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TRANSPORT EOUATION ON A FINITE DOMAIN 

II. REDUCTION TO X- AND Y-FUNCTIONS 

C.V.M. van der Mee 

In this article the solution of the time-independent linear 
transoort eauation in a finite homogeneous and non-multiplying 
medium is expressed in Chandrasekhar's X- and Y-functions through 
the solution of two linear systems of equations of finite order. 
The existence of the X- and Y-functions is proved in general. 

INTRODUCTION 

Being a continuation of the first part [15] this article 

contains a rigorous study of the integro-differential equation 

(o.1) 

~(x,~) + ~(x,~) = 

+1 2u 

- 1  

( - 1 ~ + 1 ,  O<x<~<+®) 

with boundary conditions 

( 0 . 2 )  ~ ( 0 , ~ )  = ~ (~ )  ( 0 ~ 1 )  , ~ ( ~ , ~ )  = ~ (~ )  ( - 1S~<0 ) .  

This so-called "finite-slab problem" plays an important role 

in radiative transfer of unpolarized light (cf. [5,22,11]) 

and in neutron transport with uniform speed (cf. [6]). Given 

the nonnegative "phase function" ~ e L1[-i,+l] and the boun- 

dary value function ~Lp[-1,+l] (13p<+~), the oroblem is to 
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compute the solution ~ of the boundary value problem (0.1)- 

(0.2). More precisely, introducing the vector ~(x) in [ [-1,+1], 
P 

the operators T and B and the projections P+ and P_ on 

/p[-1,+l] by 

(0.2a) ~(x)(~) : ¢(x,~) , (Th)(~) : ~h(~); 
(-lfi~l+l,O<x<~) 

I[A- I ~(~'+¢l---~¢l--'~2cos~)d~ h(~')d~'; 0.3b) (Bh)(~) : _IL2 ~ 0 

{ h(~)'~LO; [i ,~0; 
0.3C) (P+h)(~) : (P_h)(~) : 

0 .,~<0; (~),~<0, 

the problem is to find a vector-valued function ~:(0,T)÷ 

[p[-1,+1] such that T$ is strongly differentiable and 

satisfies the equations 

(0.4) (T@)'(x) : -(I-B)$(x) (0<x<T); 

(o.5) limllP+¢(x)-Pspllp : o , limllP_¢(x)-P_mllp : o. 
x+0 x+T 

Instead of (0.5) for X[ip[-1,+l] one might also consider the 

more general boundary conditions 

(0.6) limllTP+,(x)-P+xllp = 0, limllTP_*(x)-P_Xllp : 0. 
x~0 x+~ 

For p=2 the finite-slab problem was stated in the form (0.4)- 

(0.5) by Hangelbroek [8]. Assuming that ~6[r[-1,+1] for some 
+1 

r>l, is nonnegative and fulfills c = [_l~(t)dt31, on [p[-l,+l] 

(l!p<+~) the boundary value problems (0.4)-(0.5) and (0.4)- 

(0.6) were proved to have a unique solution (see [14]; for p=2 

the problem (0.4)-(0.5) was shown to be well-posed in [12]). 

In most practical situations one cuts off the Legendre 

series expansion of the phase function ~ and confines the 

description to polynomial phase functions of the form 

N 

(0.7) ~(t) = Z an(n+~)Pn(t) (-lit!+1) , 
n=0 

Pn(t) = (2n.n~)-lldln(t2-1)n is the usual Legendre poly- where 
% - - j  

nomial. The constraints on ~ imply that 0!a0~l and -a0iania 0 

(n=l,2,...,N). The cases 0!a0<l and a0=l are usually called 
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the non-conservative and the conservative case. Astrophysicists 

are accustomed to write the solution of (0.1)-(0.2) (with 

~(p)=0 for -l~v<0) in terms of the reflection and transmission 

functions S and T (resp. p and o) of Chandrasekhar [5] (resp. 

Sobolev [22]). Recently symmetries of this problem induced 

Hovenier [9] to use the so-called exit function instead. 

The article [15] and its present continuation aim at a 

synthesis of the rigorous theory in mathematics (C8,12,13,14], 

for instance) and the analytic expressions partly derived and 

partly stipulated by astrophysicists (C5,18,21,10], for 

instance). In [15] reflection and transmission operators were 

introduced; in terms of the unique solution of the boundary 

value problem (0.4)-(0.5) they were defined as follows: 

P+~+T P ~ ~(T) = R P ~+T+ P+~. ~(0) = R+~ -~ - ' -T - 

The connection with Sobolev's reflection and transmission 

functions is given by 

1 
(R+ ~) ( -V)  = 2 [ v p ( v , v ) ~ ( v ) d v ;  

0 
1 

( T + ~ ) ( ~ ) - e - ~ / ~ e ( ~ )  = 2 I u o ( u , ~ ) e ( u ) d ~ .  
0 

In [15]  these operators were expressed in the 2N+2 auxiliary 

functions R* P and T~ P n (n=0,1,...,N) and these functions 
+T n 

were related to functions studied in [5,18,21]. 

In this second part we shall reduce the operators R+~ and 

T+T further by expressing R~ P n and T~TP n in X- and Y-functions 

through a pair of polynomials. For the isotropic case (N=0) 

the X- and Y-functions were introduced by Ambartsumian C1] 

and generalized to the anisotropic case by Chandrasekhar [5]. 

For nonnegative characteristic functions ~(p) their existence 

was established by Busbridge [2J and constraints on the 

equations they satisfy were derived by Mullikin [16,17] (also 

[3]). Inspired by partial results of Chandrasekhar C5] (for 

NS2) and Mullikin' C18] Sobolev [21] accomplished a complete 
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reduction of the reflection and transmission functions to X- 

and Y-functions. Hovenier [10] exploited the exit function to 

get formulas more expedient than the ones of Sobolev [21]. 

In the non-conservative case the polynomials appearing in the 

reduction formulas ([21,10]) are commonly believed to be unique- 

ly specified by the equations given for them. 

In this article we construct the physically relevant 

solutions X and Y of Chandrasekhar's X- and Y- equations by 

setting 

X(~) ± Y(~) = [ ( R ~  ± T : T J ) p ± ] ( ~ ) ,  

where  p* i s  some p o l y n o m i a l  o f  d e g r e e  ~N and ( J p ) ( ~ )  = p ( - ~ ) ,  

and derive reduction formulas of the type 
n 

(0.8a) (R~ Pn)(~) : qn(~)x(~)+(-1) Sn(-~)Y(~); 
(0~sl,n=0,1,...,N) 

(0.8b) (TSTPn)(~) = Sn(~)X(~)+(-1)nqn(-~)Y(~), 

where qn and s n are polynomials of degree ~N. Up to notation 

these formulas were stipulated by Sobolev [21]. We exploit 

the HSlder continuity of the functions R$ P n and T~ P n on [0,i] 

(established in [15]) to construct their analytic continuations 

and these continuations in turn enable us to prove the existence 

of unique polynomials qn and s n such that (0.8) holds true. 

Further, we derive linear equations for the linear combinations 

qn4(-l)nsn and qn-(-l)Sn; these equations were found by Hovenier 

[i0] by decoupling related equations due to Sobolev [21]. Here 

we study the invertibility properties of these linear equations 

in detail and in the conservative case a0=l this analysis will 

produce additional constraints on the polynomials qni(-l)nsn . 

This article draws back on [15], but it is of a less 

operator-theoretical nature. The first section is devoted to 

the analytic continuation of R~TP n and TSTP n and some of its 

consequences. The existence of the X- and Y-functions and their 

connection to solutions of a convolution equation make up the 

contents of Section 2. In Section 3 the representations (0.8) 

are deduced. A detailed study of the polynomial t~=qn±(-1)ns n -  

follows in Section 4. 
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We conclude the introduction with notational remarks. By J 

we denote the "inversion symmetry" (Jh)(p) = h(-p), by ~ the 

Riemann sphere CU{-} and by Pn the usual Legendre polynomial 

(so that Pn(1)=l). The degree of a polynomial p is written as 

deg p; deg 0 = -1. All Hilbert and Banach spaces will be complex 

and <.,.> is the usual inner product on L2[-1,+1]. The algebra 

of bounded linear operators on the Banach space H is written as 

L(H) and its unit element as I H (or I). The spectrum, null space 

and range of an operator T are denoted by ~(T), Ker T and ImT, 

respectively. 

1. ANALYTIC CONTINUATION, 

In this section for phase functions of the form (0.7) we 

prove the following analytic continuation result and some 

corollaries. 

THEOREM 1.1. Let 0<a0<l and -an!a0/a n (n:l,2,...,N). 

Then for every polynomial p the functions R~p and T~TJp o__nn 

[0,1] can be extended to functions analytic on ~-.{0}, uniformly 

H$1der continuous o__nn bounded part_~s of the closed risht half- 

plane and satisfying the following identities: 

(1.1a) lim(R:~p)(u) : p(O) , lim(T~TJp)(~) = O; 
p~O ~+0 

(1.1b) (R:Tp)(-p) = e+X/P(T~ Jp)(p) (0 f pE~). 

Proof. We recall the definitions of the polynomials H0, H1, H2,... , 

the characteristic binomial ~(v,p), the dispersion function 

A (~) and the function ~(v) (cf.[15],(4.1)-(4.3)), various 

symmetry relations ([15],(4.4)), the limit relationship (4.6) 

of [15], the absence of common zeros of ~(v) and ~(v) on (-1,+1) 

and the non-vanishing of the limit of A(~) as ~+±1 ([15], 

Proposition 4.1). These results will be used in the proof. 

According to Theorem 5.1 of [15] there exists a right invert- 

ible operator F+:L2[-1,+I]÷L2(N) , with N = [-1,+1]u{v¢[-1,+1]: 
c 

A(v) = 0} and o a finite Borel measure on N, such that 
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(1.2) (F+Pn)(V) = Hn(V) (v£N, n=0,1,2,...). 

In Section I of [15] a spectral decomposition of AT -I was 

presented, where A : I - B; in terms of related concepts we have 

the diagonalization properties 

(l.3a 

(1.3b 

(F+e-TAT-ip,h)(v) 
P 

: { e-T/v(F+h)(v0 ,v6NU(--,0'vE:~'U(0'+" 

(F+e+~AT-I { P*h)(v) : 
m 

e 

U 0 ,v£N (0,+~ ; 

+T/V(F+h)(v ,v£NU(-',0 ; 

(1.3c (F+P~h)(v)~0 , (F+(I-~AT-I)p~h)(v)~0 ; v6N. 

These identities are immediate from the diagonalization 

(l.3d) (F+h)(v)~0 (h£ImP~),(F+S+h)(v):v(F+h)(v) (h£KerP~), 

where S + is the unique bounded operator on KerP~ such that 

TP 0 + S+A(I-P0] = T ([15]; Th.5.1 and Eq.(5.4), also the 

definition of S + in Section 1). In terms of the inversion 

symmetry (Jh)(~) : h(-~) we have 

(1.3e) (F+Jh)(v) : (F+h)(-v) (v£N). 

Let us recall how the reflection and transmission operators 

are defined ([15]~(2.1),(2.2),(2.6)). For every pEL2[-I,+I] 

formulas (I.3a)-(1.3c) imply that 

(F+R~xp)(v) : (F+(I-R + )p)(v) :(F+p)(v) - 
-T 

-e (F+T~p)(v) : (F+p)(v)-e-T/V(F+T* p)(v); 
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+ + -~Iv (F+T$ Jp)(v) : (F T+ Jp)(v) : e (F+R TJp)(v) : 

= e-T/~(F+(I-R* )Jp)(~) = e-~/V(F+Jp)(v)-e-T/V(F+R[TSp)(v). 

Applying Eq.(3.2b) of [15] and (1.3e) we get 

(F+R~p)(v) = (F+p)(v) -e-~/V(F+TSTJp)(-v); 

(F+TSTJp)(v)= e-T/V(F+p)(-v)-e-T/V(F+R~ p)(-v). 

Adding and subtracting these equations and abbreviating 

F±:: R$T±T~TJ we obtain 

(1.4) (F+F±p)(v)±e-T/V(F+F±p)(-v) : (F+p)(v)±e-T/V(F+p)(-v). 

Observe that F±p : R~TP*T~TJp£H+::i2[0,1] (i.e., (F±p)(v) : 0 

for v6[-l,0)). So for v£NU(0,+=) the substitution of an express- 

ion for F + (i.e., Eq.(5.1) of [15]) into (1.4) yields 

(1.5) 
~(v)(r±p)(v) - ~Iv(~-v)-1~(v,~)(r±p)(~)d~± 

0 

±e-T/vSlv(v+~)-l~(-v,~)(F±p)(~)d~=(P+p)(v)±e-~/V(F+p)(-v), 
0 

where 0<vjl or v>l with A(v)=0. If P:~n is a Legendre 

polynomial, then (1.2) yields that (F p)(v)*e-T/V(F+p)(-v) = 
[1±(-1)he -T/v] Hn(v) Formula (1.5) will be crucial to the 

remaining part of this article. 
± 

Let us introduce the function A p implicitly by 

A(~)(A±p)(~)-Sl~(~-~)-l~(~,~)(r±p)(~)d~± 
0 (1.6) 

~(l+u)-l¢(-~,u)(r )(u)du=(F+p)(1)±e - (F+p)(-l), 
0 

where p (and thus F+p) is a polynomial. This equation defines 

(A±p)(1) uniquely for ~[-i,+l] as a meromorphic function whose 

poles could only be zeros of A(1). Because of Corollary 5.3 of 

[i5] the function F±p=RSTP±T~TJp is HBlder continuous on [0,i] 

of exponent 0<~<1 '(i.e., I~-vl-eI(r±p)(~)-(F±p)(v)I has a finite 
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supremum for 03~#v~1). The H~ider continuity will be exploited 

to prove that A±p is the analytic continuation of F±p to ¢~{0}. 

Clearly, a±p has its poles within the set of zeros of A(~). 

But from (1.5) (applied for l<v<+~ with A(v):~(v):0) it follows 

that a(~)(a±p)(~)÷0 as ~÷v. As ^(~) has simple zeros only (see 

Section 4 of [15] and the references given there), it follows 

that a±p has an analytic continuation outside the set 

[-1,+I]u{~¢(-~,-i):^(~):o}. 
Recall that F±p is uniformly HSlder continuous on [0,1] 

(cf. Corollary 5.3 of [15]).It is well known (Proposition 4.1 of 

[15] and the references given there) that 

lim A(t±i£) : ~(t)±i~t~(t) # 0 (-i<t<+1). 
£~0 

+ 

From (1.6) it is clear that the limits lim r (t±i£) and 
E+O A± ~ r-(t±i£) exist (-l<t<+l,t#0). Further, since obviously (X) 

and a±(~)  a re  complex c o n j u g a t e s ,  t he  Cauchy-Schwarz r e f l e c t i o n  
± 

p r i n c i p l e  i m p l i e s  the  e x i s t e n c e  o f  f u n c t i o n s  a , g ± : ( - 1 , 0 ) U ( 0 , 1 ) ~  

such that 

(1.7a) lim r+(t±i£) : ~+(t)±i~+(t); 
£~0 

(l.7b) lim r (t±i£) : ~ (t)±i8 (t). 
£+0 

To prove that ~±(t) : r±(t) and 8±(t) : 0 (0<t<l), we sub- 

stitute ~:t+iE and ~:t-i£ into (1.6), compute the limits as £+0 

and add and subtract the resulting equations. Here we make use 

of the uniform H61der continuity of r±p in an essential way. 

We obtain the following linear system of equations: 

[~t~(t) ~(t) +(t) ~t~(t)(F±p)(t) 

where 
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± 
c (t):(F+p)(t)ie-~/t(F+p)(-t)+~It(~-t)-1¢(t,~)(r±p)(~)d~$ 

o 

e-r/tslt(t+~)-l¢(-t,~)(rip)(~)d~ : x(t)(r±p)(t) 
0 

(cf.(l.5) with v=t). As the determinant X2(t)+~2t2~(t)2#0 

(see Proposition 4.1 of [15] and the references given there), 
± ±p the linear system has a unique solution, namely ~ (t)=(F )(t) 

and 8*(t):0 Hence, ALp is the analytic continuation of F ± • p 

to the set ¢~{[-I,O]U{~£(-~,-I):A(v):O}}. 
± 

To continue r p to {~{-l,O,i} analytically, we define 

± 8 ± and on (-1,0) (as in (i.7)) and derive in an analogous way 

the following linear system of equations: 

~t~(t) X(t)][B±(t ,e-X/t~t~(t)(F+p)(-t) 

where 

1 

di(t):(F+p)(t)±e-X/t(F+p)(-t)- I t(~-t)-l~(t,u)(F±p)(~)du~ 

1 0 

e -'r/t ~ t(t+~)-l~(-t,~)(r±P)(~)d~ : ±e-'r/tx(t)(Fep)(-t) " 

0 

Solving the system we get ~±(t) : ±e-~/t(r±p)(-t) and 8±(t):O, 

-l<t<0. Hence,  t he  a n a l y t i c  c o n t i n u a t i o n  A±p of  r i p  has  t he  
property 

(1.8) (A±p)(X) : ± e-~/X(A±p)(-X). 

So A±p does not have poles in the left half-plane and is analytic 

on ¢~{-i,0,1}. 
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To show that the singularities of A±p at +1 and -1 are 

removabl~, one has to distinguish between two cases. In case 

~(1) : n:0Z an(n+~)Hn(1)Pn(1) : 0, A(~) has a finite and non- 

zero limit as ~+1 and ~[0,11 (see Proposition 4.1 of [151 and 

the references given there). Now the right-hand side of (1.6) 

has a finite limit as ~÷i and ~[0,11 (see Eq.(29.4) of [19]), 

and thus A±p tends to a finite limit as ~+i and ~£[0,11. Next 

assume ~(i)~0. If A±p would not be analytic at ~:I, it would 

have an essential singularity there (note that (A±p)(~)÷(r±p) 

as ~+i). According to the Casorati-Weierstrass theorem, for 

every c£¢ there would be a path r c in ¢~[0,11 such that 

l(A±p)(~)-cl÷0 as ~+i along rc" From (1.6) it is clear that 
i 

for some function ~ bounded on F c Eq.(1.6) may be written as 

c~(1)log(A-1):$(1)(F±p)(1)log(~-l)+y(~) ; ~£F 
C 

([191, Eq.(29.4)). Here the branch cut of log(~-l) is chosen to 

be the half-line (-~,i). For c~(r±p)(1) a contradiction arises. 
± 

So in this case too the function A p is analytic at ~=1. By 

(1.8) it is analytic at ~=-1 too. 
± 

We now know that for any polynomial p the function r p has 

continuation to ¢~{0}. But Fip=R~Tp±T~ Jp. So an analytic R~TP 

and T~TJ p have analytic continuations to ¢~{0} too. Further, 

(1.8) implies (1.1b). 

Finally, if Ec{~:Re~0) is bounded, [0,1]cE and 

EU{v£(1,+~):A(v)=0}=~, then A(~) is HSlder continuous and bounded 

away from zero on E~[0,1]. Using this we easily prove that r±p 

(and thus R~p and T~ Jp) are uniformly HSlder continuous on E 

(cf.(1.6)). This completes the proof.m 
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COROLLARY 1 . 2 .  Le..t 0 < a o < l  and - a 0 3 a n 3 a o ,  and p u t  

m = m a x { n : a n - l : l }  f o r  a o : l  and m:0 ....... f o r  0 < a o < l .  L e t  s : m  f o r  e v e n  

m and s:m+l for odd m. Then the following identities are equi- 

valent: 

( i )  R ~ p + T ~ q = O ;  

(ii) R+~p+T+~q has an analytic continuation to a neighbour- 

hood of ~:0; 

(iii) there exists h 0 £ span{P0,Pl,...Ps_ i} such that p:Th 0 

and q : -(TA+T)h , where A:I-B and T and B are given 

b_!y (0.5). 
Here p and q are polynomials. In particular, if 0<a< 1, there is 

a one-to-one correspondence between pairs of polynomials p, q 

and functions R* +T* q 
, + T  + T  " 

PROOF. (i)~(ii) Trivial. 

(iii)~(i) Let p:Th 0 and q=-(~A+T)h 0 for some h 0 6 span {P0,PI, 

.... Ps_1). From Proposition 4.2 of [15] it appears that 

span {P0,PI,...Ps_ I} is the "singular subspace" H0. connected to 

the spectrum of T-IA at ~=0. Using the definitions of R+T and 

T+T (i.e.,(2.2a)-(2.2b) in [15]) and the orthogonality properties 

(l.6a)-(l.6b) in [15] we obtain 

where we have used Proposition III 3.2 of [12]. 

(ii)~(iii) If R~T+T~ q has an analytic continuation at ~=0, it 

is an entire function (see Theorem 1.1). Since ¢(v,~) is a 

binomial in v and ~, F+p is a polynomial whenever p is a poly- 

nomial, and A(~) has a zero at infinity of order s (see Section 4 
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of [15]), formula (1.6) implies that 

(1.9) o[ max N de+ P> 1 

Hence, R~p+T~q : ~r+(p+Jq)+~r-(p-Jq) is a polynomial of degree 

at most max (N,deg p, deg q). 

As derived at the beginning of the proof of Theorem 1.1, 

(F+R:~p)(v) : (F+p)(v)-e-~/V(F+T~Tp)(v); 
(vE[-I,+I]U{~E[-I,+I]:A(~):0}) 

(F+T:~ q)(v) = e-~/V{(F+q)(v)-(F+R*-Tq)(v)} 

(F+(q_R,Tq_T, p) +T/ SO - - )(~) = e Vr(v) for some polynomial r. But 

by Corollary 5.3 of [15] the left-hand side is H6ider continuous 

on [-1,+1] except for a jump at v:0, and therefore it is bounded 

in a neighbourhood of v:0. So r(v)~0, and thus 

(I-R[T)q-T[TpEKerF + : span{TP0,TPI,...,TPs_ 1} 

(cf.[15], Theorem 5.1). Therefore, there exists a unique 

k0EH 0 : span{P0,Pl,...,Ps_ 1} such that (I-R[)q-T~ p:Tk 0. Lemma 

2.1 of [15] implies that 

+ + 

R+~q-T_Tp = Tk 0. 

Substitute Eq.(2.1) of [15], premultiply by P* and P* and p m 
conclude that 

(V~)-1(P+q-P_p) : T k  O .  

But TV :V+T ([15],(1.10)). As p and q are polynomials, one has 
T T 

p=TP0 and q=Tq 0 for certain P0,q0 E span {P0,PI,...,Ps_I}. Note 

that P+q0-P_Po=V k0=P+k0 + P (I-TT-IA) k ([15],(1.8b)). So 
- 0 

P+q0=P+k0 and -P_p0=P_(I-~T-IA)k0 . As these equations concern 

polynomials, we conclude that q0=k0 and -p0=(l-~T-1A)ko. Put 

h0=-(l-~T-IA)ko. Then p=Th 0 and -(TA+T)h0=(~A+T)(I-~T-IA)k0 
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:~Ako+Tko-~Ako-~2AT-1Ako:Tko:Q,because(T-]A)2ko:0 ([12], Pro- 

position III3.2).m 

From the corollary it follows that R~ p and T~TJp have an 

essential singularity at ~=0 whenever p ~ 0. It is more 

complicated to find all polynomials p such that F±p=R~TP±T~TJp 

=0. Such a polynomial p has the form p=Th 0 with deg h0~s-1 and 

±Jp=-(TA+T)h 0 (thus (l±J)p=-TAh0). If m=max{n:an_i=i} is even, 

then s=m and T-IAh0=0 ([15], Proposition 4.2), and thus 

(I±J)p=0 (i.e., p is an odd resp. even polynomial; thus h0:0 

is an even resp. odd polynomial). If m:max{n:an_l=l} is odd, 

then T-IAh0 E span{T-Ip } which is a set of even polynomials m 
(cf.[15], Proposition 4.2). Then r+p=0 and p=Tho imply that 

the even polynomial (I+J)p £ span{P }, and thus (I+J)p=0 (i.e., 
m 

p is odd and therefore h 0 is even). On the contrary, for m odd 

F p=0 and p=Th 0 imply that the odd polynomial (I-J)p E span{Pm}. 

As deg h0~s-l=m, we get h0=~(I-J)h0+$(I+J)h 0 E span{Pi,P3,... , 

Pm}@Span {T-IP m} and thus for h0:~IPI+~3P3 + +EmPm+nT-1p 
"'' m 

the identity (I-J)Th0=-TAh 0 (and thus (I+J)h0=-TT-IAh0) yields 

2nT-IPm=-T~m(1-am)T-Ip m. So n=-~T(l-am)$ m. Summarizing these 

results we get 

(1.1o) 

+ 
{p:r p = 0} = span{TPo,TP2,...,TPs_2}; 

{p:F p I 
span{TPI,TP3,...,TPm_ i} for even m; 

= 0}= I span(TPI'TP3''" 'TPm-2}@ 

[@ span(TPm - ~T(!-am)P m} for odd m. 

Observe that dim{p:r±p=0}:~s in all cases. 

We conclude this section with historical references. Eq. 

(1.5) (or (1.6)) is a linear singular integral equation for 

F±p=0 and the problem is to find a solution that admits an 

analytic continuation to ¢~{0}. Such linear singular equations 

appeared in [i8,21,i0]. Adding and subtracting Eq.(1.5) (for 
- - 1  + - -  r+p) and Eq.(i.5)'(for r-p)and using that R+~p-~(r p+r p) 
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and T+ Jp-~(F+p-F-p) one obtains a coupled system of linear 

singular integral equations for R~Tp and T~_Jp. For P=Pn the 

identities JPn=(-I)nPn,F+Pn=H n and JHn=(-1)~Hn can be applied 

to obtain a coupled system of linear singular integral equations 

for RSTP n and T~ P n. They were found by Mullikin ([18],(3.39)- 

(3.40)) and Sobolev ([21],(35)-(36)). For P:Pn the same trans- 

formations applied to (1.5) lead to separate linear singular 

integral equations for r+P and r-P n ([10],(12)-(13)). n 

2. THE X- AND Y-FUNCTIONS 

In astrophysics the X-.and Y-functions are very important, 

at least from a historical point of view. First introduced for 

the isotropic case by Ambartsumian [1], they were studied 

further and generalized for polynomial phase functions by 

Chandrasekhar [5]. In a first mathematical study Busbridge [2] 

found them in the form 

(2.1) X(~):l+fe-X/~(x)dx , Y(u):e-T/U+;~e-(T-x)/U~(x)dx, 
0 0 

where ~: 0,~)÷iI(0,T) is the unique solution of the convolution 

equation 

(2.2) (0<x<~) 
T 

~(x) - S <(x-y)E(y)dy : K(x) 
0 

and K:(--T,+T)÷B is what we call the dispersion kernel 

1 

(2.3) K(X) : S z-l@(z) e-lxl/zdz (O~x£1~). 
0 

The dispersion kernel and the dispersion function are related 

as follows: 

(2.4) A(1) : i - ~ eX/lK(x)dx , Re I:0. 

In [13] (Theorem 5.1) it was proved that a solution 

of Eq.(2.2) in il (0,~) is unique and for this solution the 

functions X and Y in (2.1) satisfy two systems of singular 
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integral equations: 

(1) the (nonlinear) X- and Y-equations 

1 
2.5a) X(p):l+u~ X(p)X(v)-Y(p)Y(v) @(v)dv; 

0 v + p  
1 

2.5b) y(p):e-~/p+p[ X(p)Y(v)-Y(p)X(v) ¢(v)dv; 
0 v-~ 

(2) the linear X- and Y-equations 

1 1 
2.6a) A(p)X(u):I+p~ @(v)X(v) dv_e-T/Upl ~ ~(v)Y(v) dr; 

0 v - p  . v+~ 
1 0 I1,(v)x(v) 2.6b) A(~)y(~)=e-T/p+p. f ~(v)Y(v) dv_e-T/pU dr. 

v-U v+P 
0 0 

The linear equations (2.6) were first derived from 

Chandrasekhar's X- and Y-equations (2.5) by Busbridge ([2], 

Section 40). For nonnegative ~(u) Busbrid~e [2] proved 

Eq.(2.2) to have a solution ~, provided ~ ~(~)dps$. 
0 

PROPOSITION 2.1. Let 0sa0Sl and -a03a ~a 0 (n=l,2,..,N). 

If either K(x) is nonnegative on (0,T) or #l?@(z)Idzs~ , then 

Eq.(2.2) has a unique solution ~ in /I(0,T~. 

PROOF. If 0sa0s1 and -a0SanSa 0 (n=l,2,...N), one has 

1-2~l~(z)dz:A(~)~0 (cf.[15],Section 4), and therefore 
l 

f ¢Iz)dzs~. So if <(x)z0 on (O,T) (and thus on (-T,+~)), then 
0 

+ T  T I 

I I<(x)ldx:21 <(x)dx:21 *(z)(l-e-~/Z)dz<1; 
0 0 -T 

1 

if ~ 10(z)]dz~, then 
0 

T l 
7+Tl<(x)Idx:21 l<(x)ldx~21],(z)l(~-e-~/Z)dz<1. 
- T  0 0 

1 

As the norm of the operator (K~)(x) : f<(x-y)~(y)dy does not 

exceed ~+TIK(X)Idx , the norm of K is s~rictly less than +1, 

which c~pletes the proof.~ 
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The generalization of this proposition is not straight- 

forward. To prove the existence of a solution of Eq.(2.2) in 

general, we establish the following lemma first. 

LEMMA 2.2. Let 0<a031 and -a0ian3a0 (n:l,2,...,N). Then 

there exists a unique pair of functions X and Y that are analytic 

o_~n @ ~{o} and satisfy the linear X- and Y-equations (2.6). 
± 

For this pair of functions one can find polynomials p such that 

± 
X(~) ± Y(~) : (r±p)(,), 0_<~_<i. 

PROOF. Let us rewrite (1.6) using Eqs (4.2)-(4.3a) of 

[15] and obtain 

A(k)(A±p)(k)-kI(~-X)-l@(~)(r±p)(~)d~± 
0 

(2.7) 1 
±Xe-~/k~ (~+X)-l¢(~)(r±p)(~)d~:ri(X)±e-T/kr±(-k), 

0 

where re(X) is the following polynomial of degree 2max (N-s, 
deg p-s):  

N 1Hn(k)_Sn(U)pn(U)(r±p ) ~)d~. 
(2.8) r±(X):(F+p)(X)-X X an(n+½) I X-~ 

n=0 0 
1 i 

Next write A(X):I+Xf(~-X)-I~(~)d~-kS(~+X)-I~(~)d~ (cf.[15], 

4.3a)), substitute°(i.8) and rewrite (2.7) as follows: 

1 

A±p)(k):{r±(k)±e-~/Xr±(_k)}+l{ (A±P)(~)-(A±P)(k) ~-k ,(u,)d~ ; 

(2.9) 
1 

ke-T/~ (A±P)(~)-(A±P)(-k)~+X $( )__u_du. 
0 

Suppose p is a polynomial for which r ± = 0 (see (2.8)). 

Then p satisfies Eq (2.9) with r±(k)±e-~/kr±(-k)~0. If A ± • P 

would have an essential singularity at X=O, then, because of 
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the identity lim(a±p)(k):(r±p)(0) (as k÷0, Re k~0), for every 
i 

c f F (0) there would exist a path F c in the open left half- 

plane such that I(a±p)(~)-cl+0 as ~÷0 along F c. Then Eq.(2.9) 

(for X+0 along F¢) would imply c=0, contradicting the free 

choice of c. So A±p would be analytic at k=0 and therefore 

F±p would vanish. Conversely, if F±p=0, then F+p=0 (cf.(1.10)) 
± 

and thus r =0 (cf.(2.8)). 
± 

If the non-conservative case s=0 we have r =0 if and only if 

p=0, and so a simple dimension argument involving the vector 

space of polynomials of degree <N yields the existence of a 
± 

unique polynomial p such that 

±( N i H (k)-Hn(~) 
r ~)=(F+p±)(k)_~ Z an(n+½)[ n p (~)(rip±)(~)d~l 

n:0 0 ~-~ n 

Then X : ~(A+p+a-p -) and Y = ~(A+p+-A-p-) are analytic functions 

on ¢ w{0} that satisfy the linear equations (2.6). (To see 

this add and subtract Eq.(2.7) for &+ + - - , p and Eq.(2.7) for A p , 
+ - - 

and use that r p = r p e 1). For general s we remark that 
± 

R±p = r maps the space of polynomials of degree ! N into the 

space of polynomials of degree iN-s, while {p:R±p=0} is a space 

of dimension is. Hence, R ± is surjective, and so there exists 

a polynomial p± of degree 3N such that r±(l)el. In the same way 

as for s=0 we prove the existence of analytic functions X and Y 

on { w{0} that satisfy Eqs(2.6). 

It remains to prove the uniquness of solutions X and Y 

that are analytic on { ~{0}. But this is clear from the unique- 

ness of a Solution &±p of Eq.(2.7) that is analytic on ~ ~{0} and 

continuous on the closed right half-plane. The latter can be ' 

shown with the help of the argument of the second paragraph of 

this proof.m 

THEOREM 2.4. Let 0<a0~l and -a0~an~a 0 (n=l,2,...,N). 

Then there exists a unique solution ~ of the convolution 

equation (2.2) in LI(0,T). The functions X and Y defined in terms 

of ~ b_!y (2.1)satisfy Eqs(2.5) and (2.6). 

PROOF. According to Lemma 2.2 there exist polynomials 
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+ 

P such that 

Y(~)=~[R~ (p -p 

As t h e  f u n c t i o n  X i s  u n i f o r m l y  H S l d e r  c o n t i n u o u s  on any bounded  

s u b s e t  E o f  t h e  c l o s e d  r i g h t  h a l f - p l a n e  ( s e e  Theorem 1 . 1 ) ,  any 

H S l d e r  e x p o n e n t  0<~<l  may be t a k e n  (wh ich  a p p e a r s  f rom t h e  

p r o o f )  and X ( 0 ) = l ,  i t  f o l l o w s  t h a t  t h e r e  e x i s t s  [<~<1 s u c h  

that I(X(p)-l)/,[=O(Ipl~-1)(p+0 ,Re p=0). Therefore, 

s+i~Ix(p-l)-112dlpl<+~. So there exists [E[2(-~,+~) such that 
-i ~ 

X(p)-1=S+=e-X/P[(x)dx, Re p=0. However, X has an essential 

slngularlty at ~=0 of order ~x (see Corollary 1.2) and is 

analytic on the open right half-plane and continuous up to the 

imaginary line. The Paley-Wiener theorem implies that ~(x)=0 

for xE(0,~), and therefore [EL2(0,~)CLl(0,x). 

This proves the first part of (2.1). The second part follows 

with the help of the symmetry Y(p)=e-X/PX(-p). 

Using the first part of (2.1) one easily reduces 

A(~)X(~)=A(-~)X(p) to 

A(~)X(~)=l+f+~e-X/~{~(x)-~(x-y)~(y)dy-K(x)}dx, 
--~ 0 

where [(x)=O for xE(O,x). We have to show that 

(2.10) A(~)X(~)=l+~°e-X/~(x)dx+e-T/~+=e(~-x)/~£(x)dx,Re~0, 

where ~£L1(-~,+=). (We have put ~(x)=0 for 0Sxs~). 

Consider the Wiener algebra A of functions h on the 

extended imaginary line of the form h(~)=c+S+=e-X/~z(x)dx with 

cE¢ and ZELl(-=,+=) (see [7] for this algebra; however, in [7] 

the Fourier transform is used). Then A(~)X(~) belongs to A for 

c=l and z=~. According to Eq.(2.6a) one can write 

A(~)X(~)=I+g_(~) + e-T/~g+(,) (Re ~=0), 
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! 

where g_(u) : u# (v-u)-l~(v)X(v)dv is analytic on the open left 
0 half-plane and contlnuous up to the boundary, whereas g+(~) : 

-u#l(v+u)-l~(v)Y(v)dv is analytic on the open right half-plane 
0 

and continuous up to the boundary. Hence, A(~)X(u) admits the 

representation (2.10) and Eq.(2.2) is clear. 

The derivation of the non-linear equations (2.5) from (2.1) 

and (2.2) is a standard argument that can be found in Section 5 

of [13], for instance. D 

In many cases the functions X and Y in (2.1) do not provide the 

only solutions of Eqs (2.5) and (2.6). If the dispersion function 

A has zeros on {®~[-I,+1], these equations have infinitely many 

solutions. However, imposing suitable constraints one may 

specify X and Y by Eqs (2.5) (or (2.6)) completely (cf. [16,17]; 

also the erratum in Astrophys. J. 147, 858, 1967). 

3. REDUCTION TO X- AND Y-functions 

In Section 3 of [15] the search for analytic expressions for 

the reflection and transmission operators was reduced to the 

computation of the 2N+2 functions R~ P n and T~TP n (n=0,1,...,N). 

In the present section a further reduction is accomplished, 

namely to X- and Y-functions. 

THEOREM 3.1. Let 0<a0~l and -a0~an~a0 (n:l,2,...,N). 

For n=0,1,...,N there exist unique polynomials qn and s n suc__hh 

that 

(3.1a) (R: Pn)(H):qn(H)X(H)+(-1)nsn(-H)Y(H); 

(3.1b) (T~ Pn)(~):Sn(H)X(H)+(-1)nqn(-~)Y(~). 

Here the de~rees of qn and s n do not exceed max(N,n). The poly- 

nomials t~=qne(-1)nsn sat isfy,  the l i nea r  equation 
1 

t • ,(~,~)t~(~)-,(Y,~)t~(~) 
n (u):u; X(v)dv + 

0 v-~ 
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(3.2) 
l ~(p,V)tni(_v)_¢(y,v)t ± n(-P) 

0 v - p  
Y(v)dV+Hn(~). 

In the next section we shall investigate the properties of 

Eq.(3.2) further. Here we mainly aim at proving the represent- 

at±on (3.1). 

PROOF OF THEOREM 3.1. Let P be the (n+l)-dimensional 
n +~ 

vector space of polynomials of degree n, and let P=n~=0Pn . First 

we show that for p,q£P the function pX+qY = 0 if and only if 

p=q=0. This will imply the uniqueness of the polynomials qn and 

s in (3.1) once the representation (3.1) has be~nestablished. 
n 

If q would be non-zero, then r=Y/X would be a rational function 

satisfying r(1) r(-l)~l and lim0r(1)=0~+ (this follows from the 

identities X(-p)=e-T/UY(u), X(0)=I and Y(0)=0, which in turn 

follow from (2.1)). Contradiction. So p=q=0. Hence, for n=0,1, 

2,... the set 

Z ± = {tX±(Jt)Y:t£P n} 
n 

is a complex vector space of dimension n+l. 

TJp ± some p ±6 X±Y : R~Tpi±T~ for PN" So using the Recall that 

commutator relations (2.17a)-(2.17b) repeatedly, one proves the 
± ± 

existence of polynomials ql and q2 such that 

(3.3a) ± tX±(Jt)Y ± * = R+Tq I T+TJq2. 

However, f=tX±(Jt)Y satisfies the symmetry f(p)=±e-~Y~f(-p). 

So using (1.1b) we get 

(3.3b) 
± 

tX±(Jt)Y = R* q2±T~TJq ~. +T 

Subtracting (3.3a) and (3.3b) and applying (1.10) yields that 
+ ± 

ql-q2E{p£P:F+p = 0}. Hence, for n_>N we have 
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Z~m{F±p:p£P n} + {T:TYq:rYq : 0}. 
But the left-hand side is a space of dimension n+l, whereas the 

right-hand has dimension £(n+l-~s)+~s=n+l. So equality holds and 

therefore there exist polynomials qn and s n such that R: P n : 

~r+Pn + ~F-P n : qn X +SnY. With the help of the symmetries 

(l.lb), Y(~) = e-~/UX(-p) and JP : (-1)np we derive the other 
n n 

one of the representations (3.1). Furthermore, for n~N we 

<n. necessarily have deg qn!n and deg Sn_ 

Note that,for t~ : qn±(-l)nsn , 
H 

(3.4) r±P n = t~X±(Jt~)Y£Zmax(n,N). 

Substituting this into (1.6) (with p : Pn,F+p : Hn; see Section 

4 of [15]) and employing the linear X- and Y-equation (2.6) one 

obtains 

(3.5) Q~(1)±e-~/IQ~(-I) : Hn(1)±e-~/IHn(-l), 

± 
where Qn is the following polynomial: 

I 9(i, P)tn~ (p)_~ (p, ~) t~(l) 
Qn (~)* : %*(1)-lSn X(p)d~¥ 

o P- t  
(3.6) i ~(~,~)tn*(_~l_~(~,~it~(_~) 

~l~ Y(p)dp. 
0 ~-I 

+ 
AS Qn ~ and H n are polynomials, (3.5) implies Qn : Hn. 

The representations (3.1) for ~n : R* P and ~n : T:~ P +T n n 
were first stipulated by Sobolev ([21],(47)-(48)), but no 

information was given on the conditions under which (3.1) would 

be valid nor on the uniqueness of the polynomials qn and s n. 

The equations (3.2) were first obtained by Hovenier ([10],(35)- 

(36)) for the non-conservative case. 
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4. COEFFICIENT POLYNOMIALS AND THEIR CONSTRAINTS 

In this section we study the"coefficient po±ynomla±s 
n 

in detail. 

PROPOSITION 4.1. Let 0<a0<l and -a~<a <a 0 (n:l,2,...,N). 
k - - -- k- n-± 

Thenkfor certain (~n)_ ~ the polynomial X ~ t =0 if and only 
n:u ± n:O n n 

if Z ~ P belongs to the kernel of r . In particular, if 
n=O n n . . . . . . .  

O<a0<l , then the polynomials t ± (n=0,1,2,...) are linearly 
n 

independent. 

n I ] PROOF. I f  IC ~n t =0 t h e n  ( 5 . 4 )  y i e l d s  r e r k ~nPn =0. 
n:O ' n:O 

C o n v e r s e l y ,  i f  n=0r k ~nPn =0, t h e n  f o r  t = n~0~n tn  we have  

t X e ( J t ) Y = 0  ( s e e ( 3 . 4 ) ) .  R e a s o n i n g  as i n  t h e  b e g i n n i n g  o f  t h e  

p r o o f  o f  Theorem 3 .1  one g e t s  t=0 .D  

Let V ± be the linear operator on P with property V~t~=H n 
m m 

( n = 0 , 1 , 2 , . . . , m ) .  Fo r  m~N t h e  l i n e a r  span  o f  H 0 , H 1 , . . . , H  m has  
± ± ± 

d i m e n s i o n  m-s and t h e  s p a n  o f  t 0 , t l , . . . , t  m d i m e n s i o n  m-½s. So 

dim Ker V ± ± m : ½s f o r  m~N. Hence ,  f o r  02a0<1 E q . ( 3 . 2 )  has  t n as  

a unique polynomial solution. For a0=l Eq.(3.2) does not specify 
± 

t n c o m p l e t e l y .  To deduce  a d d i t i o n a l  c o n s t r a i n t s  we f i r s t  d e r i v e  

the f o l l o w i n g  

LEMMA 4.2. 

polynomial, then 

Let ao:l and f£H 0 with Jf = ±f. If × is a 

(4.1) <r±×,f>+½T<r±×,T-IAf> : <×,f>+½~<×,T-iAf>. 

PROOF. According to Theorem 1.1 of [15] the solution 

of the boundary value problem (0.4)-(0.5) on i2[-1,+1] has 

the form 

iApp+e ¢(x) : e -xT- (T-X)T-IAp m ] +(I-xT-IA)P0 V~I~,O<x<T. 

With the help of formulas (1.7) of [15] one gets for f£H0: 
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<T@(x),f> : <T(I-xT-IA)PoV~I~,f> : <TPoV~I~,f> - 

- -]~,T-1Af> x<TPoV ~ 

For ~6L2[-I,0] this implies 

-<TR_~,f>+<TT_T~,f> : <T@(0),f>-<T@(T),f> : 

: T<TPoVTI~, T-1Af> = ~<TT_ ~,T-1Af>. 

Note that <TR_~,f> : <TT_z~,f> whenever Af = 0. Using 

formulas (2.4) of [15], putting × : T~ and extending continuous- 

ly to all ×612[-1,+I] one gets 

+ + + 

m~R x~f~TnTx~f~ : ~<T_r×,T-IAf> : 

: ~<R~Tx,T-IAf>. 

Inserting Lemma 2.1 and formulas (3.2b) of [15] and specializing 

to f£H 0 with Jf = ±f (and thus jT-IAf = ~T-1Af) one obtains 

: <x,f>+~<x,T-iAf>. 

From this identity formula (4.1) is clear.m 

With the help of Lemma 4.2 two theorems are deduced concerning 

+ and t- under which Eq.(3.2) has a unique constraints on t n n 

solution. 

.. <+i (n:m,m+l, THEOREM 4.3. Let a0:al:. :am_l=l, -l~a n ..., 

N), s=m+l for even m and s=m for odd m. Then 

+ : t ~  : t ~  : : t + (4.2) t~ ''' s-i : 0 
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and t + is the unique polynomial solution of Eq.(3.2) under the 
n 

Is constraints 

(4.3) t~(~)X(~)+t (-~)Y(~) P2k(~)d~ : 6n,mk(2k+~)-1 
0 

(k:0,1,...,~s-1) 

PROOF. The functions P0,P2,...,Ps_2 belong to Ker A and 

satisfy Jf : f. According to (4.1) we have <F+x,P2k>:<×,P2k >. 

For ×:P we insert the inner product <.,.> in [2[-I,+1] 
n 

employ (3.4) and obtain (4.3). Formula (4.2) is clear from 

Proposition 4.1 and the form {p£P:r+p:0} has (cf. 1.10)). 
÷ 

To prove the uniqueness of the solution t of Eq.(3.2) 
n 

under the constraints (4.3), it suffices to prove that a fl 
polynomial t:0 whenever V + t:0 and {t(~)X(~)+t(-~)Y(~)}P2k(,)d~ m 
0 (k:0,1,...,~s-l). As an applicatiOn of Proposition 4.1 we see 

+ + +:0 if and only if r+(n0P0+n2P2+. +nsPs): that n0t0+nzt2+...+nst s .. 

0. But {p£P:r+p:0} consists of odd functions only (cf.(l.10)) 

and so n0:n2 ..:ns:0 Thus t + t + :. . 0,t +, .. are linearly independen" 
• ' S 

In view of the constancy of H0,Ht,...,H s (in fact, H2k(~):P2k(0) 
÷ ÷ IS  • 

f o r  k = O , t , . . . ~ s )  one d e r i v e s  t h a t  { t 2 k - P 2 k ( O ) t 0 } k = l  i s  a b a s i s  

of Ker V m. So for certain coefficients ~l,~2,...,~s we have 

i s + p + 

(4.4) t : X ~k(t2k- 2k(0)t0). 
k=l 

I 

The constraints (4.3), Eq.(4.4) and #{t(~)X(~)+t(-~)Y(~)}P2k(~)d 

0 (k=0,1,...,~s-l) together yield t o= 0.m 

THEOREM 4.4. Le__~t a0:a1:...:am_1:l, -13an<+1 (n:m,m+l,..., 

N). If m is even, then 

(4.5) t~ = P2(0)t~ , t~ = P4(0)t~,...,tm = Pm(0)t~ , 

while t is the unique polynomial solution of Eq.(3.2) under the 
n ......... 

~m constraints 
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(4.6) 
1 

# {tn(~)X(~)_tn(_~)y(~)}P2k+l(l~)d~=~n,2k+l.(2k + 3)-i 
0 

(k : 0,i ..... ~m-l) 

If m is odd, then 

(4.7a) (k+l)tk+i + k tk_ I : 0 k = !,3,5,...,m-2); 

(4.7b) (m+l)tm+l +m tm_ 1 = T(m+½)(l-am)tm, 

while t n is th__~e unique polynomial solution of Eq.(3.2) under the 

~(m+l) constraints 

(4.8a) f {tn(~)X(~ ~ ~ }P2k+l :6n,2k+l" 
0 

(k = 0,i .... ,½m - ~) 

(4.8b) 
1 
{tn(~)X(~)-tn(-~)Y(~)}( I - ~x(l-am)/~)Pm(~)d ~ = 

0 

: #+iPn(~)(1 - ~(1-am)/~)Pm(~)d~. 
-i 

The proof is analogous to the one of Theorem 4.3 and will be 

omitted. Let us work out the example m:l (i.e., a0:l and ai# 1). 

Then s=2, and thus one constraint has to be considered only. 

From Theorem 4.3 one finds 

(4.9) + i t+ + 
ti : 0 , f { n(~)X(~) + tn(-~)Y(~)}d~ : 26 • 

0 no 

However, from Theorem 4.4 one derives that 

3 T(l_ai)t ~ ; (4.10a) 2t~ + t~ = 

(4. lob) 
i 2 

f {tn(~)X(~)-tn(-~)Y(~)}(~-~T(1-al)) = ~ 6nl-T(i-al)Sno. 
0 

For the half-space problem with a 0 : 1 (and ai # i) one may 

derive the solution in terms of the H-function and a set of 
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polynomials; the latter ones are the unique solutions of Eq.(3.2] 

(with X replaced by H and Y by 0) under a constraint of the form 

(4.9). In physical literature such observation was made by 

Pahor [20] and by Busbridge and Orchard [4]. Clearly the 

conditions (4.9) may be viewed as generalizations. To see that 

the conditions (4.10) are generalizations also, one has to divide 

Eqs(4.10) by • before taking the iimit as ~++~. 
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