eqs.
(4.17)-(4.20) we find for the light scattered once

I1(τ, u, µ0, ϕ− ϕ0) =


a0
4 Z(u, µ0, ϕ− ϕ0)c(τ, u, µ0/(1 + pµ0))F 0, u > 0,
a0
4 Z(u, µ0, ϕ− ϕ0)d(τ, u, µ0/(1 + pµ0))F 0, u < 0,
a0
4 Z(0, µ0, ϕ− ϕ0) exp(−τ(1 + pµ0)/µ0)F 0, u = 0.

Consequently,

R1(µ, µ0, ϕ− ϕ0) =
a0

4µ0
d(µ, µ0/(1 + pµ0))Z(−µ, µ0, ϕ− ϕ0),

T 1(µ, µ0, ϕ− ϕ0) =
a0

4µ0
c(µ, µ0/(1 + pµ0))Z(µ, µ0, ϕ− ϕ0).
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P4.4 We have

R1(µ, µ0, ϕ− ϕ0) =
L∑
l=1

e
−rl( 1

µ
+ 1

µ0
)
R1,l(µ, µ0, ϕ− ϕ0)

and

T 1(µ, µ0, ϕ− ϕ0) =
L∑
l=1

e
−(

tl
µ

+
rl
µ0

)
T 1,l(µ, µ0, ϕ− ϕ0),

where rl is the optical depth of the top of layer l and tl is the optical distance
between the bottom of layer l and the lower boundary of the atmosphere.

P4.5 Use series expansions for exponential functions.

P4.6 Observe that for j = 0 the matrices in Displays 4.3 and 4.4 are all diagonal
matrices with zero off-diagonal 2 × 2 entries. When writing down relations
for the diagonal 2 × 2 entries and putting Ξ̂ = diag(1,−1), we obtain for the
reflection and transmission matrices

a,q: R∗0
IQ(µ, µ0) = R0

IQ(µ, µ0) R∗0
UV(µ, µ0) = R0

UV(µ, µ0)
b,r: T ∗0

IQ(µ, µ0) = T 0
IQ(µ, µ0) T ∗0

UV(µ, µ0) = T 0
UV(µ, µ0)

c,g: R0
IQ(µ0, µ) = R̃

0

IQ(µ, µ0) R0
UV(µ0, µ) = Ξ̂R̃

0

UV(µ, µ0)Ξ̂

d,h: T 0
IQ(µ0, µ) = T̃

0

IQ(µ, µ0) T 0
UV(µ0, µ) = Ξ̂T̃

0

UV(µ, µ0)Ξ̂

i,m: R∗0
IQ(µ0, µ) = R̃

∗0
IQ(µ, µ0) R∗0

UV(µ0, µ) = Ξ̂R̃
∗0
UV(µ, µ0)Ξ̂

j,n: T ∗0
IQ(µ0, µ) = T̃

∗0
IQ(µ, µ0) T ∗0

UV(µ0, µ) = Ξ̂T̃
∗0
UV(µ, µ0)Ξ̂

o,s: R∗0
IQ(µ0, µ) = R̃

0

IQ(µ, µ0) R∗0
UV(µ0, µ) = Ξ̂R̃

0

UV(µ, µ0)Ξ̂

p,t: T ∗0
IQ(µ0, µ) = T̃

0

IQ(µ, µ0) T ∗0
UV(µ0, µ) = Ξ̂T̃

0

UV(µ, µ0)Ξ̂

P4.7 Not necessarily, since the reflection matrices are related as

R(µ0, µ, ϕ− ϕ0) = ∆4R̃(µ, µ0, ϕ− ϕ0)∆4.

P4.8 No. Both of them are equal to one.





Chapter 5

The Adding-doubling Method

5.1 Introduction

As discussed in the preceding chapter, in practice it is not always possible to obtain
the multiple-scattering properties of a plane-parallel atmosphere solely by means of
the method of orders of scattering. The main reason for this is the slow convergence
of successive orders of scattering for optically thick atmospheres having high values of
the single scattering albedo [cf. Sec. 4.2]. Since such atmospheres are frequently met
in planetary and oceanographic research, an important question is how to compute
their multiple-scattering matrices, especially when their single scattering is more
complicated than Rayleigh scattering.

A major breakthrough in this field occurred when it was shown by Van de Hulst
(1963) that the multiple-scattering properties of a plane-parallel atmosphere of any
finite optical thickness can be accurately computed by considering it as a pile of
sublayers. One can then start with two sublayers with optical thicknesses b′ and b′′,
respectively, which are small enough to allow for their multiple-scattering matrices
to be computed with sufficient accuracy by means of a few orders of scattering. In
a thought experiment one places one of these sublayers on top of the other and con-
siders successive crossings of the radiation at the interface between the two. These
can be computed, since the multiple-scattering matrices of a sublayer determine its
responses to radiation coming from a neighboring layer. After this interface crossing
radiation has been computed, the multiple scattering of the combined layer, with
optical thickness b′ + b′′, can readily be obtained. Obviously this process can be
repeated by taking the combined layer as a sublayer in a next step, yielding results
for a layer with optical thickness b′ + b′′ + b′′′, and so on. This process is usually
referred to as “adding layers” and the computational method based on it is called
the adding method. A special case of it is the doubling method which can be used for
homogeneous atmospheres by adding only identical layers with thicknesses b′, 2b′,
4b′, etc., so that only 12 steps are needed to go from e.g. b = 2−9 to b = 8. The
name adding-doubling method is often used to indicate both methods together.

As so often in historical matters, it is difficult to trace the origins of the basic
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ideas that led to the adding-doubling method. We will not attempt to do so, but
at least two remarks seem appropriate in this context. In a method first used by
Ambarzumian (1943), use is made of equations describing the effect of adding a
very thin layer to the top or bottom of an atmosphere. Several variations of this
method have been developed, some of which go by the name of “invariant embed-
ding” [cf. Chandrasekhar, 1950, Sec. 50; Van de Hulst, 1980, Sec. 4.4; Sobolev,
1972; Hansen and Travis, 1974]. Our second remark concerns the formulation of an
adding-doubling method for the reflection and transmission of gamma rays by a slab
of heavy material like uranium by Peebles and Plesset (1951).

The adding-doubling method was originally developed for multiple-scattering
computations under the assumption that polarization could be ignored. Thus, in-
stead of 4×4 multiple-scattering matrices, only multiple-scattering functions like the
reflection function and the transmission function were involved. Van de Hulst sug-
gested in the mid-1960’s to extend the adding-doubling method to polarized light.
Early attempts to do so failed, because a correct and complete picture of the symme-
try relationships for the phase matrix and multiple-scattering matrices was lacking.
After this had been developed [Hovenier, 1969], the adding-doubling method was
extended to polarized light and immediately employed for numerical computations
[Hansen, 1971a; Hovenier, 1971; Hansen and Hovenier, 1971]. A comprehensive
study of the adding-doubling method for polarized light, including several impor-
tant improvements and practical guidelines for efficient programming, was made by
De Haan et al. (1987). A less efficient algorithm for the adding-doubling method
was described by Evans and Stephens (1991). The adding-doubling method is an
exact method in the sense that the accuracy of the computational results depends
solely on the accuracy of the input data and the computer time as well as storage
used.

A variant of the adding-doubling method, the so-called matrix operator method,
was developed by Twomey et al. (1966) and its history was discussed by Plass et al.
(1973). This method was modified to take polarization of the radiation into account
by Howell and Jacobowitz (1970), Jacobowitz and Howell (1971), Tanaka (1971),
and Kattawar et al. (1976). The correct formulation of the symmetry relationships
for scattering of polarized light [Hovenier, 1969] also played an important role in
these modifications.

Other methods for computing multiple scattering of polarized light in plane-
parallel atmospheres of finite optical thickness that have resulted in tested computer
codes which have been used for numerical calculations, include

(i) methods which are (in practice) restricted to Rayleigh scattering [Chandrase-
khar, 1950; Van de Hulst, 1980, Ch. 16, and references therein],

(ii) a discrete ordinates method [Weng, 1992; Haferman et al., 1997; Schultz et al,
1999; Schultz and Stamnes, 2000; Siewert, 2000],

(iii) a generalized spherical harmonics method [Benassi et al., 1985; Garcia and
Siewert, 1986],

(iv) the FN-method [Garcia and Siewert, 1989],
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(v) the fast invariant imbedding method [Mishchenko, 1990; Mishchenko and
Travis, 1997], and

(vi) the layer separation method [De Rooij, 1985].

Methods for computing the reflection matrix and the transmission matrix in
the case of Rayleigh scattering are the oldest and have been used for studies of
scattering by molecules in the atmospheres of the Earth and some other planets. A
lot of literature exists on this subject [See e.g. Chandrasekhar, 1950; Van de Hulst,
1980]. The other methods mentioned above have been used for several test models
but not as much for realistic planetary atmospheres as the adding-doubling method
or the matrix operator method.

The basic idea of the discrete ordinates method goes back to Chandrasekhar
(1950). Applying Fourier decomposition to the equation of radiative transfer (4.14)
and applying a quadrature formula to replace all integrals over the direction cosine
u (−1 ≤ u ≤ 1) by finite sums, one arrives at a system of linear ordinary differential
equations of first order in the optical depth. When modelling the atmosphere as
a pile of homogeneous layers, one arrives at a system of first order ordinary dif-
ferential equations with constant coefficients for each homogeneous layer, together
with boundary conditions to account for incident light, any reflecting surface, and
continuity across the interfaces between the layers. Effectively, the original equation
of transfer has been discretized at the division points of the quadrature scheme.
The coefficients arising on expansion of the solution in eigenvectors are determined
by solving a banded linear system. Analytical expressions are used to compute the
solutions at given direction cosines which are not division points. So far the discrete
ordinates method has proved to be highly popular, especially since the numerical
codes are widely available and clearly documented. It has been applied to Ray-
leigh scattering and to monodisperse and polydisperse Mie scattering [Weng, 1992;
Schultz et al, 1999; Schultz and Stamnes, 2000; Siewert, 2000] and the results have
been found to agree with those obtained by using FN and adding-doubling methods.

The spherical harmonics method, which is also known as the PL-approximation,
is very similar to the discrete ordinates method. When polarization is ignored, the
basic idea of this method goes back to Davison (1957) and Lenoble (1961). Applying
Fourier decomposition to the equation of radiative transfer (4.14) and expanding the
intensity vector using the matrices Πj

l (u) given by Eq. (3.125), which amounts to
expansion in associated Legendre functions when polarization is ignored, one arrives
at a system of linear ordinary differential equations of first order in the optical
depth with constant coefficients for each homogeneous layer making up the plane-
parallel atmosphere, together with boundary conditions to account for incident light,
any reflecting surface, and continuity across the interfaces between the layers. The
expansion coefficients are determined by solving a sparse linear system. For Mie
scattering models accurate numerical results have been obtained by Benassi et al.
(1985) for j = 0 and by Garcia and Siewert (1986) for general j. The results have
been found to agree with those obtained by using the adding-doubling method.

The FN-method consists of applying a collocation method to the singular integral
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equations arising when using expansion of the solution of the transport equation
for polarized light in its (singular) eigenfunctions. Since these integral equations
require the use of linear constraints to single out the unique solution corresponding
to the radiation field, it is necessary to first compute all of the discrete eigenvalues
of the transport equation. Then a finite linear combination of basis functions (in
most cases polynomials, sometimes spline functions) is substituted into the integral
equations and a linear system is derived by satisfying the integral equations at the
so-called collocation points. Solving the (often sparse) linear system then leads to the
solution of the transport equation and hence to the radiation field in the atmosphere.
The FN method has first been developed for neutron transport problems [Siewert
and Benoist, 1979; Grandjean and Siewert, 1979] and for radiative transfer where
polarization is neglected [Maiorino and Siewert, 1980; Devaux and Siewert, 1980].
When polarization is taken into account, so far the FN-method has only been applied
to a variety of test problems, often taken from Deirmendjian (1969), where the
expansion coefficients given by Eqs. (2.160)-(2.165) are available [cf. Garcia and
Siewert, 1989]. For these test problems the numerical results obtained by applying
the FN-method agree with those obtained by applying the adding-doubling method.

The fast invariant imbedding method departs from the invariant imbedding equa-
tion, which is an integro-differential equation for the reflection matrix R for an
atmosphere of optical thickness b obtained by putting a very thin layer on top of
the atmosphere and determining how R is changing as a function of b. By ap-
plying a quadrature scheme to the integrals with respect to the angular variables,
one gets a system of ordinary differential equations in b which is solved by using a
predictor-corrector scheme. The method was first applied by Sato et al. (1977) when
polarization is ignored, and extended to transfer of polarized light by Mishchenko
(1990).

The layer separation method starts from the reflection matrix of a semi-infinite
atmosphere which is computed e.g. by iterating the nonlinear integral equation for
the reflection matrix [See Problem P5.7]. This reflection matrix is then used to com-
pute the multiple-scattering matrices U andD for a semi-infinite atmosphere, using
a method due to Ivanov (1975) and numerically implemented by Dlugach (1976)
for Henyey-Greenstein phase functions and by De Rooij (1985) when polarization is
taken into account. Essentially, layer separation is a “subtraction method,” where
certain adding equations involving the addition of a layer of finite optical thickness
to a semi-infinite atmosphere are used in the converse direction, namely by stripping
off a semi-infinite layer to get results for a layer of finite optical thickness. Here the
multiple-scattering matrices R, U , U∗, D and D∗ for a semi-infinite atmosphere
are needed. On the downside, once the layer of finite optical thickness gets opti-
cally thick and/or absorption gets weak ((1− a)� 1), a renormalization procedure
based on the dominant eigenmode must be implemented to make the “subtracting”
equations converge by iteration. The layer separation method has been developed
by De Rooij (1985) as an alternative to the adding-doubling method, especially for
optically thick atmospheres. It has been used as a test for the adding-doubling
method in the early 1980’s, but the method has not been employed since then.
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The various methods for computing multiple scattering of polarized light in
plane-parallel atmospheres are all characterized by certain weak and strong points.
Attempts to establish “which one is the best” often amount to comparing apples
with oranges, since many factors are involved, like the available input, the desired
output, smart subroutines and efficient programming. We have decided to treat the
adding-doubling method in detail in this book, since its basis is more physical than
mathematical and quite a number of succesful applications of the adding-doubling
method have been made for polarized light transfer in the atmospheres of planets and
satellites. Without claiming completeness we would like to mention the following
examples:

• Venus [Braak, 2002; Braak et al., 2002b; Hansen, 1971c; Hansen and Hovenier,
1971, 1974a, 1974b; Hovenier et al., 1992; Hovenier et al., 1997; Kawabata et
al., 1980; Knibbe, 1997; Knibbe et al., 1995a, 1997, 1998; Sato et al., 1996;
Sato et al., 1980; Stammes, 1989; Stammes et al., 1989; Stammes et al., 1992;
Travis et al., 1979; Wauben, 1992];

• Earth [Aben, Helderman, et al. (2001); Aben, Stam, and Helderman (2001);
Acarreta et al. (2004); Chepfer et al., 1998; Chepfer et al., 2001; Chowdhary
et al., 2001; Chowdhary et al., 2002; Fischer, 1985; Fitch, 1981; De Haan,
1987; Hansen, 1971b; Howell and Jacobowitz, 1970; Jacobowitz and Howell,
1971; Jiang et al., 2004; Knibbe et al., 1995b; Knibbe et al., 2000; Koelemeijer
et al., 2003; Koelemeijer and Stammes, 1999; Masuda and Takashima, 1992;
Masuda et al., 2002; Masuda et al., 1999; Schutgens and Stammes, 2002, 2003;
Schutgens et al., 2004; Stam, 2000; Stam, Aben, and Helderman, 2002; Stam,
De Haan, Hovenier and Aben, 2000; Stam, De Haan, Hovenier, and Stammes,
1997, 1999, 2000; Stam, Stammes et al., 1997; Stammes, 1992b, 1994, 2001;
Valks, Koelemeijer et al., 2003; Valks, Piters, et al., 2003; Veihelmann et al.
2004; Wauben et al., 1993c];

• Mars [De Haan, 1987; Petrova, 1999];

• Jupiter [Braak, 2002; Braak et al., 2002a; Hansen, 1971c; Smith, 1986; Smith
and Tomasko, 1984; West and Smith, 1991];

• Saturn [Tomasko and Doose, 1984];

• Titan [Salinas et al., 2003; Stammes, 1992a; Tomasko and Smith, 1982; West
and Smith, 1991];

• Exoplanets [Stam, Hovenier and Waters, 2003; Stam, De Rooij and Hovenier,
2004].

In principle, it is not necessary to handle the azimuth dependence by mak-
ing Fourier decompositions of the multiple-scattering matrices to apply the adding-
doubling method. However, it is often more expedient to use Fourier components
of the multiple-scattering matrices. Some of the advantages of this approach have
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been reported by De Haan et al. (1987) in the framework of the adding-doubling
method.

5.2 Principle of the Adding-doubling Method

To explain the essence of the adding-doubling method, we consider plane-parallel
layers (slabs) with arbitrary optical thickness which are macroscopically isotropic
with mirror symmetry (See Sec. 2.7). We assume that no internal light sources are
present in the slabs, but that each slab is illuminated at the top or bottom or both.
If a layer is alone in space apart from external light sources and no reflective surfaces
are present, we say that such a layer is isolated in space. As explained in Sec. 4.3,
for such a layer the 4 × 4 multiple-scattering matrices R, R∗, T , T ∗, U , U∗, D
and D∗, each depending on µ, µ0 and ϕ−ϕ0, determine the radiation reflected and
transmitted as well as the internal radiation travelling upwards and downwards after
one or more scattering events for any kind of incident light. Here U , U∗, D and
D∗ also depend on the optical depth. In addition, the incident light may be directly
transmitted (i.e., not scattered), which is described by Bouger’s exponential law for
extinction.

Now suppose we have two layers, homogeneous or not, one placed on top of the
other. The situation is shown schematically in Fig. 5.1. There are no reflecting
surfaces. We use primes and double primes for quantities pertaining to the upper
and lower layer, respectively, and no primes for the combined layer. The optical
thicknesses of the upper layer, lower layer and combined layer are b′, b′′ and b =
b′ + b′′, respectively. We assume that the reflection matrices and the transmission
matrices of the upper and lower layer are known. We will now try to find the
reflection matrix R(µ, µ0, ϕ − ϕ0) and the transmission matrix T (µ, µ0, ϕ − ϕ0)
of the combined layer. Let us start with considering light with intensity vector
I it(µ, ϕ) incident at each point of the top of the combined layer and suppose no
light is entering from below. Many orders of scattering may take place in each layer.
The light crossing the interface of the two layers for the first time can now be written
as [cf. Eq. (4.35)]

I(1)(b′, µ, ϕ) = e−b
′/µI it(µ, ϕ) +

1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′ T ′(µ, µ′, ϕ− ϕ′)I it(µ′, ϕ′).

(5.1)
Part of this light will be reflected upwards by the lower layer and cross the interface
for the second time, but now in upward directions. Hence, its intensity vector is [cf.
Eq. (4.34)]

I(2)(b′, µ, ϕ) =
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′R′′(µ, µ′, ϕ− ϕ′)I(1)(b′, µ′, ϕ′). (5.2)

Part of this light will be reflected downwards by the upper layer and cross the
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Figure 5.1: Schematic representation of the adding-doubling method for
incident light from above. A layer with optical thickness b′ is
located on top of a layer with optical thickness b′′. There are
no reflecting surfaces. Each arrow stands for light travelling in
all directions of a hemisphere either upward or downward. The
symbols I(1), I(3) and I(5) represent downward travelling light
after 1, 3 and 5 crossings of the interface, respectively. The
light reflected and transmitted by the combined layer is shown
at the top and bottom, respectively. It consists of components
that correspond to the number of times the interface has been
crossed.

interface for the third time, having the intensity vector [cf. Eq. (4.39)]

I(3)(b′, µ, ϕ) =
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′R∗′(µ, µ′, ϕ− ϕ′)I(2)(b′, µ′, ϕ′). (5.3)

Clearly, light is reflected back and forth by the layers and crosses the interface an
arbitrarily large number of times with decreasing intensity, since after each crossing
part of the light is lost at the top or bottom of the combined layer and there may also
be absorption. Thus an infinite series arises that is convergent for physical reasons.
The core of the adding method consists of deriving an expression for the sum of the
series pertaining to downward travelling radiation in terms of the single and double
primed matrices. To do so, we first introduce the 4× 4 matrix

Q1(µ, µ0, ϕ−ϕ0) =
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′R∗′(µ, µ′, ϕ−ϕ′)R′′(µ′, µ0, ϕ

′−ϕ0) (5.4)

and combine Eqs. (5.2) and (5.3) to obtain

I(3)(b′, µ, ϕ) =
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′Q1(µ, µ′, ϕ− ϕ′)I(1)(b′, µ′, ϕ′). (5.5)
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Similarly, the light crossing the interface for the fifth time is travelling downwards
and we can write for its intensity vector

I(5)(b′, µ, ϕ) =
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′Q1(µ, µ′, ϕ− ϕ′)I(3)(b′, µ′, ϕ′). (5.6)

Combining Eqs. (5.5) and (5.6) yields

I(5)(b′, µ, ϕ) =
1
π

∫ +1

0
µ′′ dµ′′

∫ 2π

0
dϕ′′Q1(µ, µ′′, ϕ− ϕ′′)×

×
[
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′Q1(µ

′′, µ′, ϕ′′ − ϕ′)I(1)(b′, µ′, ϕ′)
]

. (5.7)

Since the order of integration can be chosen as desired, we can also first perform
the integration over µ′′ and ϕ′′ and then over µ′ and ϕ′. Thus, we find for the light
crossing the interface for the (2p + 3)-th time, with p = 1, 2, 3, . . .,

I(2p+3)(b′, µ, ϕ) =
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′Qp+1(µ, µ′, ϕ− ϕ′)I(1)(b′, µ′, ϕ′), (5.8)

where

Qp+1(µ, µ0, ϕ− ϕ0) =
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′Q1(µ, µ′, ϕ− ϕ′)Qp(µ

′, µ0, ϕ
′ − ϕ0).

(5.9)
Consequently, the intensity vector of the total light travelling downwards at the
interface is [cf. Eq. (4.42)]

e−b
′/µI it(µ, ϕ) +

1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′D(b′, µ, µ′, ϕ− ϕ′)Iit(µ

′, ϕ′)

= I(1)(b′, µ, ϕ) +
∞∑
p=1

I(2p+1)(b′, µ, ϕ), (5.10)

where the first term on the left-hand side represents unscattered light and equals
the first term of I(1)(b′, µ, ϕ), as shown by Eq. (5.1). If we now consider a monodi-
rectional beam of incident light with intensity vector [cf. Eq. (4.36)]

I it(µ, ϕ) = δ(µ− µ0)δ(ϕ− ϕ0)πF 0, (5.11)

the second term on the right-hand side of Eq. (5.1) equals T ′(µ, µ0, ϕ − ϕ0)µ0F 0.
Thus, we readily find from Eqs. (5.1), (5.5) and (5.8)-(5.11)

D(b′, µ, µ0,ϕ− ϕ0)µ0F 0 =
[
T ′(µ, µ0, ϕ− ϕ0) +Q(µ, µ0, ϕ− ϕ0)e−b

′/µ0

+
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′Q(µ, µ′, ϕ− ϕ′)T ′(µ′, µ0, ϕ

′ − ϕ0)
]

µ0F 0,

(5.12)
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where

Q(µ, µ0, ϕ− ϕ0) =
∞∑
p=1

Qp(µ, µ0, ϕ− ϕ0). (5.13)

The factor µ0F 0 can be omitted on either side of Eq. (5.12) by using the theorem
that ifAµ0F 0 = Bµ0F 0 for every flux vector πF 0, thenA = B. This can be readily
verified by choosing for F 0 the column vectors {1, 0, 0, 0}, {1, 1, 0, 0}, {1, 0, 1, 0}, and
{1, 0, 0, 1}, successively.

Now that the downward radiation at the interface of the combined layer has been
found for any kind of incident radiation, we can also easily find U(b′, µ, µ0, ϕ−ϕ0),
which yields the upward radiation at the interface, as well as the reflection matrix
R(µ, µ0, ϕ−ϕ0) and the transmission matrix T (µ, µ0, ϕ−ϕ0) of the combined layer.
For that purpose we use Eq. (5.11) and the scheme presented in Fig. 5.1. Moreover,
we omit postmultiplication factors µ0F 0 if they occur on both sides of the same
equation. The result can be summarized in the following computational scheme for
the adding-doubling method:

Q1(µ, µ0, ϕ− ϕ0) =
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′R∗′(µ, µ′, ϕ− ϕ′)R′′(µ′, µ0, ϕ

′ − ϕ0),

(5.14)

Qp+1(µ, µ0, ϕ− ϕ0) =
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′Q1(µ, µ′, ϕ− ϕ′)Qp(µ

′, µ0, ϕ
′ − ϕ0),

(5.15)

Q(µ, µ0, ϕ− ϕ0) =
∞∑
p=1

Qp(µ, µ0, ϕ− ϕ0), (5.16)

D(b′, µ, µ0, ϕ− ϕ0) = T ′(µ, µ0, ϕ− ϕ0) + e−b
′/µ0Q(µ, µ0, ϕ− ϕ0)

+
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′Q(µ, µ′, ϕ− ϕ′)T ′(µ′, µ0, ϕ

′ − ϕ0),

(5.17)

U(b′, µ, µ0, ϕ− ϕ0) = e−b
′/µ0R′′(µ, µ0, ϕ− ϕ0)

+
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′R′′(µ, µ′, ϕ− ϕ′)D(b′, µ′, µ0, ϕ

′ − ϕ0),

(5.18)

R(µ, µ0, ϕ− ϕ0) = R′(µ, µ0, ϕ− ϕ0) + e−b
′/µU(b′, µ, µ0, ϕ− ϕ0)

+
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′ T ∗′(µ, µ′, ϕ− ϕ′)U(b′, µ′, µ0, ϕ

′ − ϕ0),

(5.19)
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T (µ, µ0, ϕ− ϕ0) = e−b
′′/µD(b′, µ, µ0, ϕ− ϕ0) + e−b

′/µ0T ′′(µ, µ0, ϕ− ϕ0)

+
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′ T ′′(µ, µ′, ϕ− ϕ′)D(b′, µ′, µ0, ϕ

′ − ϕ0).

(5.20)

Equations (5.14)-(5.20) are called the adding equations and constitute the essence of
the adding-doubling method. They enable us to compute the reflection and trans-
mission by a combined layer for any kind of incident light from above if b′, b′′,
R′(µ, µ0, ϕ−ϕ0),R∗′(µ, µ0, ϕ−ϕ0),R′′(µ, µ0, ϕ−ϕ0), T ′(µ, µ0, ϕ−ϕ0), T ∗′(µ, µ0, ϕ−
ϕ0), and T ′′(µ, µ0, ϕ− ϕ0) are known. As a by-product the internal field at the in-
terface is found. Note that the direct (unscattered) part of the light transmitted by
the top layer or the combined layer is always easily obtained by multiplication by
the exponential extinction factor. A further discussion of the internal field will be
given in Sec. 5.7. In the doubling method identical layers are added and all double
primes can be replaced by single primes in the adding equations.

Symmetry relations can be used to verify the computational scheme for the
adding-doubling method and to facilitate the computational labour. First we note
that the mirror symmetry relation for a 4× 4 matrix, i.e.,

L(µ, µ0, ϕ0 − ϕ) = ∆3,4L(µ, µ0, ϕ− ϕ0)∆3,4 (5.21)

holds for all multiple-scattering matrices R, T , U , D, R∗, T ∗, U∗ and D∗ of slabs
with arbitrary optical thickness [See Subsection 4.5.1]. To show that the matrix
Q1(µ, µ0, ϕ − ϕ0) obeys the mirror symmetry relation, we can apply the mirror
symmetry theorem, proved in Subsection 3.4.2, to Eq. (5.14). Analogously, we
find that all matrices Qp(µ, µ0, ϕ − ϕ0), and therefore Q(µ, µ0, ϕ − ϕ0), obey the
symmetry relation (5.21). As far as other symmetry relations for the matrices in
Eqs. (5.14)-(5.20) are concerned, we can refer to Sec. 4.5 and the scheme given by
Eqs. (5.14)-(5.20), except for the matrices Qp(µ, µ0, ϕ− ϕ0) and their infinite sum.
To investigate reciprocity for these matrices, we use Eq. (5.14) to derive

Q̃1(µ0, µ, ϕ0−ϕ) =
1
π

∫ +1

0
µ′dµ′∆3R

′′(µ, µ′, ϕ−ϕ′)R∗′(µ′, µ0, ϕ
′−ϕ0)∆3. (5.22)

This shows that on adding two identical homogeneous layers we have

Q̃1(µ0, µ, ϕ0 − ϕ) = ∆4Q1(µ, µ0, ϕ− ϕ0)∆4. (5.23)

Under the same assumptions a similar relation follows from Eq. (5.15) for every
Qp(µ, µ0, ϕ− ϕ0). Consequently, we have

Q̃(µ0, µ, ϕ0 − ϕ) = ∆4Q(µ, µ0, ϕ− ϕ0)∆4 (5.24)

in the doubling method for homogeneous layers.
As shown by Eqs. (5.17) and (5.18), interchanging µ and µ0 does, in general, not

lead to a simple result for the matrices describing the internal field in a homogeneous
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or inhomogeneous atmosphere. As a result, no reciprocity relations of the type
valid for reflection and transmission matrices are generally true for the internal field
matrices U and D.

If one would like to consider incident light from below at the bottom of the
combined layer, a similar computational scheme as given above can be derived for
R∗(µ, µ0, ϕ − ϕ0) and T ∗(µ, µ0, ϕ − ϕ0). However, when the combined layer is
homogeneous, the first two symmetry relations of Display 4.1 can be employed in
the form

R∗(µ, µ0, ϕ− ϕ0) = R(µ, µ0, ϕ0 − ϕ), (5.25)

T ∗(µ, µ0, ϕ− ϕ0) = T (µ, µ0, ϕ0 − ϕ), (5.26)

instead of a separate computational scheme. A realistic atmosphere is usually in-
homogeneous but can be modelled in good approximation as a pile of homogeneous
layers. We can then compute the reflection and transmission by this multilayered
atmosphere for incident light from above by successively placing homogeneous lay-
ers on top of the partial atmosphere and using the first two symmetry relations of
Display 4.1 for the homogeneous top layer in each step [See Eqs. (5.14) and (5.19)].
Proceeding in this way there is no need to use a separate computational scheme to
compute the reflection and transmission by sublayers for incident light from below
[Takashima, 1975]. The situation is different, however, when we consider a series of
models having the same top layer(s) but different lower layer(s), or different reflect-
ing ground surfaces. We will further discuss this in Sec. 5.6.

When polarization is ignored, only the one-one element of each matrix is retained
in Eqs. (5.14)-(5.20). If further only the azimuth independent terms in Fourier
series expansions for the azimuth are considered, Eqs. (5.14)-(5.20) reduce to those
published by Van de Hulst (1980) in his Display 4.7, after correction for two misprints
(b should be replaced by b′ in the fourth line from below in this Display and by b′′

in the second line from below).
We shall now consider what simplifications may arise in the adding-doubling

method if we are only interested in incident light in one state of polarization, in
particular if the incident light is a monodirectional unpolarized beam. In the latter
case it may seem more efficient not to omit the common postmultiplication factors
µ0F 0 on both sides of Eqs. (5.14)-(5.20), because for each multiplication of two
4 × 4 matrices 16 elements have to be computed, but each product of a 4 × 4
matrix and a column vector having four components requires the calculation of only
four elements. The result of the computation, however, would not be the complete
reflection matrix and transmission matrix of the combined layer, but only their first
columns, as is shown by Eqs. (5.19)-(5.20). Therefore, the adding or doubling
could not be continued, because in the next step the complete reflection matrix and
transmission matrix are necessary. This can be seen from the adding equations, but
it is also physically clear, because the state of polarization of the radiation at the
interface of two layers generally differs from the state of polarization of the incident
light. In particular, even when the light at the top is unpolarized, the light at the
interface will in general be polarized and we need to know how this light is reflected
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and transmitted by the two sublayers. The same reasoning applies for incident light
coming from more than one direction. Hence, the restriction to incident light in one
state of polarization in the adding-doubling method has computational advantages
when only one layer has to be put on top of another layer or a reflecting ground
surface, but not for a pile of three or more layers.

The reader who yearns to write his own computer program for the adding-
doubling method, may conclude at this point of our treatment that he or she can
do so by taking the following steps:

(i) Start with homogeneous sublayers that are so optically thin that their reflection
matrices and transmission matrices can be computed with sufficient accuracy
on the basis of one or two orders of scattering only [See Sec. 4.4].

(ii) Perform all integrations over the variables µ′ and ϕ′ in the adding equations
(5.14)-(5.20) numerically, e.g. by Gaussian integration.

(iii) Break off the infinite series given by Eq. (5.16) after a finite number of terms
until the desired accuracy has been attained.

(iv) Add as many layers as needed for a realistic model of the atmosphere under
consideration.

(v) Compute the radiance and state of polarization of the emergent radiation of
the multilayered atmosphere for a given type of incident light by substituting
the multiple-scattering matrices into the relevant formulae of Sec. 4.3.

Steps (ii) and (iii) would, however, be rather laborious, especially for computations
of the radiation emerging from realistic model atmospheres at various wavelengths.
To obtain an efficient computer program, the adding equations should be written in
a different form and a number of practical issues must be considered. This will be
done in the following sections.

From a practical point of view, an important issue concerns the errors in the
intensies of multiply scattered radiation when the incident light is unpolarized and
the so-called scalar approximation is used, i.e., when polarization is completely ig-
nored in the calculations. This has been investigated for a number of special cases
[Adams and Kattawar, 1970, 1993; Chandrasekhar, 1950; Hansen, 1971a,b; Van de
Hulst, 1980; Kattawar and Adams, 1989, 1990; Mishchenko, Lacis, and Travis, 1994;
Stammes, 1994, 2001; Lacis et al., 1998]. For light reflected by clouds of spherical
particles with radii not smaller than the wavelength the errors in the intensities due
to the scalar approximation were found to be smaller than about 1%, but for at-
mospheres in which Rayleigh scattering plays an important role much larger errors
may occur, since in that case the singly scattered light can be strongly polarized and
this light is the input for multiply scattered light. For the atmosphere of the Earth,
errors in the radiances of up to about 8% between 320 nm and 400 nm and up to
about 3% at 500 nm may arise when the scalar approximation is used [P. Stammes,
private communication]. Consequently, significant errors can occur in intensity cal-
culations when polarization is not taken into account. Hence the correct approach
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is to work with vectors and matrices and not only with scalars. This is also impor-
tant for modelling the measurements of polarization sensitive instruments used for
remote sensing of the Earth and other planets.

Another approximation is the so-called three-by-three approximation in which
only the 3× 3 submatrices in the upper left corners of the 4× 4 scattering matrix,
phase matrix and multiple-scattering matrices are used. This reduces computation
time and memory space but may still give accurate results for the intensities and
degree of polarization, e.g. for light reflected by terrestrial water clouds [Hansen,
1971b].

5.3 Azimuth Dependence

Instead of numerical integrations over azimuth in the adding equations, we can
make Fourier decompositions for the relevant matrices, similar to those for the phase
matrix, which may be truncated or not [cf. Subsection 4.6.2]. Some advantages of
this approach have been discussed by De Haan et al. (1987). Before expounding the
Fourier decompositions, we first note that in the preceding sections we often met
relations of the type

K(µ, µ0, ϕ−ϕ0) =
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′L(µ, µ′, ϕ−ϕ′)M(µ′, µ0, ϕ

′−ϕ0). (5.27)

Here L(µ, µ0, ϕ−ϕ0) is a 4×4 matrix, whileK(µ, µ0, ϕ−ϕ0) andM(µ, µ0, ϕ−ϕ0)
are either 4×4 matrices or column vectors with four components, such as Iet(µ0, ϕ0),
Ieb(µ0, ϕ0) and I it(µ′, ϕ′). As discussed in Sec. 5.2, the mirror symmetry relation

∆34L(µ, µ0, ϕ− ϕ0)∆34 = L(µ, µ0, ϕ0 − ϕ) (5.28)

holds for all multiple-scattering matrices R, T , U , D, R∗, T ∗, U∗ and D∗ as well
as the matrices Qp(µ, µ0, ϕ − ϕ0) with p = 1, 2, . . . and Q(µ, µ0, ϕ − ϕ0). This
means that all matrices occurring in the adding equations (5.14)-(5.20) obey the
mirror symmetry relation. Consequently, for all of these matrices we can make
both Fourier decompositions discussed in Subsection 4.6.2 to handle the azimuth
dependence of the relevant matrices.

In the first Fourier decomposition we have for the 4× 4 matrix

L(µ, µ0, ϕ− ϕ0)=
∞∑
j=0

(2−δj0)
[
Lcj(µ, µ0) cos j(ϕ− ϕ0) +Lsj(µ, µ0) sin j(ϕ− ϕ0)

]
,

(5.29)
where δj0 is the Kronecker delta and

Ls0(µ, µ0) = 0, (5.30)

Lcj(µ, µ0) =
1
2π

∫ 2π

0
d(ϕ− ϕ′)L(µ, µ0, ϕ− ϕ′) cos j(ϕ− ϕ′), (5.31)

Lsj(µ, µ0) =
1
2π

∫ 2π

0
d(ϕ− ϕ′)L(µ, µ0, ϕ− ϕ′) sin j(ϕ− ϕ′). (5.32)
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Here the mirror symmetry relation implies that the cosine terms of L(µ, µ0, ϕ−ϕ0)
occur in the 2 × 2 submatrices in the upper left corner and the lower right corner,
whereas the sine terms occur in the remaining submatrices. Consequently, each
of the coefficient matrices Lcj(µ, µ0) occurring in Eq. (5.29) has two 2 × 2 zero
submatrices, one in the upper right corner and one in the lower left corner. Similarly,
the matrices Lsj(µ, µ0) have two 2×2 zero submatrices in the upper left corner and
the lower right corner. This is equivalent to the pair of relations

∆34L
cj(µ, µ0)∆34 = Lcj(µ, µ0), (5.33)

∆34L
sj(µ, µ0)∆34 = −Lsj(µ, µ0). (5.34)

If we use this Fourier decomposition, we can rewrite Eq. (5.27) in the form [cf. Eqs.
(3.90)-(3.91)]

Kcj(µ, µ0) = 2
∫ +1

0
µ′dµ′ [Lcj(µ, µ′)M cj(µ′, µ0)−Lsj(µ, µ′)M sj(µ′, µ0)

]
,

(5.35)

Ksj(µ, µ0) = 2
∫ +1

0
µ′dµ′ [Lsj(µ, µ′)M cj(µ′, µ0) +Lcj(µ, µ′)M sj(µ′, µ0)

]
.

(5.36)

Thus each Fourier component (j = 0, 1, 2, . . .) of K(µ, µ0, ϕ− ϕ0) can be computed
separately. If we do this for all adding equations, we get a separate computational
scheme for each Fourier component, which we can first use for j = 0 and then for
j = 1, 2, . . . until sufficient accuracy has been achieved for the sum of the Fourier
components.

The computation of the intensity vectors of the multilayered atmosphere can also
be done separately for each Fourier component in the following way. First we make
the Fourier decomposition

I it(µ, ϕ) =
∞∑
j=0

(2− δj0)
[
Icj(µ) cos jϕ + Isj(µ) sin jϕ

]
, (5.37)

and similarly for all other intensity vectors that depend on µ and ϕ. We can then
decompose the equation for the intensity vector of light emerging at the top given
by [cf. Eq. (4.34)]

Iet(µ, ϕ) =
1
π

∫ +1

0
µ′ dµ′

∫ 2π

0
dϕ′R(µ, µ′, ϕ− ϕ′)I it(µ′, ϕ′) (5.38)

into the set

Icjet (µ) = 2
∫ +1

0
µ′ dµ′

[
Rcj(µ, µ′)Icjit (µ′)−Rsj(µ, µ′)Isjit (µ′)

]
, (5.39)

Isjet (µ) = 2
∫ +1

0
µ′ dµ′

[
Rsj(µ, µ′)Icjit (µ′) +Rcj(µ, µ′)Isjit (µ′)

]
, (5.40)
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which enables us to compute each Fourier component separately. A similar treatment
may be given for other intensity vectors involving multiply scattered radiation [See
Sec. 4.3]. A special case is a monodirectional beam of incident light given by [cf.
Eqs. (4.36)-(4.37) and (4.132)-(4.133)]

I it(µ, ϕ) = δ(µ− µ0)δ(ϕ− ϕ0)πF 0 (5.41)

Icjit (µ) =
1
2
δ(µ− µ0)F 0 (5.42)

Isjit (µ) = 0, (5.43)

yielding
Iet(µ, ϕ) = µ0R(µ, µ0, ϕ− ϕ0)F 0. (5.44)

Here no integration over azimuth occurs and each Fourier component can be treated
separately in a simple way.

Evidently, if polarization is ignored, only cosine terms occur and Eqs. (5.35)-
(5.36) reduce to simple forms. This is another indication that the sign of the azimuth
does matter when dealing with polarized light and then needs to be fixed uniquely.

The Fourier decomposition expounded above was used in the first descriptions of
the adding-doubling method [Hansen, 1971a; Hovenier, 1971]. In the first step the
Fourier coefficients of the phase matrix [See Eqs. (3.54)-(3.55)] were obtained by nu-
merical integration over azimuth, which yielded the Fourier coefficients of the first
and second order reflection matrix and transmission matrix of the optically thin
starting layer. The individual Fourier components of the matrices in the adding
equations (5.14)-(5.20) were then computed by using Eqs. (5.35)-(5.36) and nu-
merically integrating over µ′. Finally, the intensity vectors were obtained by using
Eqs. (5.37)-(5.44) and similar ones. This version of the adding-doubling method
was successfully employed for a variety of theoretical studies as well as applications
in the scattering of polarized light [See e.g. Hansen, 1971a; Hovenier, 1971; Hansen
and Hovenier, 1971, 1974a; Hansen and Travis, 1974]. Later it was demonstrated
by De Haan et al. (1987) that the approach could be made more efficient by using
another Fourier decomposition in conjunction with expansions in generalized spher-
ical functions for the scattering matrix and phase matrix [cf. Sec. 3.4]. We will now
consider the second Fourier decomposition for the matrices occurring in the adding
equations.

As discussed in Subsection 3.4.2, the special form of the Fourier coefficient ma-
trices Lcj(µ, µ0) and Lsj(µ, µ0) makes it worthwhile to combine both types in one
matrix and thus to decouple Eqs. (5.35)-(5.36). We can reach this goal by defining

Lj(µ, µ0) = Lcj(µ, µ0)−∆34L
sj(µ, µ0) = Lcj(µ, µ0) +Lsj(µ, µ0)∆34 (5.45)

and similarly for the other matrices occurring in the adding scheme. Equation (5.45)
is more readily understood by noting that it is equivalent to

Lj(µ, µ0) =

(
Lcjul (µ, µ0) −Lsjur (µ, µ0)
Lsjll (µ, µ0) Lcjlr (µ, µ0)

)
, (5.46)
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where the subscripts ul and lr pertain to 2× 2 matrices in the upper left and lower
right corners of Lcj(µ, µ0), respectively, and the subscripts ur and ll refer to 2 × 2
matrices in the upper right and lower left corners of Lsj(µ, µ0), respectively. As
discussed in Subsection 3.4.2, we can now rewrite Eq. (5.27) in the form

Kj(µ, µ0) = 2
∫ +1

0
µ′ dµ′Lj(µ, µ′)M j(µ′, µ0), (5.47)

which entails only one matrix multiplication and one integration for each Fourier
component j. Thus, again the adding equations (5.14)-(5.20) dissolve into a separate
computational scheme for each Fourier component. This scheme is as follows:

Q1(µ, µ0) = 2
∫ +1

0
µ′dµ′R∗′(µ, µ′)R′′(µ′, µ0), (5.48)

Qp+1(µ, µ0) = 2
∫ +1

0
µ′dµ′Q1(µ, µ′)Qp(µ

′, µ0), (5.49)

Q(µ, µ0) =
∞∑
p=1

Qp(µ, µ0), (5.50)

D(b′, µ, µ0) = T ′(µ, µ0) + e−b
′/µ0Q(µ, µ0) + 2

∫ +1

0
µ′dµ′Q(µ, µ′)T ′(µ′, µ0),

(5.51)

U(b′, µ, µ0) = e−b
′/µ0R′′(µ, µ0) + 2

∫ +1

0
µ′dµ′R′′(µ, µ′)D(b′, µ′, µ0), (5.52)

R(µ, µ0) = R′(µ, µ0) + e−b
′/µU(b′, µ, µ0) + 2

∫ +1

0
µ′dµ′ T ∗′(µ, µ′)U(b′, µ′, µ0),

(5.53)

T (µ, µ0) = e−b
′′/µD(b′, µ, µ0) + e−b

′/µ0T ′′(µ, µ0)

+ 2
∫ +1

0
µ′dµ′ T ′′(µ, µ′)D(b′, µ′, µ0), (5.54)

omitting the superscript j indicating the Fourier index. From Lj(µ, µ0) we can
uniquely retrieve Lcj(µ, µ0) and Lsj(µ, µ0) with the help of

Lcj(µ, µ0) =
1
2
{
Lj(µ, µ0) +∆34L

j(µ, µ0)∆34

}
, (5.55)

Lsj(µ, µ0) =
1
2
{
Lj(µ, µ0)∆34 −∆34L

j(µ, µ0)
}

, (5.56)

which follow from Eqs. (5.33), (5.34) and (5.45). Substituting Eqs. (5.55) and (5.56)
into Eq. (5.29) gives the full expression for the second Fourier decomposition, i.e.,

L(µ, µ0, ϕ− ϕ0) =
1
2

∞∑
j=0

(2− δj0)
{
Φ1(j(ϕ− ϕ0))Lj(µ, µ0)(1+∆34)

+ Φ2(j(ϕ− ϕ0))Lj(µ, µ0)(1−∆34)
}

, (5.57)
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where Φ1(α) and Φ2(α) are the diagonal matrices of trigonometric functions given
by Eqs. (3.66)-(3.67). The coefficient matrices in Eq. (5.57) can be computed via
Eq. (5.45), but also by using the equality

Lj(µ, µ0) =
1
2π

∫ 2π

0
d(ϕ− ϕ0) {Φ1(j(ϕ− ϕ0)) +Φ2(j(ϕ− ϕ0))}L(µ, µ0, ϕ− ϕ0),

(5.58)
as can be easily verified.

For an intensity vector I we can introduce

Ij = Icj −∆34I
sj , (5.59)

but, in general, I will not have the symmetry property that its elements are either
even or odd functions of azimuth. Therefore, Icj and Isj together contain in general
eight nonzero components and cannot be uniquely derived from Ij . Thus, although
we can still use Eq. (5.47), we end up e.g. with Ijet for the reflected light [cf. Eqs.
(5.38)-(5.40)] and, in general, cannot use Eq. (5.57). One way to solve this problem
is to compute Rcj(µ, µ0) and Rsj(µ, µ0) from Rj(µ, µ0) via Eqs. (5.55)-(5.56) and
then use Eqs. (5.39)-(5.40) to obtain the intensity vector of the emergent light at
the top for each j separately when Icjit and Isjit are given. We can follow the same
procedure for other intensity vectors. Clearly in the case of a monodirectional beam
of unpolarized incident light the first two elements of all intensity vectors contain
only cosine terms in a Fourier series expansion whereas for the last two elements
only sine terms occur [cf. Subsection 4.6.2].

5.4 Supermatrices

The integrals over the directional variable µ′ occurring in the adding equations
(5.14)-(5.20) before or after Fourier decomposition of the azimuthal dependence may
be evaluated numerically using a quadrature formula [See e.g. Stoer and Bulirsch,
1980; Krylov, 1962]. This means that an integration of a function f(µ) with respect
to µ is converted to a finite sum by writing∫ +1

0
dµ f(µ) =

n∑
i=1

wif(µi), (5.60)

where µ1, µ2, . . . , µn are the division points with

0 ≤ µ1 < µ2 < . . . < µn ≤ 1 (5.61)

and w1, w2, . . . , wn are positive numbers called weights. In general, Eq. (5.60) is
only approximately true and the accuracy increases with increasing n. Equation
(5.60) is exactly true if f(µ) is a polynomial of degree at most 2n− 1.

If polarization is ignored, we frequently meet integrals of the type [cf. Eqs.
(5.35), (5.36) and (5.47)]

e(µ, µ0) =
∫ +1

0
dµ′ f(µ, µ′)g(µ′, µ0), (5.62)
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where e(µ, µ0), f(µ, µ0) and g(µ, µ0) are (scalar) functions and µ as well as µ0 lie
in the range zero to one. Choosing n discrete numbers in the range zero to one, we
can now write Eq. (5.62) in the discretized form

e(µi, µj) =
n∑
k=1

wkf(µi, µk)g(µk, µj). (5.63)

The right-hand side of this equation can be viewed as a matrix multiplication of
two n × n matrices with elements wkf(µi, µk) and g(µk, µj), respectively, yielding
an n × n matrix with elements e(µi, µj). For example, if we take n = 2, we can
rewrite Eq. (5.63) in the form(

e(µ1, µ1) e(µ1, µ2)
e(µ2, µ1) e(µ2, µ2)

)
=
(

w1f(µ1, µ1) w2f(µ1, µ2)
w1f(µ2, µ1) w2f(µ2, µ2)

)(
g(µ1, µ1) g(µ1, µ2)
g(µ2, µ1) g(µ2, µ2)

)
.

(5.64)
This analogy between products of square matrices and integrations of products of

functions of two variables was explored in detail by Van de Hulst (1963, 1980), first
for isotropic scattering and then for anisotropic scattering of light when polarization
is ignored. The form of Eq. (5.63) is of course close to what is actually done in
numerical computations of integrals as occurring in Eq. (5.62). Van de Hulst realized
immediately that similar matrix products would occur in numerical computations
when polarization is fully included. The main difference is that the scalar functions
e(µ, µ0), f(µ, µ0) and g(µ, µ0) in Eq. (5.62) must be replaced by 4×4 matrices when
polarization is not ignored. In this way the elements in the matrices occurring e.g.
in Eq. (5.64) become 4× 4 matrices themselves, so that in general 4n× 4n matrices
are involved with 4× 4 submatrices.

These ideas were put in a very practical form by De Haan et al. (1987) by the
introduction of so-called supermatrices. Following their treatment we associate with
every 4× 4 matrix L(µ, µ0) with elements Ll,k(µ, µ0) the 4n× 4n matrix L of real
numbers with elements

L4(i−1)+l,4(j−1)+k =
√
2wiµi Ll,k(µi, µj)

√
2wjµj , (5.65)

where l, k = 1, 2, 3, 4 but i, j = 1, 2, . . . , n. Here wi and µi are weights and division
points in the interval zero to one, respectively. A matrix of the type L is called
a supermatrix. If we now consider three 4 × 4 matrices Kj(µ, µ0), Lj(µ, µ0) and
M j(µ, µ0) related by Eq. (5.47), this equation is transformed into a matrix product
relation between the corresponding 4n× 4n supermatrices, i.e.,

Kj = LjM j . (5.66)

It should be noted that the factors
√
2wiµi and

√
2wjµj in Eq. (5.65) were chosen to

obtain maximal symmetry, which is convenient for analyzing the repeated reflections
between slabs in the adding method as will be explained below. Below we will often
write 4× 4 matrices L(µ, µ0) depending on µ and µ0 as well as their corresponding
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supermatrices using the same boldface symbol. But there need not be any confusion,
since L(µ, µ0) is always a square matrix of order 4 whereas its supermatrix is a square
matrix of order 4n.

Let us now define the diagonal 4n× 4n matrix with diagonal elements

[E(b)]4(i−1)+k,4(i−1)+k = e−b/µi (5.67)

for k = 1, 2, 3, 4 and i = 1, 2, . . . , n, and use the second Fourier decomposition
mentioned in Sec. 5.3. Making repeated use of Eqs. (5.27), (5.47) and (5.66), the
adding equations (5.48)-(5.54) become in terms of supermatrices

Q1 = R
′∗R′′, (5.68)

Qp+1 = Q1Qp, (5.69)

Q =
∞∑
p=1

Qp, (5.70)

D = T ′ +QE(b′) +QT ′, (5.71)
U = R′′E(b′) +R′′D, (5.72)

R = R′ +E(b′)U + T ′∗U , (5.73)
T = E(b′′)D + T ′′E(b′) + T ′′D, (5.74)

where we have omitted the superscript j indicating the Fourier index.
Using the associative property of matrix products we can reduce the number of

matrix multiplications in Eqs. (5.71)-(5.74), e.g. by writing

D = [1+Q]T ′ +QE(b′) = T ′ +Q
[
E(b′) + T ′] , (5.75)

U = R′′ [E(b′) +D] , (5.76)

R = R′ +
[
E(b′) + T ′∗]U , (5.77)

T = E(b′′)D + T ′′ [E(b′) +D] = [E(b′′) + T ′′]D + T ′′E(b′), (5.78)

where 1 denotes the unit matrix with the same dimension asQ and we have indicated
two different ways to reduce the number of matrix multiplications in Eqs. (5.75)
and (5.78).

When adopting the supermatrix formalism in our adding and doubling methods,
we obtain results for a discrete set of direction cosines, {µi}ni=1, which are the division
points of the quadrature method [cf. Eq. (5.63)]. To accurately compute integrals
with respect to µ from zero to one, one often applies Gaussian quadrature, where
the division points are the zeros of the transformed Legendre polynomial Pn(2µ−1)
of degree n [cf. Chandrasekhar, 1950; Stoer and Bulirsch, 1980; Krylov, 1962].
Gaussian quadrature yields an exact result for arbitrary polynomials of degree less
than or equal to 2n−1. If one decides to increase the number n of Gaussian division
points, e.g. to check or improve the accuracy of numerical investigations, the new
division points do not include the old division points, which makes such a check
or attempt to improve the accuracy hardly possible. Furthermore, one often seeks
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numerical results for certain specific directions (such as µ = 0.1, 0.2, . . . , 1.0) to
compare with results obtained by other methods or to interpret observational data,
in particular of zenith or nadir directions. The specific directions usually do not
correspond to Gaussian division points. One possible way to solve these problems
is to use quadrature methods based on spline approximation such as the trapezoid
rule or Simpson’s rule, where the distance between two consecutive division points
is the same, since on increasing the number of division points one would retain the
old division points as a subset. However, in radiative transfer studies it is generally
believed that low degree spline based quadrature methods would require many more
division points than the Gaussian quadrature formula to attain the same accuracy,
even though numerical evidence to support this claim is scarce. For this reason many
researchers in radiative transfer have preferred to modify the integrations over µ and
µ0 as to enable the evaluation of functions of µ and µ0 for additional values which
are kept unaltered when the number of Gaussian division points is changed. Another
solution is to use a quadrature formula in which the specific directions are already
included among the division points, namely to use Markov quadrature [cf. Krylov,
Sec. 9.2] which generalizes both Lobatto integration, where both endpoints 0.0 and
1.0 are among the division points, and Radau integration, where only one endpoint
is among the division points. If we have k specific directions fixed and in total n
division points, Markov integration is exact for all polynomials of degree 2n− k− 1
or lower. Markov integration with k = 1 was used for computations of reflection by
thick layers by Mishchenko et al. (1999).

Since Gaussian quadrature is the numerical integration method used in adding-
doubling studies of polarization light transfer, we will now consider how additional
µ and µ0 values can be incorporated. Given n quadrature points µi, we now choose
N − n additional µ-values µi for which we define wi = 1/2µi. Starting from the
4 × 4 matrix L(µ, µ′) depending on µ, µ′ in the interval zero to one, we define the
corresponding extended supermatrix as follows:

[L]4(i−1)+l,4(j−1)+k = ci [L(µi, µj)]lk cj , (5.79)

where l, k = 1, 2, 3, 4 and i, j = 1, 2, . . . , N , while

ci =

{√
2wiµi, 1 ≤ i ≤ n,

1, n + 1 ≤ i ≤ N.
(5.80)

Thus the extra µ-values have the indices n + 1, . . . , N and are placed after the
quadrature points µ1, µ2, . . . , µn. Instead of Eq. (5.47) we now get the following
truncated matrix multiplication of extended supermatrices

[K]ij =
4n∑
k=1

[L]ik[M ]kj (5.81)

for i, j = 1, . . . , 4n, 4n + 1, . . . , 4N . The adding scheme in terms of supermatrices
given by Eqs. (5.68)-(5.74) does not change if we use extended supermatrices, pro-
vided the matrix multiplications are replaced by truncated matrix multiplications
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of the type (5.81) with the exception of multiplications by the attenuation matrices
E(b′) and E(b′′) which remain full matrix multiplications. Equations (5.68)-(5.74)
and part of Eq. (5.75), namely

D = [1+Q]T ′ +QE(b′), (5.82)

can be formulated for extended supermatrices under the above provisions for inter-
pretating matrix multiplications. Unfortunately, the remaining part of Eq. (5.75)
and Eqs. (5.76)-(5.78) do not have an extended supermatrix counterpart, since they
involve products in which one of the factors is a sum of an attenuation matrix and
another type of extended supermatrix.

From the symmetry relations given earlier we can deduce symmetry relations for
the supermatrices, which can be used to reduce the computational labour. For this
purpose we define three 4n×4n diagonal matrices which are n sequential repetitions
of the 4× 4 diagonal matrices ∆3, ∆4 and ∆3,4, respectively. Namely,

∆̂3 = diag(1, 1,−1, 1, 1, 1,−1, 1, . . . , 1, 1,−1, 1), (5.83)

∆̂4 = diag(1, 1, 1,−1, 1, 1, 1,−1, . . . , 1, 1, 1,−1), (5.84)

∆̂3,4 = diag(1, 1,−1,−1, 1, 1,−1,−1, . . . , 1, 1,−1,−1), (5.85)

Using Display 4.1 it is readily verified that we find for homogeneous atmospheres

R̃
j
= ∆̂3R

j∆̂3, (5.86)

T̃
j
= ∆̂4T

j∆̂4, (5.87)

R∗j = ∆̂3,4R
j∆̂3,4, (5.88)

T ∗j = ∆̂3,4T
j∆̂3,4. (5.89)

Furthermore, for doubling of homogeneous layers we have

Q̃
j

p = ∆̂4Q
j
p∆̂4, (5.90)

Q̃
j
= ∆̂4Q

j∆̂4, (5.91)

as follows directly from Eq. (5.24). Equations (5.86)-(5.91) are also valid for ex-
tended supermatrices if we replace ∆̂3, ∆̂4 and ∆̂3,4 by analogous 4N×4N diagonal
supermatrices [cf. Eqs. (5.83)-(5.85)].

5.5 Repeated Reflections

As explained in Sec. 5.2, the repeated reflections between the two layers considered
in the adding algorithm are expressed by the infinite sum [See Eq. (5.16)]

Q(µ, µ0, ϕ− ϕ0) =
∞∑
p=1

Qp(µ, µ0, ϕ− ϕ0). (5.92)
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Using the Fourier components under the second Fourier expansion [cf. Eq. (5.50)],
this series becomes for the j-th Fourier component

Qj(µ, µ0) =
∞∑
p=1

Qjp(µ, µ0), (5.93)

with j = 0, 1, . . ., and in (extended) supermatrix notation

Qj =
∞∑
p=1

Qjp. (5.94)

These three series are convergent for physical reasons.
It is possible to break off the series after a finite number of terms, until the

desired accuracy has been obtained. For j > 0 the convergence of this series is
usually fast enough to truncate this series after a few terms. Alternatively, one can
obtain results for relatively high Fourier components by computing only the first
few orders of scattering [See Subsection 5.8.2]. The main problem, however, is the
azimuth independent component (j = 0). This may require many terms in the series
(5.92)-(5.94), especially for optically thick atmospheres with little or no absorption.
There are several ways to tackle this problem. We will now discuss some of these,
omitting the upper index j indicating the Fourier component.

Van de Hulst (1963, 1980) considered doubling while ignoring polarization and
reported that after computing a number of terms the series in Eq. (5.93) could be
summed in good approximation as a geometric series in the following way. We can
write

[Q(µ, µ0)]1,1 ≈
P−1∑
p=1

[
Qp(µ, µ0)

]
1,1

+
[QP (µ, µ0)]1,1

1− λ
, (5.95)

where

λ =
[QP (µ, µ0)]1,1[
QP−1(µ, µ0)

]
1,1

(5.96)

and λ is independent of µ and µ0 for sufficiently large P . A similar procedure may
also work in practice for doubling and adding when polarization is included [Hansen,
1971a; Hovenier, 1971; Hansen and Travis, 1974], but it is conceivable that there
are cases in which it will not work or be very useful. For a more detailed discussion
of this issue we refer to De Haan et al. (1987).

A second way to deal with the repeated reflections between two layers is the
matrix inversion method. Considering supermatrices without the extension with
extra µ-values, we rewrite Eq. (5.94) in the form

1+Q = 1+Q1 +Q2 +Q3 + . . . = 1+Q1 +Q1Q1 +Q1Q1Q1 + . . . , (5.97)

where 1 is the unit matrix with the same dimension asQ. We can now now make use
of the fact (cf. Golub and Van Loan, 1983; Theorem 10.1.1 for M = 1 and N = T )
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that for any square matrix T the series
∑∞
p=1 T

p−1 is convergent and hence coincides
with the inverse of 1− T if and only if all of the eigenvalues of T have an absolute
value of less than 1. Physically it is clear that

∑∞
p=1 Q

p−1 must be convergent in
all cases of practical interest. Divergence can only occur if the atmosphere consists
of two adjacent half-spaces and the albedo of single scattering a = 1. Thus we have
a geometric series of matrices and we readily find [cf. e.g. Stoer and Bulirsch, 1980]

Q = [1−Q1]
−1 − 1, (5.98)

where the superscript −1 stands for matrix inversion. The computational labour
for inverting the matrix is mainly determined by the dimension of Q, which is
4n×4n when n quadrature points are used. Since nowadays a host of fast algorithms
for inversion of even very large matrices is available, matrix inversion has gained
importance compared to the first method discussed above. However, any matrix
inversion technique will unavoidably produce inaccurate results or no results at all
within a reasonable computing time if the condition number (i.e., the ratio of the
largest and the smallest singular value) of the matrix 1−Q1 becomes too large. In
any case there nowadays exist smart inversion techniques that continue to produce
accurate results even though the convergence of the series occurring in Eq. (5.94)
is slow. Such smart techniques make matrix inversion particularly suited when the
convergence of the series is too slow to truncate it after a few terms, but the matrix
1−Q1 is not too ill-conditioned. Instead of first computing Q by inversion of 1−Q1

[See Eq. (5.98)] and then the matrixD in Eqs. (5.71) or (5.75), one can also combine
these steps [Wiscombe, 1976] by writing

D +E(b′) = (1+Q)
[
T ′ +E(b′)

]
, (5.99)

which, in view of Eq. (5.98), entails

(1−Q1)
[
D +E(b′)

]
= T ′ +E(b′). (5.100)

The matrix D can now be found by solving the latter system of equations for each
column of T ′ +E(b′).

To generalize Eq. (5.98) to extended supermatrices, we first observe that every
extended 4N × 4N supermatrix L with elements Ls,t can be partitioned by writing

L =
(
Lgg Lga

Lag Laa

)
, (5.101)

where the superscript g (g=gausspoints) stands for the entries with s, t = 1, . . . , 4n
and the superscript a (a=additional points) for the entries with s, t = 4n+1, . . . , 4N ,
so that Lgg is the corresponding (nonextended) supermatrix. Then, as explained in
more detail in Appendix F, the truncated matrix multiplication given by Eq. (5.81)
can be written in the form of the matrix product

K = L�M =
(
LggM gg LggM ga

LagM gg LagM ga

)
=
(
Lgg

Lag

)(
M gg M ga

)
. (5.102)
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Since Qp+1 is obtained by taking the repeated supermatrix product of p+ 1 factors
of the supermatrix product (R∗′)�(R′′) of R∗′ and R′′, as a result of Eq. (F.12)
the truncated matrix product recursion of Eqs. (5.68)-(5.69) can be written in the
form

Qp+1 =
(
(R∗′)gg

(R∗′)ag

)
(Q∗

p)
gg
(
(R′′)gg (R′′)ga

)
, (5.103)

where

(Q∗
1)
gg = (R′′)gg(R∗′)gg (5.104)

and

(Q∗
p+1)

gg = (Q∗
1)
gg(Q∗

p)
gg (5.105)

are (nonextended) supermatrix multiplications [cf. Eqs. (5.68)-(5.69)]. Summing
Eq. (5.103) with respect to p we obtain as a consequence of Eq. (F.15)

Q =
(
(R∗′)gg

(R∗′)ag

)
{1+ (Q∗)gg}

(
(R′′)gg (R′′)ga

)
=
(

Qgg (1+Qgg)Qga1
Qag1 (1+Qgg) Qaa1 +Qag1 (1+Qgg)Qga1

)
, (5.106)

where

1+Qgg = (1−Qgg1 )−1 = 1+
∞∑
p=1

(Q1)
p. (5.107)

Consequently, to compute the right-hand side of Eq. (5.106) it suffices to evaluate
the (unextended) supermatrix inverse of Eq. (5.107) and the extended supermatrix
product

Q1 = (R∗′)�(R′′) =
(
R∗′ggR′′gg R∗′ggR′′ga

R∗′agR′′gg R∗′agR′′ga

)
(5.108)

of R∗′ and R′′. Equations (5.106)-(5.108) represent a generalization of the matrix
inversion method to extended supermatrices.

When using extended supermatrices we can write Eq. (5.108) in the following
form:

(1−Qgg1 )(E(b′)gg +Dgg) = E(b′)gg + (T ′)gg, (5.109)
(1−Qgg1 )Dga = (T ′)ga +Qga1 E(b

′)aa, (5.110)
Dag = (T ′)ag +Qag1 (E(b′)gg +Dgg), (5.111)
Daa = (T ′)aa +Qaa1 E(b

′)aa +Qag1 D
ga. (5.112)

The extended supermatrix Q can now be found by solving the linear equations
(5.109)-(5.110) to find Dgg and Dga and then computing Dag and Daa from Eqs.
(5.111)-(5.112).
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A third way to handle the repeated reflections is based on a method given by
Buckingham (1962) to obtain faster convergence than by summing a geometric series
of matrices. We will call this the product method, since it is based on infinite
products instead of infinite series. For non-extended supermatrices we have

Q = Q1(1+Q1)(1+Q1Q1)(1+Q1Q1Q1Q1) . . . = Q1

∞∏
r=0

(1+Q2r ) , (5.113)

where
Q2r+1 = (Q2r )2. (5.114)

This scheme cannot be used for extended supermatrices, since the truncated matrix
multiplications involved would lead to numerous cross terms when trying to derive an
infinite product representation as in Eq. (5.113). However, if we modify the product
method by replacing the above scheme by the following more general algorithm [See
Problem P5.2]

S1 = C1 = Q1, (5.115)

Cr+1 = (Cr)2, (5.116)
Sr+1 = Sr +Cr+1 + SrCr+1, (5.117)
Q = lim

r→∞
Sr, (5.118)

with r = 1, 2, . . ., the matrix multiplications in Eqs. (5.116) and (5.117) may also
be truncated matrix multiplications. Consequently, the product method can also
be used for extended supermatrices. The convergence of the product method is
very fast compared to term by term computations of the series in Eq. (5.94). For
example, if P terms of this series are needed for sufficiently accurate results, the
number of matrix multiplications is about 2×2logP for the product method instead
of P − 1. If only a few terms of the series are needed, the product method can
be truncated early. This is important for Fourier terms with large index j and for
optically thin layers, because the series in Eq. (5.94) then converges rapidly.

The infinite products or sums can be truncated when for all matrix elements the
differences between two successive approximations are smaller in absolute value than
a certain specified number, depending on the desired accuracy. For an alternative
approach we refer to Sec. 5.8.

In this section we have discussed several methods to handle the repeated reflec-
tions between the two layers considered in the adding-doubling method. It depends
on the specific problem to be solved which of these methods can best be used. How-
ever, it is always wise to check the accuracy of the results obtained by one method
by also employing another method, at least for a subset of the results.

5.6 Reflecting Ground Surfaces

An atmosphere may be bounded below by a ground surface that reflects some of
the light leaving the atmosphere at its lower boundary back into the atmosphere.
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Examples of such reflecting ground surfaces are oceans, deserts and areas covered
with snow. We shall assume that a reflecting ground surface can be adequately
modelled as a flat homogeneous surface of infinite horizontal extent. We can then
describe its reflection properties in the same general way as we did for a plane-parallel
atmosphere, namely by means of a real 4× 4 reflection matrix Rg(µ, µ0, ϕ−ϕ0) [cf.
Eqs. (4.34) and (4.37)]. This matrix vanishes identically for a completely absorbing
ground surface, which is also called a perfectly black surface. In this case one often
says that there is no ground surface. In Sections 5.1-5.5 we considered layers isolated
in space, i.e., having no reflecting ground surfaces at all.

Let us now place a homogeneous or inhomogeneous atmosphere with known
multiple-scattering matrices, which is illuminated at the top, on top of a reflecting
ground surface with a certain reflection matrix. We will call the light leaving the
atmosphere-ground system at the top reflected light and describe it by means of a
reflection matrix of the system as given by Eq. (4.34). Similarly, the internal radia-
tion field of the atmosphere-ground system can be described by multiple-scattering
matrices U(τ, µ, µ0, ϕ − ϕ0) and D(τ, µ, µ0, ϕ − ϕ0) defined via Eqs. (4.41)-(4.42).
However, we will not call the light leaving the atmosphere at the bottom trans-
mitted light, unless the ground surface is perfectly black. If we want to know the
radiation leaving the atmosphere, we can use the computational scheme for the
adding-doubling method [See Eqs. (5.14)-(5.20)] by letting T ′′(µ, µ0, ϕ−ϕ0) vanish
identically, taking

R′′(µ, µ0, ϕ− ϕ0) = Rg(µ, µ0, ϕ− ϕ0), (5.119)

and employing the multiple-scattering matrices of the atmosphere as the single
primed matrices. If the atmosphere is modelled as a pile of homogeneous layers,
one can start with putting one homogeneous layer on top of the reflecting ground
surface and then successively place homogeneous layers on top of the partial atmo-
sphere. There is no need then to use a separate computational scheme to compute
the reflection and transmission by sublayers for incident light from below [cf. Sec.
5.2]. However, we may wish to consider different ground surfaces for the same atmo-
sphere. This happens, for instance, when a satellite observes the atmosphere above
the sea at one moment and above land at another moment. It would then be inef-
ficient to compute the radiative transfer in the atmosphere as a new problem each
time another ground surface is considered. Fortunately, there is an alternative pro-
cedure. To explain this, we first consider the following problem. Suppose we add two
homogeneous or inhomogeneous atmospheric layers with known multiple-scattering
matrices and wish to compute the reflection and transmission of the combined layer,
not only for incident light from above (as done in Sec. 5.2), but also for incident
light from below. Following the same reasoning as in Sec. 5.2, but now for incident
light from below, we readily find the following computational scheme [See Fig. 5.2]:
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Figure 5.2: Similar to Fig. 5.1, but for incident light from below.

Q∗
1(µ, µ0, ϕ− ϕ0) =

1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′R′′(µ, µ′, ϕ− ϕ′)R∗′(µ′, µ0, ϕ

′ − ϕ0),

(5.120)

Q∗
p+1(µ, µ0, ϕ− ϕ0) =

1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′Q∗

1(µ, µ′, ϕ− ϕ′)Q∗
p(µ

′, µ0, ϕ
′ − ϕ0),

(5.121)

Q∗(µ, µ0, ϕ− ϕ0) =
∞∑
p=1

Q∗
p(µ, µ0, ϕ− ϕ0), (5.122)

D∗(µ, µ0, ϕ− ϕ0) = T ∗′′(µ, µ0, ϕ− ϕ0) + e−b
′′/µ0Q∗(µ, µ0, ϕ− ϕ0)

+
1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′Q∗(µ, µ′, ϕ− ϕ′)T ∗′′(µ′, µ0, ϕ

′ − ϕ0),

(5.123)

U∗(µ, µ0, ϕ− ϕ0) = e−b
′′/µ0R∗′(µ, µ0, ϕ− ϕ0)

+
1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′R∗′(µ, µ′, ϕ− ϕ′)D∗(µ′, µ0, ϕ

′ − ϕ0),

(5.124)

R∗(µ, µ0, ϕ− ϕ0) = R∗′′(µ, µ0, ϕ− ϕ0) + e−b
′′/µU∗(µ, µ0, ϕ− ϕ0)

+
1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′ T ′′(µ, µ′, ϕ− ϕ′)U∗(µ′, µ0, ϕ

′ − ϕ0),

(5.125)
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T ∗(µ, µ0, ϕ− ϕ0) = e−b
′′/µ0T ∗′(µ, µ0, ϕ− ϕ0) + e−b

′/µD∗(µ, µ0, ϕ− ϕ0)

+
1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′ T ∗′(µ, µ′, ϕ− ϕ′)D∗(µ′, µ0, ϕ

′ − ϕ0),

(5.126)

Here D∗(µ, µ0, ϕ−ϕ0) and U∗(µ, µ0, ϕ−ϕ0) pertain to radiation travelling upward
and downward, respectively, at the interface between the two layers. Equations
(5.120)-(5.126) were first reported by Lacis and Hansen (1974) on ignoring the po-
larization and azimuth dependence of the radiation. It is important, however, to
note that the above scheme can be simplified if one has first followed the scheme for
incident light from above, i.e., Eqs. (5.14)-(5.20), because of the following reciprocity
relations:

Q∗(µ, µ0, ϕ− ϕ0) = ∆3Q̃(µ0, µ, ϕ0 − ϕ)∆3, (5.127)

T ∗(µ, µ0, ϕ− ϕ0) = ∆3T̃ (µ0, µ, ϕ0 − ϕ)∆3, (5.128)

which follow from Display 4.1 [See also Eq. (5.22)]. Hence the repeated reflections
need not be computed twice and Eq. (5.126) is not necessary if one uses Eqs.
(5.127)-(5.128). Another interesting relation for Q∗ is

Q∗(µ, µ0, ϕ− ϕ0) =
1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′R′′(µ, µ′, ϕ− ϕ′)R∗′(µ′, µ0, ϕ

′ − ϕ0)

+
1
π2

∫ +1

0
µ′dµ′

∫ +1

0
µ′′dµ′′

∫ 2π

0
dϕ′
∫ 2π

0
dϕ′′×

×R′′(µ, µ′, ϕ− ϕ′)Q(µ′, µ′′, ϕ′ − ϕ′′)R∗′(µ′′, µ0, ϕ
′′ − ϕ0),

(5.129)

which is due to the fact that all reflections between the layers contained in Qp(µ, µ0,
ϕ−ϕ0) are part of the reflections contained in Q∗

p+1(µ, µ0, ϕ−ϕ0) [cf. Figs. 5.1 and
5.2]. An algebraic proof of Eq. (5.129) is readily obtained from Eqs. (5.14)-(5.16)
and (5.120)-(5.122).

All 4 × 4 matrices occurring in Eqs. (5.120)-(5.126) obey the mirror symmetry
relation. This follows from the discussion in Sec. 5.2 and the mirror symmetry
theorem proved in Subsection 3.4.2. Therefore, both Fourier decompositions treated
in Subsection 4.6.1 can be used for the relevant matrices [cf. Sec. 5.3].

Consequently, with the adding-doubling method one can compute R∗(µ, µ0, ϕ−
ϕ0) and T ∗(µ, µ0, ϕ − ϕ0) of an atmosphere with little extra effort compared to
computingR(µ, µ0, ϕ−ϕ0) and T (µ, µ0, ϕ−ϕ0). One can then use the adding scheme
given by Eqs. (5.14)-(5.20) to compute the radiation emerging from the atmosphere
and entering its lower boundary when it is located on top of a reflecting ground
surface with known Rg(µ, µ0, ϕ − ϕ0). An interesting check on the adding scheme
given by Eqs. (5.14)-(5.20) and (5.120)-(5.126) is provided by reciprocity, since it is
physically clear that adding two layers whose reflection and transmission matrices
obey the reciprocity relations results in a combined layer whose reflection matrix
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and transmission matrix obeys the reciprocity relations [See Problem P5.1 and the
hint to its solution]. Since an inhomogeneous atmosphere can always be divided in
a number of sublayers that are thin enough for single scattering to be dominant and
reciprocity holds for the phase matrix, we can also say that a mathematical proof
can be based on the adding method for the validity of the reciprocity relations for
the reflection and transmission matrix of an arbitrary inhomogeneous atmosphere.
It should be noted that the internal field matrices U ,D, U∗ andD∗ generally do not
obey reciprocity relations of the type valid for reflection and transmission matrices
[cf. Eqs. (5.17)-(5.18) and Eqs. (5.123)-(5.124)].

So far we have only assumed that the reflection properties of the ground surface
can be described by a matrix Rg(µ, µ0, ϕ − ϕ0). We will now assume that mirror
symmetry exists with respect to a vertical plane, so that

Rg(µ, µ0, ϕ0 − ϕ) = ∆3,4Rg(µ, µ0, ϕ− ϕ0)∆3,4. (5.130)

Furthermore, we assume the surface to obey the reciprocity relation

Rg(µ0, µ, ϕ0 − ϕ) = ∆3R̃g(µ, µ0, ϕ− ϕ0)∆3. (5.131)

As explained in Sec. 5.3, we can now make two Fourier decompositions for Rg(µ, µ0,
ϕ− ϕ0) and all other 4× 4 matrices occurring in the adding equations for incident
light from above or from below. Clearly, the reflection matrix of the combination
consisting of atmosphere and surface obeys the same symmetry relation as the re-
flection matrix of the atmosphere alone. Supermatrices and extended supermatrices
can be introduced and employed as before. If Rg(µ, µ0, ϕ − ϕ0) is a sum of pure
Mueller matrices, so are all real 4×4 matrices describing the multiply scattered light
inside and outside the combination of atmosphere and surface [See Appendix E].

The most widely considered reflecting ground surface is a so-called Lambert
surface. In this case the reflection matrix is the Lambert matrix

RL = Ag


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (5.132)

where Ag is a positive scalar. Evidently, the Lambert matrix obeys the mirror
symmetry and reciprocity relations. It is also a sum of pure Mueller matrices, since
we can write

RL =
Ag
4

[diag(1, 1, 1, 1) + diag(1, 1,−1,−1)

+ diag(1,−1,−1, 1) + diag(1,−1, 1,−1)] . (5.133)

Equation (5.132) implies that the reflected light is always completely unpolarized,
independent of the state of polarization of the incident light and independent of the
directions of incident and reflected light. The scalar Ag is the surface or ground
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albedo, which is the fraction of the flux per unit horizontal area of a parallel beam
of incident light that is reflected upwards. For a totally reflecting Lambert surface
(also called a perfectly white surface), we have Ag = 1.

Let us now investigate what simplifications arise in the equations for the adding
method when we have a Lambert surface below an atmosphere. For this purpose we
use Eqs. (5.14)-(5.19), where the primed quantities now refer to the entire atmo-
sphere and we adoptRL forR′′(µ, µ0, ϕ−ϕ0). SinceRL is independent of directions,
all azimuth dependent terms in its Fourier decomposition vanish. Consequently, we
have in view of Eq. (5.14)

Q1(µ, µ0, ϕ− ϕ0) = Qco1 (µ) = Ag


r∗11(µ) 0 0 0
r∗21(µ) 0 0 0

0 0 0 0
0 0 0 0

 , (5.134)

where

r∗i,j(µ) = 2
∫ +1

0
µ′dµ′

[
R∗′c0(µ, µ′)

]
i,j

. (5.135)

In the next step we use Eq. (5.15) to find

Q2(µ, µ0, ϕ− ϕ0) = Qc02 (µ) = 2
∫ +1

0
µ′dµ′Qc01 (µ)Qc01 (µ′) = Agr

∗Qc01 (µ), (5.136)

where the scalar

r∗ = 2
∫ +1

0
µ′dµ′ r∗11(µ

′), (5.137)

and similarly
Qp+1(µ, µ0, ϕ− ϕ0) = Qc0p+1(µ) = Agr

∗Qc0p (µ). (5.138)

Here r∗ is the spherical (or Bond) albedo of the atmosphere for incident light from
below. We have 0 ≤ r∗ ≤ 1, where r∗ = 1 only for a nonabsorbing semi-infinite
atmosphere illuminated from below [See Subsection 4.6.3]. In view of Eq. (5.16) we
can now write

Q(µ, µ0, ϕ− ϕ0) = Qc0(µ) =
∞∑
p=1

Qc0p (µ)

= Qc01 (µ) + Agr
∗Qc01 (µ) + (Agr∗)2Qc01 (µ) + . . . . (5.139)

Thus a simple scalar geometric series arises and we can write

Q(µ, µ0, ϕ− ϕ0) = Qc0(µ) =
Ag

1−Agr∗


r∗11(µ) 0 0 0
r∗21(µ) 0 0 0

0 0 0 0
0 0 0 0

 . (5.140)
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Since 0 < Ag ≤ 1, the geometric series will always converge if the optical thickness
of the atmosphere is finite. The series would only be divergent if we could put a
nonabsorbing semi-infinite atmosphere on top of a totally reflecting Lambert surface.

We now turn to the computation of the matrix describing the light travelling
downwards below the atmosphere and streaming on the surface. It is immediately
clear from Eq. (5.17) that we can no longer restrict ourselves to azimuth independent
terms in the Fourier expansions. Indeed, we find

D(µ, µ0, ϕ− ϕ0) = T ′(µ, µ0, ϕ− ϕ0) + e−b
′/µ0Qc0(µ)

+ 2
∫ +1

0
µ′dµ′Qc0(µ)T ′c0(µ′, µ0). (5.141)

Hence

D(µ, µ0, ϕ− ϕ0) = T ′(µ, µ0, ϕ− ϕ0)

+
Ag

1−Agr∗


r∗11(µ){e−b

′/µ0 + t11(µ0)} r∗11(µ)t12(µ0) 0 0
r∗21(µ){e−b

′/µ0 + t11(µ0)} r∗21(µ)t12(µ0) 0 0
0 0 0 0
0 0 0 0

 ,

(5.142)

where

ti,j(µ0) = 2
∫ +1

0
µ′dµ′ T ′c0

i,j(µ
′, µ0). (5.143)

Thus the presence of a reflecting Lambert surface leaves unaltered the azimuth
dependence of the light that has passed through the atmosphere but may change its
state of polarization.

Light travelling upwards from the Lambert surface may be found from Eq. (5.18).
The result is

U(µ, µ0, ϕ− ϕ0) = e−b
′/µ0RL + 2RL

∫ +1

0
µ′dµ′Dc0(µ′, µ0). (5.144)

Thus

U(µ, µ0, ϕ− ϕ0) = U(µ0) =
Ag

1−Agr∗


e−b

′/µ0 + t11(µ0) t12(µ0) 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

(5.145)

showing that the radiation is always isotropic and unpolarized, as is physically clear.
In particular, there is no azimuth dependence. Note that the intensity of the radi-
ation going upwards at the surface depends on the degree of linear polarization of
the light incident at the top of the atmosphere if t12(µ0) does not vanish [cf. Fig.
5.3].
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Figure 5.3: The function t12(µ) for first order scattering by a conservative
(a = 1) Rayleigh scattering atmosphere for various values of the
optical thickness b.

The final step is to find the light reflected by the combination consisting of the
atmosphere and the Lambert surface underneath. Equation (5.19) yields

R(µ, µ0, ϕ− ϕ0) = R′(µ, µ0, ϕ− ϕ0) +
[
e−b

′/µ + 2
∫ +1

0
µ′dµ′ T ∗′c0(µ, µ′)

]
U(µ0)

=R′(µ, µ0, ϕ− ϕ0)

+
Ag

1−Agr∗


{e−b′/µ + t∗11(µ)}{e−b

′/µ0 + t11(µ0)} {e−b′/µ + t∗11(µ)}t12(µ0) 0 0
t∗21(µ){e−b

′/µ0 + t11(µ0)} t∗21(µ)t12(µ0) 0 0
0 0 0 0
0 0 0 0

 ,

(5.146)

where

t∗i,j(µ) = 2
∫ +1

0
µ′dµ′

[
T ∗′c0(µ, µ′)

]
i,j

. (5.147)

Due to reciprocity, we have

t∗11(µ) = t11(µ), (5.148)
t∗21(µ) = t12(µ). (5.149)

Consequently, we can rewrite Eq. (5.146) in the form

R(µ, µ0, ϕ− ϕ0) = R′(µ, µ0, ϕ− ϕ0) + R̂(µ, µ0), (5.150)
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with

R̂11(µ, µ0) =
Ag

1−Agr∗
{e−b′/µ + t11(µ)}{e−b

′/µ0 + t11(µ0)}, (5.151)

R̂12(µ, µ0) =
Ag

1−Agr∗
{e−b′/µ + t11(µ)}t12(µ0), (5.152)

R̂21(µ, µ0) =
Ag

1−Agr∗
t12(µ){e−b

′/µ0 + t11(µ0)}, (5.153)

R̂22(µ, µ0) =
Ag

1−Agr∗
t12(µ)t12(µ0), (5.154)

and all other elements R̂i,j(µ, µ0) vanish. Note that

R̂12(µ, µ0) = R̂21(µ0, µ), (5.155)

as demanded by reciprocity. If polarization is ignored, we find

D11(µ, µ0, ϕ− ϕ0) = T ′
11(µ, µ0, ϕ− ϕ0)

+
Ag

1−Agr∗
r∗11(µ)

(
e−b

′/µ0 + t11(µ0)
)

, (5.156)

U11(µ, µ0, ϕ− ϕ0) =
Ag

1−Agr∗

(
e−b

′/µ0 + t11(µ0)
)

, (5.157)

R11(µ, µ0, ϕ− ϕ0) = R′
11(µ, µ0, ϕ− ϕ0)

+
Ag

1−Agr∗

(
e−b

′/µ + t11(µ)
)(

e−b
′/µ0 + t11(µ0)

)
, (5.158)

which is in full agreement with Van de Hulst (1980), Display 4.8.
By way of example we consider a thin homogeneous Rayleigh scattering atmo-

sphere on top of a Lambert surface. Using the first order of scattering approximation
for the atmosphere, Eqs. (4.79)-(4.80) and (4.82)-(4.83) yield

R∗′(µ, µ′, ϕ− ϕ′) =
a

4(µ + µ′)

(
1− e

−b
(

1
µ

+ 1
µ′
))
Z(µ,−µ′, ϕ− ϕ′), (5.159)

T ′(µ, µ′, ϕ− ϕ′) =
a

4(µ− µ′)

(
e−b/µ − e−b/µ

′
)
Z(µ, µ′, ϕ− ϕ′). (5.160)

The azimuth independent term of the phase matrix follows from Eq. (3.134) by
taking ρn = 0 and hence c = d = 1. This gives

Zc0IQ(u, u′) =W 0
IQ(u, u′)

=
3
8

(
3− u2 − u′2 + 3u2u′2 (1− 3u2)(1− u′2)
(1− u2)(1− 3u′2) 3(1− u2)(1− u′2)

)
. (5.161)

Equations (5.135) and (5.143) now read for i, j = 1, 2

r∗i,j(µ) =
a

2

∫ +1

0

µ′ dµ′

µ + µ′

(
1− e

−b
(

1
µ

+ 1
µ′
)) [
Zc0(µ,−µ′)

]
i,j

, (5.162)

ti,j(µ0) =
a

2

∫ +1

0

µ′ dµ′

µ′ − µ0

(
e−b/µ

′ − e−b/µ0

) [
Zc0(µ′, µ0)

]
i,j

. (5.163)
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Using Eq. (5.161) gives simple integral expressions for the four needed functions
r∗11(µ), r∗21(µ), t11(µ0) and t12(µ0), as well as the scalar r∗. In particular, we have

t12(µ0) =
3a
16

∫ +1

0

µ′ dµ′

µ′ − µ0

(
e−b/µ

′ − e−b/µ0

)
(1− 3µ′2)(1− µ0

2). (5.164)

Clearly, this function is, in general, not zero for b > 0 [cf. Fig. 5.3]. Consequently,
the light coming from the Lambert surface and emerging at the top of the atmosphere
in the direction (µ, ϕ) is, in general, polarized, although it concerns transmission
through the atmosphere of isotropic unpolarized light coming from all directions in
a solid angle 2π. However, if the light emerges from the top of the atmosphere in
the perpendicular direction, we have µ = 1 and t12(1) = 0, according to Eq. (5.164),
so that the reflection by the ground gives no contribution to the polarization of the
emergent light, irrespective of the state of polarization of the light incident on the
atmosphere [See Eqs. (5.153) and (5.154)].

Natural ground surfaces reflect light in a more complicated way than Lambert
surfaces, although the simple Lambert reflection matrix has often been used as an
approximation. For ocean surfaces Fresnel reflection has been employed with a wave-
slope distribution depending on the near-surface wind speed [See e.g. Fischer and
Grassl (1984), Chowdhary et al. (2001, 2002), as well as Mishchenko and Travis
(1997) and references therein].

5.7 The Internal Radiation Field

Polarimetry of a scattering and absorbing medium usually pertains to the emerg-
ing light and not to the internal radiation field. Although planetary probes have
descended in the atmospheres of Venus and Jupiter, they did not gather any polariza-
tion information on the internal radiation field during descent. On Earth airplanes
and balloons have been used for polarization measurements, but it was usually as-
sumed that their altitudes were large enough to regard the detected light as reflected
light, so that its properties could be described in terms of the reflection matrix of
the atmosphere-ground system.

In this section we will briefly consider some numerical approaches to compute the
scattered radiation inside an atmosphere, illuminated from above, when polarization
is fully taken into account. For this purpose we will use the adding-doubling method
and mainly follow the treatment given by De Haan et al. (1987) and Stammes et al.
(1989). The direct (unscattered) radiation is always simply obtained by applying
the exponential attenuation law of Bouger [See Sec. 4.1].

First of all, we wish to point out that one can always compute the radiation trav-
elling upwards and downwards at any optical depth τ in an arbitrary atmosphere by
first regarding the parts above and below τ as separate atmospheres, then comput-
ing their reflection and transmission matrices and finally adding the two separate
atmospheres in the sense of the adding-doubling method. This yields the matrices
D(τ, µ, µ0, ϕ − ϕ0) and U(τ, µ, µ0, ϕ − ϕ0) [See Eqs. (5.17)-(5.18)] and thus the
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complete internal radiation field for any incident light from above, provided the re-
flection matrix of the atmospheric part above τ , i.e., R∗(τ, µ, µ0, ϕ− ϕ0), is known
for incident light from below. However, if this part is homogeneous, we can simply
use the relation

R∗(τ, µ, µ0, ϕ− ϕ0) = R(τ, µ, µ0, ϕ0 − ϕ), (5.165)

and if it is inhomogeneous we can use Eq. (5.120)-(5.125) in conjunction with Eq.
(5.127) to compute R∗(τ, µ, µ0, ϕ − ϕ0). This general procedure to compute the
internal polarized radiation of an atmosphere can also be used for computing the
radiation at the interface of an atmosphere and ground surface.
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Figure 5.4: The matrices at the interfaces of a complete atmosphere con-
sisting of N layers (a) and a partial atmosphere consisting of n
layers (b).

If the radiation for more than a few values of the optical depth is sought, the
above mentioned procedure is not very efficient, and then it is better to compute the
internal radiation from intermediate adding-doubling results where the atmosphere
is “constructed” by successively placing homogeneous layers on top of a partial atmo-
sphere. Yanovitskij (1979) showed how so-called invariance relations can be applied
to compute the intensity in a homogeneous atmosphere directly from intermediate
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doubling results. Viik (1982) and Dlugach and Yanovitskij (1985) obtained similar
results for inhomogeneous atmospheres, while Domke and Yanovitskij (1981, 1986)
extended these ideas to include polarization. Similar procedures have been formu-
lated if polarization is ignored [See Grant and Hunt, 1968; Plass et al., 1973]. When
transplanting the arguments of the above authors to the adding-doubling context,
the basic idea is very simple. To show this, we consider a multilayered atmosphere
consisting of N homogeneous layers on top of a reflecting or black ground surface
[See Fig. 5.4, panel a]. We will call this the complete atmosphere. A parallel beam
of light, given by Eq. (5.11), is incident at the top. The N homogeneous layers in
the complete atmosphere are numbered from bottom to top by (1), (2), . . ., (N).
Let us label the N interfaces by n = 1, 2, . . . , N , so that interface n is the lower
boundary of layer (n). Here interface 1 is the lower boundary of the complete at-
mosphere, which is the ground surface, and we will use the label N + 1 to refer to
the upper boundary of the complete atmosphere. Suppose τn,N denotes the optical
depth at interface n in the complete atmosphere. Then τN+1,N = 0, while τ1,N = b
is the optical thickness of the complete atmosphere. We will use multiple-scattering
matrices [See Sec. 4.3] and omit factors µ0F 0 on either side of equations [cf. Sec.
5.2].

The emergent and the internal radiation of the complete atmosphere are com-
puted by successively adding the N layers, starting at the ground. Each time when a
layer is added the adding algorithm is applied to calculate its effect on the emerging
radiation fields and the radiation at its interface with the layer underneath. In the
course of building up the complete atmosphere we obtain as intermediate results the
downward and upward radiation fields at the interface between a partial atmosphere
(which, at the start, is the ground surface) and a single layer on top of it [See Fig.
5.4, panel b]. To be specific, on adding layer (n) we obtain and store the partial
atmosphere matrices Dn,n and Un,n, where we have omitted the variables µ, µ0 and
ϕ−ϕ0. Here the first subscript n indicates that the matrix refers to the radiation at
interface n, and the second subscript n indicates that the partial atmosphere consists
of the first n layers of the complete atmosphere. The radiation field at the interfaces
of the complete atmosphere, which we wish to compute, is represented by Dn,N and
Un,N for n = 1, 2, . . . , N . After completing the adding scheme we find UN+1,N ,
which yields the reflection of the complete atmosphere-ground system. Note that
DN+1,N vanishes, since there is no scattered light going downwards at the top.

We will now show that after the last adding step has been made, the radiation
field at the interfaces of the complete atmosphere which is due to scattering may be
found by using the stored partial matricesDn,n and Un,n and two simple recurrence
relations. For this purpose we first note that, according to their definitions [cf.
Eqs. (4.41)-(4.42)], Dn,n and Un,n suffice to describe the radiation in the complete
atmosphere at interface n, provided the radiation incident on interface n+1 is known
[cf. Fig. 5.4]. This incident radiation, however, consists of a direct (unscattered)
part (i.e., attenuated sunlight) and a part due to scattering which is given byDn+1,N .
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Consequently, we have

Un,N (µ, µ0, ϕ− ϕ0) = e−τn+1,N /µ0Un,n(µ, µ0, ϕ− ϕ0)

+
1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′Un,n(µ, µ′, ϕ− ϕ′)Dn+1,N (µ′, µ0, ϕ

′ − ϕ0) (5.166)

and

Dn,N (µ, µ0, ϕ− ϕ0) = e−τn+1,N /µ0Dn,n(µ, µ0, ϕ− ϕ0)

+
1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′Dn,n(µ, µ′, ϕ− ϕ′)Dn+1,N (µ′, µ0, ϕ

′ − ϕ0)

+ e−(τn,N −τn+1,N )/µDn+1,N (µ, µ0, ϕ− ϕ0), (5.167)

where the last term in Eq. (5.167) accounts for light which is due to Dn+1,N but
travels unscattered from interface n + 1 to interface n. In supermatrix or extended
supermatrix form these equations can be written as

Un,N = Un,nE(τn+1,N ) +Un,nDn+1,N (5.168)

and

Dn,N =Dn,nE(τn+1,N ) +Dn,nDn+1,N +E(τn,N − τn+1,N )Dn+1,N . (5.169)

For supermatrices we may reduce the number of matrix multiplications by writing

Un,N = Un,n [E(τn+1,N ) +Dn+1,N ] (5.170)

and

Dn,N =Dn,n [E(τn+1,N ) +Dn+1,N ] +E(τn,N − τn+1,N )Dn+1,N (5.171)

or

Dn,N = [E(τn,N − τn+1,N ) +Dn,n]Dn+1,N +Dn,nE(τn+1,N ). (5.172)

We can now employ the two recursion relations given by Eqs. (5.168)-(5.169) to
calculate the radiation field at the interfaces of the complete atmosphere. The
recursion can be started with n = N − 1, since DN,N and UN,N are already known
from the last adding step. Then Eqs. (5.168)-(5.169) for n = N − 1 allow one
to compute UN−1,N and DN−1,N . By backward recursion in n until n = 1, we
compute all of the matrices Un,N and Dn,N and thus the radiation field of the
complete atmosphere at all interfaces n = 1, 2, . . . , N . For a certain value of N this
may be sufficient to get an accurate picture of the internal radiation field. If not,
one can divide the complete atmosphere in more homogeneous layers or compute
the radiation field inside the N homogeneous layers [See Stammes et al., 1989].

The adding-doubling method has been applied for studies of the polarized inter-
nal radiation field of e.g. Venus [Stammes et al., 1989; Stammes et al., 1992].
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5.8 Computational Aspects

In this section we discuss a number of issues that are important when an efficient
computing code for multiple-scattering calculations based on the adding-doubling
method is to be written. We will assume that Fourier decomposition is applied to
avoid integration over azimuth and that the scattering matrix has been expanded in
generalized spherical functions.

5.8.1 Computing Repeated Reflections

The decision where to truncate the infinite product [cf. Eqs. (5.113) and (5.115)-
(5.118)] or infinite sum (cf. Eq. (5.94)) can be based on one number instead of on
many matrix elements. To show this, we can confine the discussion to the product
method, since the truncation of the infinite sum can be treated similarly.

We first consider nonextended supermatrices and rewrite Eqs. (5.75)-(5.78) as
follows:

E(b′) +D = (1+Q)
[
E(b′) + T ′] , (5.173)

U = R′′(1+Q)
[
E(b′) + T ′] , (5.174)

R = R′ +
[
E(b′) + T ′∗]R′′(1+Q)

[
E(b′) + T ′] , (5.175)

E(b′ + b′′) + T =
[
E(b′′) + T ′′] (1+Q) [E(b′) + T ′] . (5.176)

The physical meaning of these relations can be immediately understood from Fig.
5.1, since the left-hand sides of Eqs. (5.173) and (5.176) represent the unscattered
plus scattered radiation downwards and a similar interpretation holds for the ex-
pressions between square brackets on the right-hand sides of Eqs. (5.173)-(5.176).
We will now focus our attention on the factors (1+Q) in Eqs. (5.173)-(5.176) and
assume that the only source of errors is the truncation of the repeated reflections.

To deal with errors of matrices we use the Euclidean matrix norm [See e.g. Golub
and Van Loan, 1983]

‖A‖2 = max
x�=0

‖Ax‖2

‖x‖2
, (5.177)

where A is an N ′ × N ′ matrix, x is an arbitrary column vector with N ′ elements
and the Euclidean vector norm is defined by

‖x‖2 =

[
N ′∑
i=1

|xi|2
]1/2

, x = (x1, · · · , xN ′). (5.178)

Using Eqs. (5.115)-(5.118) we find

Q− Sr = Cr+1(1+Q). (5.179)

Therefore, using the submultiplicative property of the Euclidean norm [cf., for in-
stance, Golub and Van Loan, 1983] we have

‖(1+Q)− (1+ Sr)‖2

‖1+Q‖2
≤ ‖Cr+1‖2, (5.180)
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which implies that the relative truncation error (in terms of the Euclidean matrix
norm) of (1 + Q) is bounded above by ‖Cr+1‖2. It follows from Eqs. (5.173)
and (5.179) that the absolute errors (resulting from truncation) in the elements of
E(b′) +D are the elements of Cr+1 [E(b′) +D]. Assuming ‖E(b′) +D‖2 < 1 we
thus find that ‖Cr+1‖2 is an upper bound for the norm of the absolute error in
D. In the same way we can show that Eqs. (5.173)-(5.176) and (5.179) imply that
‖Cr+1‖2 is an upper bound for the norm of the absolute errors of U , R and T if
‖E(b′) +T ′∗‖2, ‖E(b′′) +T ′′‖2 and ‖R′′‖2 are also smaller than one. Consequently,
the computation of Q by using Eqs. (5.115)-(5.118) can be stopped as soon as
‖Cr+1‖2 is smaller than a certain specified number. But truncating the recursive
scheme after Eq. (5.116) would be inefficient, because the newly computed Cr+1

would not be used in Eq. (5.117). Therefore we rather make use of the inequality

‖Cr+1‖2 ≤ ‖Cr‖2
2 (5.181)

and employ the squared Euclidean matrix norm of Cr as an upper bound for the
norm of the absolute errors in D, U , R and T .

If Cr were to be real symmetric, ‖Cr‖2
2 would be the largest squared eigenvalue

of Cr. However, in general Cr is not a symmetric matrix. In that case the squared
Euclidean matrix norm of Cr equals the largest squared singular value of Cr [cf.
Golub and Van Loan, 1983], i.e., the largest eigenvalue of the matrix C̃rCr, where
a tilde above a matrix denotes its transpose. The latter is bounded above by the
trace of C̃rCr, namely by

Tr (C̃rCr) =
4n∑
p,q=1

([Cr]p,q)
2 , (5.182)

which is the squared Frobenius norm of the matrix Cr. The quantity in Eq. (5.182)
is easy to evaluate and can be used whether Cr is symmetric or not. Hence, it
is easy to use as an estimate for the truncation error made when computing the
scattering properties of the combined layer. When extended supermatrices are used,
the error estimate must be based on a truncated trace and the matrix norms pertain
to nonextended supermatrices. Therefore, the summation in Eq. (5.182) runs from 1
to 4n in all cases. Using the estimates mentioned above to decide where to truncate
the computations of the repeated reflections, provided excellent results in a variety
of numerical computations.

5.8.2 Computing the Azimuth Dependence

The elements of the scattering matrix may be rather complicated functions of the
scattering angle when the particles are large compared to the wavelength of the inci-
dent light. The convergence of the expansions in generalized spherical functions [cf.
Eqs. (2.152)-(2.157)] will then be slow and therefore the Fourier series expansions
[cf. Eqs. (3.68) and (3.128)] will also exhibit a slow convergence. Several hundreds
of Fourier terms may be necessary to describe the scattering by aerosol and cloud
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particles that are large compared to the wavelength. Clearly, computing the radia-
tion inside and outside an atmosphere would be very time-consuming for so many
Fourier terms if the adding-doubling algorithm is implemented for each Fourier term
separately. Fortunately, there is another way.

It is physically clear that multiple scattering tends to smoothen sharp scattering
features in angular distributions. In other words, the structure described by high
Fourier terms will be mainly due to low orders of scattering. It is therefore not
surprising that the contribution of the Fourier terms with a large index j to the
total radiation travelling in and emerging from an atmosphere can be accurately
described by single scattering only [Dave and Gazdag, 1970; Hansen and Pollack,
1970; Hansen and Travis, 1974; Van de Hulst, 1971, 1980]. Consequently, it is not
necessary to compute the Fourier coefficients W j(u, u′) from Z(u, u′, ϕ − ϕ′) for j
larger than a certain number M1. Indeed, we can use the following expression for a
homogeneous or inhomogeneous atmosphere

R(µ, µ0, ϕ− ϕ0) = R1(µ, µ0, ϕ− ϕ0) +
1
2

M1∑
j=0

(2− δj,0)×

×
[
Φ1(j(ϕ− ϕ0))

{
Rj(µ, µ0)−Rj1(µ, µ0)

}
(1+∆3,4)

+ Φ2(j(ϕ− ϕ0))
{
Rj(µ, µ0)−Rj1(µ, µ0)

}
(1−∆3,4)

]
, (5.183)

where the subscript 1 of R denotes contributions of first order scattering only. Note
that the first order contributions had to be subtracted from the first M1 Fourier
terms, since they were already included in R1(µ, µ0, ϕ − ϕ0). In the same way we
find for the transmission matrix

T (µ, µ0, ϕ− ϕ0) = T 1(µ, µ0, ϕ− ϕ0) +
1
2

M1∑
j=0

(2− δj,0)×

×
[
Φ1(j(ϕ− ϕ0))

{
T j(µ, µ0)− T j1(µ, µ0)

}
(1+∆3,4)

+ Φ2(j(ϕ− ϕ0))
{
T j(µ, µ0)− T j1(µ, µ0)

}
(1−∆3,4)

]
, (5.184)

and similar expressions for all other multiple-scattering matrices. For homogeneous
layers in the atmosphere the single scattering matrices are readily obtained from
Eqs. (4.55)-(4.56) and (4.127). For a multilayered atmosphere having L homoge-
neous layers we proceed as follows to compute the single scattering reflection and
transmission matrices. Let R1,l(µ, µ′, ϕ−ϕ′) and T 1,l(µ, µ′, ϕ−ϕ′) be the reflection
matrix and transmission matrix, respectively, for single scattering by layer l. We
then find for the complete atmosphere

R1(µ, µ0, ϕ− ϕ0) =
L∑
l=1

exp
(
−rl

µ
− rl

µ0

)
R1,l(µ, µ0, ϕ− ϕ0) (5.185)
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and

T 1(µ, µ0, ϕ− ϕ0) =
L∑
l=1

exp
(
− tl

µ
− rl

µ0

)
T 1,l(µ, µ0, ϕ− ϕ0), (5.186)

where rl is the optical depth at the top of layer l and tl is the optical distance between
the bottom of layer l and the lower boundary of the atmosphere. Thus, the exponen-
tial functions describe the attenuation of the light in the atmosphere outside layer
l. By replacing the matrices in Eqs. (5.185)-(5.186) by their Fourier coefficients, we
obtain the matrices Rj1(µ, µ0) and T

j
1(µ, µ0) occurring in Eqs. (5.183) and (5.184).

A similar approach can be used for all other multiple-scattering matrices. In con-
clusion, M1 +1 is the largest number of Fourier terms for which multiple-scattering
calculations are needed.

Usually the scattering matrix is approximated by truncating the expansions in
generalized spherical functions at some integer index M0, so that we take

α1
l = α2

l = α3
l = α4

l = β1
l = β2

l = 0 for l > M0. (5.187)

As discussed in Subsection 4.6.2, this means that all contributions by Fourier terms
with j > M0 vanish. Below M0 + 1 there will be a range of j values, M1 < j ≤ M0

say, where only single scattering contributes, as explained above [See Eqs. (5.183)-
(5.186)]. For homogeneous layers a further reduction of computational labour may
be obtained by using simple formulae for two orders of scattering [cf. Eqs. (4.63)-
(4.75)] instead of doubling for Fourier terms with M2 < j ≤ M1 say [See Hovenier,
1971; Hansen and Hovenier, 1971; Van de Hulst, 1980, Sec. 15.3.1]. Consequently,
an efficient general procedure to compute the reflection matrix and transmission
matrix of a homogeneous atmosphere is to use doubling for 0 ≤ j ≤ M2, two orders
of scattering for M2 < j ≤ M1, and single scattering for M1 < j ≤ M0. Thus,
instead of Eq. (5.183) we can use for a homogeneous atmosphere

R(µ, µ0, ϕ− ϕ0) = R1(µ, µ0, ϕ− ϕ0) +
1
2

M2∑
j=0

(2− δj,0)×

×
[
Φ1(j(ϕ− ϕ0))

{
Rj(µ, µ0)−Rj1(µ, µ0)

}
(1+∆3,4)

+ Φ2(j(ϕ− ϕ0))
{
Rj(µ, µ0)−Rj1(µ, µ0)

}
(1−∆3,4)

]
+

M1∑
j=M2+1

[
Φ1(j(ϕ−ϕ0))R

j
2(µ, µ0)(1+∆3,4) +Φ2(j(ϕ−ϕ0))R

j
2(µ, µ0)(1−∆3,4)

]
,

(5.188)

where

Rj2(µ, µ0) =
a2

2

∫ +1

0
dµ′ [g(µ, µ0, µ

′)W j(−µ,−µ′)W j(−µ′, µ0)

+ h(µ, µ0, µ
′)W j(−µ, µ′)W j(µ′, µ0)

]
(5.189)
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and

T j2(µ, µ0) =
a2

2

∫ +1

0
dµ′ [e(µ, µ0, µ

′)W j(µ,−µ′)W j(−µ′, µ0)

+ f(µ, µ0, µ
′)W j(µ, µ′)W j(µ′, µ0)

]
. (5.190)

A similar strategy can be used for all other multiple-scattering matrices.

5.8.3 Criteria for Computing Fourier Terms

The precise values of the integers M0, M1 and M2 for a homogeneous atmosphere
depend of course on the desired accuracy of the computations. They may be es-
tablished by trial and error, but this can be facilitated by estimates based on the
expansion coefficients of the scattering matrix of the homogeneous atmosphere under
consideration. We will follow De Haan et al. (1987) to derive such estimates.

In the first step we consider the effective albedo aj defined by [cf. Van de Hulst
(1980), Sec. 15.3.3]

aj =
aαj1

2j + 1
, (5.191)

which quite often is a good approximation for the ratio of the intensities of two high
successive orders of scattering in an optically thick atmosphere. For an optically thin
layer this ratio of intensities is much smaller because of the easier escape of light
from the layer. From the discussion in Sec. 4.4 we know that for very thin layers
the first order reflection and transmission matrices are linear in the optical thickness
b, whereas the second order reflection and transmission matrices are proportional
to b2. Therefore, as a crude estimate for the ratio of the intensities for successive
orders of scattering we propose [De Haan et al. (1987)]

ratio = ajf(cb), (5.192)

where c is a constant and the function f(x) = min(x, 1) accounts for the easier
escape of light from thin atmospheres. Numerical experiments show that c = 3 is
an adequate value for aerosol scattering, but this value might not be optimal for
scattering by clouds or by molecules.

In the second step for estimating the values of M0, M1 and M2 we consider a
monodirectional beam of unpolarized light incident at the top of a homogeneous
atmosphere above a black surface. In view of Eqs. (4.22)-(4.24) we have for the
single scattering contribution to the intensity of light emerging at the top

I1(0,−µ, µ0, ϕ− ϕ0) =
aµ0 F0

4(µ + µ0)

(
1− e

−b
(

1
µ

+ 1
µ0

))
[Z(−µ, µ0, ϕ− ϕ0)]11, (5.193)

where the subscript 1 pertains to single scattering. When we expand Eq. (5.193)
in a Fourier series and replace the j-th Fourier term of [Z(−µ, µ0, ϕ− ϕ0)]11 by its
first expansion coefficient αj1, we obtain

Ij1(0,−µ, µ0) ≈
aµ0 F0

4(µ + µ0)

(
1− e

−b
(

1
µ

+ 1
µ0

))
αj1. (5.194)
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Using the inequality (1− e−x) < x for x > 0, we find

Ij1(0,−µ, µ0) � b

4µ
aαj1 F0. (5.195)

If (b/µ) > 1, a sharper upper bound is found by using the inequalities µ0/(µ+µ0) < 1
and (1− e−x) < 1 in Eq. (5.194), yielding

Ij1(0,−µ, µ0) � 1
4
aαj1 F0. (5.196)

We now choose the smaller of the right-hand sides of Eqs. (5.195) and (5.196), which
gives

Ij1(0,−µ, µ0) � 1
4
f

(
b

µ

)
aαj1 F0, (5.197)

where f(x) = min(x, 1). Assuming F0 = 1 and using Eqs. (5.191)-(5.192), we obtain
for the first three orders of scattering of the reflected intensity

scattered once � 1
4
f(b/µ)aj(2j + 1), (5.198)

scattered twice � 1
4
f(b/µ)f(3b)a2

j (2j + 1), (5.199)

scattered thrice � 1
4
f(b/µ)f2(3b)a3

j (2j + 1). (5.200)

The constants M0, M1 and M2 can now be found from Eqs. (5.198)-(5.200) when
we assume that the first order of scattering that is neglected provides an estimate
for the absolute error. We thus obtain the following criteria. M0, M1 and M2 are
the largest values of j for which the respective conditions

1
4
f(b/µ)aj(2j + 1) > ε, (5.201)

1
4
f(b/µ)f(3b)a2

j (2j + 1) > ε, (5.202)

and

1
4
f(b/µ)f2(3b)a3

j (2j + 1) > ε (5.203)

are satisfied, where ε is the desired absolute error in the intensities for F0 = 1.
The numbers M0, M1 and M2 have been estimated by considering the reflected
intensity. When the atmosphere is very thick (b � 4) and only the transmitted light
is required, smaller values of M0, M1 and M2 may be used to obtain absolute errors
in the transmitted intensity of less than ε.
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5.8.4 Choosing the Initial Layer

Another important decision to take for calculating the scattering properties of ho-
mogeneous atmospheres is to determine the optical thickness b0 where doubling is
started. Hansen (1971a), Howell and Jacobowitz (1970), and Tanaka (1971) all used
a very small value of b0 and only single scattering for the initial layer. Hovenier
(1971) and Hansen and Hovenier (1971) used the first two orders of scattering and
hence a larger b0, which led to a reduction of the number of doubling steps. Several
other methods for initialization of the doubling method exist, but when the first two
orders of scattering are used for Fourier terms with a high index j, no additional
programming is needed when these two orders of scattering are also used for the
initialization. Moreover, excellent results have been obtained by an approach of
De Haan et al. (1987), who provided a criterion for choosing b0 when two orders
of scattering are used for the initial layer. This will be explained in the rest of this
subsection.

Numerical experiments have shown that in the course of doubling the absolute
error grows approximately linearly with b if b � 1. For b � 1 the growth of the
absolute error decreases if the effective albedo aj < 1, but for aj = 1 the absolute
error continues to grow linearly with b. A similar phenomenon is found for the
radiation field, which grows approximately linearly with b if b � 1 and shows a
diminishing growth rate if b � 1. Therefore the relative errors grow only for layers
that are optically thick and have an effective albedo that is very close to or equal to
1. If we choose two orders of scattering for the initial layer, the absolute error in the
intensities will approximately be the third order of scattering, for which an estimate
is given by Eq. (5.200). But to compensate for the growth of the absolute error
with b we multiply the desired absolute accuracy ε for the final layer by a factor of
b0/b, where b is the final optical thickness, and require 1

4f(b0/µ)f2(3b0)a3
j (2j +1) <

(b0/b)ε, which can be written as

f

(
b0

µ

)
b0 <

4ε
9ba3

j (2j + 1)
, (5.204)

if we choose b0 < 1
3 . The latter inequality should be satisfied for all relevant values

of µ. Therefore we choose µ in Eq. (5.204) to be the smallest Gaussian division
point used for the numerical integrations. In practice, for the effective albedo aj
occurring in Eq. (5.204) we make use of

aj = max
j≤k≤M0

a|αk1 |
2k + 1

(5.205)

instead of Eq. (5.191) to exclude accidentally small or negative effective albedos.
Further, we can write b0 = 2−nb, so that n doubling steps are needed to get results
for the final optical thickness b. Consequently, the criterion for choosing b0 for
Fourier component j amounts to choosing the smallest positive integer n such that
the condition b0 < 1

3 and the inequality Eq. (5.204) are satisfied for the smallest
Gaussian division point and on using Eq. (5.205) for the effective albedo.
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From Eq. (5.204) it is clear that b0 is chosen smaller if the final optical thickness
b and the number of division points increase. Further, the effective albedo in the
denominator ensures that the chosen b0 increases if the Fourier index j increases.
An increase of b0, when justified, reduces the number of doubling steps and thus the
computing time.

5.8.5 Number of Division Points and Renormalization

Accurate solutions for multiple scattering in atmospheres containing particles that
are large compared to the wavelength not only require a large number of Fourier
terms but also a quadrature scheme with a large number of division points. For
example [cf. De Haan et al. (1987)], computations for scattering by cloud particles
modelled by Deirmendjian’s (1969) water cloud C1 model at a wavelength of 0.70
µm require about 80 Gaussian division points to attain a four or five digit accuracy.
Such a high number of division points makes calculations very time consuming and
may also lead to storage problems. But a reduction of the number of division points
usually leads to artificially induced absorption for the Fourier index j = 0. This
may occur, because the constraint

1
2

∫ 1

0
dµ
{
[W 0(µ, µ0)]11 + [W 0(−µ, µ0)]11

}
= 1, (5.206)

which is due to the normalization of the phase function [See Problem P3.6], may
no longer be valid if the integration with respect to µ is performed using a quadra-
ture formula. The resulting errors may become very large for (nearly) conservative
scattering and large optical thicknesses due to the large contribution of multiple
scattering.

To avoid the problem of artificial absorption one may use a renormalization
procedure for the phase function so that Eq. (5.206) is obeyed after replacing the
integral by a sum, using a quadrature formula. This was done e.g. by Hansen
(1971b) by successive iteration and changing

[
W 0(µi, µk)

]
11

to force Eq. (5.206)
to hold if the integration with respect to µ is performed by Gaussian quadrature.
It is also possible to change

[
W 0(−µi, µk)

]
11

instead of
[
W 0(µi, µk)

]
11

or both,
but numerical tests by De Haan et al. (1987) have indicated that changing only[
W 0(µi, µk)

]
11

gave the best results, even when the transmission was sought.
A somewhat simpler renormalization procedure works as follows. Suppose nu-

merical evaluation of the left-hand side of Eq. (5.206) gives

1
2

n∑
k=1

wk
{[
W 0(µi, µk)

]
11
+
[
W 0(−µi, µk)

]
11

}
= δi �= 1. (5.207)

If all quantities
[
W 0(µi, µi)

]
11

are now multiplied by the correction factors

εi = 1 +
2(1− δi)

wi
[
W 0(µi, µi)

]
11

, i = 1, 2, . . . , n, (5.208)
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the left-hand side of Eq. (5.207) equals exactly one for any value of i. According
to Mishchenko et al. (1999), this procedure appears to be more stable than that of
Hansen (1971b). In a similar way, renormalization of higher Fourier terms might be
implemented, but this is less important than for j = 0, because the effective albedo
[cf. Eq. (5.191)] will not be close to one for realistic cases of light scattering.

For polarized light one has to deal with a phase matrix instead of a phase func-
tion. However, good results were obtained by applying the correction factors deter-
mined for one-one elements to all diagonal elements ofW 0(µ, µ0) [De Haan, private
communication]. Nevertheless, for polarized light it is suggestive to use a renormal-
ization method based on the exact constraint

1
2

∫ +1

0
dµ0

{
W 0

IQ(µ, µ0)e1 +W 0
IQ(µ,−µ0)e1

}
= e1 (5.209)

with ẽ1 = (1, 0), which consists of replacing the azimuth averaged phase matrix
W 0

IQ(µ, µ0) by the renormalized azimuth averaged phase matrix

W 0
IQ, ren(µi, µj) =W

0
IQ(µi, µj) + w e1ẽ1 − [w(µi)ẽ1 + e1w̃(µj)] , (5.210)

where

w(µi) =
1
2

n∑
k=1

wk
{
W 0

IQ(µi, µk)e1 +W
0
IQ(µi,−µk)e1

}
− e1, (5.211)

w =
1
2

n∑
k=1

wk {ẽ1w(µk) + ẽ1w(−µk)} , (5.212)

before applying the adding-doubling method using a quadrature rule. So far there
has not been any numerical evidence that this renormalization method leads to more
satisfactory results than the existing renormalization methods.

By separating the single scattering contribution to avoid computing the Fourier
components with index j satisfying M1 + 1 ≤ j ≤ M0 [cf. Eqs. (5.183)-(5.184)],
the effect of renormalizingW 0(µ, µ0) andW 0

IQ(µ, µ0) is only noticeable in the con-
tribution of the multiply scattered light to the radiation field in the atmosphere.
Summarizing, by renormalization we can obtain accurate results with fewer division
points than without it.

The number of division points must be large enough to reach a certain accuracy.
This number may be established by trial and error, but the execution time of the
adding-doubling method can significantly be reduced by requiring that the equality∫ +1

0
dµ′ W j

11(−µ, µ′)W j
11(µ

′, µ′′) +
∫ +1

0
dµ′ W j

11(µ, µ′)W j
11(−µ′, µ′′)

=
M0∑
l=j

(−1)l 2
2l + 1

(αl1)
2P lj,0(µ)P

l
j,0(µ

′′) (5.213)
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is satisfied for each Fourier component within a certain accuracy. The integral on
the left-hand side of Eq. (5.213) represents the main problem in numerical com-
putations of second order scattering [cf. Chapter 4]. Loosely speaking, we can,
therefore, say that this approach for saving execution time is based on the require-
ment that second order scattering is computed with a prescribed accuracy. Since the
angular behaviour becomes smoother for higher orders of scattering, the numerical
integrations requiring most division points are those corresponding to second order
scattering, and it is important to ensure that they are treated accurately. For details
we refer to Knibbe et al. (2000).

5.9 Very thick atmospheres

The adding-doubling method can be used for computing the internal and external
radiation of homogeneous and inhomogeneous plane-parallel atmospheres with any
albedo of single scattering a and optical thickness b, but the computational labour
increases considerably with b, especially for large values of the albedo of single scat-
tering. With modern computers, however, any value of b occurring in practice can
be reached with the adding-doubling method for homogeneous as well as inhomoge-
neous atmospheres, provided any significant “spurious absorption,” i.e., energy loss,
is avoided, e.g. by renormalization of the azimuth independent part of the phase
matrix, choosing the initial optical thickness small enough and including enough
repeated reflections between adjacent slabs. When the convergence of the repeated
reflections causes problems, more quadrature points should be used to compute
Q(µ, µ0, ϕ− ϕ0) or Q∗(µ, µ0, ϕ− ϕ0) [De Haan, private communication].

Yet it may sometimes be useful to make use of so-called asymptotic expressions,
i.e., relations for the radiation outside and deep inside a homogeneous plane-parallel
atmosphere with large optical thickness b which are asymptotically exact in the
limit as b → ∞, hence for a semi-infinite atmosphere. We will briefly discuss these
relations and some applications.

Asymptotic expressions without taking polarization into account were derived
by, among others, Germogenova (1961) and Van de Hulst (1968) for homogeneous
atmospheres with arbitrary phase functions. Some of these relations were found
empirically by Twomey et al. (1967) from numerical results of calculations for thick
cloud layers. Asymptotic relations for polarized light with an arbitrary phase matrix
and albedo of single scattering have been reported for homogeneous atmospheres by
Domke (1978), Van de Hulst (1980), De Rooij (1985), Wauben (1992), and Wauben
et al. (1994a). Here we will just state these relations, referring to the original pub-
lications for proofs. We consider unidirectional radiation incident at the top of a
plane-parallel homogeneous atmosphere above a black surface. The incident flux vec-
tor is πF 0 whose first element denotes the incident flux per unit area perpendicular
to the direction of incidence. If the doubling method becomes too time consuming,
this only concerns the azimuth-independent terms of the 2 × 2 submatrices occur-
ring in the upper left corners of the matrices R(µ, µ0, ϕ − ϕ0), T (µ, µ0, ϕ − ϕ0),
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U(µ, µ0, ϕ − ϕ0) and D(µ, µ0, ϕ − ϕ0). Consequently, we can restrict ourselves to
column vectors pertaining to the first two Stokes vectors and to 2×2 matrices trans-
forming these first two Stokes vectors [See Eq. (3.80) and Subsection 4.6.2]. We will
indicate the 2× 2 matrix for reflection by a semi-infinite atmosphere by R∞(µ, µ0)
and use the superscript ‘as’ to indicate 2 × 2 multiple-scattering matrices for large
values of b.

The asymptotic expressions for nonconservative (a < 1) atmospheres are as
follows:

Ras(µ, µ0) = R∞(µ, µ0)−
mf

1− f2
e−kbK(µ)K̃(µ0) (5.214)

T as(µ, µ0) =
m

1− f2
e−kbK(µ)K̃(µ0). (5.215)

Here m, f and k are scalars and K̃(µ0) is the transpose of a column vector K(µ0).
Introducing another column vector, P (u), we obtain for the radiation inside an
optically thick atmosphere at an optical depth τ not close to the boundaries

U as(τ, µ, µ0) =
1

1− f2

[
e−kτP (−µ)− f e−k(b−τ)P (µ)

]
K̃(µ0) (5.216)

for the upward travelling radiation and

Das(τ, µ, µ0) =
1

1− f2

[
e−kτP (µ)− f e−k(b−τ)P (−µ)

]
K̃(µ0) (5.217)

for the downward travelling radiation. Furthermore, we have

m = 2
∫ +1

0
µdµ

[
P̃ (µ)P (µ)− P̃ (−µ)P (−µ)

]
, (5.218)

mK(µ) = P (µ)− 2
∫ +1

0
µ′dµ′R∞(µ, µ′)P (−µ′), (5.219)

f = � e−kb, (5.220)

where

� = 2
∫ +1

0
µdµ K̃(µ)P (−µ). (5.221)

The column vector P (u) is defined as the solution of the so-called characteristic
equation

(1− ku)P (u) =
a

2

∫ +1

−1
du′W 0

IQ(u, u′)P (u′), (5.222)

where W 0
IQ(u, u′) is defined by Eq. (3.80) and k is the smallest positive value

for which Eq. (5.222) has a nontrivial solution. Here the column vector P (u) is
normalized as follows:

1
2

∫ +1

−1
du ẽ1P (u) = 1, (5.223)
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where ẽ1 = (1, 0). Thus, if R∞(µ, µ0), k and P (u) are known, all scalars and vectors
in Eqs. (5.214)-(5.217) can be calculated. It should be noted that the dependence
on the phase matrix and albedo of single scattering has not been written explicitly
in the equations above. For weakly absorbing media (i.e., when 1− a � 1) various
simplifications are possible [cf. Kokhanovsky, 2001a, 2001b, 2003].

For conservative atmospheres (a = 1) the following asymptotic expressions hold:

Ras(µ, µ0) = R∞(µ, µ0)− T as(µ, µ0), (5.224)

T as(µ, µ0) =
4K(µ)K̃(µ0)

3(1− 〈cosΘ〉)(b + 2q0)
, (5.225)

and for the radiation inside an optically thick atmosphere not close to the boundaries

U as(τ, µ, µ0) =
{

1
b + 2q0

[
−µ

1− 〈cosΘ〉 − τ − q0

]
+ 1
}
e1K̃(µ0), (5.226)

Das(τ, µ, µ0) =
{

1
b + 2q0

[
µ

1− 〈cosΘ〉 − τ − q0

]
+ 1
}
e1K̃(µ0). (5.227)

Here 〈cosΘ〉 = α1
1/3 [cf. Eq. (2.168)] is the asymmetry parameter, e1 is the column

vector with elements one and zero,

K(µ) =
3
4

[
µe1 + 2

∫ +1

0
(µ′)2dµ′R∞(µ, µ′)e1

]
(5.228)

and

q0 =
2

1− 〈cosΘ〉

∫ +1

0
µ2dµ K̃(µ)e1. (5.229)

Hence, for a given value of 〈cosΘ〉 all scalars and vectors in Eqs. (5.225)-(5.229)
can be calculated if R∞(µ, µ0) is known.

We will not discuss theoretical aspects of the asymptotic expressions in this
chapter, but consider the following practical procedure for a given phase matrix and
albedo of single scattering. Suppose we have obtained accurate numerical data [for
instance, by means of the doubling method] for a number of optical thicknesses, b,
and some of these are large enough for the asymptotic expressions to be correct, say,
to four or six decimals. We can then use these numerical data to solve for the con-
stants, vectors and matrices in the asymptotic expressions, including k, R∞(µ, µ0)
and P (u). This may be visualized as plots with b as the abscissa, where curves
representing functions of b (given by the asymptotic expressions) are fitted to cer-
tain points obtained from numerical computations. Such a procedure can be called
asymptotic fitting and may be implemented in various ways depending on e.g. the
scattering problem, the accuracy desired and the available data [See e.g. Twomey et
al. (1967), Van de Hulst and Grossman (1968), Van de Hulst (1968), and Wauben
et al. (1994a)]. Note that in the asymptotic fitting procedure we do not need to
solve Eq. (5.222), but we can use it as a check. By way of example, we consider
the conservative case. Suppose we have obtained R(b, µ, µ0) and T (b, µ, µ0) for at
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least two large values of b, say b1 and b2, which are large enough for the asymptotic
expressions to be approximately correct. Then a possible recipe is as follows. Find
consecutively

R∞(µ, µ0) = R(b1, µ, µ0) + T (b1, µ, µ0), (5.230)

p =
T11(b1, µ, µ0)
T11(b2, µ, µ0)

=
b2 + 2q0

b1 + 2q0
, (5.231)

2q0 =
b2 − pb1

p− 1
, (5.232)

K(µ) =


√

3
4(1− 〈cosΘ〉)(b1 + 2q0)T11(b1, µ, µ)

3
4(1− 〈cosΘ〉)(b1 + 2q0)

T21(b1, µ, µ)
K1(µ)

 . (5.233)

In this way R∞(µ, µ0) and all necessary scalars and vectors in Eqs. (5.224)-(5.227)
can be found numerically. Note that p should be independent of µ and µ0. This
provides many checks. Furthermore, Eqs. (5.228)-(5.229) can be used for checking
purposes. To make the evaluation of p via Eq. (5.231) less dependent on the
particular choice of µ and µ0 one can also use

p =
t(b1)
t(b2)

, (5.234)

where

t(b) =
∫ +1

0
µdµ

∫ +1

0
µ0dµ0 T11(b, µ, µ0). (5.235)

Asymptotic fitting has been successfully applied for a variety of scattering problems
with and without polarization and for values of b larger than 3-20 [See Wauben
(1994a)]. The asymptotic expressions are of course also quite useful for interpolation
purposes.

A homogeneous atmosphere is by definition an atmosphere in which the albedo
of single scattering and the scattering matrix do not depend on optical depth. For
an atmosphere with a large optical thickness, however, the assumption of homo-
geneity may be far from reality, since the scattering and absorption properties of
the molecules and particulate constituents (e.g. due to size and shape distributions)
will depend on physical conditions and processes that are altitude dependent. This
means that the asymptotic expressions and asymptotic fitting procedures discussed
above are of limited value for realistic atmospheres.

To compute the reflection by a particulate layer with a flat surface (e.g. snow or
desert areas) it is often assumed that such a layer can be modelled as a homogeneous
optically very thick or semi-infinite atmosphere. In such a case the adding-doubling
method can be used, with or without asymptotic fitting [cf. De Haan, 1987; Jafolla
et al. 1997; Leroux and Fily, 1998; Leroux et al., 1998; Leroux et al., 1999; Li,
1982], but for a semi-infinite layer one can also make use of Ambarzumian’s nonlinear
integral equation [See Sobolev, 1972, and Problem P5.7], using an iterative technique
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[cf. Dlugach and Yanovitskij, 1974; De Rooij, 1985]. The main advantage of the
latter approach is that no computations are needed for finite values of the optical
thickness or internal fields. In this way excellent results for the scalar case (i.e.,
ignoring polarization) have been obtained by Mishchenko et al. (1999).

Problems

P5.1 Two different inhomogeneous layers whose reflection and transmission matrices
obey the reciprocity relations, are added. Prove that the reflection matrix
of the combined layer for incident light coming from above also obeys the
reciprocity relation.

P5.2 To justify Eqs. (5.115)-(5.118), prove the following extended supermatrix re-
lations:

(a) QpQq = Qp+q for p, q = 1, 2, . . .,

(b) Cr = Q2r−1 for r = 1, 2, . . ., and

(c) Sr =
∑2r−1
p=1 Qp for r = 1, 2, . . ..

P5.3 Show that for extended supermatrices Q− Sr = Cr+1(1+Q).

P5.4 Prove Eq. (5.127).

P5.5 Prove Eq. (5.213).

P5.6 Suppose an optically thin layer with optical thickness b′ is placed on top of an
optically thick layer. In the upper layer second and higher orders of scattering
can be neglected. Use the adding equations to prove that the reflection matrix
of the combined layer is given by

R(µ, µ0, ϕ− ϕ0) = R′(µ, µ0, ϕ− ϕ0) + e−b
′/µ−b′/µ0R′′(µ, µ0, ϕ− ϕ0)

+ e−b
′/µ 1

π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′R′′(µ, µ′, ϕ− ϕ′)T ′(µ′, µ0, ϕ

′ − ϕ0)

+ e−b
′/µ0

1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′ T ∗′(µ, µ′, ϕ− ϕ′)R′′(µ′, µ0, ϕ

′ − ϕ0)

+ e−b
′/µ−b′/µ0

1
π2

∫ +1

0
µ′dµ′

∫ +1

0
µ′′dµ′′

∫ 2π

0
dϕ′
∫ 2π

0
dϕ′′R′′(µ, µ′, ϕ− ϕ′)×

×R∗′(µ′, µ′′, ϕ′ − ϕ′′)R′′(µ′′, µ0, ϕ
′′ − ϕ0),

where single primes pertain to the upper layer and double primes to the lower
layer.
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P5.7 Consider a homogeneous semi-infinite layer with phase matrix Z(u, u′, ϕ−ϕ′).
Use the result of Problem P5.6 to show that the reflection matrix of the semi-
infinite layer obeys Ambarzumian’s invariance relation

(µ + µ0)R(µ, µ0, ϕ− ϕ0) =
a

4
Z(−µ, µ0, ϕ− ϕ0)

+
aµ

4π

∫ +1

0
dµ′
∫ 2π

0
dϕ′R(µ, µ′, ϕ− ϕ′)Z(µ′, µ0, ϕ

′ − ϕ0)

+
aµ0

4π

∫ +1

0
dµ′
∫ 2π

0
dϕ′Z(−µ,−µ′, ϕ− ϕ′)R(µ′, µ0, ϕ

′ − ϕ0)

+
aµµ0

4π2

∫ +1

0
dµ′
∫ +1

0
dµ′′
∫ 2π

0
dϕ′
∫ 2π

0
dϕ′′R(µ, µ′, ϕ− ϕ′)×

×Z(µ′,−µ′′, ϕ′ − ϕ′′)R(µ′′, µ0, ϕ
′′ − ϕ0).

Answers and Hints

P5.1 First prove that the matrix

1
π

∫ +1

0
µ′dµ′

∫ 2π

0
dϕ′R′′(µ, µ′, ϕ− ϕ′)Q(µ′, µ0, ϕ

′ − ϕ0)

obeys the reciprocity relation and then use Eq. (5.19).

P5.2 Partition all extended supermatrices as in Eq. (5.101) and apply Eq. (5.103)
to prove (a). Then (b) and (c) follow by applying the truncated multiplication
rule of Eq. (5.102).

P5.3 Using the results of Problem P5.2 we have

Q− Sr =
∞∑
p=2r

Qp = Q2r (1+Q) = Cr+1(1+Q).

P5.4 Cf. Eq. (5.22).

P5.5 Write the left-hand side as an integral from −1 to +1. Then apply Eqs. (3.122)
and (3.128) plus Eqs. (B.31), (B.20) and (B.5) in Appendix B.

P5.6 Neglect all terms in Eqs. (5.14)-(5.19) with products containing more than
one singly primed matrix.

P5.7 Express the multiple-scattering matrices R′(µ, µ0, ϕ − ϕ0), T ′(µ, µ0, ϕ − ϕ0),
R∗′(µ, µ0, ϕ−ϕ0), and T ∗′(µ, µ0, ϕ−ϕ0) in the phase matrix [See Eqs. (4.61)-
(4.62) and (4.82)-(4.83)], use series expansions for the exponential functions,
neglect all terms of the order of O(b2) or higher, and take into account that
for a semi-infinite atmosphere R(µ, µ0, ϕ− ϕ0) = R′′(µ, µ0, ϕ− ϕ0).



Appendix A

Mueller Calculus

In many parts of science Stokes parameters are used for a convenient description of
the intensity (or flux) and state of polarization of a beam of radiation [Born and
Wolf (1993), O’Neill (1963), Kliger et al. (1990), Collett (1993), Van de Hulst (1957),
Shurcliff (1962), Ishimaru (1991), Van de Hulst (1980), Tinbergen (1996)]. By writ-
ing the four Stokes parameters as elements of a column vector one may describe
each linear change of this vector by means of a real 4×4 matrix that transforms the
vector into a similar column vector of four Stokes parameters. Such a matrix is gen-
erally called a Mueller matrix. The transformation may be needed for mathematical
reasons, such as a change of coordinate system or it may be caused by some physical
process. Examples of the latter are interaction with an optical device (polarizer,
quarter wave plate, etc.), single or multiple scattering, absorption, reflection and
transmission of radiation. Mueller calculus is the study of mathematical operations
on Mueller matrices.

A Jones matrix is a 2 × 2 (complex) matrix that transforms electric field com-
ponents [Van de Hulst (1957), Shurcliff (1962), Ishimaru (1991), Clark Jones (1941,
1947)]. A fundamental type of Mueller matrix is one that follows from a Jones
matrix by using the definition of Stokes parameters in terms of electric field com-
ponents. We call such a matrix a pure Mueller (PM) matrix [Hovenier, 1994].
Other names for the same type of matrix are a totally polarizing Mueller matrix,
a non-depolarizing Mueller matrix and a deterministic Mueller matrix. Clearly, the
scattering matrix of one particle in a particular orientation is a PM matrix [See Sec.
2.2] and the amplitude matrix S(Θ, ψ) corresponds to its Jones matrix.

Another important type of Mueller matrix is a sum of pure Mueller (SPM)
matrices, since, in general, such a sum cannot be written as one PM matrix. A
well-known example of an SPM matrix is the scattering matrix of a collection of
independently scattering particles [See Sec. 2.3]. Other important examples exist in
the context of multiple scattering, like the reflection and the transmission matrix of a
plane parallel atmosphere of the type considered in Chapters 4-5. Matrices satisfying
the so-called Stokes criterion transform flux or intensity vectors of the form (1.40)
satisfying Eq. (1.38) into vectors of the same type, but this class of matrices is
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too large for describing scattering by one or more independently scattering particles
[See Sec. A.4]. For this reason we will mainly discuss the classes of PM and SPM
matrices.

A large number of scalar and matrix properties of PM and SPM matrices has
been reported in the literature. Many of these properties can be easily derived
from other properties. The principal purpose of this appendix is to present in a
systematic way the main properties of PM and SPM matrices. The emphasis is on
(i) a small number of basic relationships from which many other relationships can
be derived, and on (ii) simple relationships. In principle, all relationships can be
used for theoretical purposes and to test whether an experimentally or numerically
determined matrix can be a PM or an SPM matrix. Some strong and convenient
tests are also presented in this appendix.

A.1 Pure Mueller Matrices

A.1.1 Relating Jones Matrices and Pure Mueller Matrices

The electric field components of a strictly monochromatic beam of light may be
transformed by a 2× 2 complex Jones matrix J , so that(

El,2

Er,2

)
= J

(
El,1

Er,1

)
. (A.1)

Here Er,1 and El,1 represent the electric field components of a primary beam, per-
pendicular and parallel to a reference plane, respectively, while the directions of r, �
and propagation are those of a right-handed Cartesian coordinate system. Similarly,
Er,2 and El,2 relate to a secondary beam that is not necessarily travelling in the same
direction as the first beam. In the context of single scattering the scattering plane
is usually chosen as the reference plane.

Following Van de Hulst (1957) and Hovenier and Van der Mee (1983), let us
use Stokes parameters I, Q, U and V for a monochromatic beam with electric field
components El and Er [cf. Eqs. (1.56)-(1.59)]. We then have the vector

I =


I

Q

U

V

 =


ElE

∗
l + ErE

∗
r

ElE
∗
l − ErE

∗
r

ElE
∗
r + ErE

∗
l

i(ElE∗
r − ErE

∗
l )

 , (A.2)

where an asterisk denotes the complex conjugate value and i =
√
−1. The action

expressed by Eq. (A.1) can now be written as

I2 =MI1, (A.3)

where the subscripts 1 and 2 refer to the primary and secondary beams. respectively.
Consequently, the 4× 4 matrixM introduced in Eq. (A.3) is a pure Mueller (PM)
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matrix with corresponding Jones matrix J . Using Eqs. (A.1)-(A.3) the elements
of M can be expressed in the elements of J . Explicit expressions for this were
derived by Van de Hulst (1957), using straightforward algebra [See also Hovenier
et al. (1986)]. However, as demonstrated e.g. by O’Neill (1963), one can obtain a
more transparent derivation and result by using the Kronecker product (also called
direct product or tensor product) of vectors and matrices [cf. Horn and Johnson,
1991]. For that purpose we can use [cf. Eq. (1.86)]

Is =

(
El

Er

)
⊗
(

E∗
l

E∗
r

)
=


ElE

∗
l

ElE
∗
r

ErE
∗
l

ErE
∗
r

 =
1
2


I + Q

U − iV

U + iV

I −Q

 , (A.4)

where the symbol ⊗ denotes the Kronecker product. Hence we have the transfor-
mation

Is =
1
2


1 1 0 0

0 0 1 −i

0 0 1 i

1 −1 0 0

 I. (A.5)

Taking the Kronecker product of Eq. (A.1) and its complex conjugate counterpart
(side by side) gives the fairly simple relationship

Is,2 = (J ⊗ J∗)Is,1, (A.6)

where, by definition, the Kronecker product is given by the 4× 4 matrix

J ⊗ J∗ =

(
J11J

∗ J12J
∗

J21J
∗ J22J

∗

)
(A.7)

and the mixed product property [Horn and Johnson, 1991, Sec. 4.2.10] has been
used. If we now wish to return to Stokes parameters, we must use Eq. (A.5) for the
transformation from Eq. (A.6) to Eq. (A.3). The result is

M = Γ(J ⊗ J∗)Γ−1, (A.8)

where

Γ =
1√
2


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

 (A.9)

is a unitary matrix with inverse

Γ−1 =
1√
2


1 1 0 0
0 0 1 −i
0 0 1 i
1 −1 0 0

 . (A.10)
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Using Eqs. (A.7)-(A.10) we obtain the following explicit relations:

M11 =
1
2
(
|J11|2 + |J12|2 + |J21|2 + |J22|2

)
, (A.11)

M12 =
1
2
(
|J11|2 − |J12|2 + |J21|2 − |J22|2

)
, (A.12)

M13 = Re (J11J
∗
12 + J22J

∗
21) , (A.13)

M14 = Im (J11J
∗
12 − J22J

∗
21) , (A.14)

M21 =
1
2
(
|J11|2 + |J12|2 − |J21|2 − |J22|2

)
, (A.15)

M22 =
1
2
(
|J11|2 − |J12|2 − |J21|2 + |J22|2

)
, (A.16)

M23 = Re (J11J
∗
12 − J22J

∗
21) , (A.17)

M24 = Im (J11J
∗
12 + J22J

∗
21) , (A.18)

M31 = Re (J11J
∗
21 + J22J

∗
12) , (A.19)

M32 = Re (J11J
∗
21 − J22J

∗
12) , (A.20)

M33 = Re (J11J
∗
22 + J12J

∗
21) , (A.21)

M34 = Im (J11J
∗
22 + J21J

∗
12) , (A.22)

M41 = Im (J21J
∗
11 + J22J

∗
12) , (A.23)

M42 = Im (J21J
∗
11 − J22J

∗
12) , (A.24)

M43 = Im (J22J
∗
11 − J12J

∗
21) , (A.25)

M44 = Re (J22J
∗
11 − J12J

∗
21) . (A.26)

When a complex 2× 2 matrix J and a real 4× 4 matrixM are connected by either
of the equivalent relations (A.7)-(A.10) or Eqs. (A.11)-(A.26), we write J ∼ M .
Henceforth, we shall call J a Jones matrix corresponding to the Mueller matrixM .

Employing Eqs. (A.7)-(A.10) or (A.11)-(A.26) one readily verifies the following
relations between a pure Mueller matrixM and a corresponding Jones matrix J .

(a) If
d = |detJ |, (A.27)

where det stands for the determinant, we have

d2 = M2
11 −M2

21 −M2
31 −M2

41. (A.28)

The right-hand side of this equation may be replaced by similar four-term
expressions [See Eq. (A.47) below].

(b) If Tr stands for the trace, i.e., the sum of the diagonal elements, then

|TrJ |2 = TrM . (A.29)

As a result, TrM is always nonnegative.
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(c) Relating the determinants of J andM we have

d4 = detM , (A.30)

which implies that detM can never be negative.

(d) If d �= 0, the inverse matrix
J−1 ∼M−1. (A.31)

(e) The product J1J2 of two Jones matrices corresponds to the productM1M2

of the corresponding pure Mueller matrices, i.e., M1M2 is a pure Mueller
matrix and

J1J2 ∼M1M2. (A.32)

Another type of relationship can be obtained by studying how a pure Mueller ma-
trix is changed if the corresponding Jones matrix undergoes an elementary algebraic
operation. Suppose

J =
(

J11 J12

J21 J22

)
∼M . (A.33)

Then

(i)
αJ ∼ |α|2M , (A.34)

where α is an arbitrary real or complex constant;

(ii)
J̃ ∼∆4M̃∆4, (A.35)

where a tilde above a matrix means its transpose and ∆4 = diag(1, 1, 1,−1);

(iii)
J̃

∗ ∼ M̃ , (A.36)

where an asterisk denotes entrywise complex conjugation;

(iv) (
J11 −J12

−J21 J22

)
∼∆3,4M∆3,4, (A.37)

where ∆3,4 = diag(1, 1,−1,−1);

(v) (
J22 J12

J21 J11

)
∼∆2M̃∆2, (A.38)

where ∆2 = diag(1,−1, 1, 1).
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Several of the above relations are immediate for physical reasons. For instance,
Eq. (A.37) originates from mirror symmetry [See Subsection 2.4.2]. Other relations
may be obtained by successive application of two or more relations. For instance,
Eqs. (A.35) and (A.37) imply the reciprocity relation [cf. Subsection 2.4.1](

J11 −J21

−J12 J22

)
∼∆3M̃∆3, (A.39)

where ∆3 = diag(1, 1,−1, 1). Furthermore, the relation

J∗ ∼∆4M∆4, (A.40)

may be obtained by combining Eqs. (A.35) and (A.36).
Equation (A.34) is very useful for comparing Jones matrices with different nor-

malizations [cf. Eq. (2.2)]. It shows in particular that multiplication of J by a
factor eiε with i =

√
−1 and arbitrary real ε does not affect M . Conversely, if

M is known then J can be reconstructed up to a factor eiε, as follows from Eqs.
(A.7)-(A.10). As another corollary of the above expressions, we observe that in view
of Eqs. (A.34), (A.37) and (A.38) we have for d �= 0

J−1 =
1

detJ

(
J22 −J12

−J21 J11

)
∼ 1

d2
∆2,3,4M̃∆2,3,4, (A.41)

where ∆2,3,4 = ∆−1
2,3,4 = diag(1,−1,−1,−1). Employing Eq. (A.31) we thus find a

simple expression for the inverse ofM , namely

M−1 =
1
d2
∆2,3,4M̃∆2,3,4. (A.42)

Taking determinants on both sides and using that all matrices involved have order
4, we obtain Eq. (A.30). When we premultiply both sides of Eq. (A.42) byM we
find

M∆2,3,4M̃ = d2∆2,3,4, (A.43)

whereas postmultiplication of both sides of Eq. (A.42) byM gives

M̃∆2,3,4M = d2∆2,3,4. (A.44)

By taking the trace on both sides of Eqs. (A.43) and (A.44) we obtain the following
two relations first reported by Barakat (1981) and Simon (1982):

Tr(M∆2,3,4M̃) = −2d2, (A.45)

Tr(M̃∆2,3,4M) = −2d2. (A.46)

A corollary of Eqs. (A.11) and (A.34) is that if M is a pure Mueller matrix
and c is an arbitrary real scalar, cM is a pure Mueller matrix if c ≥ 0 but not
if c < 0. The case where M11 vanishes is very exceptional and, according to Eq.
(A.11), implies that J andM are null matrices. We shall call this the trivial case.
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A.1.2 Internal Structure of a Pure Mueller Matrix

A pure Mueller matrix contains 16 real elements, whereas the corresponding Jones
matrix is determined by no more than eight real numbers (namely, its four complex
elements) and two Jones matrices corresponding to the same Mueller matrix differ
by a constant factor of modulus 1. This means that a pure Mueller matrix depends
on at most 7 independent real quantities [Van de Hulst, 1957]. Consequently, there
must exist interrelations for the elements of a pure Mueller matrix. Many scientists
have studied such interrelations [e.g. Perrin (1942), Perrin and Abragam (1951),
Abhyankar and Fymat (1969), Fry and Kattawar (1981), Barakat (1981), Simon
(1982), Hovenier et al. (1986), Xing (1992), Hovenier (1994), and Hovenier and Van
der Mee (2000)]. Using simple trigonometric relations, Hovenier et al. (1986) derived
equations that involve the real and imaginary parts of products of the type JijJ

∗
kl

and then translated these into relations for the elements of the corresponding pure
Mueller matrix. This approach is very simple and yields a plethora of properties.
From their work one obtains the following two sets of simple interrelations for the
elements of an arbitrary pure Mueller matrixM .

(1) Seven relations for the squares of the elements ofM . These equations can be
written in the form

M2
11 −M2

21 −M2
31 −M2

41 = −M2
12 + M2

22 + M2
32 + M2

42

= −M2
13 + M2

23 + M2
33 + M2

43 = −M2
14 + M2

24 + M2
34 + M2

44

= M2
11 −M2

12 −M2
13 −M2

14 = −M2
21 + M2

22 + M2
23 + M2

24

= −M2
31 + M2

32 + M2
33 + M2

34 = −M2
41 + M2

42 + M2
43 + M2

44. (A.47)

In view of Eq. (A.28) each four-term expression in Eq. (A.47) equals d2. A
convenient way to describe the relations for the squares of the elements ofM
is to consider the matrix

M s =


M2

11 −M2
12 −M2

13 −M2
14

−M2
21 M2

22 M2
23 M2

24

−M2
31 M2

32 M2
33 M2

34

−M2
41 M2

42 M2
43 M2

44

 (A.48)

and require that all sums of the four elements of a row or column of M s are
the same.

(2) Thirty relations that involve products of different elements ofM . A convenient
overview of these equations may be obtained by means of a graphical code [See
Fig. A.1]. Let a 4× 4 array of dots in a pictogram represent the elements of a
pure Mueller matrix, a solid curve or line connecting two elements represent a
positive product, and a dotted curve or line represent a negative product. Let
us further adopt the convention that all positive and negative products must
be added to get zero. The result is shown in parts (a) and (b) of Fig. A.1,
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which in this form was first presented by Hovenier (1994). For example, the
pictogram in the upper left corner of Fig. A.1(a) means

M11M12 −M21M22 −M31M32 −M41M42 = 0, (A.49)

and the pictogram in the upper left corner of Fig. A.1(b) stands for

M11M22 −M12M21 −M33M44 + M34M43 = 0. (A.50)

Together all 120 possible products of two distinct elements appear in the 30
relations, and each such product occurs only once. The thirty relations sub-
divide into the following two types. The 12 equations shown in Fig. A.1(a)
carry corresponding products of any two chosen row and columns. The 18
equations shown in Fig. A.1(b) demonstrate that the sum or difference of
any chosen pair of complementary subdeterminants vanishes. Here, the term
“complementary” refers to the remaining rows and columns. Sums and dif-
ferences of subdeterminants alternate in each column and row of the logical
arrangement of pictograms shown in Fig. A.1(b). Keeping the signs in mind
for the first pictograms in parts (a) and (b) of Fig. A.1, one should have no
trouble reproducing all pictograms, and thus all 30 equations, from memory.

We have thus shown that every pure Mueller matrix has a simple and elegant
internal structure embodied by interrelations that involve either only squares of the
elements or only products of different elements. These interrelations may be clearly
visualized by means of Eq. (A.48) and Fig. A.1. It is readily verified that all
interrelations remain true if the rows and columns of M are interchanged. This
reflects the fact that ifM is a pure Mueller matrix, then M̃ also is a pure Mueller
matrix [cf. Eq. (A.36)]. Similarly, if we first switch the signs of the elements in
the second row and then those in the second column (so that M22 is unaltered),
all interrelations remain true [cf. Eqs. (A.36) and (A.38)], and this also holds if
we apply such operations on the third or fourth row and column [cf. Eqs. (A.35),
(A.36) and (A.39)] or even if we combine several such sign-switching operations. An
important corollary is that all interrelations are invariant if polarization parameters
are used that differ from our Stokes parameters in having a different sign for Q, U
or V , or any combination of them. It is readily verified that the normalization of
M does not affect its internal structure.

All interrelations for the elements ofM can be derived from its internal structure.
To prove this statement, we first make the assumption

M11 + M22 −M12 −M21 �= 0. (A.51)

As shown by Hovenier et al. (1986), in this case there are nine relations, each
involving products and squares of sums and differences of elements, from which all
interrelations can be derived. These relations are as follows:

(M11 + M22)2 − (M12 + M21)2 = (M33 + M44)2 + (M34 −M43)2, (A.52)

(M11 −M12)2 − (M21 −M22)2 = (M31 −M32)2 + (M41 −M42)2, (A.53)

(M11 −M21)2 − (M12 −M22)2 = (M13 −M23)2 + (M14 −M24)2, (A.54)
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(b)

(a)

Figure A.1: The 16 dots in each pictogram represent the elements of a pure
Mueller matrix. A solid line or curve connecting two elements
stands for a positive product and a dotted curve or line for a
negative product. In each pictogram the sum of all positive
and negative products vanishes. (a) Twelve pictograms that
represent equations that carry corresponding products of any
two chosen rows and columns. (b) Eighteen pictograms that
demonstrate that the sum or difference of any chosen pair of
complementary subdeterminants vanishes.

(M11 + M22 −M12 −M21)(M13 + M23)
= (M31 −M32)(M33 + M44)− (M41 −M42)(M34 −M43), (A.55)
(M11 + M22 −M12 −M21)(M34 + M43)
= (M31 −M32)(M14 −M24) + (M41 −M42)(M13 −M23), (A.56)
(M11 + M22 −M12 −M21)(M33 −M44)
= (M31 −M32)(M13 −M23)− (M41 −M42)(M14 −M24), (A.57)
(M11 + M22 −M12 −M21)(M14 + M24)
= (M31 −M32)(M34 −M43) + (M41 −M42)(M33 + M44), (A.58)
(M11 + M22 −M12 −M21)(M31 + M32)
= (M33 + M44)(M13 −M23) + (M34 −M43)(M14 −M24), (A.59)
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(M11 + M22 −M12 −M21)(M41 + M42)
= (M33 + M44)(M14 −M24)− (M34 −M43)(M13 −M23). (A.60)

By rewriting these nine relations so that only the squares and products of elements
appear, we can readily verify that they follow from Eq. (A.47) and Fig. A.1. If
Eq. (A.51) does not hold, then we either have the trivial case or at least one of the
following inequalities must hold:

M11 + M22 + M12 + M21 �= 0, (A.61)
M11 −M22 −M12 + M21 �= 0, (A.62)
M11 −M22 + M12 −M21 �= 0. (A.63)

If one of Eqs. (A.61)-(A.63) holds, we have a set of nine relations that differs from
Eqs. (A.52)-(A.60), but we can follow a similar procedure. This completes the proof
of our statement.

As an illustration, let us give three examples. First, the well-known relation

4∑
i=1

4∑
j=1

M2
ij = 4M2

11 (A.64)

given by Fry and Kattawar (1981) is easily obtained from Eq. (A.47) by successive
application of the following operations onM s [cf. Eq. (A.48)]:

(1) Add the elements of the second, third and fourth columns,

(2) Subtract the elements of the first column,

(3) Equate the result to twice the sum of the elements of the first row.

Thus, Eq. (A.64) is a composite of five simple interrelations.
Secondly, as shown by Barakat (1981) and Simon (1982), we have the matrix

equation [cf. Eqs. (A.44) and (A.46)]

M̃∆2,3,4M = −1
2

[
Tr(M̃∆2,3,4M)

]
∆2,3,4. (A.65)

Evidently, a matrix equation of the type given by Eq. (A.65) is equivalent to a
set of 16 scalar equations for the elements of M . The nondiagonal elements yield
12 equations, but the elements (i, j) and (j, i) yield the same equation. Thus six
equations arise for products of different elements of M . These are exactly the
same equations as shown by the top six pictograms of Fig. A.1(a). Equating the
diagonal elements on either side of Eq. (A.65) yields four equations. If one of these
is used to eliminate Tr(M̃∆2,3,4M), we obtain three equations that involve only
squares of elements ofM . These are precisely the first three equations contained in
Eq. (A.47). However, not all interrelations for the elements of M follow from Eq.
(A.65). Indeed, if this were the case Eq. (A.50) for example should follow from Eq.
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(A.65). However, the matrix diag(1, 1, 1,−1) obeys Eq. (A.65) but does not satisfy
Eq. (A.50).

Thirdly, using the internal structure of M and Eq. (A.28) it can be shown
(Hovenier et al., 1986) that

I2
2 (1− p2

2) = d2I2
1 (1− p2

1), (A.66)

where the subscripts 1 and 2 refer to the primary and secondary beam, respectively,
and p1 and p2 are the degrees of polarization [cf. Eq. (1.44)]. Consequently, if
the primary beam is fully polarized (i.e., if p1 = 1), so is the secondary beam (i.e.,
p2 = 1), and if d = 0 the secondary beam is always completely polarized. But when
the primary beam is only partially polarized p2 may be larger or smaller than p1 [See
Hovenier and Van der Mee, 1995], which shows that adjectives like “nondepolarizing”
and “totally polarizing” instead of “pure” are less desirable.

The structure that we have discussed so far is that of an arbitrary pure Mueller
matrix. More structure may be present due to e.g. symmetries or energy conser-
vation. Many changes of the Stokes parameters of quasi-monochromatic beams of
radiation can also adequately be described by a pure Mueller matrix. This is the
case, for instance, for transmission through a polarizer, reflection by a flat surface
and scattering by a single particle in a particular orientation, but not for scattering
by an arbitrary collection of different independently scattering particles.

A.1.3 Inequalities

Many inequalities may be derived from the internal structure of a pure Mueller
matrix. We do not aim here at a comprehensive list of inequalities but restrict
ourselves to the following:

M11 ≥ |Mij |, i, j = 1, 2, 3, 4, (A.67)
M11 + M22 + M12 + M21 ≥ 0, (A.68)
M11 + M22 −M12 −M21 ≥ 0, (A.69)
M11 −M22 + M12 −M21 ≥ 0, (A.70)
M11 −M22 −M12 + M21 ≥ 0, (A.71)
M11 + M22 + M33 + M44 ≥ 0, (A.72)
M11 + M22 −M33 −M44 ≥ 0, (A.73)
M11 −M22 + M33 −M44 ≥ 0, (A.74)
M11 −M22 −M33 + M44 ≥ 0. (A.75)

We refer to Hovenier et al. (1986) for proofs of these and other inequalities. Equation
(A.67) implies that M11 ≥ 0 for any pure Mueller matrix. This is also clear from
Eq. (A.11) and for physical reasons (no negative radiant energy).
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A.2 Relationships for Sums of Pure Mueller Matrices

In this section we discuss relations for an arbitrary sum of pure Mueller matrices.
Such matrices play an important role in many studies of single and multiple scat-
tering of (quasi-)monochromatic radiation. We define a sum of pure Mueller (SPM)
matricesM by writing

M =
∑
g

M g (A.76)

or

M =
∫ b

a
M(x) dx, (A.77)

where M g and M(x) denote PM matrices and x is an arbitrary variable in the
interval [a, b]. It should be noted that any nonnegative multiplicative factor cg or
c(x) can be incorporated into M g or M(x), since the result is still a PM matrix.
As a result, it is clear that ifM is an SPM matrix and c is an arbitary real scalar,
cM is an SPM matrix if c ≥ 0 with the trivial case if c = 0. A PM matrix is a
special case of an SPM matrix, since the sum in Eq. (A.76) may contain only one
term or any number of identical terms. The product of two SPM matrices is again
an SPM matrix, since the product of two PM matrices is a PM matrix [cf. Eq.
(A.32)]. From the properties of a pure Mueller matrix discussed in Sec. A.1 it is
also easily deduced that ifM is an SPM matrix, so are ∆3,4M∆3,4 and ∆3M̃∆3,
which corresponds to mirror symmetry and reciprocity, respectively. In the same
way it is readily verified that the transpose M̃ of an SPM matrix M is an SPM
matrix and that the trace ofM is always nonnegative.

Linear inequalities for the elements of a pure Mueller matrix are also valid for
sums of pure Mueller matrices, since they are obtained by adding the correspond-
ing elements of the constituent pure Mueller matrices. In particular, we find the
following linear inequalities:

M11 ≥ 0, (A.78)
M11 ≥ |Mij |, (A.79)

M11 + M22 + M12 + M21 ≥ 0, (A.80)
M11 + M22 −M12 −M21 ≥ 0, (A.81)
M11 −M22 + M12 −M21 ≥ 0, (A.82)
M11 −M22 −M12 + M21 ≥ 0. (A.83)

Quadratic relations between the elements of a pure Mueller matrix such as Eqs.
(A.52)-(A.60) are generally lost when pure Mueller matrices are added. However,
the following six quadratic inequalities, first obtained by Fry and Kattawar (1981),
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are always valid:

(M11 + M12)2 ≥ (M21 + M22)2 + (M31 + M32)2 + (M41 + M42)2, (A.84)

(M11 −M12)2 ≥ (M21 −M22)2 + (M31 −M32)2 + (M41 −M42)2, (A.85)

(M11 + M21)2 ≥ (M12 + M22)2 + (M13 + M23)2 + (M14 + M24)2, (A.86)

(M11 −M21)2 ≥ (M12 −M22)2 + (M13 −M23)2 + (M14 −M24)2, (A.87)

(M11 + M22)2 ≥ (M12 + M21)2 + (M33 + M44)2 + (M34 −M43)2, (A.88)

(M11 −M22)2 ≥ (M12 −M21)2 + (M33 −M44)2 + (M34 + M43)2. (A.89)

Indeed, to derive Eq. (A.85) we start from Eq. (A.53), where each term carries
the superscript g to denote the constituent pure Mueller matrices. Because Eqs.
(A.81) and (A.83) also hold for the elements of each M g, we can find nonnegative
quantities Ng

1 and Ng
2 and angles θg such that

Ng
1 =

√
Mg

11 −Mg
12 −Mg

21 + Mg
22

Ng
2 =

√
Mg

11 −Mg
12 + Mg

21 −Mg
22

Ng
1 Ng

2 cos θ
g = Mg

31 −Mg
32

Ng
1 Ng

2 sin θg = Mg
41 −Mg

42.

(A.90)

Consequently,

(M11 −M12)2 − (M21 −M22)2 − (M31 −M32)2 − (M41 −M42)2

= (M11 −M12 −M21 + M22)(M11 −M12 + M21 −M22)

− (M31 −M32)2 − (M41 −M42)2

=
∑
g

(Ng
1 )

2
∑
h

(
Nh

2

)2
−
∑
g,h

Ng
1 Ng

2 Nh
1 Nh

2 cos(θg − θh)

≥
∑
g

(Ng
1 )

2
∑
h

(
Nh

2

)2
−
∑
g,h

Ng
1 Ng

2 Nh
1 Nh

2

=
∑
g �=h

{
(Ng

1 )
2
(
Nh

2

)2
−Ng

1 Ng
2 Nh

1 Nh
2

}
=
∑
g<h

(
Ng

1 Nh
2 −Nh

1 Ng
2

)2
≥ 0, (A.91)

which implies Eq. (A.85). Equations (A.84) and (A.86)-(A.89) are proved analo-
gously. The set of Eqs. (A.84)-(A.89) can be divided in 3 subsets in the following
way. Equations (A.84)-(A.85) refer to the first two columns, Eqs. (A.86)-(A.87) to
the first two rows and Eqs. (A.88)-(A.89) to the 2× 2 submatrices in the left upper
and right lower corners of M [See Fig. A.2]. All relationships for an SPM matrix
also hold for its transpose, since this is also an SPM matrix [cf. Eqs. (A.36) and
(A.76)].

Many other inequalities can be found from Eqs. (A.84)-(A.89), e.g. by omitting
one or more terms on the right-hand side. In this way one can also readily verify that
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Figure A.2: The 16 dots in each of the 6 pictograms represent the elements
of a matrix that is a sum of pure Mueller matrices. A solid
rectangle or ellipse stands for the squared sum of the enclosed
elements. A dashed rectangle or ellipse denotes the squared
difference of the enclosed elements. Each pictogram represents
an inequality of the type ≥, where the rectangle represents the
left-hand side and the sum of the ellipses the right-hand side of
the inequality.

(A.78)-(A.83) follow from Eqs. (A.84)-(A.89). Furthermore, by adding Eqs. (A.84)-
(A.89), observing that the double products cancel each other, and rearranging terms,
one obtains the inequality [cf. Fry and Kattawar (1981)]

4∑
i=1

4∑
j=1

M2
ij ≤ 4M2

11. (A.92)

Note that Eq. (A.92) becomes an equality for a pure Mueller matrix [cf. Eq.
(A.64)]. Symmetries may change the number of different relationships that hold
for an arbitrary SPM matrix [See e.g. Display 2.1]. Equations (A.84)-(A.89) are
necessary conditions for a real 4× 4 matrix to be a sum of pure Mueller matrices.

A.3 Testing Matrices

This section is devoted to the following problem. Suppose we have a real 4 × 4
matrix M with elements Mij , which may have been obtained from experiments or
numerical calculations. If we wish to know if M is a pure Mueller matrix or a
sum of pure Mueller matrices, which tests can be applied? Below we will discuss
tests providing necessary and sufficient conditions for a real 4 × 4 matrix to have
all of the mathematical requirements of a pure Mueller matrix or of a sum of pure
Mueller matrices. These tests can only be performed if one knows all 16 elements of
the matrix M , which is not always the case. There also exist tests providing only
necessary conditions. These tests are particularly useful if not all 16 elements of the
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given matrix M are available, or if M has a property that allows one to exclude
it directly on the basis of a simple test. Once a given matrix has been shown to
have the mathematical properties of a pure Mueller matrix or a sum of pure Mueller
matrices, the matrix can, in principle, describe certain events in linear optics (such
as scattering) but not necessarily the optical event intended. This is particularly
true if scaling or symmetry errors have been made. Thus the tests are very useful to
verify if a given matrix can describe certain linearly optical events, but they are not
sufficient to be certain of its “physical correctness.” We refer the reader to Hovenier
and Van der Mee (1996) for a systematic study of tests for scattering matrices, which
are completely analogous to those for Mueller matrices.

To test if a given real 4× 4 matrix is a pure Mueller matrix, one can distinguish
four types of test:

a. Visual tests, where one checks a simple property of the given matrix. For
instance, one checks if the sum of the rows and the columns of the matrix in
Eq. (A.48) are all equal to the same nonnegative number. Other examples of
visual tests are to verify Eq. (A.64), some of the identities represented by the
pictograms in Fig. A.1, or some of the inequalities (A.67)-(A.75). Visual tests
can be implemented even when not all elements of the matrix are known.

b. Tests consisting of nine relations. For instance, when Eq. (A.51) holds, Eqs.
(A.52)-(A.60) form one such set. Other sets can be pointed out if one of Eqs.
(A.61)-(A.63) is fulfilled. The advantage of such a test is that the nine relations
are complete in the sense thatM can be written in the form of Eq. (A.8) for
a suitable Jones matrix J that is unique apart from a phase factor of the form
eiε [cf. Hovenier et al. (1986)].

c. Tests based on analogy with the Lorentz group, such as verifying Eq. (A.65).
This test is incomplete, since the matrix diag(1, 1, 1,−1), for example, satisfies
Eq. (A.65) but is not a pure Mueller matrix. However, M is a pure Mueller
matrix if M11 > 0, detM > 0, and M satisfies Eq. (A.65). Further, these
conditions are necessary and sufficient for M to be a pure Mueller matrix if
M is invertible.

d. Tests based on reconstructing the underlying Jones matrix: Starting fromM ,
one computes Γ−1MΓ, where Γ and Γ−1 are given by Eqs. (A.9) and (A.10),
and checks if it has the form of the right-hand side of Eq. (A.7) [cf. November
(1993), Anderson and Barakat (1994)]. This test is complete.

e. Tests based on the Cloude coherency matrix. In this test one computes from
the given real 4 × 4 matrix M , a complex Hermitian 4 × 4 matrix T (i.e.,
Tij = T ∗

ji) in a linear one-to-one way. Then M is a nontrivial pure Mueller
matrix if and only if T has one positive and three zero eigenvalues. If so desired,
apart from an arbitrary scalar factor of absolute value one the underlying
Jones matrix can then be computed from the eigenvector corresponding to
the positive eigenvalue. Tests of this type, with different Cloude coherency
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matrices that are unitarily equivalent, have been developed by Cloude (1986)
and Simon (1982, 1987).

We now discuss the Cloude coherency matrix T in more detail. It is easily
derived from a given 4× 4 matrixM and is defined as follows:

T11 = 1
2(M11 + M22 + M33 + M44)

T22 = 1
2(M11 + M22 −M33 −M44)

T33 = 1
2(M11 −M22 + M33 −M44)

T44 = 1
2(M11 −M22 −M33 + M44)


, (A.93)

T14 = 1
2(M14 − iM23 + iM32 + M41)

T23 = 1
2(iM14 + M23 + M32 − iM41)

T32 = 1
2(−iM14 + M23 + M32 + iM41)

T41 = 1
2(M14 + iM23 − iM32 + M41)


, (A.94)

T12 = 1
2(M12 + M21 − iM34 + iM43)

T21 = 1
2(M12 + M21 + iM34 − iM43)

T34 = 1
2(iM12 − iM21 + M34 + M43)

T43 = 1
2(−iM12 + iM21 + M34 + M43)


, (A.95)

T13 = 1
2(M13 + M31 + iM24 − iM42)

T31 = 1
2(M13 + M31 − iM24 + iM42)

T24 = 1
2(−iM13 + iM31 + M24 + M42)

T42 = 1
2(iM13 − iM31 + M24 + M42)


. (A.96)

Thus, T depends linearly on M and the linear relation between them is given by
four sets of linear transformations between corresponding elements ofM and T (see
Fig. A.3). Moreover, T is always Hermitian, so that it has four real eigenvalues.
M is a nontrivial pure Mueller matrix if and only if three of the eigenvalues vanish
and one is positive. This is a simple and complete test. It was discovered in the
theory of radar polarization [see Cloude (1986), where T is defined with factors 1

4
in Eqs. (A.93)-(A.96) instead of factors 1

2 ]. Once the coherency matrix T has been
found to have a single positive eigenvalue λ and three zero eigenvalues, apart from
an arbitrary scalar factor of absolute value one the corresponding Jones matrix J is
given by [See Cloude, 1986; Van der Mee, 1993]

J =

√
λ

2

(
k1 + k2 k3 − ik4

k3 + ik4 k1 − k2

)
, (A.97)

where {k1, k2, k3, k4} is a (complex) eigenvector of T of unit length corresponding
to the positive eigenvalue λ. Another complete test using the Cloude coherency
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matrix, namely verifying if

TrT ≥ 0, T 2 = (TrT )T , (A.98)

is essentially due to Simon (1982, 1987), where, instead of T , a Hermitian matrix
Ns was used which is unitarily equivalent to the Cloude coherency matrix, namely

Ns = Γ−1TΓ, (A.99)

where Γ is given by Eq. (A.9). The transformation from M to Ns is displayed in
Fig. A.4. 

• ✷ ◦
• ◦ ✷

✷ ◦ •
◦ ✷ •

 ⇐⇒


• ✷ ◦

• ◦ ✷

✷ ◦ •
◦ ✷ •


M T

Figure A.3: Transformation of the 4×4 matrixM to the Cloude coherency
matrix T . Four basic groups of elements are distinguished by
four different symbols.


• •
• •
✷ ✷ ◦ ◦
✷ ✷ ◦ ◦

 ⇐⇒


• ✷ ◦

• ◦ ✷

✷ ◦ •
◦ ✷ •


M Ns

Figure A.4: As in Fig. A.3, but for the transformation fromM to Ns.

To test if a given real 4 × 4 matrix M is a sum of pure Mueller matrices, one
may employ two types of tests, namely visual tests and tests based on the Cloude
coherency matrix. The comparatively simple visual tests can be applied if one has
incomplete knowledge of the matrix M . For instance, one can verify any of the
inequalities of Eqs. (A.84)-(A.89) or inequalities derived from these, such as Eqs.
(A.78)-(A.83) or Eq. (A.92). This yields useful eyeball tests that often allow one to
quickly dismiss a given matrix as a sum of pure Mueller matrices. However, even if
a matrix obeys all six inequalities given by Eqs. (A.84)-(A.89), it may still not be a
sum of pure Mueller matrices [cf. Hovenier and Van der Mee, 1996]. Fortunately, a
more powerful test is available based on the Cloude coherency matrix.
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Using the Cloude coherency matrix one obtains a most effective method to verify
if a given real 4× 4 matrixM is a sum of pure Mueller matrices. It was developed
in radar polarimetry by Huynen (1970) for matrices with a special symmetry and by
Cloude (1986) for general real 4×4 matrices. As before, one constructs the complex
Hermitian matrix T from the given matrix M by using Eqs. (A.93)-(A.96) and
computes the four eigenvalues of T , which must necessarily be real. Then M is a
nontrivial sum of pure Mueller matrices if and only if all four eigenvalues of T are
nonnegative and at least one of them is positive. Consequently, this is a complete
test, but it can only be implemented if all elements of the matrix are known.

The Cloude coherency matrix tests allow some finetuning. First of all, recalling
thatM is a pure Mueller matrix whenever T has one positive and three zero eigen-
values, the ratio of the second largest to the largest positive eigenvalue of T may be
viewed as a measure for the degree to which a sum of pure Mueller matrices is pure
[Cloude (1989, 1992a,b), Anderson and Barakat (1994)]. Secondly, since a complex
Hermitian matrix can be diagonalized by a unitary matrix whose columns form an
orthonormal basis of its eigenvectors, one can write any sum of pure Mueller matri-
ces as a sum of four pure Mueller matrices. This result may come as a big surprise
in the light scattering community, but it is well-known in radar polarimetry where
it is called target decomposition [cf. Cloude (1989)].

In the Cloude coherency matrix tests described above, the matrix T may be
replaced by the matrix Ns. This is obvious, since T and Ns are unitarily equivalent
and therefore have the same eigenvalues. As a test for sums of pure Mueller matrices,
this was clearly understood by Cloude (1992a,b) and by Anderson and Barakat
(1994). The details of the “target decomposition,” but not its principle, are different
but can easily be transformed into each other. The testing procedures described in
this section have been used in practice for experimental as well as numerical results,
as reported e.g. by Kuik et al. (1991), Mishchenko al. (1996), Lumme et al. (1997),
Hess et al. (1998), Volten et al. (1999, 2001), and Muñoz et al. (2000, 2001, 2002).

A.4 Discussion

By definition, a pure Mueller matrix and a sum of pure Mueller matrices always
transform a beam of light with degree of polarization not exceeding 1 into a beam
of light having the same property, i.e., they satisfy the Stokes criterion. The latter
is defined as follows. If a real four-vector I1 whose components I1, Q1, U1 and V1

satisfy the inequality

I1 ≥
[
(Q1)2 + (U1)2 + (V1)2

]1/2
, (A.100)

is transformed by M into the vector I2 = MI1 with components I2, Q2, U2 and
V2, and the latter satisfy the inequality

I2 ≥
[
(Q2)2 + (U2)2 + (V2)2

]1/2
, (A.101)

thenM is said to satisfy the Stokes criterion.



205

The real 4 × 4 matrices satisfying the Stokes criterion have been studied in de-
tail. Konovalov (1985), Van der Mee and Hovenier (1992), and Nagirner (1993)
have indicated which matrices M of the form of the right-hand side of Eq. (2.63)
satisfy the Stokes criterion. Givens and Kostinski (1993) and Van der Mee (1993)
have given necessary and sufficient conditions for a general real 4 × 4 matrix M
to satisfy the Stokes criterion. These conditions involve the eigenvalues and eigen-
vectors of the matrix ∆2,3,4M̃∆2,3,4M . Givens and Kostinski (1993) assumed di-
agonalizability of the matrix ∆2,3,4M̃∆2,3,4M , but no such constraint appeared
in Van der Mee (1993). Unfortunately, all of these studies are of limited value for
describing scattering processes, because the class of matrices satisfying the Stokes
criterion is too large, as exemplified by the matrices ∆4 = diag(1, 1, 1,−1) and
∆2,3,4 = diag(1,−1,−1,−1), which satisfy the Stokes criterion but fail to satisfy
the Cloude coherency matrix test and at least one of Eqs. (A.88)-(A.89), so that
they cannot be scattering matrices, phase matrices or multiple-scattering matrices.
Moreover, the Cloude coherency matrix test is more easily implemented than any
known general test to verify the Stokes criterion.

Hitherto we have given tests to verify if a given real 4 × 4 matrix M is a pure
Mueller matrix or a sum of pure Mueller matrices, as if this matrix consisted of
exact data. However, if M has been numerically or experimentally determined, a
test might cause one to rejectM as a pure Mueller matrix or a sum of pure Mueller
matrices, whereas there exists a small perturbation of M within the numerical or
experimental error that leads to a positive test result. In such a case,M should not
have been rejected.

One way of dealing with experimental or numerical error is to treat a deviation
from a positive test result as an indication of numerical or experimental errors. As-
suming that the given matrixM is the sum of a perturbation ∆M and an “exact”
matrix M e which is a pure Mueller matrix or a sum of pure Mueller matrices, an
error bound formula is derived in terms of the given matrixM such thatM passes
the test whenever the error bound is less than a given threshold value. Such a proce-
dure has been implemented for the coherency matrix test by Anderson and Barakat
(1994) and by Hovenier and Van der Mee (1996). In either paper, a “corrected” pure
Mueller matrix or sum of pure Mueller matrices is sought that minimizes the error
bound. Procedures to correct given matrices go back as far as Konovalov (1985), who
formulated and applied such a method for matrices satisfying the Stokes criterion.

The application of error bound tests to a given real 4×4 matrix can lead to con-
clusions that primarily depend on the choice of the error bound formula. Moreover,
no information on known numerical or experimental errors is taken into account.
One possible way out is to test three matricesM0,M+ andM− such thatM0 is
the given real 4× 4 matrix and

M0
ij −M−

ij = M+
ij −M0

ij , i, j = 1, 2, 3, 4, (A.102)

are the errors in the elements of M0. Then the matrix M0 is accepted as a pure
Mueller matrix or a sum of pure Mueller matrices if all of these three matrices satisfy
the appropriate “exact” test.
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In view of the frequent occurrence of sums of pure Mueller matrices in this book,
we now summarize some of their main properties. Within the class of matrices that
are sums of pure Mueller matrices one can

(i) multiply each matrix by a nonnegative real scalar,

(ii) take the sum or product of two matrices,

(iii) take the transpose of a matrix,

(iv) replace an SPM matrixM by ∆3,4M∆3,4,

(v) replace an SPM matrixM by ∆3M̃∆3,

(vi) find only matrices with nonnegative traces,

(vii) find only matrices whose Cloude coherency matrices have only nonnegative
eigenvalues, and

(viii) write each matrix as the sum of four pure Mueller matrices.



Appendix B

Generalized Spherical Functions

In this appendix functions are defined and discussed which in radiative transfer the-
ory are usually called generalized spherical functions. Gel’fand and Shapiro (1952)
studied them primarily through their connection to the three-dimensional pure ro-
tation group [See also Gel’fand et al. (1958)]. As we will point out, these functions
also appear in the study of angular momentum in quantum mechanics [cf. Edmonds
(1957), Wigner (1959), Brink and Satchler (1962), Varshalovich et al. (1988)]. Be-
cause the frequent changes of notational conventions and a number of misprints by
Gel’fand and Shapiro (1952) and by Gel’fand et al. (1958) have led to uncertain-
ties, we have chosen alternative ways to present, in an elementary way, symmetry,
orthogonality, addition and recurrence properties. We exploit the connection to an-
gular momentum theory as well as properties of the well-known Jacobi polynomials
[cf. Szegő (1939)].

B.1 Definitions and Basic Properties

For integers m,n, l with l ≥ 0, −l ≤ m,n ≤ l and −1 ≤ x ≤ 1 one defines the
generalized spherical function

P lmn(x) = Almnin−m(1−x)
m−n

2 (1+x)−
m+n

2

(
d

dx

)l−n
{(1−x)l−m(1+x)l+m}, (B.1)

where the normalization constant Almn is real and has the form

Almn =
(−1)l−m

2l

[
(l + n)!

(l −m)!(l + m)!(l − n)!

]1/2
. (B.2)

Thus, apart from the factor in−m, the function P lmn(x) is real-valued. For other
choices of integers m,n, l we set P lmn(x) = 0. We remark that although Gel’fand
and Shapiro (1952) have studied the functions in Eq. (B.1), they reserved the name
“generalized spherical functions” for these functions when endowed with exponential
factors.
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On computing the (l − n)-th derivative in Eq. (B.1) with the help of Leibnitz’s
rule (

d

dx

)N
{f(x)g(x)} =

N∑
k=0

N !
k!(N − k)!

(
d

dx

)k
f(x)

(
d

dx

)N−k
g(x), (B.3)

applied for N = l − n, f(x) = (1 − x)l−m and g(x) = (1 + x)l+m, one obtains an
expression for P lmn(x) which remains the same on interchanging m and n. Thus

P lmn(x) = P lnm(x). (B.4)

If one replaces x by −x in Eq. (B.1), one derives the parity relation

P lmn(−x) = (−1)l+m−nP l−m,n(x). (B.5)

From Eqs. (B.4) and (B.5) it is easy to conclude that

P lmn(x) = P l−m,−n(x) = P lnm(x). (B.6)

Moreover, we have the bound

|P lmn(x)| ≤ 1, −1 ≤ x ≤ 1. (B.7)

The generalized spherical functions are also related to the Jacobi polynomials
P

(α,β)
s (x) [cf. e.g. Szegő (1939)]. The exact relationship is given by

P lmn(x) =
(−i)α

2(α+β)/2

[
s!(s + α + β)!
(s + α)!(s + β)!

]1/2
(1− x)α/2(1 + x)β/2P (α,β)

s (x), (B.8)

where α = |n − m|, β = |n + m| and s = l − max (|m|, |n|). This relation is most
easily deduced by comparing our Eqs. (B.1) and (B.2) with Eq. (IV.4.3.1) of Szegő
(1939) for the case n ≥ m ≥ 0 (when α = n −m, β = n + m and s = l − n) and
by extending this relationship using Eq. (B.6). From the analogous property of the
Jacobi polynomials [Szegő (1939), Eq. (IV.4.3.3)] one now derives the orthogonality
property

(−1)m+n

∫ +1

−1
dxP lmn(x)P

k
mn(x) =

∫ +1

−1
dxP lmn(x)P

k
mn(x)

∗ =
2

2l + 1
δlk, (B.9)

where an asterisk denotes complex conjugation.
In polarization studies we always have at least one of m,n ∈ {−2, 0, 2}. When

the recurrence relation of the Jacobi polynomials [Szegő (1939), Eq. (IV.4.5.1)] is
transformed according to Eq. (B.8), one gets the following recurrence relation for
P lmn(x) [cf. Bugayenko, 1976]:

l
√
(l + 1)2 − n2

√
(l + 1)2 −m2 P l+1

mn (x) + (l + 1)
√

l2 − n2
√

l2 −m2 P l−1
mn (x)

= (2l + 1){l(l + 1)x−mn}P lmn(x), (B.10)
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where l ≥ max(|m|, |n|) and

Pmax(|m|,|n|)
mn (x) =

(−i)|m−n|

2max(|m|,|n|)

[
(2max(|m|, |n|))!

(|m− n|)!(|m + n|)!

]1/2
(1− x)

|m−n|
2 (1 + x)

|m+n|
2 .

(B.11)
Let us consider the special cases relevant to polarization studies. For n = m = 0

one obtains the recurrence relation

(l + 1)Pl+1(x) + lPl−1(x) = (2l + 1)xPl(x), (B.12)

where l ≥ 0 and
P0(x) ≡ 1, (B.13)

for the usual Legendre polynomials

Pl(x) = P l00(x) =
1
2l l!

(
d

dx

)l
(x2 − 1)l. (B.14)

For n = 2 and m = 0 Eqs. (B.10) and (B.11) yield the recurrence relation√
(l − 1)(l + 3)P l+1

02 (x) +
√
(l − 2)(l + 2)P l−1

02 (x) = (2l + 1)xP l02(x), (B.15)

where l ≥ 2 and

P 2
02(x) =

1
4

√
6 (x2 − 1). (B.16)

For n = j ≥ 0 and m = ±2 Eqs. (B.10) and (B.11) yield the two recurrence relations√
(l + 1)2 − j2

√
(l + 1)2 − 4

l + 1
P l+1
±2,j(x) +

√
l2 − j2

√
l2 − 4

l
P l−1
±2,j(x)

= (2l + 1)
{

x∓ 2j
l(l + 1)

}
P l±2,j(x), (B.17)

where l ≥ max(j, 2) and

P
max(j,2)
±2,j (x) =


(−i)j

2j

[
(2j)!

(j − 2)!(j + 2)!

]1/2
(1− x2)j/2

x± 1
x∓ 1

, j ≥ 2,

1
4 (1± x)2, j = 2,
∓i

2
(1± x)

√
1− x2, j = 1.

(B.18)

Defining the associated Legendre functions by

P jl (x) = (1− x2)j/2
(

d

dx

)j
Pl(x), l, j = 0, 1, 2, · · · , (B.19)

we find

P jl (x) = (i)j
[
(l + j)!
(l − j)!

]1/2
P l0j(x) (B.20)
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[cf. Eq. (B.1) with m = 0 and n = −j]. Using Eqs. (B.10), (B.11) and (B.20) we
obtain the recurrence relation

(l + 1− j)P jl+1(x) + (l + j)P jl−1(x) = (2l + 1)xP jl (x), (B.21)

where l ≥ j and

P jj (x) =
(2j)!
2j j!

(1− x2)j/2. (B.22)

Numerical computation of generalized spherical functions using upward recursion
by means of Eqs. (B.10)-(B.11) appears to be numerically stable [Kuik et al., 1992;
Mishchenko et al., 1999]. On the contrary, calculating P l0n(x) from the associated
Legendre functions using Eq. (B.20) and upward recursion via Eqs. (B.21)-(B.22)
can easily lead to overflow [Dave and Armstrong, 1970].

Finally, let us now introduce the auxiliary functions [cf. Siewert (1981, 1982)]

Rjl (x) = −1
2
(i)j
(
(l + j)!
(l − j)!

)1/2

{P l2j(x) + P l−2,j(x)}, (B.23)

T jl (x) = −1
2
(i)j
(
(l + j)!
(l − j)!

)1/2

{P l2j(x)− P l−2,j(x)}, (B.24)

where l ≥ max(j, 2) and j ≥ 0. From Eqs. (B.10), (B.11), (B.23) and (B.24) we
obtain the coupled recurrence relations

(l + 1− j)

√
(l + 1)2 − 4

l + 1
Rjl+1(x) + (l + j)

√
l2 − 4
l

Rjl−1(x)

= (2l + 1)
[
xRjl (x)−

2j
l(l + 1)

T jl (x)
]

, (B.25)

(l + 1− j)

√
(l + 1)2 − 4

l + 1
T jl+1(x) + (l + j)

√
l2 − 4
l

T jl−1(x)

= (2l + 1)
[
xT jl (x)−

2j
l(l + 1)

Rjl (x)
]

, (B.26)

where for j ≥ 2

Rjj(x) =
(2j)!
2j · j!

(
j(j − 1)

(j + 1)(j + 2)

)1/2

(1− x2)j/2
1 + x2

1− x2
, (B.27)

T jj (x) =
(2j)!
2j · j!

(
j(j − 1)

(j + 1)(j + 2)

)1/2

(1− x2)j/2
2x

1− x2
. (B.28)

In particular, {
R1

2(x) = −1
2x
√
6
√
1− x2, T 1

2 (x) = −1
2

√
6
√
1− x2,

R2
2(x) =

1
2

√
6 (1 + x2), T 2

2 (x) = x
√
6.

(B.29)
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Let us consider various special cases of the orthogonality relation (B.9). More
precisely, for the Legendre polynomials we have∫ +1

−1
dxPl(x)Pr(x) =

2
2l + 1

δlr, (B.30)

for the associated Legendre functions we get∫ +1

−1
dxP jl (x)P

j
r (x) =

2
2l + 1

(l + j)!
(l − j)!

δlr, (B.31)

and for the functions Rjl (x) and T jl (x) we obtain∫ +1

−1
dx {Rjl (x)T

j
r (x) + T jl (x)R

j
r(x)} = 0, (B.32)

∫ +1

−1
dx {Rjl (x)R

j
r(x) + T jl (x)T

j
r (x)} =

2
2l + 1

(l + j)!
(l − j)!

δlr, (B.33)

where l, r ≥ max(j, 2).

B.2 Expansion Properties

Every complex-valued function h(x) which is square integrable on the closed interval
[−1,+1], can be expanded in a series of generalized spherical functions P lmn(x) for
which m,n are fixed but arbitrary integers and l ≥ max (|m|, |n|). In other words, if∫ +1

−1
dx |h(x)|2 < ∞, (B.34)

then there exist unique coefficients ηl [l ≥ max (|m|, |n|)] such that the series expan-
sion

∞∑
l=max(|m|,|n|)

ηlP
l
mn(x) = h(x) (B.35)

holds true in the following sense:

lim
L→∞

∫ +1

−1
dx

∣∣∣∣∣∣h(x)−
L∑

l=max(|m|,|n|)
ηlP

l
mn(x)

∣∣∣∣∣∣
2

= 0. (B.36)

Conversely, if a complex-valued function h(x) on [−1,+1] admits the expansion
(B.35) in the sense (B.36), it is square integrable on [−1,+1] and the coefficients ηl
are given by

ηl = (−1)m+n 2l + 1
2

∫ +1

−1
dxh(x)P lmn(x). (B.37)
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This expansion result is an elaborated version of the statement that the functions
(l+ 1

2)
1/2P lmn(x) with l ≥ max (|m|, |n|) form a complete orthonormal system in the

Hilbert space L2[−1,+1] of square integrable complex-valued functions on [−1,+1]
with scalar product

〈f, g〉 =
∫ +1

−1
dx f(x)g(x)∗. (B.38)

This follows from the analogous property of the Jacobi polynomials [cf. Szegő (1939)]
with the help of Eqs. (B.8) and (B.9). The coefficients ηl are, in general, complex,
but when h(x) is a real-valued function, the products im−nηl are all real, since the
functions P lmn(x) are real-valued apart from a factor in−m.

In general, the series in Eq. (B.35) need not converge pointwise to h(x), even
if h(x) is continuous on [−1,+1]. However, if h(x) satisfies the Hölder condition
|h(x) − h(y)| ≤ M |x − y|γ for some M,γ > 0 on a closed subset [c, d] in the open
interval (−1,+1), then the series in Eq. (B.35) converges pointwise at any x ∈ [c, d]
and the convergence is uniform in x on [c, d]. This follows from Eq. (B.8) and
the analogous property of Jacobi polynomials [cf. Alexits (1961), Theorem 1.3b].
In particular, if h(x) has a continuous derivative on (−1,+1), the series in Eq.
(B.35) converges pointwise for all x ∈ (−1,+1). The vast majority of the scattering
matrices occurring in applications satisfies these conditions.

When h(x) is analytic in a region in the complex plane that contains the closed
segment [−1, 1], then its expansion in Jacobi polynomials

h(x) =
∞∑
s=0

hsP
α,β
s (x), (B.39)

where α, β > −1 are fixed parameters, has the property that the sequence of co-
efficients (hs)∞s=0 is exponentially decaying [See Szegő (1939), Theorem 9.1.1]. In
fact, the expansion (B.39) is convergent in the interior of the largest ellipse in the
complex plane with foci at ±1 in which h(x) is analytic, and the major and minor
semi-axis a and b of this ellipse are given by

a =
1
2

(
1
g
+ g

)
, b =

1
2

(
1
g
− g

)
, (B.40)

where
g = lim sup

s→∞
|ηs|1/s. (B.41)

When using Eq. (B.8) to convert this expansion result to a similar result for gener-
alized spherical functions and restricting ourselves to spherical functions relevant to
expanding the elements of the scattering matrix, we get the following:

1. Let h(x) be analytic in a region in the complex plane that contains the closed
segment [−1, 1]. Then the coefficients ηl in the expansion

h(x) =
∞∑
l=0

ηlPl(x) (B.42)
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are exponentially decaying.

2. Let h(x)/(1 − x2) be analytic in a region in the complex plane that contains
the closed segment [−1, 1]. Then the coefficients ηl in the expansion

h(x) =
∞∑
l=2

ηlP
2
l (x) (B.43)

are exponentially decaying.

3. Let h(x)/(1 ± x)2 be analytic in a region in the complex plane that contains
the closed segment [−1, 1]. Then the coefficients ηl in the expansion

h(x) =
∞∑
l=2

ηlP
l
2,±2(x) (B.44)

are exponentially decaying.

In fact, the expansions (B.42)-(B.44) are convergent in the interior of the largest
ellipse in the complex plane with foci at ±1 in which h(x) (in the case of Eq.
(B.42)), h(x)/(1 − x2) (in the case of Eq. (B.43)) or h(x)/(1 ± x)2 (in the case of
Eq. (B.44)) is analytic, and the major and minor semi-axis a and b of this ellipse
are given by Eqs. (B.40)-(B.41). The converse is also true, as a result of the identity
[cf. Szegő (1939), Theorem 8.21.7]

lim
n→∞

|P (α,β)
n (x)|1/n =

∣∣∣x + (x2 − 1)1/2
∣∣∣ , x /∈ [−1, 1], (B.45)

where (x2 − 1)1/2 is chosen as to make |x + (x2 − 1)1/2| exceed 1. Indeed, when
choosing x within the ellipse in the complex plane with foci at ±1, major semi-axis
1/g and minor semi-axis g, where g = lim sup

n→∞
|ξn|1/n, the Jacobi series

f(x) =
∞∑
s=0

ξsP
(α,β)
s (x) (B.46)

is absolutely convergent, uniformly in x in any closed ellipse with foci at ±1 which
is contained in the preceding ellipse. Since the terms of the series in Eq. (B.46) are
analytic functions of x, the sum f(x) will be analytic in the interior of the ellipse
with foci at ±1, major semi-axis 1/g and minor semi-axis g [cf. Ahlfors (1953),
Theorem 5.1]. The conclusions pertaining to the series in Eq. (B.46) are now easily
adapted to series expansions in generalized spherical functions.

B.3 The Addition Formula

To find an addition formula for the generalized spherical functions one starts from
the closure formula in Appendix V and Eq. (2.17) of Brink and Satchler (1962). In
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their notations and using Eq. (B.57) below one first writes

l∑
s=−l

(−1)seis(ϕ′−ϕ)P lms(− cosϑ)P lsn(− cosϑ′)

= (i)m−n
l∑

s=−l
Dlms(0, π − ϑ,−π)Dlsn(ϕ− ϕ′, π − ϑ′, 0)

= (i)m−nDlmn(α, β, γ) = e−imαP lmn(cosβ)e
−inγ , (B.47)

where, according to the conventions of Fig. 2 of Brink and Satchler (1962), the
angles α, β and γ are the Euler angles of the rotation resulting from first applying a
rotation with Euler angles (ϕ− ϕ′, π − ϑ′, 0) and then a rotation with Euler angles
(0, π−ϑ,−π). Computing α = π−σ2, β = Θ, γ = π−σ1 with the angles according
to Figs. 3.2 and 3.3, we finally obtain the addition theorem

(−1)m+neimσ2P lmn(cosΘ)e
inσ1 =

l∑
s=−l

(−1)seis(ϕ′−ϕ)P lms(− cosϑ)P lsn(− cosϑ′).

(B.48)
For 0 < ϕ′ − ϕ < π the connection between ϑ, ϑ′, ϕ′ − ϕ and σ1, σ2, Θ is given
by Fig. 3.2, while for π < ϕ′ − ϕ < 2π this connection is given by Fig. 3.3. For
ϕ′ −ϕ = 0 or π, the appropriate limits should be taken. For polarized light one has
m,n ∈ {−2, 0, 2} and hence (−1)m+n = 1. Analytical expressions for the relations
between the angles ϑ, ϑ′, ϕ′ − ϕ and σ1, σ2, Θ are given by [cf. Eqs. (3.11)-(3.16)]

cosΘ = cosϑ cosϑ′ + sinϑ sinϑ′ cos (ϕ′ − ϕ), (B.49)

cosσ1 =
cosϑ− cosϑ′ cosΘ

sinϑ′ sinΘ
, (B.50)

cosσ2 =
cosϑ′ − cosϑ cosΘ

sinϑ sinΘ
(B.51)

[See e.g. Smart, 1949]. We may further use

cos (2σ) = 2 cos2 σ − 1, (B.52)

sin (2σ) =

{
2(1− cos2 σ)1/2 cosσ, 0 < ϕ′ − ϕ < π

−2(1− cos2 σ)1/2 cosσ, 0 < ϕ− ϕ′ < π,
(B.53)

where σ is σ1 or σ2, which have values between 0 and π if 0 < ϕ′−ϕ < π, and between
−π and 0 if 0 < ϕ−ϕ′ < π. Equations (B.49)-(B.53) are easily obtained by applying
the cosine rule in the spherical triangles depicted in Fig. 3.2 if 0 < ϕ′−ϕ < π, or Fig.
3.3 if 0 < ϕ−ϕ′ < π. When the denominator of Eq. (B.50) or Eq. (B.51) vanishes,
the appropriate limits should be taken. Note that situations with 0 < ϕ−ϕ′ < π are
equivalent to situations with π < ϕ′ − ϕ < 2π, because of the rotational symmetry
involved.
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We have thus obtained the addition formula (B.48) without using Gel’fand and
Shapiro (1952). Instead, we have employed its analogue in angular momentum
theory. An alternative derivation can be based on Edmonds (1957) and Wigner
(1959) using the fact that their analogues of the generalized spherical functions
appear in the representations of the three-dimensional pure rotation group SO(3).
In Eq. (B.48) the relationship between the angles is either formulated geometrically
in terms of Figs. 3.2 and 3.3 or analytically in terms of Eqs. (B.49)-(B.53). For
polarized light Eq. (B.48) is in agreement with the addition theorem used by Kuščer
and Ribarič (1959), who referred to Gel’fand and Shapiro (1952).

B.4 Connections with Angular Momentum Theory

Let us connect the functions P lmn(x) to angular momentum theory. In the book by
Brink and Satchler (1962) the following function, introduced by Wigner (1959), is
used:

djmn(β) =
∑
t

(−1)t [(j + m)!(j −m)!(j + n)!(j − n)!]1/2

(j + m− t)!(j − n− t)! t!(t + n−m)!
×

×
(
cos

β

2

)2j+m−n−2t(
sin

β

2

)2t+n−m
, (B.54)

where 0 ≤ β ≤ π and the sum is taken over all values of t that lead to nonnegative
factorials. Thus the summation index t runs from ρ = max (0,m − n) up to σ =
min (j + m, j − n). Therefore, djmn(β) = 0 unless ρ ≤ σ, which is equivalent to the
restrictions j ≥ 0 and −j ≤ m,n ≤ j. Put x = cosβ. Then 0 ≤ β ≤ π implies that

cos
β

2
= 2−1/2(1 + x)1/2, sin

β

2
= 2−1/2(1− x)1/2. (B.55)

Substitution of Eq. (B.55) in Eq. (B.54) and rewriting the resulting formula yields

djmn(β) =
(−1)j−n

2j

[
(j + n)!

(j −m)!(j + m)!(j − n)!

]1/2
× (1− x)

m−n
2 (1 + x)−

m+n
2 ×

×
σ∑
t=ρ

(j − n)!
(j − n− t)! t!

(j + m)!
(j + m− t)!

(1 + x)j+m−t×

× (j −m)!
(t + n−m)!

(−1)j−n−t(1− x)t+n−m. (B.56)

With the help of Leibnitz’s rule (B.3) [applied for N = j − n, f(x) = (1 + x)j+m

and g(x) = (1− x)j−m] and Eqs. (B.1) and (B.2) we write Eq. (B.56) in the form

djmn(β) = in−mP jmn(cosβ), 0 ≤ β ≤ π, (B.57)

which is the connection looked for. Edmonds (1957) uses a function d
(j)
mn(β) which

is related to djmn(β) and P jmn(cosβ) in the following way:

d(j)
mn(β) = (−1)m+ndjmn(β) = im−nP jmn(cosβ), 0 ≤ β ≤ π. (B.58)
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Finally, Varshalovich et al. (1988) employ a function djmn(β) which is real-valued
for any choice of l,m, n and satisfies

dlmn(β) = ξmn i|n−m|P lmn(cosβ), (B.59)

where ξmn = 1 for n ≥ m and ξmn = (−1)n−m if n < m [See Eq. (B.8), and Sec.
4.3.4 of Varshalovich et al. (1988)]. Comparing the right-hand sides of Eqs. (B.57)
and (B.59) we see that the left-hand sides of these equations are the same functions.



Appendix C

Expanding the Elements of F (Θ)

In Subsection 2.8.2 the expansions of the scattering matrix elements in generalized
spherical functions were presented. In this appendix the derivation of these ex-
pansions is given, where the elements of a four vector are denoted by 2, 0,−0,−2
instead of 1, 2, 3, 4. We can then reformulate Eqs. (1.52)-(1.54) by saying that the
rotation considered causes the element [Ic]m to be multiplied by exp(−imα) where
m = 2, 0,−0,−2. In the same way we can label the rows of any 4 × 4 matrix from
above to below by an index m and the columns from left to right by an index n,
both running through 2, 0,−0,−2. Thus scattering of light by a small volume dV
can now be described by [cf. Eq. (2.138)]

[Φc]m =
ksca dV

4πR2

∑
n

[F c(Θ)]mn
[
Φ0
c

]
n
, (C.1)

where the sum runs through n = 2, 0,−0,−2 and Φ0
c refers to the incident beam.

Reciprocity and mirror symmetry give, respectively [cf. Eqs. (2.142) and (2.145)],

[F c(Θ)]mn = [F c(Θ)]nm = [F c(Θ)]−m,−n. (C.2)

From Eq. (2.141) we derive that

[F c(Θ)]mm, [F c(Θ)]m,−m are real, (C.3)

and
[F c(Θ)]20 = [F c(Θ)]2,−0

∗. (C.4)

The expansion theorem given in Appendix B now implies that we can write

[F c(Θ)]mn =
∞∑

l=max(|m|,|n|)
glmnP

l
mn(x) (C.5)

in the sense that

lim
L→∞

∫ +1

−1
dx

∣∣∣∣∣∣[F c(Θ)]mn −
L∑

l=max(|m|,|n|)
glmnP

l
mn(x)

∣∣∣∣∣∣
2

= 0, (C.6)
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where the coefficients are given by

glmn =
2l + 1
2

∫ +1

−1
dx [F c(x)]mnP lmn(x). (C.7)

Note that (−1)m+n = 1 here, since m,n = 2, 0,−0,−2. For P lmn(x) no distinction is
made between m,n = 0 or −0. For the values of m,n used here the functions P lmn(x)
are real-valued [cf. Eq. (B.1)]. From Eq. (C.7), the properties of the generalized
spherical functions [See also Eq. (B.6)], and Eqs. (C.2)-(C.4) it follows that

glmn = glnm = gl−m,−n (C.8)

and

glmm, glm,−m are real; gl20 = gl2,−0
∗
. (C.9)

In Eq. (C.5) we have expanded the element mn in generalized spherical functions
with exactly the same lower indices, which is natural if one considers certain prop-
erties of the three-dimensional rotation group [cf. Domke (1974)]. For our purposes,
however, it is sufficient to remark that Eq. (C.5) allows one to apply the addition
theorem (B.48) for generalized spherical functions and to confirm the relations for
the elements of the scattering matrix for Θ = 0 and Θ = π [See Display 2.1]. Indeed,
since

P lmn(±1) = 0, m �= ±n, (C.10)

we see that if in the series (C.5) the coefficients glmn vanish starting from some l, we
find

[F c(0)]mn = 0, m �= n; [F c(π)]mn = 0, m �= −n, (C.11)

which implies the relations for Θ = 0 and Θ = π. In general (i.e., when glmn does
not vanish starting from some l), this reasoning requires the pointwise convergence
of the series in Eq. (C.5) for Θ = 0 or π.

To expand the elements of F (Θ) in generalized spherical functions we introduce
the coefficients

αl1 = gl00 + gl0,−0, αl2 = gl22 + gl2,−2

αl3 = gl22 − gl2,−2, αl4 = gl00 − gl0,−0

βl1 = gl20 + gl2,−0, βl2 = −i(gl20 − gl2,−0)

 (C.12)

and use the special functions Rjl (x) and T jl (x) defined by Eqs. (B.23) and (B.24).
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Combining Eqs. (2.141) and (C.5) we now obtain [cf. also Eq. (B.6)]

a1(Θ) = [F c(Θ)]00 + [F c(Θ)]0,−0 =
∞∑
l=0

(
gl00 + gl0,−0

)
P l00(cosΘ)

=
∞∑
l=0

αl1Pl(cosΘ), (C.13)

a2(Θ) + a3(Θ) = 2[F c(Θ)]22 = 2
∞∑
l=2

gl22P
l
22(cosΘ)

=
∞∑
l=2

(αl2 + αl3)P
l
22(cosΘ), (C.14)

a2(Θ)− a3(Θ) = 2[F c(Θ)]2,−2 = 2
∞∑
l=2

gl2,−2P
l
2,−2(cosΘ)

=
∞∑
l=2

(αl2 − αl3)P
l
2,−2(cosΘ), (C.15)

a4(Θ) = [F c(Θ)]00 − [F c(Θ)]0,−0 =
∞∑
l=0

(
gl00 − gl0,−0

)
P l00(cosΘ)

=
∞∑
l=0

αl4Pl(cosΘ), (C.16)

b1(Θ) = [F c(Θ)]20 + [F c(Θ)]2,−0 =
∞∑
l=2

(
gl20 + gl2,−0

)
P l20(cosΘ)

=
∞∑
l=2

βl1P
l
02(cosΘ), (C.17)

b2(Θ) = −i[F c(Θ)]20 + i[F c(Θ)]2,−0 = −i

∞∑
l=2

(
gl20 − gl2,−0

)
P l20(cosΘ)

=
∞∑
l=2

βl2P
l
02(cosΘ). (C.18)

Alternative forms of the expansions contained in Eqs. (2.152)-(2.159) are easily
derived using Eqs. (B.14), (B.20), (B.23) and (B.24), where the functions Pl(x),
P 2
l (x), R2

l (x) and T 2
l (x) are related to generalized spherical functions.





Appendix D

Size Distributions

In Subsection 2.6.2 we have given expressions for the elements of the amplitude
matrix of a sphere, i.e., a homogeneous spherical particle made of material that
is neither birefringent nor dichroic [cf. Eqs. (2.115)-(2.119)]. These expressions
contain the expansion coefficients a†n and b†n which depend only on the refractive
index of the particle m = nr− ini with nonnegative nr and ni and its size parameter
x = kr = 2πr/λ, where r denotes the radius of the particle and λ the wavelength.
In many practical applications, however, one deals with a collection of spheres made
of the same material but with different sizes. To describe this we introduce the size
distribution function n(r). By definition, n(r)dr is the fraction of spheres per unit
volume with radii between r and r + dr. We use the normalization condition∫ ∞

0
dr n(r) = 1. (D.1)

As a result, the elements of the scattering matrix F (Θ) for the collection can be
written as [cf. Eq. (2.139)]

aj(Θ) =

∫ ∞

0
dr Csca(r)n(r) aj(Θ; r)∫ ∞

0
dr Csca(r)n(r)

, j = 1, 2, 3, 4, (D.2)

bk(Θ) =

∫ ∞

0
dr Csca(r)n(r) bk(Θ; r)∫ ∞

0
dr Csca(r)n(r)

, k = 1, 2, (D.3)

where a1(Θ; r), a2(Θ; r), a3(Θ; r), a4(Θ; r), b1(Θ; r) and b2(Θ; r) are the elements
of the scattering matrix of the constituent particles of radius r and Csca(r) is found
from Eq. (2.133) by omitting the summation over all particles per unit volume. As
a consequence, a1(Θ) satisfies the normalization condition (2.137), because

1
2

∫ π

0
dΘ a1(Θ; r) sinΘ = 1, r ≥ 0. (D.4)
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Several types of size distribution functions appear in the literature. We will
only discuss the most common ones. Hansen and Hovenier (1974a) used the gamma
distribution (GD) in the form

n(r) =
1

abΓ((1− 2b)/b)

( r

ab

)(1−3b)/b
e−r/ab, (D.5)

where a > 0, 0 < b < 1/2 and Γ denotes the gamma function. The second one is
the modified gamma distribution (MGD) [cf. Deirmendjian (1969)]

n(r) =
γ

rc · Γ((α + 1)/γ)

(
α

γ

)(α+1)/γ ( r

rc

)α
e−(α/γ)(r/rc)

γ

, (D.6)

where α, γ and rc are positive constants. For α = (1−3b)/b, γ = 1 and rc = a(1−3b)
we obtain the gamma distribution given by Eq. (D.5) with 0 < b < 1/3. The third
one is the log-normal distribution (LND) [cf. Hansen and Travis (1974)] defined by

n(r) =
1

σg r
√
2π

e− ln2(r/rg )/(2σg
2), (D.7)

where rg and σg are positive constants. The last one is the power-law distribution
(PLD) [cf. Hansen and Travis (1974)] given by

n(r) =

{
c(δ; r1, r2)r−δ, r1 ≤ r ≤ r2,

0, 0 ≤ r < r1 or r > r2,
(D.8)

where δ is a real constant and

c(δ; r1, r2) =
[∫ r2

r1

dr r−δ
]−1

=


1− δ

r2
1−δ − r1

1−δ , δ �= 1,

1/ ln(r2/r1), δ = 1.
(D.9)

In scattering problems the function n(r)πr2 is more relevant than n(r), since,
generally, particles with a large geometric cross-section scatter light more strongly
than particles with a small geometric cross-section. For this reason, it is useful to
associate with each size distribution function n(r), (i) the effective size parameter

xeff =
2π reff

λ
=

1
G

∫ ∞

0
dr n(r)πr2x, (D.10)

where x = 2πr/λ, reff is the effective radius and G is the average geometrical cross-
section of the particles

G =
∫ ∞

0
dr n(r)πr2, (D.11)

and (ii) the effective variance of the size distribution function

veff =
1

r2
eff G

∫ ∞

0
dr n(r)πr2 (r − reff)2 =

1
x2

eff G

∫ ∞

0
dr n(r)πr2 (x− xeff)2. (D.12)
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Using the moment formulae

∫ ∞

0
dr rs n(r) =



Γ(s + (1− 2b)/b)
Γ((1− 2b)/b)

(ab)s; GD

Γ((α + s + 1)/γ)
Γ((α + 1)/γ)

(γ

α

)s/γ
(rc)s; MGD

rg
s exp(s2σg

2/2); LND
1− δ

1 + s− δ

r2
1+s−δ − r1

1+s−δ

r2
1−δ − r1

1−δ ; PLD,

(D.13)

one finds the equalities

xeff =



2πa

λ
; GD

2πrc
λ

(γ

α

)1/γ Γ((α + 4)/γ)
Γ((α + 3)/γ)

; MGD

2πrg
λ

exp(5σg2/2); LND

2π
λ

3− δ

4− δ

r2
4−δ − r1

4−δ

r2
3−δ − r1

3−δ ; PLD

(D.14)

and

veff =



b; GD
Γ((α + 5)/γ)Γ((α + 3)/γ)

Γ((α + 4)/γ)2
− 1; MGD

exp(σg2)− 1; LND
(4− δ)2

(5− δ)(3− δ)
(r2

3−δ − r1
3−δ)(r2

5−δ − r1
5−δ)

(r2
4−δ − r1

4−δ)2
− 1; PLD,

(D.15)

where in some cases the appropriate limits must be taken. Note that the parameters
a and b in Eq. (D.5) have the simple meaning a = reff and b = veff.

Sizes of nonspherical particles are often described by means of their volume-
equivalent spheres or projected-surface-area equivalent spheres, the radii of which
may be characterized by one of the size distributions discussed above.





Appendix E

Proofs of Relationships for
Multiple-Scattering Matrices

E.1 Introduction

In Subsection 4.5.1 we have derived a number of symmetry relations for the internal
field matrices U , D, U∗ and D∗ for light that has been scattered only once in
a homogeneous or inhomogeneous atmosphere. We will show in Sec. E.2 of this
appendix that these relations are also valid for every order of scattering and thus
for the multiple-scattering matrices that are the sums of any number of orders of
scattering, including infinite sums [See Display 4.2].

A second topic of this appendix [See Sec. E.3] concerns proofs that all multiple-
scattering matrices, for each order of scattering and their sums over all orders of
scattering, are sums of pure Mueller matrices.

E.2 Proving Symmetry Relations for the Multiple-Scat-
tering Matrices U , D, U ∗ and D∗

It is sometimes advantageous to work with 4 × 4 intensity matrices and source
matrices instead of intensity vectors and source vectors, respectively. This can be
done in the same way as we did for the multiple-scattering matrices introduced in
Sec. 4.3. Indeed, considering a monodirectional beam of light incident at the top of
a homogeneous or inhomogeneous slab we can write Eqs. (4.15)-(4.20) as equations
for 4× 4 matrices acting on the vector µ0F 0 by premultiplication. Thus we obtain

Î0(τ, u, µ0, ϕ− ϕ0) =

e−τ/uδ(u− µ0)δ(ϕ− ϕ0)
π

µ0
E, 0 < u ≤ 1,

0, −1 ≤ u < 0,
(E.1)
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where E denotes the 4× 4 unit matrix, as well as the iteration scheme for n ≥ 1

Ĵn(τ, u, µ0, ϕ−ϕ0)=
a(τ)
4π

∫ +1

−1
du′
∫ 2π

0
dϕ′Z(τ, u, u′, ϕ−ϕ′)În−1(τ, u′, µ0, ϕ

′−ϕ0),

(E.2)

În(τ, u, µ0, ϕ− ϕ0) =
∫ b

0
dτ ′ k(τ − τ ′, u)Ĵn(τ ′, u, µ0, ϕ− ϕ0), (E.3)

where

k(t, u) = k(−t,−u) =

{
1
|u|e

−t/u, (t/u) > 0,

0, (t/u) < 0.
(E.4)

We call the 4 × 4 matrix Ĵn(τ, u, µ0, ϕ − ϕ0) the n-th order source matrix and the
4 × 4 matrix În(τ, u, µ0, ϕ − ϕ0) the n-th order intensity matrix. From Eqs. (E.1)
and (E.2) we readily find the first order source matrix

Ĵ1(τ, u, µ0, ϕ− ϕ0) =
a(τ)
4

e−τ/µ0 Z(τ, u, µ0, ϕ− ϕ0). (E.5)

The relationships with the multiple-scattering matrices considered in Sec. 4.3
are now readily obtained from their definitions. Thus we find for the n-th order of
scattering

În(τ, u, µ0, ϕ− ϕ0) =


Rn(µ, µ0, ϕ− ϕ0), τ = 0 and − 1 ≤ u = −µ < 0,
T n(µ, µ0, ϕ− ϕ0), τ = b and 0 < u = µ ≤ 1,
Un(τ, µ, µ0, ϕ− ϕ0), −1 ≤ u = −µ < 0,
Dn(τ, µ, µ0, ϕ− ϕ0), 0 < u = µ ≤ 1.

(E.6)
To prove the mirror symmetry relations labeled e and f in Display 4.2, we elim-

inate the n-th order source matrix in Eqs. (E.2) and (E.3). This yields

În(τ, u, µ0, ϕ− ϕ0) =
∫ b

0
dτ ′ k(τ − τ ′, u)

a(τ ′)
4π

∫ +1

−1
du′
∫ 2π

0
dϕ′×

×Z(τ ′, u, u′, ϕ− ϕ′)În−1(τ ′, u′, µ0, ϕ
′ − ϕ0). (E.7)

We can use this equation to show that the mirror symmetry relation

În(τ, u, µ0, ϕ− ϕ0) = ∆3,4În(τ, u, µ0, ϕ0 − ϕ)∆3,4 (E.8)

holds. First we note that in view of Eqs. (E.3)-(E.5) and the mirror symmetry
property of the phase matrix we know that Eq. (E.8) holds for n = 1. Let us now
assume that Eq. (E.8) holds for n − 1. Then Eq. (E.7) yields by interchanging ϕ
and ϕ0 that

În(τ, u, µ0, ϕ0 − ϕ) =
∫ b

0
dτ ′ k(τ − τ ′, u)

a(τ ′)
4π

∫ +1

−1
du′
∫ 2π

0
dϕ′×

×∆3,4Z(τ ′, u, u′, ϕ′ − ϕ0)∆3,4∆3,4În−1(τ ′, u′, µ0, ϕ− ϕ′)∆3,4,
(E.9)
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and this equals ∆3,4În(τ, u, µ0, ϕ − ϕ0)∆3,4, as is clear by the substitution ϕ′ =
ϕ+ϕ0 −ψ and the periodicity in azimuth. Consequently, Eq. (E.8) holds for every
order of scattering n ≥ 1. Obviously it holds also for n = 0, but this is a trivial
case. By substitution of u = −µ and u = µ, respectively, in Eq. (E.8) we find in
particular that relations e and f of Display 4.2 hold for every order of scattering.

Considering light incident at the bottom of a homogeneous or inhomogeneous
slab, we should replace Eq. (E.1) by

Î0(τ, u, µ0, ϕ− ϕ0) =

0, 0 < u ≤ 1,

e(b−τ)/uδ(u + µ0)δ(ϕ− ϕ0)
π

µ0
E, −1 ≤ u < 0, (E.10)

keep Eqs. (E.2), (E.3) and (E.7) as they are and replace Eq. (E.5) by

Ĵ1(τ, u, µ0, ϕ− ϕ0) =
a(τ)
4

e−(b−τ)/µ0 Z(τ, u,−µ0, ϕ− ϕ0). (E.11)

By definition, we then obtain for the remaining multiple-scattering matrices

În(τ, u, µ0, ϕ− ϕ0) =


R∗
n(µ, µ0, ϕ− ϕ0), τ = b and 0 < u = µ ≤ 1,
T ∗
n(µ, µ0, ϕ− ϕ0), τ = 0 and − 1 ≤ u = −µ < 0,
U∗
n(τ, µ, µ0, ϕ− ϕ0), 0 < u = µ ≤ 1,
D∗
n(τ, µ, µ0, ϕ− ϕ0), −1 ≤ u = −µ < 0.

(E.12)
By using Eqs. (E.3) and (E.11) we see that

În(τ, u, µ0, ϕ− ϕ0) = ∆3,4În(τ, u, µ0, ϕ0 − ϕ)∆3,4 (E.13)

holds for n = 1 and by using Eq. (E.7) we readily find it to hold for every n ≥ 1,
and obviously also for n = 0. By making the proper substitutions in Eq. (E.13) as
indicated in Eq. (E.12), we find that the relations indicated by the letters k and l in
Display 4.2 hold for every order of scattering. It may be noted that by taking τ = 0
and τ = b, respectively, we find relations e, f, k and l of Display 4.1 to be correct for
every order of scattering.

The validity of relations a and b in Display 4.2 for every order of scattering in a
homogeneous atmosphere is obvious from the fact that the situation at depth τ in
a slab is the same as at depth b − τ after turning the slab and lightbeams upside
down.

Finally, for every order of scattering in a homogeneous atmosphere relation q in
Display 4.2 is a simple combination of a and k, while relation r follows directly from
b and l.

Summarizing, all relations in Display 4.2 hold for every order of scattering and
therefore also for the sums of any number of orders of scattering, including infinite
sums.
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E.3 Multiple-Scattering Matrices as SPM Matrices

We have seen in Subsection 3.3.2 that the phase matrix is a sum of pure Mueller
(SPM) matrices. For properties of an SPM matrix we refer to Sec. A.2. Hence
Ĵ1(τ, u, µ0, ϕ − ϕ0) is also an SPM matrix, since, according to Eq. (E.5), it is
a positive multiple of an SPM matrix. It now follows from Eqs. (E.2)-(E.4) by
induction that În(τ, u, µ0, ϕ − ϕ0) and Ĵn(τ, u, µ0, ϕ − ϕ0) are SPM matrices for
n ≥ 1. It is obvious that Î0(τ, u, µ0, ϕ− ϕ0) is a pure Mueller matrix and therefore
also an SPM matrix. Consequently, for homogeneous as well as inhomogeneous
atmospheres R, T , U and D are SPM matrices for all values of the arguments
and for every order of scattering as well as for any finite or infinite sum thereof.
Analogous proofs can be given for R∗, T ∗, U∗ and D∗.



Appendix F

Supermatrices and Extended
Supermatrices

Extended supermatrices are 4N × 4N matrices A with elements As,t that can be
partitioned in the form

A =
(

Agg Aga

Aag Aaa

)
, (F.1)

where the superscript g (g =gausspoints) stands for the entries with s, t = 1, . . . , 4n
and the superscript a (a =additional points) for the entries with s, t = 4n+1, . . . , 4N .
Then the 4n× 4n matrix Agg is the corresponding nonextended supermatrix. Since
one multiplies extended supermatrices by disregarding all terms involving only non-
Gauss point contributions [See Eq. (5.81) with the exception of attenuation matrices
E(b)], one can model this multiplication by the supermatrix product � defined by

A�B =
(

Agg Aga

Aag Aaa

)
�
(

Bgg Bga

Bag Baa

)
=
(

AggBgg AggBga

AagBgg AagBga

)
, (F.2)

so that the nonextended supermatrix corresponding to A�B is AggBgg, the usual
matrix product of the nonextended supermatrices corresponding to A and B. In
terms of an ordinary matrix product one has

A�B =
(

Agg

Aag

)(
Bgg Bga

)
, (F.3)

which is the product of a 4N × 4n matrix and a 4n× 4N matrix. It is immediately
clear that A�B is constructed from the first 4n columns of A and the first 4n rows
of B.

If one of the matrices A and B equals E(b), then the definition of supermatrix
multiplication is to be modified. Instead, we define

E(b)�B =
(
E(b)ggBgg E(b)ggBga

E(b)agBag E(b)agBaa

)
=
(
E(b)gg 0

0 E(b)aa

)(
Bgg Bga

Bag Baa

)
(F.4)
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and

A�E(b) =
(

AggEgg AgaEaa

AagEgg AaaEaa

)
=
(

Agg Aga

Aag Aaa

)(
Egg 0
0 Eaa

)
, (F.5)

where we recall that E(b) is a diagonal matrix so that E(b)ag = 0 and E(b)ga = 0.
The extended supermatrix product of E(b) and E(b′) is defined by either Eq. (F.4)
with B = E(b′) or by Eq. (F.4) with A = E(b) and equals E(b+ b′). The extended
supermatrix product of cE(b) + A and c′E(b′) + B where c and c′ are scalars, is
defined by linear extension of the definitions contained in Eqs. (F.2)-(F.5), namely
by

(cE(b) +A)�(c′E(b′) +B) = cc′E(b + b′) + cE(b)�B + c′A�E(b′) +A�B
= cc′E(b + b′) + cE(b)B + c′AE(b′) + (A�B).

(F.6)

Thus only the term A�B in the right-hand side of Eq. (F.6) involves an extended
supermatrix product; the other terms are usual matrix products.

The extended supermatrix product is associative, i.e., it has the property(
[cE(b) +A]�

[
c′E(b′) +B

])
�
[
c′′E(b′′) +C

]
= [cE(b) +A]�

([
c′E(b′) +B

]
�
[
c′′E(b′′) +C

])
. (F.7)

In fact, using Eq. (F.6) to write either side as the sum of eight terms we need to
verify associativity for each corresponding pair of a term on the left and a term on
the right. The simplest verification is to prove that(

E(b)�E(b′)
)
�E(b′′) = E(b + b′)�E(b′′)

= E(b + b′ + b′′) = E(b)�E(b′ + b′′) = E(b)�
(
E(b′)�E(b′′)

)
. (F.8)

The most involved verification is the following argument:

(A�B)�C =
(

AggBgg

AagBgg

)(
Cgg Cga

)
=
(

AggBggCgg AggBggCga

AagBggCgg AagBggCga

)
=
(

Agg

Aag

)(
BggCgg BggCga

)
= A�(B�C). (F.9)

We shall omit the other seven verifications of associativity. As a result of the asso-
ciativity property, we can define repeated extended supermatrix products, such as
integer powers of extended supermatrices.

Extended supermatrix multiplication is defined on the set of real matrices of the
form cE(b) +A, where c is a real scalar, b ≥ 0 (so that E(0) = 1) and A is a real
matrix. This set is closed with respect to addition of matrices, multiplication by a
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real scalar and extended supermatrix multiplication as defined by Eq. (F.6). On
this set extended supermatrix multiplication is associative and has E(0) = 1 as its
unit element (in the sense that 1�(cE(b) +A) = (cE(b) +A)�1 = cE(b) +A).
Further, given cE(b) +A there exists c′E(b′) +B such that

(cE(b) +A)�(c′E(b′) +B) = (c′E(b′) +B)�(cE(b) +A) = 1, (F.10)

if and only if b = 0, c �= 0 and det(c1+ Agg) �= 0. In fact, in this case we have

c′1+B =
(

(c1+ Agg)−1 −1
c (c1+ Agg)−1Aga

−1
cA

ag(c1+ Agg)−1 1
c2

{
c1−Aaa + Aag(c1+ Agg)−1Aga

}) , (F.11)

where (c1+ Agg)−1 is the usual matrix inverse of c1+ Agg.
For integer powers of products of extended supermatrices we have the following

result:

(A�B)� . . .�(A�B)︸ ︷︷ ︸
p factors A�B

=
(

Agg

Aag

)
(BggAgg)p−1

(
Bgg Bga

)
, (F.12)

where p = 1, 2, 3, . . .. By the induction principle it suffices to prove Eq. (F.12) with
p replaced by p + 1 under the assumption that the unaltered Eq. (F.12) is true.
Indeed, if Eq. (F.12) is true, then

(A�B)� . . .�(A�B)︸ ︷︷ ︸
p+1 factors A�B

= (A�B)�

(A�B)� . . .�(A�B)︸ ︷︷ ︸
p factors A�B


=
(

AggBgg

AagBgg

)(
Agg(BggAgg)p−1Bgg Agg(BggAgg)p−1Bga

)
=
(

Agg

Aag

)
(BggAgg)p

(
Bgg Bga

)
, (F.13)

which confirms the validity of Eq. (F.12) for all p.
Summing Eq. (F.12) for p = 1, 2, 3, . . . we obtain

∞∑
p=1

(A�B)� . . .�(A�B)︸ ︷︷ ︸
p factors A�B

=
(

Agg

Aag

) ∞∑
p=1

(BggAgg)p−1
(
Bgg Bga

)
=
(

Agg

Aag

)
(1−BggAgg)−1 (Bgg Bga

)
, (F.14)

provided all of the eigenvalues of BggAgg have an absolute value of less than 1. Here
we make use of the fact (cf. Golub and Van Loan (1983), Theorem 10.1.1 for M = 1
and N = T ] that for any square matrix T the series

∑∞
p=1 T

p−1 is convergent and
hence coincides with the inverse of 1 − T if and only if all of the eigenvalues of T
have an absolute value of less than 1.
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When all of the eigenvalues of the corresponding unextended supermatrix AggBgg

(and hence those of BggAgg, as we will see shortly) are strictly less than 1 in absolute
value, then the right-hand side of Eq. (F.14) can be written in terms of the extended
supermatrix A�B and the inverse matrix 1−AggBgg as follows:

∞∑
p=1

(A�B)� . . .�(A�B)︸ ︷︷ ︸
p factors A�B

=
(

(1−AggBgg)−1 − 1 (1−AggBgg)−1(A�B)ga

(A�B)ag(1−AggBgg)−1 (A�B)aa + (A�B)ag(1−AggBgg)−1(A�B)ga

)
.

(F.15)

Indeed, the right-hand side of Eq. (F.14) is first written in the form(
Agg(1−BggAgg)−1Bgg Agg(1−BggAgg)−1Bga

Aag(1−BggAgg)−1Bgg Aag(1−BggAgg)−1Bga

)
. (F.16)

Next, we observe that the eigenvalues of AggBgg and BggAgg coincide (cf. Golub and
Van Loan (1983), Problem P7.1.4 with m = n); moreover, if all of the eigenvalues
of AggBgg and hence all of those of BggAgg are less than 1 in absolute value, then
the inverse matrices (1−AggBgg)−1 and (1−BggAgg)−1 are related as follows

(1−BggAgg)−1 = 1+ Bgg(1−AggBgg)−1Agg (F.17)

as one easily verifies. It is then readily understood that Eq. (F.17) implies

Agg(1−BggAgg)−1 = Agg + [1− (1−AggBgg)] (1−AggBgg)−1Agg

= Agg + (1−AggBgg)−1Agg −Agg = (1−AggBgg)−1Agg

(F.18)

and similarly
(1−BggAgg)−1Bgg = Bgg(1−AggBgg)−1. (F.19)

Substituting Eq. (F.18) in the 1, 1 and 1, 2 elements and Eq. (F.19) in the 2, 1
element of the matrix on the right-hand side of Eq. (F.16), and using Eq. (F.17),
we obtain the right-hand side of Eq. (F.15), as claimed.

Equation (F.15) can be applied to compute the combined effect of the repeated
reflections when adding two layers in the adding-doubling method with light incident
at the top of the combined layer if extended supermatrices are used. Here A is the
reflection matrix of the top layer for illumination from below and B stands for the
reflection matrix of the lower layer for illumination from above.
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absorption coefficient, 40
adding equations, 144
adding method, 135
adding-doubling method, 135
addition theorem

for the generalized spherical func-
tions, 214

albedo
Bond, 131
effective, 176
of single scattering, 65
plane, 109
spherical, 131
surface, 109

amplitude, 3
amplitude matrix, 25
associated Legendre function, 209
associativity

of the extended supermatrix prod-
uct, 230

asymmetry parameter, 55, 183
asymptotic expressions

for conservative atmospheres, 183
for nonconservative atmospheres,
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asymptotic fitting, 183
attenuation matrix, 155

backward scattering, 37
birefringence

circular, 39
linear, 39

Bouger’s exponential law of attenua-
tion, 98

brightness, 2

characteristic equation, 182

coherency matrix
2× 2, 18
Cloude, 202

completely polarized light, 7, 9
completely unpolarized light, 6, 7
CP representation, 16, 18
cross-section

absorption, 27
average geometrical, 222
extinction, 27
scattering, 27

degree of circular polarization, 9
degree of linear polarization, 9
degree of polarization, 9
depolarization factor, 41
dichroism

circular, 39
linear, 39

distribution
gamma, 222
log-normal, 222
modified gamma, 222
power-law, 222

division points, 151
double refraction, 39
doubling method, 135

effective radius, 222
effective size parameter, 58, 222
effective variance, 222
electric field vector, 3
ellipticity, 4
extended supermatrix, 154, 229
extinction coefficient, 39

flux density, 2
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flux vector, 8
formal solution

of the RTE, 100
forward scattering, 37
Fourier decomposition

of a matrix with mirror symmetry,
86, 88, 127, 128, 147, 150

of the intensity vector, 148
of the phase matrix, 82, 84, 90

Gaussian quadrature, 153
generalized spherical function, 52, 207

Hölder condition, 212
handedness, 6

left-handed polarization, 4, 6
right-handed polarization, 4, 6

independent beams of light, 8
independent scattering, ii
intensity, 1
intensity matrix

n-th order, 226
intensity vector, 8
invariance relation, 186
invariant embedding, 136
irradiance, 2

Jacobi polynomial, 208
Jones matrix, 187, 188

King correction factor, 42

Lambert matrix, 163
Lambert-Beer law of extinction, 99
layer

isolated in space, 140
Leibnitz’s rule, 208
light

of zero order scattering, 100
reflected, 106
transmitted, 106

Lobatto integration, 154

macroscopically isotropic medium
with mirror symmetry, 49

Markov quadrature, 154
matrix inversion method, 156
medium
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homogeneous, 66
inhomogeneous, 66
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plane-parallel, 63
semi-infinite, 65

meridian plane, 66
mirror symmetry, 35
mirror symmetry relation, 127, 144
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for the ground surface, 163
for the phase matrix, 75, 78
for the scattering matrix, 50, 52

mirror symmetry theorem, 86
Mueller calculus, 187
Mueller matrix, 187
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non-depolarizing, 187
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totally polarizing, 187

multiple-scattering matrix, 108

natural light, 6
net flux, 1

downward net flux, 2
upward net flux, 2

norm
Euclidean matrix, 172
Euclidean vector, 172
Frobenius, 173

novel approximation, 105

optical depth, 65
optical thickness, 65
orthogonality property

of the generalized spherical func-
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orthogonality relation
for the associated Legendre func-
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for the generalized spherical func-
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for the Legendre polynomials, 211

partially polarized light, 7
phase function, 50
phase matrix, 68
phases, 3

initial phases, 3
plane of polarization, 6
plane of reference, 10
PM matrix, 26, 187, 188
polarizability tensor, 41
polarized intensity, 9
product

direct, 189
Kronecker, 189
tensor, 189

product method, 159
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quadrature formula, 151
quasi-monochromatic light, 6

Radau integration, 154
radiance, 2
radiation field, 1
radiative transfer equation (RTE), 99
Rayleigh scattering, 40
reciprocity principle, 29, 30
reciprocity relation, 34

for the ground surface, 163
for the phase matrix, 76, 78
for the scattering matrix, 50, 51
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of the associated Legendre func-
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of the generalized spherical func-
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of the Legendre polynomials, 209

reflection function, 107
reflection matrix, 106
refractive index, 45, 221
renormalization, 179
rotation matrix
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scalar approximation, 146
scattering angle, 24
scattering coefficient, 40
scattering function, 50
scattering matrix, 49, 51

of a collection of particles, 29
of a particle in a particular orien-
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scattering plane, 24
Simpson’s rule, 154
size distribution function, 221
size parameter, 45, 221
slab, 63
source matrix

n-th order, 226
first order, 226

source vector, 97
specific intensity, 1
spin matrices

Pauli, 19
SPM matrix, 29, 187, 198
state of polarization, 2, 3
Stokes criterion, 8, 204
Stokes parameters, 4

additivity property of, 8
sum of pure Mueller matrices, 29, 187,
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supermatrix, 152

extended, 154, 229
surface

ideal white flat, 107
Lambert, 163
nonabsorbing Lambert, 107
perfectly white, 164
perfectly black, 160
totally reflecting Lambert, 164

symmetry relations
for multiple scattering matrices,
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for the Fourier components of the

phase matrix, 85

target decomposition, 204
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three-by-three approximation, 147
trace, 19
transmission function, 107
transmission matrix, 106
transport equation for radiation, 99
transpose
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trapezoid rule, 154
truncated matrix multiplication, 154

vibration ellipse, 4
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