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TRANSPORT EQUATION ON A FINITE DOMAIN
II. REDUCTION TO X~ AND Y~-FUNCTIONS

C.V.M, van der Mee

In this article the solution of the time-independent linear
transpvort eaquation in a finite homogeneous and non-multiplying
medium is expressed in Chandrasekhar's X- and Y~functions through
the solution of two linear systems of equatlons of finite order.
The existence of the X- and Y-functions is proved in general.

INTRODUCTION
Being a continuation of the first part [15] this article

contains a rigorous study of the integro-differential equation

bogp(eu) ¢ w(x,u) =

+1 2m
(0.1) = [ [5% l Blup'+/1-uZ /1-u'? cosu)da}¢(x,u‘)du'
-1

(—15u5+1, O<X<T<+°°)
with boundary conditions
(0.2) Y(0,u) = @(u) (0zugl) , w(t,u) = o(u) (-1<u<0).

This so-called "finite-slab problem" plays an important role
in radiative transfer of unpolarized light (cf. [5,22,111)

and in neutron transport with uniform speed (cf. [6]). Given
the nonnegative "phase function™ & ¢ L;[-1,+1] and the boun-
dary value function weLp[—1,+1] (1<p<+=), the problem is to
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compute the solution ¢ of the boundary value problem (0.1)-
(0.2). More precisely, introducing the vector v(x) in Lp[-1,+1],
the operators T and B and the projections P, and P_ on

Lp[-1,+1] by

(0.2a) Y(x)(u) = wix,u) s (Th){(u) = wh(u);
(-1sus+1,0<x<1)
+1 1 2w
(0.3b) (Bh)(u) = J [5; f @(uu'+/1—uz/1-u'Zcosa)da]h(u')du';
-1 0
h(u),u>0; 0 »u>03
(0.3c) (P,h)(w) = (P_h)(u) =
0  .,u<03 h(u),u<0,

the problem is to find a vector-valued function ¢:(0,1)~
Lp[—1,+1] such that Ty is strongly differentiable and v
satisfies the equations

(0.4) (Ty)'(x) = =(I-B)y(x) (0<x<1);
(0.5) lim||P, ¢(x)=P_ @ = 0 , lim||P_w(x)-P_o||_=o0.
Xigll S-PLel ] X1T|I x)=P_o| ],

Instead of (0.5) for X€Lp[-1,+1] one might also consider the
more general boundary conditions

(0.6) lim| TP,y (x)-P x| |, = 0, 1im||TP_w(x)-P_x|| = 0.
x+0 b X4+t P

For p=2 the finite-slab problem was stated in the form (0.4)-
(0.5) by Hangelbroek [8]. Assuming that geL [-1,+1] for some
r>1, is nonnegative and fulfills ¢ = ffig(t)dtfl, on Lp[—1,+1]
(1<p<+=) the boundary value problems (0,4)-(0.5) and (0.4)~
(0.6) were proved to have a unique solution (see [14]1; for p=2
the problem (0.4)-(0.5) was shown to be well-posed in [12]).
In most practical situations one cuts off the Legendre

series expansion of the phase function & and confines the
description to polynomial phase functions of the form

N
(0.7) g(t) = = an(n+%)Pn(t) (=1<t<+1),

n=0
where P (t) = (2n.n!)—1[§%}n(t2—1)n is the usual Legendre poly-
nomial. The constraints on g imply that 0z<ag<l and -agsa <ag

(n=1,2,...,N}. The cases 0<ag<l and ag=1 are usually called
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the non-conservative and the conservative case. Astrophysicists
are accustomed to write the solution of (0.1)-(0.2) (with
@(u)=0 for -1<p<0) in terms of the reflection and transmission
functions S and T (resp. p and o) of Chandrasekhar [5] (resp.
Sobolev [22]). Recently symmetries of this problem induced
Hovenier [9] to use the so-called exit function instead.

The article [15] and its present continuation aim at a
synthesis of the rigorous theory in mathematics ([8,12,13,141,
for instance) and the analytic expressions partly derived and
partly stipulated by astrophysicists ([5,18,21,10], for
instance). In [15] reflection and transmission operators were
introduced; in terms of the unique solution of the bcundary
value problem (0.4)-(0.5) they were defined as follows:

¥(0) = R,_P o+T__P o s v(t) = R__P_o+T P o.

The connection with Sobolev's reflection and transmission

functions is given by

1
(R, @) (-u) =2 [ v plv,u)ev)dv;

0

1 (Ogus1)
(T+Tw)(u)~e_T/uw(u) =2 f v alv,ue(v)dv.

0

In [15] these operators were expressed in the 2N+2 auxiliary
functions R:TPn and ’I‘ITPn (n=0,1,...,N) and these functions
were related to functions studied in [5,18,211].

In this second part we shall reduce the operators R+T and
T+T further by expressing RITPn and T_’:TPn in X- and Y-functions
through a pair of polynomials. For the isotropic case (N=0)
the X- and Y-functions were introduced by Ambartsumian [1]
and generalized to the anisotropic case by Chandrasekhar [5].
For nonnegative characteristic functions ¢(u) their existence
was established by Busbridge [2] and constraints on the
equations they satisfy were derived by Mullikin [16,17] (alsc
[3]). Inspired by partial results of Chandrasekhar [5] (for
N<2) and Mullikin' [18] Sobolev [21] accomplished a complete
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reduction of the reflection and transmission functions to X-

and Y-functions. Hovenier [10] exploited the exit function to
get formulas more expedient than the ones of Scbolev [21].

In the non-conservative case the polynomials appearing in the
reduction formulas ([21,10}) are commonly believed to be unique-
ly specified by the equations given for them.

In this article we construct the physically relevant
solutions X and Y of Chandrasekhar's X- and Y- equations by
setting

X(u) # Y(u) = [(R¥_ # TX p 1w,

where pt is some polynomial of degree <N and (Jp)(u) = p(-u),

and derive reduction formulas of the type

(0.8a) (RE.P)(W) = a (W)X +(-1)"s (-u)¥(u);
(O<upsg1,n=0,1,...,N)
(0.8b) (Tx P (W) = s (X +(=Da (1) (w),

where Q, and s, are polynomials of degree <N. Up to notation
these formulas were stipulated by Scbolev [21]. We exploit

the HSlder continuity of the functions R:TPn and TirPn on [0,1]
(established in [15]) to construct their analytic continuations
and these continuations in turn enable us to prove the existence
of unique polynomials a, and 5h such that (0.8) holds true.
Further, we derive linear equations for the linear combinations
qn+(—1)nsn

[10] by decoupling related equations due to Scbolev [21]. Here

and qn—(—l)sn; these equations were found by Hovenier

we study the invertibility properties of these linear equations
in detail and in the conservative case ap=1 this analysis will
produce additional constraints on the polynomials qnt(—l)nsn.

This article draws back on [15], but it is of a less
operator-theoretical nature. The first section is devoted to
the analytic continuation of RjTPn and TjTPn and some of its
consequences. The existence of the X~ and Y-functions and their
connection to solutions of a convolution equation make up the
contents of Section 2. In Section 3 the representations (0.8)
are deduced. A detailed study of the polynomial t;=qn:(—1)nsn
follows in Section 4.
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We conclude the introduction with notational remarks. By J
we denote the "inversion symmetry" (Jh)(w) = h(-u), by ¢°° the
Riemann sphere CU{=} and by Pn the usual Legendre polynomial
(so that Pn(1)=1). The degree of a polynomial p is written as
deg p; deg 0 = -1, All Hilbert and Banach spaces will be complex
and <.,.> is the usual inner product on L,[~-1,+1]. The algebra
of bounded linear operators on the Banach space H is written as
L(H) and its unit element as IH (or I). The spectrum, null space
and range of an operator T are denoted by o(T), Ker T and ImT,
respectively.

1. ANALYTIC CONTINUATION:

In this section for phase functions of the form (0.7) we
prove the following analytic continuation result and some
corollaries.

THEOREM 1.1. Let O<ap<l and -a sagsa (n=1,2,...,N).

Then for every polynomial p the functions RﬁTp and Tier on

[0,1] can be extended to functions analytic on ¢~{0}, uniformly

Holder continuous on bounded parts of the closed right half-

plane and satisfying the following identities:

(1.12) lim(R¥ p)(w) = p(0) , 1im(T} Jp)(w) = 03
T
uv0 uto
* N L AT
(1.1b) (R¥ p)(-u) = e "N(TH JIp)(w) (0 # ued).
Proof. We recall the definitions of the polynomials Hg, H;, Hp,...,

the characteristic binomial ¥(v,u), the dispersion function

A (i) and the function x(v) (ef.[15]1,(4.1)-(4.3)), various

symmetry relations ([15],(4.4)), the limit relationship (4.6)

of [15], the absence of common zeros of A(v) and y(v) on (-1,+1)

and the non-vanishing of the limit of A(X) as A=+l ([15],

Proposition 4.1). These results will be used in the proof.
According to Theorem 5.1 of [15] there exists a right invert-

ible operator F+:L2[-1,+1]+L2(N)G, with N = [-1,+11vivé[-1,+1]:

A(v) = 0} and o a finite Borel measure on N, such that
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(1.2) (F+Pn)(v) = H (v) (veN, n=0,1,2,...).

In Section 1 of [15] a spectral decomposition of AT-1 was
presented, where A = I - B; in terms of related concepts we have
the diagonalization properties

. T/V(F h)(v),vENU(D,+);
(1.32)  (FTeTHT pany(y) -
0 , VENU(-=,0) ;
-1 0 ,\)eNU(O,-{-w);
(1.30) (5" Tean)(v) -
+T/V(F h)(v),veENU(-w,0);
(1.3c) (F'PER)(v)=0 , (F' (I-tAT"1)PFn)(v)=0 5 veN.

These identities are immediate from the diagonalization
+ + o+ +
(1.3d) (F'h)(v)=0 (h€ImPE),(F'S'h)(v)=v(F h)(v) (heKerP*),

where S is the unique bounded operator on KerP* such that
TPy + S'A(I-Pg) = T ([15]; Th.5.1 and Eq.(5.4), also the
definition of S in Section 1). In terms of the inversion
symmetry (Jh)(u) = h(-u) we have

(1.%e) (Ffan) (v) = (F*h)(-v) (VEN).

Let us recall how the reflection and transmission'operators
are defined ([151,(2.1),(2.2),(2.6)). For every p€l,[-1,+1]
formulas (1.3a)-(1.3c) imply that

(F'R¥.p)(v) = (FI(I-R! )p)(v) =(F'p)(v) -

eVl ) (v) = (F'p)(v)-e TV (rT T ) (v);
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(F'12 9p)(v) = (F'T] Jo)(v) = ¢ V(E'R] dp)(v) =

eV (FH(1-R: )Ip) (V) = e V(B ap) ()= (FTRE _Ip)(v).

Applying Eq.(3.2b) of [15] and (1.3e) we get
+
(F RY.p)(V)

(F'p) () -V EYTE Jp) (-v);

-t/v

"

(F+TITJp)(v) (F p)( v)-e T/v(F+R:Tp)(-v).

Adding and subtracting these equations and abbreviating
r¥:z R* s+T* J we obtain
tT T tr

(1.4) (Frr¥p) (v)ze TV (F TEp) (~v) = (FYp) (v)xe TV (FYD) (=)

Observe that I'‘p = RY p2T% JpeH,:=L [0,1] (i.e., (r*p)(v) = 0
for v€l[-1,0)). So for vENU(0,+~) the substitution of an express-
ion for F' (i.e., Eq.(5.1) of [15]) into (1.4) yields

1
A (rEp) (v) = € vlu=v) "1y (v, ) (Pp) () dut
(1.5) 0

- 1
te T/VI

v 1=, (PFp) (W du=(F ) (v) 2e /Y (FYp) (-v),
0

where 0<v<l or v>1 with A(v)=0. If p= P is a Legendre
polynomlal then (1.2) yields that (F p)(v)ie T/\’(F pY(-v) =
[1:(-1)" T/V]Hn(v). Formula (1.5) will be crucial to the
remaining part of this article.

Let us introduce the function A*p implieitly by

R *R) (D=L A=) 1o (0,10 (1) (u) aus
(1.6)

ze T/*g A=y (=, (1) G du= (7' p) (1 26/ A (5¥p) (1) |
where p (and thus F+p) is a polynomial. This equation defines
(Atp)(x) uniquely for r¢[-1,+1] as a meromorphic function whose
poles could only be zeros of A(X). Because of Corollary 5.3 of
[15] the function r* p=R* ptT* Jp is H8lder contlnuous on {0,1]
of exponent O<a<l (i.e., |u- v| 1 (r*p)(w)-(r¥p)(v)| has a finite
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supremum for O<up#v<1). The HBlder continuity will be exploited
to prove that Atp is the analytic continuation of F*p to (~{0}.

Clearly, Atp has its poles within the set of zeros of A()).
But from (1.5) (applied for 1<v<+e with A(v)=A(v)=0) it follows
that A(A)(Aip)(x)+0 as A»v. As A(X) has simple zeros only (see
Section 4 of [15] and the references given there), it follows
that Atp has an analytic continuation outside the set
[-1,+1]1U{r€(-=,-1):A(X)=0}.

Recall that Fip is uniformly H8lder continuous on [0,1]
(¢f. Corollary 5.3 of [15]).It is well known (Proposition 4.1 of
[15] and the references given there) that

1im A(t2i€) = A(t)zinty(t) # O (-1<t<+1),

€40
From _(1.6) it is clear that the limits %}g F+(tti€) and .
%}8 Pi(EiiE) exist (-1<t<+1,t#0). Further, since obviously A7 (1)
and A (A) are complex conjugates, the Cauchy-Schwarz reflection
principle implies the existence of functions at,Bi:(—l,O)U(O,1)+m
such that ‘

(1.7a) 1im Y (tti€) = ot (t)2igt(t);
€40 :

(1.7b) 1im T (txi€) = o (t)2ig (t).
€40

To prove that a®(t) = r*(t) and 8*(t) = 0 (0<t<1), we sub-
stitute A=t+i€ and A=t-i€ into (1.6), compute the limits as €+0
and add and subtract the resulting equations. Here we make use
of the uniform H8lder continuity of P*p in an essential way.

We obtain the following linear system of equations:

{A(t) -nt¢(t)][a*(t)] . [ c¢*(t) O<tel s
Ttu(t) ae) JLe®ce) mtyp(£)(T¥p) (%)

where
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e (6)=(F'p) (t) e /T (FYp) (-t)+f 6 (u-t) =1y (t,u) (r¥p) (w)dui
0

- - 1
T e T )Ty (=t ,u) (Pp) (w)du = A(t) (r¥p) (¢)
0

(cf.(1.5) with v=t). As the determinant A2(t)+w2t2y(t)2#0
(see Proposition 4.1 of [15] and the references given there),
the linear system has a unique solution, namely a*(t)=(Ftp)(t)
and Bt(t)=0. Hence, Aip is the analytic continuation of Ftp
to the set (~{[-1,0]U{v€(-=,-1):8(v)=0}}.

To continue rip to §~{-1,0,1} analytically, we define
«* and 8% on (=1,0) (as in (1.7)) and derive in an analogous way

the following linear system of equations:

(A(t) - ntw(t)J{a*(t)]:_[ a*(t) Lo<tel,
by (t) Ae) JLet o)) |2 Taty(t) (r¥p) (-t)

where
1
dt(t)=(F+p)(t)te_T/t(F+p)(—t)‘J 6(u=)71 (6,0) (r¥p) (w)au’
) 0
I e_T/t % t(t+u)—1¢(_t’u)(F*p)<u)du = te-T/tA(t)(Fip)(_t)'

0

Solving the system we get at(t) = te_T/t

£ x
(r'p)(-t) and B (t)=0,
-1<t<0. Hence, the analytic continuation Atp of Ptp has the
property

(1.8) (a%p)(2) =+ e M atp)(-n).

So A*p does not have poles in the left half-plane and is analytic
on €~{-1,0,1}.
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To show that the singularities of Atp at +1 and -1 are
removable, one has to distinguish between two cases. In case
v(1) = ngo an(n+%)Hn(1)Pn(1) = 0, A(X) has a finite and non-
zero 1imit as A>1 and A€[0,1] (see Proposition #.1 of [15] and
the references given there). Now the right-hand side of (1.6)
has a finite limit as A+1 and A€[0,1] (see Eq.(29.4) of [191]),
and thus Atp tends to a finite limit as A+1 and 2€{0,1]. Next
assume P(1)#0. If Atp would not be analytic at =1, it would
have an essential singularity there (note that (Atp)(x)+(rtp)
as A41). According to the Casorati-Weierstrass theorem, for
every c€( there would be a path T, in ¢~[0,1] such that
I(Atp)(k)—c|+0 as A»1 along I . From (1.6) it is clear that
for some function y bounded on T, Eq.(1.6) may be written as

e¥(1)log(A-1)=¢(1) (P¥p) (1)log(A-1)4y(A) 3 €T,
([191, Eq.(29.4)). Here the branch cut of log(i-1) is chosen to
be the half-line (-=,1). For c#(Ftp)(i) a contradiction arises.
So in this case too the function Atp is analytic at A=1. By

(1.8) it is analytic at A=-1 too.

We now know that for any polynomial p the function Ftp has
an analytic continuation to ¢~{0}. But F*p=RijtTITJp. So RITp
and TITJp have analytic continuations to (~{0} too. Further,
(1.8) implies (1.1b).

Finally, if Ec{i:Rex>0} is bounded, [0,1]cE and
EU{vE(1,+=):A(v)=0}=0, then A(A) is H&lder continuous and bounded
away from zero on E~[0,1]. Using this we easily prove that Ftp
(and thus Rjrp and TITJp) are uniformly H6lder continuous on E
(ef.(1.6)). This completes the proof.o
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COROLLARY 1.2. Let O<aps1 and -ap<a <dp, and put
m=max{n:a _,=1} for ap=1 and m=0 for O<ap<l. Let s=m for even
m and s=m+1 for odd m. Then the following identities are equi-

valent:
(i) RITp+TITq=O;
(ii) R, ,p+T, q has an analytic continuation to a neighbour-
hood of X=o;
(iii) there exists hy € span{Po,Pl,...PS_l} such that p=Thg

and q = -(TtA+T)h , where A=I-B and T and B are given
by (0.3).
Here p and q are polynomials. In particular, if O<a< 1, there is

a one-to-one correspondence between pairs of polynomials p, g

and functions R:T+Tqu.

PROOF. (i)=(ii) Trivial.
(iii)=(i) Let p=Thy and g=-(1A+T)hg for some hy € span {Py,P,,
""Ps—l}‘ From Proposition 4.2 of [15] it appears that

span {Pg,P;,...P } is the "singular subspace" Hy. connected to

s-1
the spectrum of T~1A at A=0. Using the definitions of R+T and

Ty, (i.e.,(2.2a)-(2.2b) in {15]1) and the orthogonality properties
(1.6a)-(1.6b) in [15] we obtain

' -1 O RN
R:Tp+T:Tq-P+[V:] {(Up} Tho—[Um) er+T]ho} =

1) o)) <o

where we have used Proposition III 3.2 of [12].

(ii)=(ididi) Ir RtT+TiTq has an analytic continuation at 1=0, it
is an entire function (see Theorem 1.1). Since y{v,u) is a
binomial in v and yu, F+p is a polynomial whenever p is a poly-

nomial, and A(A) has a zero at infinity of order s (see Section U
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of [15]1), formula (1.6) implies that
(1.9) {Aip)[k} = O[AmaX(N’deg p)) (A=),

Hence, R:Tp+T:Tq = %F+(p+Jq)+%r—(p-Jq) is a polynomial of degree
at most max (N,deg p, deg q).
As derived at the beginning of the proof of Theorem 1.1,

(F'p) (w)-e TV (F E p) (v);
(vel-1,+11u{ugl-1,+11:4(n)=0})
e VI(E D) (V- (F'RE q) (V)

(F'R¥ ) (v)

(F'T* @) (v)
So (F+(q—Rqu—Tpr))(r) = e+T/vr(u) for some polynomial r. But
by Corollary 5.3 of [15] the left-hand side is HO8lder continuous
on [-1,+1] except for a jump at v=0, and therefore it is bounded
in a neighbourhood of v=0. So r(v)=0, and thus

(I—RfT)q-TijEKerF+ = span{TPy,TPy,...,TP__,}

s-1
(cf.[15], Theorem 5.1). Therefore, there exists a unique

ko€Hy = span{Po,Pl,...,PS_l} such that (I—RfT)q-Tpr=Tko. Lemma
2.1 of [15] implies that

+ +
R+Tq—T_Tp = Tkg.

Substitute Eq.(2.1) of [15], premultiply by P; and P; and
conclude that

+
(VT)-I(P+q-P_p) = Tkg.

But TVT=V:T ([151,(1.10)). As p and g are polynomials, one has
p=Tpg and g=Tqgy for certain py,qp € span {Po,Pl,---,Ps_i}- Note
that P ag-P_po=V ko=P ko + P (I-tT"14) ko([15],(1.8b)). So
P,dp=P ko and -P_py=P_(I-1T-1A)ky. As these equations concern
polynomials, we conclude that qg=kg and -pg=(I-tT~!A)ky. Put
hg=-(I-1T"1A)kg. Then p=Thy and -(tA+T)hg=(1A+T) (I-tT"*A)k,
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=1Akg+Tko-1AKy-12AT 1Ak g=Tk(=q,because (T~ 14)2k,=0 ([12], Pro-
position II1I3.2).q

From the corollary it follows that R:Tp and TITJp have an
essential singularity at A=0 whenever p # 0. It is more
complicated to find all polynomials p such that rtp=RiTptTiTJp
=0, Such a polynomial p has the form p=Thy with deg hgs<s-1 and
tJp==-(tA+T)hy (thus (IzJ)p==thAhy). If m=max{n:an_1
then s=m and T-!Ahg=0 ([15], Proposition 4.2), and thus
(I+J)p=0 (i.e., p is an odd resp. even polynomial; thus hy=0

=1} is even,

is an even resp. odd polynomial). If m=max{n:an_1=1} is odd,
then T7!An, € span{T-!P_} which is a set of even polynomials
(ef.[15]1, Proposition 4.2). Then F+p=0 and p=Thg imply that

the even polynomial (I+J)p € span{Pm}, and thus (I+J)p=0 (i.e.,
p is odd and therefore hy is even). On the contrary, for m odd
I p=0 and p=Thy imply that the odd polynomial (I-J)p € span{P }.
As deg hg<s-1=m, we get hg=1(I-J)hg+i(I+J)hy € span{P;,P3,...,
Pm}@span {T-le} and thus for h0=51P1+£3P3+...+Eum+nT‘1Pm

the identity (I-J)Thg=-tAh, (and thus (I+J)hg=-tT-lAhy) yields
2nT‘1Pm=—rEm(1—am)T‘1Pm. So n=-}t(1-a )¢ . Summarizing these
results we get

+
{p:T p 0} = span{TPo,TPz,...,TPS_2};
(1.10)

span{TPl,TP3,...,TPm_1} for even m;

0}=

{p:Tp
span{TPl,TP3,...,TPm_2]@

® span{TP_ - %1(1-am)Pm} for odd m.

Observe that dim{pzrtp=0}=§s in all cases,

We conclude this section with historical references. Eq.
(1.5) (or (1.6)) is a linear singular integral equation for
Ftp=0 and the problem is to find a solution that admits an
analytic continuation to ¢~{0}. Such linear singular equations
appeared in [18,21,10]. Adding and subtracting Eq.(1.5) (for
F+p) and Eq.(1.5) (for F—p) and using that RiTp=§(r+p+F_p)
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and TITJP=2(F+p“F_p), one obtains a coupled system of linear
singular integral equations for Rij and T: Jp. For p=Pn the
identities JP =(-1)"P ,F'P sH and JH =(-1)"H_  can be applied

to obtain a coupled system of linear singular integral equations
for R:TPn and TITPn. They were found by Mullikin ([181,(3.39)-
(3.40)) and Sobolev ([211,(35)-(36)). For p:Pn the same trans-
formations applied to (1.5) lead to separate linear singular
integral equations for T'P_ and I P ([10],(12)-(13)).

2. THE X- AND Y-FUNCTIONS

In astrophysics the X--and Y-functions are very important,
at least from a historical point of view. First introduced for
the isotropic case by Ambartsumian [1], they were studied
further and generalized for polynomial phase functions by
Chandrasekhar [5]. In a first mathematical study Busbridge [2]
found them in the form

(2.1) X(w)=1+f e Ve(xyax , v(wyze M e (X Mp(yay,
0 0

where £:(0,t)+L,(0,1) is the unique solution of the convolution

equation
T

(2.2) _ g(x) = [ k(x-y)e(y)dy = «(x)  (0<x<1)
0

and k:(-1,+1)>R is what we call the dispersion kernel

1

(2.3) k(x) = [ Z'lw(Z)e-ixl/Zdz
0

(0#x€ER ).

The dispersion kernel and the dispersion function are related
as follows:

%/
(2.4) A(A) =1 - [ e k(x)dx , Re A=0.
In [13] (Theorem 5.1) it was proved that a solution &
of Eq.(2.2) in Ly (0,t) is unique and for this solution the
functions X and Y in (2.1) satisfy two systems of singular
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integral equations:
(1) the (nonlinear) X- and Y-equations

XX () =YY (v)

e Yp(v)dv;

1
(2.5a) X(u)=1+uf
0

Y(u)ze -t/u, f X(u)Y(X)UY(u)X(v)
0

(2.5b) p(v)dv;

(2) the linear X- and Y-equations

1
(2.6a)  A(W)X(u)=1+uf
0

0
-t/u, f w(viYﬁv) dv_e-r/uujlw(vifiv) dv

1
Y(v)X(v) dv-e_r/“uJ Y(v)Y(v) dv;
v-u v+u

(2.6Db) A(u)Y(u)=e
0
The linear equations (2.6) were first derived from
Chandrasekhar's X- and Y-equations (2.5) by Busbridge ([2],
Section 40). For nonnegative ¢(u) Busbridﬁe [2] proved
Eq.(2.2) to have a solution &, provided [ ¢(u)dus}.
0

PROPOSITION 2.1. Let Os<ag<l and —ao<a <ag (n=1,2,..,N).

If either «(x) is nonnegative on (0,1) or f Iw(z)Idz<2, then

Eq.(2.2) has a unique solution ¢ in Ll(O,r%

PROOF If Ozapsl and -agsa, <2 (n=1,2,...N), one has
112I ¢(z)dz=A(=)20 (cf.[151], Sectlon 4), and therefore
Ii w?z Jdz<i. So if k(x)20 on (0,t) (and thus on (-t,+t)), then
i

+T T !

|k (x)|dx=2f k(x)dx=2f w(z)(l-e—T/Z)dz<1;
- 0 0
1
if [ |w(z)|dz<}, then

0
1

TH7 e (x) |ax= 2j [ ( )|dx52{]w(z)[(1-e'T/Z)dz<1.

-1 0

1
As the norm of the operator (Kg)(x) = [x(x-y)z(y)dy does not
exceed I+T]K(x)]dx, the norm of K is sfrictly less than +1,

which cohpletes the proof. o
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The generalization of this proposition is not straight-
forward. To prove the existence of a solution of Eq.(2.2) in
general, we establish the following lemma first.

LEMMA 2.2. Let Oc<ag<l and -apsa,<ag (n=1,2,...,N). Then
there exists a unique pair of functions X and Y that are analytic

on ¢ _~{o} and satisfy the linear X- and Y-equations (2.6).
For this pair of functions one can find polynomials pi such that

X(p) + Y(u) = (r¥p¥) (), Osuci.

PROOF. Let us rewrite (1.6) using Eqs (4.2)-(4.3a) of
[15] and obtain
. L
A0 (8%p) (A)=af (u=2) "1y () (1 ¥p) (w)dus
(2.7) 1 0
sxe” ™A (e TG (1¥p) (W ausr® () 2™ At (-0,
0
where r (1) is the following polynomial of degree <max (N-s,
deg p-s):
N YHO(A)-H (W)
(2.8)  2*(N)=(FPIOV-A T 2 (n+1)] R, (0 () (W) aw.
1 1
Next write A(A)=1+Af(u=-2)"lyp(u)du-af(p+r) " ty(u)dn (cf.[151],
(4.3a)), substituteo(l.S) and rewrile (2.7) as follows:

1o t
(820 () ={rF(2e™ Mt a2y fng LRI RV 0y 3
0

(2.9)
1
et/Ap (8%p) ()= (a%p) (21)
+

A e yp(u)du.

Suppose p is a polynomial for which r¥ = 0 (see (2.8)).
Then p satisfies Eq.(2.9) with r*(x)te_T/Art(—x)sO. If Aip
would have an essential singularity at A=0, then, because of
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the identity 1im(a*p) (V) =(r¥p) (0) (as 1+0, Re 1>0), for every
c # T (O) there would exist a path T in the open left half-
plane such that |(a oy(n)- c|+0 as A+O along T . Then Eq.(2.9)
(for x+0 along T ) would imply c=0, contradlctlng the free
ch01ce of ¢, So A p would be analytlc at 1=0 and therefore

rt p would vanish. Conversely, if T p=0, then F p=0 (ef.(1.10))
and thus r=0 (cf.(2.8)).

If the non-conservative case s=0 we have r =0 if and only if
p=0, and so a simple dimension argument involving the vector
space of polynomials of degree <N yields the existence of a
unique polynomial pi such that

N 1 Ho (A)-H (u)

r*(V)=(F'p*)(1)-1 I a_(n+} )I —
n=0 H

P () (r¥p*) (w)du=1.

Then X = {(a*p#a™p”) and ¥ = 1(a*p*-a"p") are analytic functions
on ¢ _~{0} that satisfy the linear equations (2.6). (To see
this, add and subtract Eq.(2.7) for A+p+ and Eq.(2.7) for & p ,
and use that r+p = r_p- = 1). For general s we remark that
Rip = 1*:t maps the space of polynomials of degree < N into the
space of polynomials of degree <N-s, while {p:Rtp=O} is a space
of dimension <s. Hence, R* is surjective, and so there exists
a polynomial pi of degree <N such that ri(x)51. In the same way
as for s=0 we prove the existence of analytic functions X and Y
on ¢ _~{0} that satisfy Eqs(2.6).

It remains to prove the uniquness of solutions X and Y
that are analytic on ¢_~{0}. But this is clear from the unique-
ness of a solution A*p of Eq.(2.7) that is analytic on ¢ _~{0} and
continuous on the closed right half-plane. The latter can be’
shown with the help of the argument of the second paragraph of

this proof.o

THEOREM 2.4, Let Oz<ap<l and ~205a <3 (n=1,2,...,N),
Then there exists a unique solution ¢ of the convolution
equation (2.2) in L;(0,t). The functions X and Y defined in terms
of £ by (2.1) satisfy Eqs(2.5) and (2.6).

PROCF. According to Lemma 2.2 there exist polynomials
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p:t such that
x(w =i (%07 i 11 36700 Js
v=1ay e Jnafrr s e .

As the function X is uniformly HBlder continuous on any bounded
subset E of the closed right half-plane (see Theorem 1.1), any
H8lder exponent O<a<1 may be taken (which appears from the
proof) and X(0)=1, 1t follows that there exists }<a<l such
that {(X(u)—l)/ul=0(|u|a—1)(u+0 ,Re n=0). Therefore,
Ifimlx(u‘l)-1|2d|u|<+w. So there exists £€lp(-=,+=) such that
X%u)-1=f+we_X/u5(x)dx, Re u=0. However, X has an essential
singula?ﬁty at u=0 of order <=z (see Corollary 1.2) and is
analytic on the open right half-plane and continuous up to the
imaginary line. The Paley-Wiener theorem implies that £(x)=0
for x€(0,71), and therefore §€L,(0,7)cLl(0,1).
This proves the first part of (2.1). The second part follows
with the help of the symmetry Y(u)=e_T/uX(-u).

Using the first part of (2.1) one easily reduces
AG)X(u)=a(-p)X(u) to

_ +o =x/p r
AM)X(u)=1+f""e {E(x)=[e(x-y)e(y)dy-x(x)}dx,
0

-0

where £(x)=0 for x€(0,t). We have to show that

(2.10) A(u)X(u):1+[0e-X/uR(x)dx+e_T/“f+me(T-X)/uz(x)dx,Reuzo,
- T
where 2€L;(-=,+=), (We have put £(x)=0 for Ogxst).
Consider the Wiener algebra A of functions h on the
“X/u (x)ax with
cEC and z€l,(-=,+») (see [7] for this algebra; however, in [7]
the Fouriler transform is used). Then A(u)X(n) belongs to A for

extended imaginary line of the form h(u)=c+f+me

c¢=1 and z=%&. According to Eg.(2.6a) one can write

A X(u)=1+g_(u) + e_T/ug+(u) (Re u=0),
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1

where g_(u) = uf (v-p)~ly(v)X(v)dv is analytic on the open left
half-plane and dontinuous up to the boundary, whereas g+(u) =
-uf (v+u)~ly(v)¥(v)dv is analytic on the open right half-plane
ang continuous up to the boundary. Hence, A(u)X(u) admits the
representation (2.10) and Eq.(2.2) is clear.

The derivation of the non-linear equations (2.5) from (2.1)
and (2.2) is a standard argument that can be found in Section 5
of [13], for instance.O

In many cases the functions X and Y in (2.1) do not provide the
only solutions of Egqs (2.5) and (2.6), If the dispersion function
A has zeros on ¢ _~[-1,+1], these equations have infinitely many
solutions. However, imposing suitable constraints one may

specify X and Y by Egs (2.5) (or (2.6)) completely (cf. [16,17];
also the erratum in Astrophys. J. 147, 858, 1967).

3. REDUCTION TO X- AND Y-functions

In Section 3 of [15] the search for analytic expressioné for
the reflection and transmission operators was reduced to the
computation of the 2N+2 functions RITPn and T:TPn (n=0,1,...,N).
In the present section a further reduction is accomplished,
namely to X- and Y-functions.

THEOREM 3.1.  Let O<apsl and -apsa <ap (n=1,2,...,N).
For n=0,1,...,N there exist unique polynomials a, and 5, such
that

(3.1a) (R¥_P)(w)=a, ()X +(-1)"s  (~u) Y ()3
(3.1b) (T$ P ) (w)=s_(0X(w)+(-1) T, (=¥ ().

Her? the Zegrees og a, an? S, do not exceed ma%(N,n). The poly-
nomials tn=qni(—1) 5y satisfy the linear equation

1
o5 () =uf ) EE () =u (7, w)EE ()
0

= X(v)dv 2
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(3.2) . ,
Py Cu, vt (-v)=e (vt (-u)
tu{ oy Y(v)dv+Hn(u).

In the next section we shall investigate the properties of
Eq.(3.2) further. Here we mainly aim at proving the represent-
ation (3.1).

PROOF OF THEOREM 3.1. Let P be the (n+1)- dlmen51onal
vector space of polynomials of degree n, and let P= \J P . First
we show that for p,q€P the function pX+qY = 0 if and only if
p=q=0. This will imply the uniqueness of the polynomials a, and
Sy in (3.1) once the representation (3.1) has been established.
If q would be non-zero, then r=Y/X would be a rational function
satisfying r(x) r(-i1)z1 and 1}m r(2)=0 (this follows from the
identities X(~u)=e T/uY(u), X(O) 1 and Y(0)=0, which in turn
follow from (2.1)). Contradiction. Sco p=q=0. Hence, for n=0,1,
2,... the set

+ = .
Zn = {tXi(Jt)Y.tEPn}

is a complex vector space of dimension n+1,

Recall that XzY = R:TpttT:Tthfor some ptEPN. So using the
commutator relations (2.17a)-(2.17b) repeatedly, one proves the
existence of polynomials qf and q§ such that

+ ¥
(3.3a) tX£(Jt)Y = R¥ _q7:T¥ _Jas.

However, £=tXx(Jt)Y satisfies the symmetry f(u)=te_r/uf(-u).
So using (1.1b) we get

- E +
(3.3b) tX£(Jt)Y = R* q2#T% Jaqi.

Subtractlng (3 3a) and (3.3b) and applying (1.10) yields that
q1 q2€{p€P r*p = 0}, Hence, for n>N we have



750 van der Mee

* £, * . + —
ZnC{F p.pEPn} + {T+TJq.F g = 0}.

But the left-hand side is a space of dimension n+1, whereas the
right-hand has dimension <(n+1-is)+}s=n+1. So equality holds and
therefore there exist polynomials a, and 5h such that R* P =
iT Pn + ir- P =qX +s Y With the help of the symmetrles
(1.1b), Y(u) = T/uX( -u) and JP = (- 1) Pn we derive the other
one of the representations (3.1). Furthermore, for n>N we
necessarily have deg q,5n and deg 8,sn.

Note that,for t = qnt( 1)1 Sy

+ _ .t +
(3.4) rp_ = tnXi(Jtn)YGZ

n max(n,N)"’

Substituting this intoc (1.6) (with p = Pn,F+p = Hn; see Section
4 of [15]) and employing the linear X- and Y-equation (2.6) one
obtains

T/A E -t/ A

(3.5) Ql (V2 TN (1) = H (D2eT M _(-1),

where Q¥ is the following polynomial:
n

! w(l,u)t;(u)-w(u,u)t:(k)

Q. (M) = sE(0) - — X(u)du¥
0
G-8) yLE—u i)
+Ag e Y(u)du.

As Q: and Hn are polynomials, (3.5) implies Q; = Hn.ﬂ

The representations (3.1) for 0, = R’:TPn and wn = T:TPn
were first stipulated by Sobolev ([21],(47)-(48)), but no
information was given on the conditions under which (3.1) would
be valid nor on the uniqueness of the polynomials a, and s .
The equations (3.2) were first obtained by Hovenier ([101,(35)-
(36)) for the non-conservative case.
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4, COEFFICIENT POLYNOMIALS AND THEIR CONSTRAINTS
In this section we study the"coefficient polynomials"t:

in detail.

PROPOSITION 4.1. Let Oz<ags<l and -agsa, <a0 (n=1,2,...,N).

Then for certain (E ) the polynomlal ¥ E t =0 if and only
S o T

n= O
if Z €n P belongs to the kernel of r* . In partlcular, if

Ofag<1 then the polynomials t (n=0,1,2,...) are linearly

independent.

o PROOF If % ti‘d th (3.4) ield I'i % P_|=0
o nZoSnbn0s then (3.4) yields nZotn'n) ™

. Kk k
Conversely, if Fi[ £ e P )-O, then for t = ngognt; we have
tX£(Jt)Y=0 (see(3. M)) Reasoning as in the beginning of the
proof of Theorem 3,1 one gets t=0.D

Let V; be the linear operator on P with property Viti: n
(n=0,1,2,...,m). For m>N the 11near span of Ho,Hy,...,H has
dimension m-s and the span of to,tl,...,t dimension m~}s. So
dim Ker Vm = is for m>N, Hence, for O<ao<1 Eqg.(3.2) has t as

a unique polynomial solution. For ag=1 Eq.(3.2) does not specify
t; completely. To deduce additional constraints we first derive

the following

LEMMA 4.2, Let ap=1 and f€H, with Jf = #f, If x is a
polynomial, then

(4.1) <TEy, P> +hT<TEy T 1Af> = <y, f>+b1<y,T-1Af>,

PROOF. According to Theorem 1.1 of [15] the solution
of the boundary value problem (0.4)-(0.5) on Lp[-1,+1] has
the form

bx) = [eTXTT A (T

Pm+(I—XT'1A)P0]V;1¢,0<x<1,

With the help of formulas (1.7) of [15] one gets for f€Hg:
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<Ty(x),f> = <T(I-xT-1A)PoV3ile,f> = <TP0V;1w,f> -
-x<TP0V;‘w,T‘1Af>.
For ¢€l,[-1,0] this implies
“<TR__@,f>#<TT_ @,f> = <Typ(0),f>-<Ty(1),f> =
= t<TPoVZle, T-IAf> = T<IT__@,T"1Af>.
Note that <TR_Tw,f> = <TT_Tw,f> whenever Af = 0, Using

formulas (2.4) of {151, putting x = Ty and extending continuous-
1y to all x€l,{-1,+1] one gets

'<RtTX,f>+<Tth,f> T<Tth,T'1Af> =

= 1<RY y, T 1laf>,

=T

Inserting Lemma 2.1 and formulas (3.2b) of [15] and specializing
to f€Hy with Jf = #f (and thus JT-!Af = +T-1Af) one obtains

<[RITthTJ]x,f>+§T<[R111T1TJ]X,T‘1Af> =
= <y, fr+it<y,T-1Af>,
From this identity formula (4.1) is clear.o
With the help of Lemma 4.2 two theorems are deduced concerning
constraints on t; and t; under which Eq.(3.2) has a unique

solution,

THEOREM 4.3, Let ag=a;=...=a _4

N), s=m+1 for even m and s=m for odd m. Then

=1, -1ga <+1 (n=m,m+1,...,

(4.2) £ =t
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and t; is the unique polynomial solution of Eq.(3.2) under the

is constraints

(4.3) gl{t;(u)X(u)+t;(-u)Y(u)}P2k(u)du = 8 g ()1

(k=0,1,...,%8-1)

PROOF. The functions Pp,Pp,...,P 5 belong to Ker A and
satisfy Jf = f. According to (4.1) we have <T X’P2k> <XsPy, >-
For X=Pn we insert the inner product <.,.> in Lp[-1,+1]
employ (3.4) and obtain (4.3). Formula (4.2) is clear from
Proposition 4.1 and the form {p€P:T p=0} has (cf. 1.10)).

To prove the uniqueness of the solution t; of Eq.(3.2)
under the constraints (U4. 3), it suffices to prove that a
polynomial t=0 whenever V t=0 and f {t (W)X (u)+t(- u)Y(u)}sz(u)dL
0 (k=0,1,...,48-1). As an appllcatlon of Prop051tlon 4.1 we see
that notg+n2tz+... +ng S-O if and only if T (n0P0+n2P2+...+nSPS)=
0. But {pEP:F+p=0} consists of odd functions only (cf.(1.10))
and so n0=n2=...:ns=0. Thus t;,t;,...,t; are linearly independen’
In view of the constancy of Ho,Hz,...,Hg (in fact, H, (u)=P5, (0)
for k=0,1,...3s) one derives that {tzk—sz(O)to}i 1 is a basis

of Ker Um. So for certain coefficients ;1,c2,...,;£s we have
Ioh i (0)tg

1
The constraints (4.3), Eq.(4.%) and I{t(u)X(u)+t(—u)Y(u)}sz(u)d

0 (k=0,1,...,3s-1) together yield t%= 0.o

THEOREM 4.4, Let apTai®...=a

N). If m is even, then

m—l:l’ -lza <+1 (n=m,m+1,...,

(4.5) £tz = Pa(0)tg 5 ty = Py(0)tg,..., b = P (0)tg ,

while t; is the unique polynomial solution of Eq.(3.2) under the
im constraints
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. .
- “r_ _ 3.
(4.6) g {tn(u)X(u)-tn( u)Y(u)}P2k+1(u)du-6n,2k+1.(Zk +5) 1,

(k = 0,1,...,5m=1)

If m is odd, then

(4.72)  Cerldtg o+ ko by = 0 (k= 1,3,5,...,m2);

(4.7b) (m+1)t;+1+m tooq = t(m+d)(1-a )t ,

while t; is the unigue polynomial solution of Eg.(3.2) under the

1(m+1) constraints

(4.8a) {l{t;(u)x(u)-t;(‘u)Y(u)}P2k+1(u)du=6n’2k+1-(2k+%)'1-

1. -
(4.8b) g {tn(u)X(u)-tn(-u)Y(u)}(l - 4r(t-a ) /w)P (w)du =

- tl -1 -

= {1 Po(u)(1 = gt(2-a ) /WP (u)du.
The proof is analogous to the one of Theorem 4.3 and will be
omitted. Let us work out the example m=1 (i.e., ag=1 and a;# 1).
Then s=2, and thus one constraint has to be considered only.
From Theorem 4.3 one finds

(4.9) t

+
1

_ Lo+ + _
=0, { {e (X () + £ (-)¥(u)ldu = 26no

However, from Theorem 4.1 one derives that
(4.10a) 2ty + tgy = % t(1=a1)t] ;

WNf o

1-r(1—a1)6no.

T -
(4.10b) { {tn(u)X(u)-tn(-u)Y(u)}(u-%r(l-al)) =38

For the half-space problem with a, = 1 (and a1 # 1) one may
derive the solution‘in terms of the H-function and a set of
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polynomials; the latter ones are the unique solutions of Eq.(3.2)
(with X replaced by H and Y by 0) under a constraint of the form
(4.9). In physical literature such observation was made by

Pahor [20] and by Busbridge and Orchard [4]. Clearly the
conditions (4.9) may be viewed as generalizations. To see that
the conditions (4.10) are generalizations also, one has to divide
Egs(4.10) by 1 before taking the limit as t++w.
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