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Factorization of Block Triangular 
Matrix Functions in Wiener Algebras 
on Ordered Abelian Groups 

Cornelis V.M. van der Mee, Leiba Rodman, Ilya M. Spitkovsky, 
and Hugo J. Woerdeman 

Abstract. The notion of Wiener-Hopf type factorization is introduced in the 
abstract framework of Wiener algebras of matrix-valued functions on con
nected compact abelian groups. Factorizations of 2 x 2 block triangular ma
trix functions with elementary functions on the main diagonal are studied in 
detail. A conjectl,lre is formulated concerning characterization of dual groups 
with the property that every invertible matrix function in a Wiener algebra 
admits a factorization. Applications of factorization are given to systems of 
difference equations and orthogonal families of functions. 

1. Wiener Algebras 

Let G be a (multiplicative) connected compact abelian group and let r be its 
(additive) character group. Recall that r consists of all continuous homomorphisms 
of G into the group of unimodular complex numbers. Since G is compact, r is 
discrete. I~ applications, often r is an additive subgroup of JR, the group of real 
numbers, or of JRk , and G is the Bohr compactification of r. The group G can be 
also thought of as the character group of r, an observation that will be often used. 

The group G has a unique invariant measure v satisfying v(G) = 1, while 
r is equipped with the discrete topology and the (translation invariant) counting 
measure. It is well-known [31] that, because G is connected, r can be made into 
a linearly ordered group. So let ~ be a linear order such that (r, ~) is an ordered 
group, i. e., if x, y, z E r and x ~ y, then x + z ~ y + z. Throughout the paper it will 
be assumed that r is ordered with a fixed linear order ~. The notation -<, !,:, >-, 
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max, min (with obvious meaning) will also be used. We put r + = {x E r : x ~ O} 
and r _ = {x E r : x ~ O}. 

For any nonempty set M, let £l(M) stand for the complex Banach space of 
all complex-valued M-indexed sequences x = {Xj}jEM having at most countably 
many nonzero terms that are finite with .respect to the norm 

Ilxlll = L IXjl· 
jEM 

Then £l(r) is a commutative Banach algebra with unit element with respect to 
the convolution product (x *Y)j = LkH Xk Yj-k. Further, £l(r +) and £l(r _) are 
closed subalgebras of £l(r) containing the unit element. 

Given a = {aj}jH E £l(r), by the symbol of a we mean the complex-valued 
continuous function a on G defined by 

o'(g) = L aj(j,g), gEG, (1) 
jEr 

where (j, g) stands for the action of the character j E r on the group element 
9 E G (thus, (j,g) is a unimodular complex number), or, by Pontryagin duality, 
of the character 9 E G on the group element j E r. The set {j E r : aj =I O} will 
be called the Fourier spectrum of a given by (1). Since r is written additively, we 
have 

(a + /3, g) = (a, g) . (/3, g), a,/3Er, gEG, 

(a,gh) = (a,g) . (a, h), a E r, g, hE G. 

We will use the shorthand notation ea for the function 

ea(g) = (a,g), 9 E G. (2) 

Thus, ea +,6 = ea e,6, a, /3 E r. 
The entries aj can be retrieved from the symbol a as follows: 

aj = L O,(g)ej(g) dv(g), j E r. 

The set of all symbols of elements a E £l(r) forms an algebra W(G) of continuous 
functions on G. The algebra W(G) (with pointwise multiplication and addition) 
is isomorphic to £l(r). Denote by W(G)+ (resp., W(G)_) the algebra of symbols 
of elements in £l(r +) (resp., £l(r _)). 

For every Banach algebra A with identity element we denote its group of 
invertible elements by Q(A). We have the following result: 

Theorem 1. Let G be a compact abelian group with the character group r, and let 
W(G)nxn be the corresponding Wiener algebra of n x n matrix functions. Then 
A E Q(W(G)nxn) if and only if A(g) E Q(cnxn ) for every 9 E G. 
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This is an immediate consequence of Theorem A.l in [21] (also proved in 
[1]). To rephrase the theorem in terms of this result, in the Banach algebra A = 
W(G)nxn we distinguish the closed Banach subalgebra Z = {aln : a E W(G)lXl} 
contained in the center of A and the algebra :F of constant n x n matrix functions. 
Then the algebraic tensor product Z Q9 :F is dense in A and the multiplicative 
functionals on Z are the evaluation maps a I-t a(g), where 9 E G. Further, the 
multiplicative projectors (in the terminology of [21]) turn out to be the evaluation 
maps A I-t A(g), where 9 E G. Thus the theorem is immediate from Theorem A.l 
in [21], which completes the proof. 

We now consider the discrete abelian subgroup r' of r and denote its char
acter group by G'. Then we introduce the annihilator 

A = {g E G : (j, g) = 1 for all j E r'}, (3) 

which is a closed subgroup of G and hence a compact group. According to Theorem 
2.1.2 in [31], we have G' ~ (GIA). 

Let us now introduce the natural projection 1T : G --+ (GIA). We observe 
that the above theorem also applies to W(G')nxn. Given A E fl(r)nXn with its 
Fourier spectrum restricted to r' (i.e., Aj = 0 for j E r \ r'), we have two symbol 
definitions: 

gEG, 

9 E G', 
jEr' 

where we have taken into account that Aj = 0 for j E r \ r'. The latter can be 
replaced by 

[g] E (GIA), 

where [g] = 1T(g) for 9 E G. Obviously, (j,g) only depends on [g] = 1T(g) if j E r'. 
(If [gl] = [g2], then gl g21 E A and hence (j, gl g21) = 1 for all j E r', which implies 
the statement.) Thus the two symbol definitions are equivalent in the sense that 
the value of "the" symbol A on 9 E G only depends on [g] = 1T(g). The following 
result is now obtained. 

Theorem 2. Let r' be a subgroup of the discrete abelian group f, let G and G' 
be the character groups of rand f', respectively, and let A be defined by (3). If 
A E W(G)nxn is an element which has all of its Fourier spectrum within f', then 
A E 9(W(G')nxn) if and only if A(g) E 9(cnxn ) for every 9 E G. 

For the proof note that according to Theorem 1, we need to show that 
Ar/([gJ) E 9(cnxn ) for every [g] E (GIA) if and only if A(g) E 9(cnxn ) for every 
9 E G. By the paragraph preceding Theorem 2, the statement is clear, since under 
the hypotheses on A the values A(g) of the symbol A depend only on [g] E (G I A). 
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We now consider factorizations, and begin with scalar-valued functions. A 
linearly ordered group r is called Archimedean if for every u, v E r, u, v >- 0, there 
exists a positive integer n such that nu ~ v. 

Proposition 3. Assume that r is Archimedean, or that r is finitely generated. If 
a E £1 (r) and o'(g) =1= 0 for every 9 E G, then a admits a factorization 

O,(g) = o'+(g)ej(g)O,_(g), 9 E G, (4) 

where a+ E Q(£l(r +)), a_ E QW(r _)), and j E r. The element j = j(O,) is 
uniquely determined by o'. 

Using the terminology of the classical case r = Z, G the unit circle, we call 
the element j (a) the winding number of o'. In the case r = IR and G is the Bohr 
compactification of IR, the winding number is known as the mean motion. For the 
particular case r = IRk, Proposition 3 was proved in [25] by elementary means; 
see also [30], where the case when r is a subgroup of IRk is studied. For the case 
r = Zd (Z stands for the group of integers) and G the d-torus, Proposition 3 was 
proved in [11]. The general situation of Proposition 3 is easily reduced to the cases 
just mentioned in view of Holder's theorem (see, e.g., [15]) which asserts that every 
linearly ordered Archimedean abelian group is order isomorphic to a subgroup of 
IR (with the natural linear order induced from IR). 

The concept of factorization as in Proposition 3 extends to n x n matrix func
tions in (W(G))nxn. A (left) factorization of A(g) E (W(G))nxn is a representation 
of the form 

A(g) = A+(g) (diag (ejl (g), ... ,ejn (g))) A_ (g), 9 E G, (5) 

where A+ E Q((W(Gh)nxn), A_ E Q((W(G)_)nxn), and jl, ... ,jn E r. Here 
and elsewhere we use diag (Xl, ... , Xn) to denote the n x n diagonal matrix with 
Xl,· .. , Xn on the main diagonal, in that order. The elements jk are uniquely de
fined (if ordered jl ::S j2 ::S ... ::S jn); this can be proved by a standard argument 
(see [18, Theorem VIII. 1.1]). The elements jl, ... ,jn in (5) are called the (left) fac
torization indices of A. Analogously, by a right factorization of A(g) E (W(G))nxn 
we mean a representation of the form 

A(g) = A_(g) (diag (ejl (g), ... , ejn (g))) A+(g), 9 E G, (6) 

where A+ E Q((W(G)+)nxn), A_ E Q((W(G)_)nxn), and jl, ... ,jn E r. Unless 
stated otherwise, all notions involving factorization will pertain to left factoriza
tion. 

If all factorization indices are zero, the factorization is called canonical. If a 
factorization of A exists, the function A is called factorizable. For r = Z and G the 
unit circle, the definitions and the results are classical [19], [18], [7]; many results 
have been generalized to r = IRk (see [4] and references there), and r a subgroup 
of IRk (see [27], [30]). 

We postpone development of a comprehensive theory of factorization to an
other occasion. In this paper we will be concerned mainly with factorization of 
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block triangular 2 x 2 matrix functions of the form 

A(g) = [ cIe"l (g) ~~~~):Cme",,.(g) e_>.fg)Iq ]' 
gE G, (7) 

where A,Qj E r, and Cj E Cqxp , applications of factorizations of this kind of 
functions, and related problems. Here and elsewhere, we use Ik (or I if k is clear 
from context) to denote the k x k identity matrix, and Opxq (or 0) to denote the 
p x q zero matrix. 

We immediately observe, as in the case of r = JR [4], that by applying 
elementary row (resp., column) operations that do not change the factorizabil
ity property and (in case a factorization exists) the indices, one can eliminate 
terms in (7) with Qk t A and with Qk ~ -A. In particular, when A ~ 0, the 
function (7) is factorizable with indices ±A (p and q times, respectively). Thus, we 
often assume in the sequel that 

A >- 0, -A -< QI -< ... -< Q m -< A. (8) 

Note also that for A defined by (7), A-I has finite Fourier spectrum. 
Recently, there is an interest in special cases of left and right factorizations 

(5), (6) in which the factors A± and their inverses A±I have finite Fourier spectrum 
([17], [5]). If this happens we say that the factorization is finite. The function 
A E (W (G)) n X n will be called finitely factorizable if it admits a finite factorization. 

Proposition 4. If A is given as in (7), and if one of the four functions A+, A:;l, 
A_, A=I in a factorization (5) has finite Fourier spectrum, then the factorization 
(5) is finite. An analogous statement applies to factorization (6). 

Proof. Say, A+ has finite Fourier spectrum. By taking determinants in (5), we 
easily see that A+ and A_ have constant nonzero determinants. Thus, A:;I has 
finite Fourier spectrum, as follows from the formula 

A-I _ adj(A+) 
+ - det(A+)' 

where adj(X) stands for the algebraic adjoint of a matrix X, and it suffices to 
show that the Fourier spectrum of A=I is finite. To this end, rewrite (5) in the 
form 

AA=I = A+diag (eju ... ,ejJ 
and observe that the right-hand side, and hence also the left-hand side, has finite 
Fourier spectrum. Using the special structure of A (7), it is easy to see that A=I 
has finite Fourier spectrum. 0 

To conclude the introduction we describe the contents of the paper. In Section 
2 the Portuguese transformation (known in the case of r = JR, see, e.g., [4]) is 
described in the context of abstract groups. In Section 3 we focus on factorization 
of matrices of the form (7) whose off-diagonal blocks are binomials (m = 2). As we 
shall see, even in this case factorization does not always exist without additional 
hypotheses on the order. Problems of factorizability vs. invertibility are treated in 
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Section 4. There, known examples [22], [4] of nonfactorable functions of the form 
(7) with off-diagonal trinomials in the real case (r = JR) play an essential role. 
Applications of factorization to systems of differential equations and to orthogonal 
functions are given in the last two sections. 

2. Portuguese transformation 

The Portuguese transformation is the main tool to prove factorizability and com
pute indices of 2 x 2 matrix functions of the form (7). In explicit form, under the 
assumption that the matrices Ck commute, it appeared in [3], although for some 
particular cases it was employed earlier [34], [32]. Without the commutativity hy
potheses, the Portuguese transformation was given in [26] (where it was called the 
BKST transformation), and a thorough exposition, from the viewpoint of corona 
theorems, of the Portuguese transformation is found in [4]. All previous works on 
the Portuguese transformation were restricted to the case r = R 

In this section, we give formulas for the Portuguese transformation in the 
abstract setting of ordered abelian groups. Since corona theorems are not generally 
available in this setting, we will use the algebraic approach employed in [26] which 
does not utilize results of corona type. 

Consider (7), and assume that p = q and that (8) holds. Furthermore, assume 
that the matrix Cl is invertible. Then, renaming terms in the off-diagonal entry of 
(7), and replacing m by m + 1, we re-write (7) in the form 

A(g) = [ ae_v(g)(I e:~f~l bke'Yk(g)) e_Afg)Ip ]' 9 E G. (9) 

Thus, 1/ = -aI, 'Yj = aj+l + 1/ (j = 1,2,··· , m), 0 -< 'Yl -< ... -< 'Ym -< >. + 1/, and 
bl , ... bm are nonzero p x p matrices. We make another assumption: 

(~) n'Yl >- >. + 1/ for some positive integer n. 

Denote by Z+ the set of nonnegative integers, and for any N = (nl, ... , n m) E 
(z+)m define 

(10) 

where w = nl + ... + n m , and the sum in (10) is taken over all ordered w-tuples 
of integers (jl,"" jw) exactly nk of which are equal to k, for k = 1, ... , m (if 
N = (0, ... ,0), we let YN(A) = 1). Finally, define 

f(g) = LY(nl, ... ,nTn)(A)(g)a-Ie-A+nnl+.+nTn'YTn(g), 

where the sum is taken over all (nI"'" n m ) E (z+)m for which 

-1/ -< ->. + nI"(I + ... + nm'Ym -< 1/. 

9 E G, (11) 

(12) 

If the set of (nI"'" nm)'s satisfying (12) is empty (for example, thi~ would be the 
case when 1/ -< 0), then we take f to be the zero function. Condition (~) guarantees 
that the sum in (11) is finite. 
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Theorem 5. Under the conditions in the previous paragraph, there exist A+ E 
9( (W( G)+ )nxn) and A_ E 9( (W( G)_ )nxn) with finite Fourier spectra such that 
the equality 

holds, where 

B = [ evIp 0 ]. 
fe_vIp 

In particular, the matrix functions A and Bare factorizable (resp., finitely 
factorizable) only simultaneously, and in case they are factorizable, they have the 
same factorization indices. 

Theorem 5 is proved by using the calculations given in [26, Section 2]. The 
formulas for A± (which we will not reproduce) are also given there. 

Note that Assumption (N) is valid for the function B. Thus, one can apply the 
Portuguese transformation again to B provided the matrix coefficient of the lowest 
term in the bottom left corner of B is invertible (analogously to the condition of 
invertibility of cd. This condition is always satisfied if p = 1. Once the formulas 
of Theorem 5 are in place, one can repeat without difficulty many results on 
factorization that depend on the Portuguese transformation. We refer the reader 
to [4, Chapters 14 and 15] and references therein. Here, we state just one such 
result. 

Theorem 6. Let A have the form (7), where 0 ~ al -< ... -< am, and let the matrix 
Cl be invertible. Assume that Condition (N) holds. Then A is finitely factorizable, 
and the factorization indices are ±al (p times each). 

Observe that the invertibility of Cl is essential in Theorem 6; in [26] an ex
ample was given (with r = 1R) of a non-factorizable function of the form (7) with 
m = 4 and 0 ~ al -< a2 -< a3 -< a4. 

3. Off diagonal binomials 

We prove in this section the following result: 

Theorem 7. Let A have the form 

gE G, (13) 

where A, a, J.l E r, -A -< a -< J.l -< A, and Cj E Cqxp (the cases when one or both of 
Cl and C2 are equal to zero are not excluded). Assume that the following condition 
holds: 

n(J.l - a) t max {A - a, A + J.l} for some positive integer n. (14) 

Then A admits a finite factorization. 
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For the case r = IR, Theorem 7 was proved in [23] (in this case (14) is 
automatically satisfied). We adapt the approach of [23] to prove Theorem 7 in full 
generality. 

Proof Let rand s be the nonnegative integers having the following properties: 

A - a - (s + 1)(/-1- a) --< O~ A - a - s(/-1- a), 

A + /-1- (r + 1)(/-1- a) --< O~ A + /-1- r(/-1- a). 

In view of (14), sand r are correctly defined. 

(15) 

(16) 

Consider first the case when p = q and both matrices Cl and C2 are invertible. 
We distinguish between three possibilities: 

s > r B /-1 + A - s(/-1 - a) --< 0; 

s < r B A - a - r(/-1 - a) --< 0; 

s=rB {
A - a - (s + 1) (/-1 - a) --< 0 ~ A - a - s (/-1 - a), 

A + /-1- (s + 1)(/-1- a) --< 0 ~ A + /-1- s(/-1- a). 

(17) 

(18) 

(19) 

Then the following formulas (which can be verified in a straightforward manner) 
give a factorization A = A+AA_ of A. In the case that (17) holds: 

Clearly, A+ E 9((W(G)+)2pX2p), A_ E (W(G)_)2pX2p, and since (use Schur com
plements) 

±det (A_) = (cfL->JP det ((c21cI) s efL+>'_S(fL_o-) 

',H (~( ,,' ,,)j ",'e_ j(,_.») (" e._, - c,») 
(cfL->.)P det (efL+>.I) = 1 

it follows that A=l E (W(G)_)2pX2p. In the case that (18) holds: 
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Again, clearly A+ E (W(G)+)2pX2p, A_ E 9((W(G)_)2pX2p), and since 

det (A;.) ~ (e ,_.)P det (e_H • ( -c,ep_. + c,) (c;-1 ~ (",C,')j ej(p_.) ) 

+ (c2c l 1 r er(p,-a) _ >.+a) = 1 

we also have A+ E 9((W(G)+)2pX2p). In the case that (19) holds: 

A= [ 
e)..-s(p,-a)I 0 ] 

o e_)..+s(p,-a)I ' 

A_ = [ (cz1cd S es(p,-a)-p,-).. E;:~(cz1c1)jcz1e_j(p,_a) ]. 

I + ~S-l( -l)s-j 
c1ea+)..-s(p,-a) e_s(p,-a) wj=o c2c1 e_j(p,-a) 

It is easily verified that A± E (W(G)±)2pX2p (follows from (19)). Similarly, A;;;l E 

(W(G)±)2pX2P • This concludes the proof in the case when p = q and both C1 and 
C2 are invertible. 

Consider now the general case. Applying the transformation 

A ~ [~1 ~2] A [T~l T~l]' 
where T1 and T2 are invertible matrices of sizes p x p and q x q, respectively, 
the matrices C1 and C2 are replaced by T 2c 1T 1- 1 and T2c2Tl1, respectively. Now 
use the well-known canonical form (also known as Kronecker form) for pairs of 
rectangular matrices under the transformation (X, Y) ~ (TXS, TYS), where T 
and S are invertible matrices of appropriate sizes, see, e.g., [16], or [20, Appendix]. 
Ignoring the zero blocks in the canonical form of (Cll C2) (trivial case), and blocks 
where both matrices are invertible (this case was taken care of already), we are 
left with the following situations to consider: 

(a) C1 and C2 are of size k x (k + 1) (so q = k, p = k + 1) of the form 

C1 = [Ik OkX1], C2 = [OkX1 Ik ]. 

(b) C1 and C2 are of size (k + 1) x k (so q = k + 1, p = k) of the form 

C1 = [ O~:k ], C2 = [ O~:k ] . 
(c) C1 is the k x k upper triangular nilpotent Jordan block, denoted by Vk, and 

C2 = h (so p = q = k). 
(d) C1 = Ik, and C2 = Vk (so P = q = k). 
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Let Jk be the k x k matrix with l's along the top-right to the left-bottom diag
onal and zeros in all other positions. If A(g) = [ai,j(g)]i,j=l E (W(G))nxn, then A* 
will denote the matrix function defined by [aj,i(g)]i,j=l; clearly, A* E (W(G))nxn, 
and if A E (W(G)±)nxn, then A* E (W(G)'f)nxn. The transformation 

A ~ [Jk ~k] A* [Jk ~k] 
transforms the case (c) to the case (d). The transformation 

A ~ [0 Jk+1] A* [ ° Jk] 
Jk ° Jk+1 ° 

transforms the case (b) to the case (a). Thus, it will suffice to consider the cases 
(a) and (d). 

We will need the nonnegative integers sand r introduced by (15) and (16), 
respectively, as well as two additional nonnegative integers r' and s' defined as 
follows: s' = s if n(J..l - a) # >. - a for any positive integer n, and s' = s - 1 
otherwise; r' = r if n(J..l - a) # >. + J..l for any positive integer n, and r' = r - 1 
otherwise. 

Consider the case (d) first: 

(20) 

Let 

! 
[ e_(jh 

euolk ] if r 2 k; 

ref ° e~I" 1 Hk-r if 1 :s r < k; 

° where 
e_ulk- r ° ] 

~k-r-l v,j I . 
- wj=O e(j+r)(jt-u)-A k-r eu k-r 

If s' < r < k, then since we have>. - J..l ~ (r - 1)(J..l - a) (this relation is easily 
obtained from (r + 1)(J..l- a) :>- >. + J..l), it follows that Hk - r admits a factorization 
of the form 
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If r ~ min { S', k - I}, then let 

[ 
",k-r-l j 

C+ = wj=o e~(/l-a) Vk- r 

C_ = [e>+a-r(/l-a)h-r -Ik-r]. 
Ik-r 0 

We have C± E Q((W(G)±)(k-r)x(k-r»); to verify that C_ E (W(G)_)(k-r)x(k-r) 

we need to verify the relation >. + 0- ~ r(J-L - 0-), which in turn follows easily from 
(r + 1)(J-L - 0-) >- >. + J-L. Furthermore, 

C H C = [ e>.-r(/l-a)Ik-r 0 ] + k-r - Vi -ell k-r e_>.+r(/l-a)Ik-r 

=! [[ ::~~o~:~:) e_A~~("-a) 1 0 1 if S' 2: r = k - 1; (21) 

H k - r - 1 0 if 1 ~ r ~ min{s',k - 2}, 

o e_>'+r(/l-a) 

where 

Hk- r- 1 = [ e>.-r(/l-Ia)Ik- r- 1 0 I ] . (22) 
-ell k-r-l e_>'+r(/l-a) k-r-l 

Factorizability of Hk - r - 1 follows from Theorem 6, or could be verified directly. 

Finally, consider the case (a): 

A= 

Let 

B+= 0 1 0 , where b= O~-l)Xl , [ 
h - e/l-aVk b -e>.-ah 1 [] 

O 0 ",k-l v;j ell-a 
wj=O ej(/l-a) k 

[ I:;:~ ej(/l-a)->'-a V~ 0 h 1 
B_ = 0 1 0 . 

-Ik 0 0 

Clearly, B+ E Q((W(G)+ )(2k+l)X(2k+l») and (because of (r-l)(J-L-o-) - >. -0- ~ 0, 
which follows from (16)) we have B_ E Q((W(G)_)(2k+l)X(2k+1»). A computation 
shows that 

where 
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Let us define for j = 0,1, ... ,min{ k, s'} - 1 the auxiliary matrices 

[ 
1 ° e)..-f-l-j(f-l-u) ] 

R+,k-j = ~ h-O-I hk-j-~/e_u , 

R_ k - j ~ ['T h-~-' ~l 1 ' 
Clearly, R-,k-j E g((W(G)_ )(k-j+I)X(k-j+I)). By (15), we easily obtain R+,k-j E 

g((W(G)+)(k-j+I)X(k-j+I)). We also have the recurrence relations 

R+,k-jRk-jR_,k-j = [Rkoj-I e~]' Ro = e)..-k(f-l-u), (24) 

for j = 0, ... , min{k, s'} - 1. 
If k S min{r, s'}, then <Po = diag (cuh, Rk), and applying consecutively 

(24) for j = 0, ... , k - 1, we obtain a factorization A = A+AA_ with A = 
diag(e-uh,e)..-k(/-L-u),ef-lh ). If s' < k S r, then again <Po = diag(e-uh,Rk)' 
Applying (24) for j = 0,1, ... ,s' - 1, we reduce Rk to diag (Rk-s" ef-lIs')' and in 
view of the inequality A - fl :::S s' (fl - cr) the equation 

R _ [ 1 ° ] [ e)..-s'(/-L-u) ° ] 
k-s' - hk-s,es'(f-l-u)-).. I k- s' ° eu1k-s' 

represents a factorization of Rk-s" If S' < r < k, then in view of the inequalities 

A - fl :::S s' (fl - cr) :::S (r - l)(fl - cr) 

(which follow from (15)), we have 

~ ] E g((W(G)+)(2k+I)X(2k+I)), 

h 

and since A+ <Po = diag (cuh, Rk), we have reduced the proof offactorizability of 
A to that of Rk. Now repeat the arguments given above for the case k S min{r, s'} 
to obtain the factorizability of Rk. 

It remains to consider the case r S min{k - 1, s'}. Then 

A - fl >- (r - 1)(fl- cr). 

We have the recurrence relations (which can be verified using (24)): 

<Pj+1 = [~ R+~k-j ~ ]<pj [~ R_~k-j ~], j = 0, 1, ... ,r - 2, 

° ° I j ° ° I j 

where 

j = 1, ... ,r -1, 
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and where 

[ 
e-ah-r 0 0 

Fj = 0 e).._j(p,-a) 0 
Ii hk-j ealk _ j 

1 ' Ii = [ - L;~~-l e(Hr)(p,-a)-).. vLr ] . 

O(r-j) x (k-r) 

Thus, it suffices to construct a factorization for Fr - 1 . Note that 

Letting 

[ 
e-alk-r+l 0] 

",k-r v,j I 
- L.Jj=O e(j+r)(p,-a)-).. k-r+1 e a k-r+l 

[ 
Ik-r 0 0 1 
o e)..+a-(r-l)(p,-a) 0 . 
o 0 h-r+l 

x 

[ 
",k-r v,j 

C+ = L.Jj=O ej(p,Oa) k-r+l e )..-a-r(p,-a) I k-r+ 1 

h-r+l - ep,-a Vk-r+l 

o -h-r 

C = 0 
- I k - r 

o 
o o ' 

[ 

e)..+a-r(p,-ajIk-r 

o 
we have (in view of (15) and (16)) 

1 o 

] , 

~1 1 
o 

C± E g((W(G)±)(2k-2r+2)x(2k-2r+2)), 

and we obtain analogously to (21) that 

_ [e).._r -a Ik-r+l 
C+Fr - 1 C_ - Vi 

-ep, k-r+l 

o 

e~ 1 
= diag (e)..-r(p,_a),iik-r,ep,), 

where lh-r has the form (22) (with size of blocks (k - r) x (k - r)). The factor
izability of Hk - r follows from Theorem 6. D 

Using the proof of Theorem 7, one can deduce formulas for the factoriza
tion indices, and in particular, necessary and sufficient conditions for canonical 
factorization. We omit the details, as they are long and cumbersome. 

Once formulas for the factors in the proof of Theorem 7 are available, we may 
use them to derive additional results. For example: 

Theorem 8. Let A be given by (13), where p = q, -A -< a -< jt -< A, and Cj E CPxP. 
Assume that one oj the two conditions below is satisfied: 

(1) n(jt - a) -< A - jt Jor all positive integers n, the matrix C2 is invertible, and 
the spectral radius oj c2" l Cl is less than one; 

(2) n(jt - a) -< A + a Jor all positive integers n, the matrix Cl is invertible, and 
the spectral radius oj c2cl1 is less than one. 

Then A is Jactorizable. 



454 C. van der Mee, L. Rodman, LM. Spitkovsky, and H.J. Woerdeman 

Proof. If (1) holds, the factorization is given by the formulas 

- Ej:o(c2" l cd jc2" l e>'-JL-j(JL-<T) 

I 

A ~ [e~I e_OuI ]' A_ ~ [~ c;-' E;:'o(c,c;-;)ie;("-Ul-u-,]. 0 

An interesting case occurs when both inequalities in conditions (1) and (2) 
of Theorem 8 are satisfied. We then have: 

Theorem 9. Let A be given as in Theorem 8, and assume that 

n(/-L - 0") -< min{ A - /-L, A + O"} for all integers n > O. (25) 

If the matrix CI is invertible and the spectrum of cllc2 does not intersect the unit 
circle, or if C2 is invertible and the spectrum of C2" I CI does not intersect the unit 
circle, then A admits a factorization. Moreover, the factorization indices belong to 
the set {±O", ±/-L}. 

Proof. Say CI is invertible. Using a transformation Cj f--+ ScjT, j = 1,2, for suitable 
invertible Sand T, we can assume without loss of generality that CI = I and C2 

is in the Jordan form. Now apply the result of Theorem 8 to each Jordan block of 
C2 separately, to obtain Theorem 9. D 

The condition on the spectrum of cl l C2 (or of c2"1 cd in Theorem 9 is essential, 
as the following example shows: Let r = 7!} with the lexicographical order, G is 
the 2-torus, and 

A=[ z 0] 1- W Z-l 
(26) 

(here z is the first variable, w is the second variable; so z corresponds to e(I,O), 

w corresponds to e(O,I), and the lexicographical order is such that (1,0) >- (O,n) 
for every integer n). The function (26) is not factorizable. Indeed, if it was, then 
considering A as a function of z only, with w a parameter, we would obtain that 
the factorization indices of A are independent of w E '][' (the unit circle), whereas 
in fact the factorization indices are zeros if w # 1, and they are ± 1 if w = 1: 

[ z ~] = [1 (1 -w)-l z ] [ 
l-w z I 0 1 

o -(I-w)-I] w....Ll 
1- w Z-l , r 

is a canonical factorization. 
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4. Invertibility vs factorizability 

Clearly, a necessary condition for the existence of a factorization is that det A(g) f=
o for every 9 E G. For the case r = Z, G is the unit circle, this condition is well 
known to be also sufficient for the existence of a factorization. An example (a 2 x 2 
triangular matrix function of the form (7)) shows that in general this condition is 
not sufficient (see Section 15.1 in [4]). Motivated by this example, we formulate a 
conjecture. 

Conjecture 10. Assume n ~ 2. Every function A E Q(W(G)nxn) admits a fac
torization if and only if r is (isomorphic to) a subgroup of the additive group of 
rational numbers Q. 

For n = 1 the statement of the conjecture is false (see Proposition 3). 
Toward this conjecture, we prove the following result: 

Theorem 11. If r is not isomorphic to a subgroup of Q, then there exists a 2 x 2 
matrix function of the form 

A(g) - [ e>.(g) 0] g E G, (27) 
- cleo1 (g) + C2 + C3e03(g) e_>.(g) , 

where A, aI, a2, a3 E r, and CI, C2, C3 E <C, which does not admit a finite factoriza
tion. 

Conversely, if r is isomorphic to a subgroup of Q, then every function A E 

Q(W(G)nxn) such that its Fourier spectrum is contained in a finitely generated 
subgroup, admits a factorization. 

We need several preliminary results for the proof of Theorem 11. A subset 8 
of IRk (the vectors in IRk are understood as column vectors) is called a halfspace if 
it has the following properties (i) - (iv): (i) IRk = 8 U (-8); (ii) 8 n (-8) = {O}; 
(iii) if x, y E 8 then x + y E 8; (iv) if x E 8 and a is a nonnegative real number, 
then ax E 8. Clearly, every halfspace 8 in IRk induces a linear order :::S on IRk 
(there are linear orders on IRk which are not induced by any halfspace): The linear 
order :::SS induced by a halfspace 8 is defined by the property that x :::SS y if and 
only if y - x E 8. A standard example of a halfspace is given by 

Ek={(XI, ... ,Xk)T E IRk: Xl = X2 = ... = Xj-l = 0, Xj f=- 0 =} Xj > O}U{O}, 
(28) 

where the superscript T denotes the transpose. 
All halfspaces in IRk are described as follows: 

Lemma 12. A set 8 C IRk is a half space if and only if there exists a real invertible 
k x k matrix A such that 

8 = AEk ~f {Ax : x E Ek}. (29) 

For a proof see [28], [12], for example. 

It is often convenient to extend linear orders with respect to which countable 
additive subgroups of IRk are ordered groups, to so-called term orders on IRk, 
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i.e., linear orders ::S on IRk having the properties x ::S y =} x + z ::S y + z and 
(x ::S y and c E IR+) =} cx ::S cy (note that the term orders are in one-to-one 
correspondence with halfspaces). That this is always possible follows from the 
next lemma [6]: 

Lemma 13. If ::S is a linear order on Z}, then there exists a term order ::SlRk 
on IRk, and an order preserving (with respect to ::S and ::SlRk ) one-to-one group 
homomorphism from 7i} into IRk. 

We now prove the following auxiliary result. 

Lemma 14. Let fo be a countable subgroup of IRk, and let ::So be a term order on 
IRk. Then for every selection of two finite subsets O+,[L offo such that 0+ is 
positive and 0_ is negative with respect to ::So, there exists a term order ::S on IRk 
with the following properties: 

(a) fa is Archimedean with respect to ::S; 
(b) 0+ is positive and 0_ is negative with respect to ::S. 

Proof Since term orders are in one-to-one correspondence with halfspaces, for 
every term order ::So there exists a subspace of IRk of dimension k - 1 which 
divides IRk in a set of positive points and a set of negative points (with respect 
to ::So). Let V be the set of all (k - I)-dimensional subspaces V of IRk such that 
no point of 0+ can be continuously connected to a point of 0- without crossing 
V. Then V is open in the gap topology (see, e.g., [20, Chapter 13] for definition 
and properties of the gap topology), while the (k -I)-dimensional subspaces of IRk 
that have an empty intersection with fo \ {O}, form a dense subset of the metric 
space of linear subspaces of IRk with the gap topology. Thus there exists V E V 
such that V n fa = {O}. Now let ::S be a term order on IRk which orders points 
first by their signed distance from V (with points in 0+ having positive distances 
to V) and then by applying any term order on V to the orthogonal projections 
of points onto V. Since no two different points of fa can have the same signed 
distance to V, we see that the signed distance from V is an order preserving group 
homomorphic embedding of (f, ::slrJ into R Consequently, fa is Archimedean 
with respect to ::S. D 

Proposition 15. Consider IRk with a term order ::S . Let v, 0 E IRk be positive with 
respect to this order, and assume that the subgroup of IRk generated by v and 0 is 
not cyclic. Then none of the functions 

g E G, IRk the dual of G, (30) 

admit a finite factorization, with respect to f = IRk with the term order -< , for 
any triple of nonzero complex numbers (Cl' C2, C3) satisfying 

(31) 
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Note that (31) holds, in particular, when IC31 = IC21 = lell. Note also that the 
subgroup generated by v and 15 is non-cyclic if and only if an equality mv = nt5, 
m, n E Z implies m = n = O. 

Proof The case k = 1 is known: [22], also [4, Section 15.1]. In fact, in this case a 
stronger property holds: the matrix function (30) does not admit any factorization, 
finite or not. 

Consider now the general case. Arguing by contradiction, assume that a func
tion of the form (30) admits a finite factorization with respect to ~: 

o ] _ A [el'l 
e-v -6 - + 0 

(32) 

where A± E Q((W(G)±)nxn), {/Ll,/L2} C ffi.k, and the Fourier spectrum of A± 
is finite. By taking determinants in (32) we see that actually /L2 = -/Ll and 
det (A±) is a nonzero constant, so without loss of generality we may assume that 
det (A±) = 1. Let fo be the (countable) subgroup of ffi.k generated by v, 15, /Ll, 
and the Fourier spectra of A+ and A_, and let Go be the group for which fo is 
the dual. By Lemma 14 there is a term order ~o on ffi.k with respect to which 
fo is Archimedean and such that the same formula (32) is a factorization with 
respect to ~o. By Holder's theorem [31], fo is ~o-order isomorphic to a subgroup 
of R Such an isomorphism would transform (32) to a factorization of a function 
of the form (30) where k = 1, a contradiction with the known case [22], [4, Section 
15.1]. 0 

It remains an open question whether functions (30) admit a non-finite fac
torization in the case k > 1. 

The next lemma is well-known in abstract group theory, see [24, Chapter 
VIII, §30], for example. 

Lemma 16. An abstract group n is isomorphic to a subgroup of Q if and only 
if n is torsion-free (every nonzero element has infinite order) and every finitely 
generated subgroup of n is cyclic. 

Proof of Theorem 11. Let f be a discrete ordered abelian group that is not iso
morphic to a subgroup of Q. By Lemma 16 there exist vo, 150 E f that are positive 
elements and generate the noncyclic subgroup fo of f. Say, Vo >- 150 >- O. By 
Proposition 15 the functions 

A - [e v O+60 0] 
Cl e_ vo + C2 + c3e60 e_vo-60 ' 

(33) 

where 

Cl, C2, C3 =1= 0, (log IC31)v + (log leI 1)15 = (log IC21)(V + 15), 

are not finitely factorizable with respect to fo (to make Proposition 15 applicable, 
identify fo with Z2 and use Lemma 13). 
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It remains to prove that the functions (33) are not finitely factorizable with 
respect to r, and with the factors A± having finite spectrum. Suppose one of such 
functions is: 

(34) 

for some C1,C2,C3 as in (33), where A± E 9((W(G)±)2p X2p ), the Fourier spectra 
of A± are finite, and j1,j2 E r. Comparing determinants in (33) and in (34), we 
see that in fact j1 + j2 = o. 

Let r' be a finitely generated subgroup of r that contains ]1, lIo, 150, and the 
Fourier spectra of A+ and A_, and let G' be the dual group of r'. By Theorems 
1 and 2, A;;;l E W(G'?PX2P. It now follows that A± E 9((W(G,)±)2p X2p , and 
(34) is actually a factorization with respect to r'. Identifying r' with zm for 
some m, we see that by Lemma 13, r' is order isomorphic to a subgroup of IRm, 
and transforming (34) with the help of such an order isomorphism, we obtain a 
contradiction with Proposition 15. 

The converse statement follows from Lemma 16 and the well-known result 
that the converse statement holds for r = Z. Indeed, every finitely generated 
subgroup of Q is cyclic. 0 

5. Systems of difference equations 

As an application of factorization we consider systems of difference equations on 
a general discrete ordered abelian group (r,::s) of the form 

L A(t - s)x(s) = b(t), t E r +, (35) 
sE[' + 

where A(t) is an nxn matrix function whose spectrum is a subset ofr and for which 
2:tEf' IIA(t)11 < 00, and b(t) is an n x 1 matrix function whose spectrum is a subset 
ofr + and for which 2:tEf' + Ilb(t)11 < 00. We seek solutions x which are nx 1 matrix 
functions whose spectrum is a subset of r + and for which 2:tEf' + Ilx(t) II < 00. Let 
us now define 

b(t) = L A(t - s)x(s), t E r _ \ {a}. 
sE[' + 

Then (35) is true for every t E r, while x(t) for t E r + and b(t) for t E r _ \ {a} 
are the unknowns. Putting 

we obtain 

x(g) = 2:tEf'+ x(t)(t,g), 

b(g) = 2:tE [' + b(t)(t, g), 

u(g) = - 2:tEf'_\{O} b(t)(t,g), 

A(g) = 2:tEf' A(t)(t, g), 

A(g)x(g) + u(g) = b(g), 9 E G, (36) 

where u(g) belongs to (W(G))nxn and has only spectrum in r _ \ {a}. 
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By standard methods (such as [18] for r = Z) one can prove that if A(g) has 
a right canonical factorization 

gE G, 

where 
A 1 ~ A 1 ~ 

A+(g)- = L..J a+(t)et(g), A_(g)- = L..J a_(t)et(g), 
t~O t~O 

then (35) has a unique solution which is given by 

x(t) = L F(t,u)b(u), t E r+, (37) 
u~O 

where 
F(t,u) = 

O~v~min(t,u) 

Let us now consider (35) in the case when A(g) has a right, not necessarily 
right canonical, factorization. In the statement below, we denote by a(·) the Fourier 
spectrum, and use the shorthand [a,,6) for the set hEr: a ~ 'Y -< ,6}, with the 
obvious modification for the set (a, ,6]. 

Theorem 17. Suppose A(g) has the right factorization 

9 E G, 

where jl ~ ... ~ jn. Put Pr = row (Jir )i=lJ where Jir is the Kronecker symbol. 
Then (35) has at least one solution if and only if 

a (PrA_(g)-lb(g)) n [O,jr) = 0 whenever jr >- O. (38) 

The solutions of the homogeneous version of (36) are exactly those 
x(g) E (W(G)+)nXI for which 

a (PrA+(g)x(g)) ~ lir,O) whenever jr -< O. 

Thus all solutions are unique if and only if 0 ~ jl ~ ... ~ jn. 

Proof From (36) we immediately have 

(39) 

ejr(g)PrA+(g)x(g) + PrA_(g)-lu(g) = PrA_(g)-lb(g). (40) 

Then for jr >- 0 condition (38) is clear, because the first term on the left-hand 
side of (39) has its spectrum in [jr, 00) and the second term in (-00,0). Thus for 
jr >- 0 the right-hand side of (40) should not have any spectrum in [O,jr) in order 
for a solution to exist. If (38) holds, then one of the solutions of (36) is delivered 
by x(g) = A+(g)-ldiag (e_h (g), ... ,e_jn (g))A_ (g)-lb(g). 

To prove the uniqueness statement, we write (36) with b(g) == 0 in the form 

ejr(g)PrA+(g)x(g) = -PrA_(g)-lu(g), 

where the left-hand side has its spectrum in lin 00) and the right-hand side in 
{J.t E r : J.t -< O}. D 
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6. Orthogonal families of functions 

In this section we show how factorization can be used to determine orthogonal 
families of functions. Let f = EjH fJej E W(G), where ej is defined by (2), be 
such that 

f(g) 2: E > 0 for every 9 E G. (41) 

We let L2(fv) be the weighted L2 Hilbert space with respect to the normalized 
invariant measure v on G with the weight f. 

Theorem 18. Assume that f E W(G) satisfies (41). For I-" t 0 let 

jH,-Il~j~1l 

Assume that for every I-" t 0 there exists a factorization 

[ ~f eoll] = [~: ~:] [~: ::], (42) 

where 

with the additional properties that 0 is not in the Fourier spectrum of I3Il and 
all E g(W(G)+), where all and I3Il are taken from 

[ all I3Il ] = [all bll ] -1 

'Y Il 15 Il cll dll 

Then the family 

7r1l (g) := ell(g)all(g), 9 E G, I-" t 0 

forms an orthogonal set in L2(fv). In addition, the Fourier spectrum of7r1l lies in 
{g E r : 0 ~ 9 ~ I-"} and contains 1-". 

Note that factorization (42) is, upon a row interchange, and except for the 
additional properties, a canonical factorization of a triangular 2 x 2 matrix function 
of the form (7). 

Proof We will use in the proof the fact that (eA, ell) = 0 if A =F 1-"; this orthogonality 
is a result of the unitarity of the Fourier transform from .e2 (r) onto L2(G) [31]. 

From the factorization (42) it follows that 

all(QIlf) = Pll - eIl I3Il (z), 

which has Fourier spectrum in {g E r : 9 ~ 0 or I-" -< g}. Here we used that 
o is not in the Fourier spectrum of 13. Thus ell(QIlf)a~ has Fourier spectrum in 
{g E r : 9 -< 0 or I-" ~ g}. Here and elsewhere a~ is a shorthand notation for the 

function all(g), 9 E G. Thus for 0 ~ l -< I-" we have that 

(el, ell(QIlf)a~) = 0, 
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where (,) is the inner product in L2(1/). In addition, since all = ellqll' it follows 
that aJ-L has Fourier spectrum in {g E r : 0 ~ 9 ~ /-t}, and since aJ-L is invertible 
it cannot be the zero element in W (G). From the location of the Fourier spectrum 
of all it follows that ell(f - (QIlf)(z))a~ has Fourier spectrum in {g E r : g-< 
o or /-t -< g}. Thus it follows that 

0= (el' ell(QIlf)a:) = (el' ell fa:) , 0 ~ 1 -< /-t. 

Thus ella~ is orthogonal to el, 0 ~ 1 -< /-t, in L2(f1/). Moreover, the Fourier 
spectrum of ella~ lies in {g E r : 0 ~ 9 ~ /-t} and must contain /-t (because all is 
assumed to be invertible). D 

In the case that r is a subgroup of Rk the existence of a factorization (42) 
with the additional properties described in Theorem 18 follows from the results in 
[29] (combine Theorem 2.22 with Lemma 4.9; see also the proof of Theorem 4.11). 
The very special case that r = Z and G = 'lr, the unit circle, follows of course 
directly as a particular case. We state the result. 

Theorem 19. Let f(z) = 2:;:-00 fJzj E W('lr) be such that f(z) > 0, z E 'lr. For 
each nonnegative integer n, put 

n 

j=-n 

Then there exist factorizations 

[Qnf(Z) z-n] = [a b] [p q] 
zn 0 cdr s ' 

(43) 

where 

[~ :], [~ ~]:= [~ : rl 

are analytic in ID, the closure of the unit disk, 

are analytic in (C U {oo}) \ ID, and in addition ,8(0) = 0 and a-l is analytic in ID. 
Moreover, if we define 

7rn (z) := zn a(ljz), 
then the family 7rn, n = 0, 1,2, ... , consists of orthogonal polynomials with respect 
to the inner product on L2 ('lr) with weight f(z). 

While the last statement of this theorem is a direct consequence of Theorem 
18, it is interesting to make the connection to the results in [13], [14], [9], and [10]. In 
these papers a machinery has been developed where Riemann-Hilbert problems are 
used to solve various asymptotics problems in the area of orthogonal polynomials 
and their applications. This approach has been very successful and continues to 
be. The book [8] may be consulted for further recent developments in this area. 
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We end this paper with a proof of Theorem 19 based on results in [13] and [9] 
specialized to the case of the unit circle. 

Alternative proof of Theorem 19. Consider the following Riemann-Hilbert problem: 
find a 2 x 2 matrix-valued function Y(z) such that 

Y(z), is analytic in C \ 'f; 

zE'f 

uniformly as z -+ 00. 

For the definition of Y+ and Y_ we require that Y(z) is continuous up to the 
boundary in each component of C \ 'f, and we define 

Y+(z) = lim Y(w) and Y_(z) = lim Y(w). 
w-+z, wElIl> w-+z, wEC\lIl> 

By [13], [9] (see also [2, Lemma 4.1], where the result is written out for the case of 
a circle) it follows that this problem has a unique solution Y(z) = (Y'ij);,j=I' that 
Yll (z) is the nth monic orthogonal polynomial with respect to the weight f( eiO ) g! 
on the unit circle, and that Y21 (z) is a polynomial of degree n - 1. Further note 
that detY(z) has no jump on the circle, and that detY(z) -+ 1 as z -+ 00. Thus 
detY(z) == 1. Let now 

-1 [zn 0] Rl(Z)=YC~) 0 z-n ,ZEJI)), and 

and extend them continuously to the boundary (which is possible since Y+ and 
Y_ are well-defined). Then for Izl = 1 we have that 

R2 (z) = Y+(~) [~ ~] = L(~) [~ zn{(z)] [~ ~] = 

R1(z) [z~n zOn] [~ zn{(z)] [~ ~] = R1 (z) [f;!) z~n]. 
Furthermore, as Y21 (z) is a polynomial of degree n-1, it follows that (Rl )21 (0) = O. 
Next, let 

[~ ~] = R1(z) [~ 2:;:1 {Hnzj] , [~ ~] = R2 (z) [_ Lj~-~ fJ-nzj ~]. 
Then (43) is satisfied. Moreover, note that 7r(z) = Yll(Z). By the results of Szeg8 
[33], 7r has all its zeros in the open unit disk, so a-I is analytic in Iij. In order to 
get that /3(0) = 0, one may multiply 

with an appropriate constant matrix on the left (e.g., the inverse of its value at 0). 
D 
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Finally, we remark that the formulas for the factors given in the first line of 
the proof of Theorem 2.18 in [29] are in direct correspondence with the formulas 
for the solution to the Riemann-Hilbert problem given in [13], [9] (see [2, Lemma 
4.1] where it is explicitly written out for the circle case). 
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