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SUMMARY

We consider a class of abstract evolution problems characterized by the sum of two unbounded linear
operators A and B, where A is assumed to generate a positive semigroup of contractions on an L1-space
and B is positive. We study the relations between the semigroup generator G and the operator A+ B.
A characterization theorem for G=A+ B is stated. The results are based on the spectral analysis of
B(�−A)−1. The main point is to study the conditions under which the value 1 belongs to the resolvent
set, the continuous spectrum, or the residual spectrum of B(�− A)−1.
Applications to the runaway problem in the kinetic theory of particle swarms and to the fragmentation

problem describing polymer degradation are discussed in the light of the previous theory. Copyright ?
2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we consider the initial value problem in the general abstract form



@f
@t
=Af + Bf; t¿0

f(0)=f0

(1)
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where A and B are possibly unbounded operators acting on some L1-space and the unknown
vector function f belongs to this space.
In many applications the di�erent nature of the two operators A and B, often both of them

unbounded, makes the problem of the generation of the evolution semigroup corresponding
to (1) unsolvable within the framework of classical perturbation theory. Examples of such a
situation are easily found in kinetic theory, where the loss term is described by the operator
A and the gain term is taken into account by the operator B. The evolution problem is
essentially a balance equation and the Banach space L1 is a natural choice as the norm of a
non-negative element gives the number of particles. Other, not necessarily equivalent norms,
may be important if we want to measure the number of collisions or other physical quantities.
The strategy which can be adapted to such evolution problems involves semigroup theory

and is based on the fundamental work by Kato [1] on Kolmogoro� equations. In general,
the generator G of the evolution semigroup solving the Cauchy problem is a closed (but not
necessarily the minimal closed) extension of A+B, but a full characterization of the generator
requires additional assumptions.
A useful criterion that an extension of A+B is a generator G of a substochastic semigroup

was given by Voigt in Reference [2]. According to this criterion, under appropriate assump-
tions, a perturbation of the generator of a substochastic¶ semigroup by an unbounded positive
operator has an extension that also generates a substochastic semigroup. Generalizations of
the approach of Voigt were proved and successfully used by Arlotti [3,4] and Banasiak [5,6].
The perturbation problem with an unbounded operator in kinetic theory can be approached

also within the framework of the general theory for the existence and uniqueness of solutions
in an Lp-space setting, as developed by Beals and Protopopescu in Reference [7], and also
in Chapter XI of Reference [8]. This theory was modi�ed and extended in Reference [9] in
order to deal with the existence issues in the unbounded case. However, for phase spaces,
force terms, collision frequencies, collision loss operators and boundary re�ection operators
not depending on time, in the L1-setting and for a positive loss term not exceeding or even
balancing the gain term, the kinetic equations studied in References [7–9] turn out to be
applications of the abstract theory of this paper.
In the general case, one can prove that the generator of the evolution semigroup {S(t)}t¿0

solving the Cauchy problem (1) is an extension of the operator T de�ned by the right-hand
side of (1). In fact, three mutually exclusive situations occur: (i) T actually is the generator,
(ii) the generator is the closure of T , which implies that {S(t)}t¿0 is stochastic and (iii)
the generator is a non-minimal closed extension of T . As it will turn out, a necessary and
su�cient condition for S to be stochastic, i.e. to satisfy

‖S(t)f‖= ‖f‖; ∀t¿0; ∀f¿0
is that the generator coincides with the closure of T . In the basic application to kinetic theory,
the total number of particles is preserved in time if and only if {S(t)}t¿0 is stochastic. So
only in this case we can claim that the obtained semigroup has physical relevance [6], unless
we can argue for physical processes leading to particles leaking from the system in spite of
the apparent existence of detailed balance.

¶A semigroup {S(t)}t¿0 on an L1-space is called stochastic if it is positive and ‖S(t)f‖1 = ‖f‖1 for all t¿0 and
f¿0 in the L1-space. Positive contraction semigroups on an L1-space are called substochastic.
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In this paper we study a class of abstract evolution problems determined by the sum
of two possibly unbounded linear operators A and B, where A is assumed to generate a
positive semigroup of contractions on an L1-space and B is a positive operator. The main
purpose of the study is to investigate the relations between the generator G and the operator
A + B. In Section 3 a characterization theorem for all of three main situations discussed
above, i.e. G=A + B, G=A+ B and G is a non-minimal extension of A+ B, is proved.
The results are based on the spectral analysis of B(� − A)−1 and it will in fact turn out
that the three situations are characterized by whether 1 is in the resolvent set, the continuous
spectrum or the residual spectrum of B(� − A)−1, respectively. In Section 4 we revise the
existing treatment of the runaway problem in the kinetic theory of particle swarms [10,11] and
characterize the generator. In the last section we apply the general theory to the fragmentation
problem describing polymer degradation [12], perform a spectral analysis of the problem and
completely characterize the generated semigroup.

2. STATEMENT OF THE ABSTRACT PROBLEM

Let (�; �) and (�; �) be two measure spaces consisting of the same �-algebra of subsets
of � but equipped with two positive Borel measures � and �, where � is �-�nite and � is
absolutely continuous with respect to �. Let X and Y denote the Banach lattices X =L1(�; d�)
and Y =L1(�; d�), respectively, endowed with the standard norms ‖ · ‖X and ‖ · ‖Y . Then X
and Y both consist of (equivalence classes of) measurable complex-valued functions on �
and their intersection X ∩Y can be identi�ed with L1(�; d�+ d�), where we have added the
measures � and � to produce the positive Borel measure �+ � on �.
In the abstract setting, we make the following general assumptions:

(i) A is the generator of a positive contraction semigroup (a so-called substochastic semi-
group) {S0(t)}t¿0 on X .

Let us denote by L� the resolvent operator (�− A)−1 of A such that

L�f=
∫ ∞

0
e−�tS0(t)f dt; f∈X; Re �¿0 (2)

Then we assume that the following two conditions are satis�ed:

(ii) for all �¿0 we have L�[X ]⊂X ∩Y and
(iii) for all �¿0 we have

�‖L�f‖X + ‖L�f‖Y6‖f‖X ; f¿0 in X (3)

Now let B: X ∩Y →X be a positive linear operator.

(iv) We assume that B: X ∩Y →X is such that

‖Bf‖X6‖f‖Y ; f¿0 in X ∩Y (4)

We remark that under this assumption the operator B can be unbounded as an operator acting
on X .

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:669–685
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Example 2.1
In kinetic theory, A is commonly given by the sum T0+TF+TA, where T0 is the free streaming
operator, TF is the external force term, and TA is the absorption (loss) term. The absorption
operator is de�ned by TA = −�I , where I is the identity operator and �= �(�) is non-negative
and belongs to L1; loc(�; d�), i.e. � is �-integrable on every bounded subset of �.
For simplicity we restrict ourselves to the one-dimensional setting with constant acceleration

so that T =TF + TA =−a(@=@v) − �(v), with a¿0 constant and v∈R. Then the operator L�

takes the form

(L�f)(v)=
1
a

∫ v

−∞
exp

(
−1
a

∫ v

v′
[�(v′′) + �] dv′′

)
f(v′) dv′ (5)

In most applications the operator B is the gain collision operator, which maps {f∈L1(R): f¿
0; �f∈L1(R)} into {f∈L1(R): f¿0} and satis�es

‖Bf‖L1(R)6‖�f‖L1(R); f¿0 for f∈L1(R) and �f ∈ L1(R)

Now de�ne for n ∈ N and �¿0

T (n)� f=
n∑

j=0
L�(BL�) jf; f¿0 in X (6)

where {L�}Re �¿0 and B are assumed to satisfy hypotheses (ii)–(iv). Then for f¿0 in X
we have

�‖T (n)� f‖X = �
n∑

j=0
‖L�(BL�) jf‖X

6 �‖L�f‖X +
n∑

j=1
{‖(BL�) jf‖X − ‖L�(BL�) jf‖Y }

6 �‖L�f‖X +
n∑

j=1
{‖L�(BL�) j−1f‖Y − ‖L�(BL�) jf‖Y }

= �‖L�f‖X + ‖L�f‖Y − ‖L�(BL�)nf‖Y
6 ‖f‖X − ‖(BL�)n+1f‖X

Now letting n→∞ in (6), we de�ne

T�f= lim
n→∞T (n)� f (7)

which satis�es

�‖T�f‖X6‖f‖X − ��(f); f¿0 in X (8)

where

��(f)= lim
n→∞ ‖(BL�)nf‖X ; f¿0 in X
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CHARACTERIZATION THEOREM FOR THE EVOLUTION SEMIGROUP 673

extends to a bounded linear functional on X which is necessarily positive. Thus there exists
’�¿0 in X ∗=L∞(�; d�) – note that � is �-�nite – such that

��(f)= 〈f;’�〉; f¿0 in X

We now introduce more restrictive assumptions. Let us consider the positive contraction
semigroup {S0(t)}t¿0 on X whose resolvent {L�}Re �¿0 satis�es assumption (ii) as well as the
following equality:

(iii′) for all �¿0 we have

�‖L�f‖X + ‖L�f‖Y = ‖f‖X ; f¿0 in X (3′)

We will also consider positive operators B :X ∩Y →X satisfying the following equality:

(iv′)

‖Bf‖X = ‖f‖Y ; f¿0 in X ∩Y (4′)

If {L�}Re �¿0 and B are assumed to satisfy assumptions (ii), (iii′) and (iv′), then all in-
equality signs in the previous two paragraphs turn into equality signs and (8) turns into the
equality

�‖T�f‖X = ‖f‖X − ��(f); f¿0 in X (8′)

Proposition 2.1
{T�}�¿0 is the resolvent of a positive contraction semigroup on X . Moreover, this semigroup
is stochastic if and only if, for some (and hence all) �¿0, conditions (ii), (iii′) and (iv′) are
satis�ed and the linear functional �� ≡ 0.
Proof
Let {Bm}m∈N be an increasing sequence of bounded positive operators on X such that

lim
m→∞ ‖Bf − Bmf‖X =0; f¿0 in X ∩Y

In fact, choosing an increasing sequence {�m}∞m= 1 of �-measurable sets with union � on
which the Radon–Nikodym derivative of � with respect to � is bounded, we may choose
Bmf=B(f��m),

‖ where �E denotes the characteristic function of E. Then standard semigroup
theory (i.e. adding the bounded linear operator Bm to the generator A of {S0(t)}t¿0) implies
that

T�;mf=
∞∑
j=0

L�(BmL�) jf; f¿0 in X (9)

is the resolvent of the positive semigroup {S(m)}t¿0 generated by A+Bm. Applying the theorem
of dominated convergence to (9), we see that for all t¿0

lim
m→∞ ‖T�f − T�;mf‖X =0; f¿0 in X ∩Y (10)

‖Here we use that � is �-�nite and � is absolutely continuous with respect to �.

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:669–685
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Now note that the semigroups {S(m)}t¿0 form an increasing sequence of substochastic semi-
groups. Thus there exists a positive contraction semigroup {S(t)}t¿0 on X such that

lim
m→∞ ‖S(t)f − S(m)(t)f‖X =0; f¿0 in X ∩Y (11)

Then the �rst part of Proposition 2.1 follows immediately from (10) and (11).
To prove the second part, it is clear that the stochasticity of {S(t)}t¿0 implies that for all

�¿0 the equality signs hold in the derivation leading from (6) to (8) and that �� ≡ 0. But this
is only possible if (iii′) and (iv′) as well as (8′) hold for all �¿0. Conversely, if assumptions
(iii′) and (iv′) hold and �� ≡ 0 for some �¿0, then, in view of (8′), we have for f¿0 in X∫ ∞

0
e−�t(‖f‖X − ‖S(t)f‖X ) dt= 1� ‖f‖X − 1

�
‖f‖X =0

while ‖f‖X − ‖S(t)f‖X¿0 for every t¿0. Hence, the integrand must vanish and therefore
{S(t)}t¿0 is stochastic.

3. CHARACTERIZING THE SEMIGROUP GENERATOR G

We now characterize the generator of the semigroup S(t) in terms of properties of the operator
BL�. We begin by observing that the kernel of I−BL� is trivial, i.e. 1 cannot be an eigenvalue
of BL�.
Indeed, using (6) we immediately have

T (n)� (I − BL�)=L� − L�(BL�)n+1

Taking the strong limit as n→∞ we immediately get for �¿0

T�(I − BL�)=L� (12)

Now let us denote the generator of {S(t)}t¿0 by G. Then

D(G)=T�[X ]⊃L�[X ]=D(A)

and Ker (I − BL�)⊂Ker L�= {0}, so that 1 =∈�p(BL�) (i.e., 1 is not an eigenvalue of BL�).
In Reference [13] we have established the following result.

Theorem 3.1
Let G denote the generator of the semigroup S(t) whose resolvent is T� de�ned by (7). Then
the following statements are equivalent:

(1) D(G)=D(A) and G=A+ B,
(2) I − BL� is invertible on X for some �¿0 and
(3) I − BL� is invertible on X for all Re �¿0.

Corollary 3.1
The equivalent conditions of Theorem 3.1 are ful�lled if at least one the following su�cient
conditions is satis�ed:

(a) B is bounded on X ,

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:669–685
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(b) BL� is weakly compact on X and
(c) the norm of BL� is strictly less than one.

Proof
Each of the su�cient conditions implies that I − BL� is boundedly invertible on X .

We now link the property of 1 being a point of the resolvent set �(BL�), the continuous
spectrum �c(BL�), or the residual spectrum �r(BL�) of BL� to three distinct characterizations
of the generator G. For convenience we include Theorem 3.1 as Part (1) of Theorem 3.2.

Theorem 3.2
We have the following characterizations:

(1) 1∈�(BL�) for some (and hence all) �¿0 if and only if D(G)=D(A);
(2) 1∈�c(BL�) for some (and hence all) �¿0 if and only if D(G)%D(A) and G=A+ B;
(3) 1∈�r(BL�) for some (and hence all) �¿0 if and only if G%A+ B.

Proof
If 1∈�(BL�), then I − BL� is boundedly invertible on X and therefore, in view of (12) and
Ker T�=Ker L�= {0}, we have D(G)= Im T�=Im L�=D(A), and conversely. Since clearly
Im T�=Im L� does not depend on �, we obtain that 1∈�(BL�) for all �¿0 whenever this is
true for some �¿0.
Let us now prove parts (2) and (3), with the exception of the implication leading from

some to all �¿0. A vector w∈X belongs to D(A+ B) if and only if there exist f∈X and
a sequence {zn}n∈N in D(A+B) such that ‖zn −w‖X → 0 and ‖(�− (A+B))zn −f‖X → 0 (in
which case (� − A+ B)w=f). Since D(A)= Im L�, we write zn=L�gn for some gn ∈X and
rewrite the second limit in the form

‖(I − BL�)gn − f‖X = ‖(�− (A+ B))zn − f‖X → 0

so that f belongs to the closure of Im (I − BL�) in X . Moreover,

‖zn − T�f‖X = ‖L�gn − T�f‖X = ‖T�(I − BL�)gn − T�f‖X

= ‖T�[(I − BL�)gn − f]‖X61� ‖(I − BL�)gn − f‖X → 0

so that w=T�f. In other words

D(A+ B)=T�
[
Im (I − BL�)

]
which implies that D(A+ B)=D(G) (which in turn equals T�[X ]) if and only if I −BL� has
a dense range in X . It is easily seen that, in general, G⊃A+ B.
Since G=A+ B and G%A+ B are both statements that do not depend on �, (2) and (3)

are each true for all �¿0 if they are each true for some �¿0.

We now derive a necessary and su�cient condition for the stochasticity of the semigroup
{S(t)}t¿0 generated by G.

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:669–685
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Theorem 3.3
Let the conditions (ii), (iii′) and (iv′) be satis�ed. Then the semigroup {S(t)}t¿0 is stochastic
if and only if G=A+ B, i.e. if and only if either condition (1) or condition (2) of Theorem
3.2 is ful�lled.

Proof
In view of (8′), stochasticity of {S(t)}t¿0 is obviously equivalent to requiring that ��(f)=0
for every f∈X . The latter amounts to requiring that ’� ≡ 0. Because for all f¿0 in X

��(BL�f)= lim
n→∞ ‖(BL�)n+1f‖X =��(f)

we have (I − (BL�)∗)’� ≡ 0 in X ∗=L∞(�; d�). Thus stochasticity of {S(t)}t¿0 is equiva-
lent to requiring that 1 �∈�p((BL�)∗). However, since in any case 1 �∈�p(BL�), we see that
stochasticity of {S(t)}t¿0 is equivalent to requiring that 1 �∈�r(BL�). Theorem 3.3 follows now
immediately from part (c) of Theorem 3.2.

Constructing T� as the strong limit of {T (n)� }n∈N or constructing T� as the strong monotoni-
cally increasing limit of {T�;m}m∈N if Bm ↑B strongly, always leads to a so-called minimal
evolution semigroup. By this we mean a substochastic semigroup {S(t)}t¿0 on X such that
its resolvent {T�}Re �¿0 satis�es the identity (12) and can be obtained by iterating (12). Clearly,
(12) is equivalent to the Dyson–Phillips integral formula

S(t)f −
∫ ∞

0
S(t − �)BS0(�)f d�= S0(t)f; f¿0 in X (13)

where t¿0, plus the rule that {S(t)f}t¿0 can be obtained by iterating (13).
The question is if there exists more than one substochastic semigroup {S̃(t)}t¿0 on X

(with corresponding resolvent {T̃�}Re �¿0) which satis�es (13) [or equivalently: for which the
resolvent satis�es (12)]. Then, it is easily seen by applying in�nitely many iteration steps that
any such semigroup (resp., any such resolvent) satis�es S̃(t)f¿S(t)f (resp., T̃�f¿T�f) for
every f¿0 in X . Therefore it is justi�ed to call {S(t)}t¿0 (resp., {T�}Re �¿0) the minimal
evolution semigroup (resp., the minimal resolvent).
When 1∈�(BL�)∪�c(BL�) for some (and hence all) �¿0 and therefore the semigroup

{S(t)}t¿0 is stochastic, the minimal semigroup as discussed in the preceding paragraph is the
only semigroup satisfying (12), for the simple reason that I − BL� has a dense range in X
for every �¿0. The situation might (or might not) change drastically if 1∈�r(BL�) for some
(and hence all) �¿0 and the semigroup {S(t)}t¿0 is substochastic but not stochastic. To
understand what might happen, we consider an alternative substochastic semigroup {S̃(t)}t¿0
whose resolvent {T̃�}Re �¿0 satis�es the identity

T̃�(I − BL�)=L�; Re �¿0 (14)

Then (14) is equivalent to the Dyson–Phillips integral equation

S̃(t)f −
∫ ∞

0
S̃(t − �)BS0(�)f d�= S0(t)f; f¿0 in X (15)

The important point is that T̃� and S̃(t) may no longer be obtained by iterating (14) and (15),
respectively.

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:669–685
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Having found a solution T̃� of (14) that is a positive operator on X of norm 6(1=�) (where
�¿0), we denote by 1 the function identically equal to 1 on �, as element of X ∗=L∞(�; d�),
and de�ne

’̃�=1− �T̃
∗
� 1∈X ∗=L∞(�; d�) (16)

where 〈T̃�f; ’〉= 〈f; T̃
∗
� ’〉 for all f∈X and ’∈X ∗. Then we easily compute for f¿0 in X

〈f; (BL�)∗’̃�〉= 〈BL�f; ’̃�〉

= 〈BL�f; 1〉 − �〈BL�f; T̃
∗
� 1〉

= 〈BL�f; 1〉 − �〈T̃�BL�f; 1〉

= 〈BL�f; 1〉 − �〈[T̃� − L�]f; 1〉

= ‖BL�f‖X − �〈T̃�f; 1〉+ �‖L�f‖X

= ‖f‖X − �〈T̃�f; 1〉= 〈f; 1− �T̃
∗
� 1〉= 〈f; ’̃�〉

which implies that (BL�)∗’̃�= ’̃�. Moreover, ’̃� �≡ 0, because otherwise we would have for
all f¿0 in X

0= 〈f; ’̃�〉= 〈f; 1〉 − �〈f; T̃
∗
� 1〉= ‖f‖X − �‖T̃�f‖X

which would turn {T̃�}�¿0 into the resolvent of a stochastic semigroup. In other words, every
substochastic semigroup {S̃(t)}t¿0 with resolvent {T̃�}�¿0 satisfying (14) leads to a positive
eigenvector ’̃� of (BL�)∗ at the eigenvalue 1. This eigenvector must necessarily satisfy

06’̃�6’�61

because the substochastic semigroup obtained by iterating the Dyson–Phillips integral equation
(15) is the minimal substochastic semigroup whose resolvent satis�es (14).

4. APPLICATION: THE RUNAWAY PROBLEM

In this section we revise some mathematical aspects of the behaviour of charged particles
moving within a host medium under the in�uence of a constant electric �eld. When the
collision process is not su�cient to slow down the most energetic particles and to force the
system towards relaxation, a travelling wave in velocity space is generated. In this case the
particle swarm exhibits a phenomenon called runaway: electrons are continuously accelerated
without limit (for the physical problem see References [14,15] and the references quoted
therein).
Necessary conditions and su�cient conditions for the existence, uniqueness and attractiv-

ity of a steady-state solution and the occurrence of travelling waves have been studied in
References [10,11].

Copyright ? 2004 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2004; 27:669–685



678 G. FROSALI, C. V. M. VAN DER MEE AND F. MUGELLI

Let a¿0 be the constant electrostatic acceleration and let � be the collision frequency
between an electron and the host medium, where we assume that �∈L1; loc(R; dv) is non-
negative. Introduce the Banach spaces X =L1(R; dv) and X�=L1(R; �(v)dv) with their usual
norms.∗∗ De�ne TF =−a(@=@v), A=TF +TA = −a(@=@v)−�(v) on suitable domains contained
in X =L1(R; dv), and let

(Bf)(v)=
∫ ∞

−∞
k(v; v′)�(v′)f(v′) dv′ (17)

where k is positive and
∫∞
−∞ k(v; v′) dv=1 for every v′.

Using the preceding de�nitions we can write the linear Boltzmann equation for electron
swarms in the concise form

@f
@t
=TFf + TAf + Bf; t¿0

equipped by the initial data f(0)=f0 ∈X .
In the following we will explain how the dependence of the collision frequency �(v) upon

the speed v for large values of v is crucial in �nding the solution of the problem and char-
acterizing the generator G.
De�ning L� as in (5) by

(L�f)(v)=
1
a

∫ v

−∞
exp

{
−�
a
(v− v′)− 1

a

∫ v

v′
�(v̂) dv̂

}
f(v′) dv′ (18)

we have for f¿0 in X

∫ ∞

−∞
[�+ �(v)](L�f)(v) dv

=




∫ ∞

−∞
f(v′) dv′ if Re �¿0

∫ ∞

−∞

[
1− exp

{
−1
a

∫ ∞

v′
�(v̂) dv̂

}]
f(v′) dv′ if �=0

and

∫ ∞

−∞
�(v)(L0f)(v) dv =

∫ ∞

−∞
f(v′) dv′ if

∫ ∞

−∞
�(v) dv=∞

∫ ∞

−∞
�(v)(L0f)(v) dv6

[
1− exp

{
−‖�‖X

a

}]
‖f‖X if �∈L1(R)

∗∗In fact, X� is a Banach space if � is positive a.e.
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As a result,

‖BL�‖6



1 if � �∈L1(R)

1− exp
{
−‖�‖X

a

}
if �∈L1(R)

Therefore, the norm of BL� is less than 1 whenever �∈L1(R).
Thus, according to Proposition 3.1, we have G=A+B if at least one of the three conditions

(1) BL� is weakly compact on X for some (and hence) all �¿0, (2) � is bounded, and (3)
�∈L1(R), is satis�ed. We do not have any example in which G%A+ B and hence the
semigroup {S(t): t¿0} is not stochastic.
The reader interested to such problem can compare this approach with the results obtained

in Reference [10].

5. APPLICATION: THE FRAGMENTATION MODEL

In this section we consider a simple model for the fragmentation process which arises in many
�elds such as erosion, polymer degradation and oxidation. Recently, mathematical modelling
for molecule fragmentation has received much attention from mathematicians.
Let ’(x; t) be the concentration of x-mers as a function of time. Let F(x; y) denote the

intrinsic rate at which an (x+ y)-mer breaks up into an x-mer and a y-mer. Then, according
to the model studied in [12,16,17], ’ obeys

@’
@t
=−’(x)

∫ x

0
F(y; x − y) dy + 2

∫ ∞

x
F(x; y − x)’(y) dy (19)

We consider only the special case in which F(x; y) depends on the total size (x + y) of the
fragmenting object, and in particular the case where F(x; y)= (x + y)	−1 for some constant
	∈R. For this, formally conservative, model equation (19) reads as follows:

@’
@t
=−’(x)x	 + 2

∫ ∞

x
y	−1’(y) dy (20)

This model was investigated from the analytical point of view in References [12,17] and
using semigroup theory in Reference [16]. A characterization of the semigroup generator for
Equation (20) was obtained by Banasiak in Reference [6], by means of an extension of the
Kato–Voigt perturbation theorem for substochastic semigroups.
The case 	¿0 corresponds to the stochastic (conservative) semigroup which is generated

by the closure of the operator K	 appearing on the right-hand side of (20). For 	¿0 one can
produce multiple solutions and o�er an explanation of the non-uniqueness in such a model
(see Reference [18], and also Reference [19]).
The case 	¡0 corresponds to a generator which is a proper extension of K	 and the

(generated) semigroup is not stochastic. In this case the solutions of (20) do not conserve
mass, as observed for explicit solutions in References [20,21]. The very fast fragmentation of
very small particles creates ‘zero’ size particles with non-zero mass. This phenomenon which
corresponds to an in�nitely large fragmentation rate is called ‘shattering’ transition.
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The previous models are formally conservative. However, in many situations the process in-
volves continuous mass loss, for instance, due to dissolution of the porous surface of molecules
leading to fragmentation. In a recent paper [22], Banasiak and Lamb apply substochastic semi-
group theory to analyse molecule fragmentation models with mass loss and to give a math-
ematical validation of the mass loss known in the chemical physics literature as ‘shattering’
transition and the creation of zero-size particles called ‘fractal dust’.
In this section we limit ourselves to studying Equation (20).
Let us study the equation in the Banach space X =L1(R+; x dx), since the total mass for

non-negative distribution ’ is given by ∫ ∞

0
’(x)x dx

Then, in terms of the abstract theory, A is the multiplication by −x	, which can be interpreted
as a collision frequency, so that

(L�’)(x)= ((�− A)−1’)(x)=
’(x)
�+ x	

; for �¿0

Furthermore, Y =L1(R+; x1+	 dx) and

(B’)(x)=2
∫ ∞

x
y	−1’(y) dy

so that

(BL�f)(x)=2
∫ ∞

x

y	−1

�+ y	 f(y) dy (21)

and

((BL�)∗’)(x)=
2x	−2

�+ x	

∫ x

0
y’(y) dy (22)

We easily check the following conditions

�‖L�’‖X + ‖L�’‖Y = ‖’‖X ; ’¿0 in X

‖B’‖X = ‖’‖Y ; ’¿0 in X ∩Y =L1(R+; x(1 + x	) dx)

which correspond with the general assumptions (iii′) and (iv′).
We apply the previous abstract theory to the fragmentation model (20) to characterize the

generator G.
Let f∈X be non-negative and let �¿0. BL� is bounded on X as follows from the positivity

and (ii). From (21) and (22) we have

‖BL�f‖X =
∫ ∞

0

{
2
∫ ∞

x

y	−1

�+ y	 f(y) dy
}

xdx

=
∫ ∞

0

y	−1f(y)
�+ y	

∫ y

0
2x dx dy=

∫ ∞

0

y	

�+ y	 f(y)ydy
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Hence,

‖BL�‖X→X =sup
y¿0

∣∣∣∣ y	

�+ y	

∣∣∣∣ =



1
1 + �

if 	=0

1 if 	 �=0
(23)

Let us now consider the equation (I − 
(BL�)∗)’=0, where 
∈C. Using  (x)=
∫ x
0 y’(y)

dy, we solve

 ′(x)
 (x)

=
2
x	−1

�+ x	
; ’(x)=

 ′(x)
x

We now distinguish three cases, depending on the sign of 	.
Case 1: 	¿0: We get

 (x)= c(�+ x	)2
=	; ’(x)=2c
x	−2(�+ x	)2


	−1

Then


((BL�)∗’)(x) =
2
x	−2

�+ x	

∫ x

0
y’(y) dy

=
2
x	−2

�+ x	
[ (x)−  (0)]

=’(x)− 2c
�2
=	 x	−2

�+ x	

Thus, for 
∈C, the only solution of (I − 
(BL�)∗)’=0 occurs if c=0 and this is the trivial
solution. Hence, for all 
∈C we have ker (I − 
(BL�)∗)= {0}, so that Im (I − 
BL�) is dense
in X for all 
∈C. In other words, �r(BL�) \ {0}= ∅.
Further, it is easily seen that for Re s¿2=	¿0 the functions fs(x)= (� + x	)−s belong to

X and satisfy BL�fs=(2=	s)fs. Thus{
z ∈C:

∣∣∣∣z − 1
2

∣∣∣∣ ¡ 1
2

}
⊂�p(BL�)

i.e. this open disk consists of eigenvalues of BL� only. By the above, the boundary of this
disk is contained in �c(BL�). As a result, we have 1∈�c(BL�).
Case 2: 	¡0: In this case the functions  and ’ take the form

 (x)=
cx2


(1 + �x|	|)2
=|	|
; ’(x)=

2c

x2(1−
)

1
(1 + �x|	|)1+2
=|	|

and therefore


((BL�)∗’)(x) =
2


x2(1 + �x|	|)

∫ x

0

2c

y1−2


dy
(1 + �y|	|)1+2
=|	|

=
2


x2(1 + �x|	|)

[
cy2


(1 + �y|	|)2
=|	|

]y=x

y=0
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Thus ’ is a solution of the equation 
(BL�)∗’=’ if and only if ’∈L∞(R+; x dx), which
happens for c �=0 if and only if Re 
¿1. Hence,

ker(I − 
(BL�)∗)=



span

{
2


x2(1−
)(1 + �x|	|)1+2
=|	|

}
if Re 
¿1

{0} otherwise

Consequently,

{
z ∈C:

∣∣∣∣z − 1
2

∣∣∣∣¿1
2

}
⊂ �c(BL�)∪�(BL�) (24)

{
z ∈C:

∣∣∣∣z − 1
2

∣∣∣∣612 ; z �=0
}

⊂ �r(BL�) (25)

In particular, 1∈�r(BL�).
Case 3: 	=0: We get

 (x)= cx2
=(�+1); ’(x)=
2c

�+ 1

x2(
−�−1)=(�+1)

and hence, for c �=0, ’∈L∞(R+; x dx) if and only if Re 
= �+ 1.
Therefore,

ker(I − 
(BL�)∗)=

{
span {x2(
−�−1)=(�+1)} if Re 
= �+ 1

{0} otherwise

Hence, {
z ∈C:

∣∣∣∣z − 1
2(�+ 1)

∣∣∣∣ = 1
2(�+ 1)

}
\{0}⊂�r(BL�)

Moreover, 1∈�(BL�), as a result of (23).
The following theorem speci�es the semigroup generator G for the three cases involved in

the fragmentation model.

Theorem 5.1
The generator G of the evolution semigroup is given by the following three cases:

(1) For 	=0 we have G=A+ B.
(2) For 	¿0 we have G=A+ B%A+ B.
(3) For 	¡0 we have G%A+ B.

Proof
If 	=0, ‖BL�‖ ¡ 1; condition (c) in Corollary 3.1 is satis�ed and hence from Theorem 3.3
we conclude that G=A+B. Moreover if 	=0, we have 1∈�(BL�); thus from Theorem 3.1 we
get again G=A+B. If 	¿0 we have 1∈�c(BL�), thus from Theorem 3.2 we have G=A+ B.
Finally, if 	¡0, we have 1∈�r(BL�); from Theorem 3.2 we deduce that G%A+ B.
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We conclude this section by giving an explicit expression for T�. For 	¿0 we �rst
solve the equation (I − BL�)f= g for g∈X ∩C1(0;∞) with x2g(x)→ 0 as x→∞. Then,
f∈X ∩C1(0;∞) with x2f(x)→ 0 as x→∞ and

f′(x) +
2x	−1

�+ x	
f(x)= g′(x)

which can be written in the equivalent form

d
dx

{(�+ x	)2=	f(x)}= d
dx

{(�+ x	)2=	g(x)} − 2x	−1

(�+ x	)1−
2
	

g(x)

By integration we obtain

f(x)= g(x) +
2

(�+ x	)2=	

∫ ∞

x

y	−1

(�+ y	)1−
2
	

g(y) dy (26)

where the integration constant vanishes since x2f(x)→ 0 and x2g(x)→ 0 as x→∞. As a
result,

(T�g)(x)=
g(x)
�+ x	

+
2

(�+ x	)1+
2
	

∫ ∞

x

y	−1

(�+ y	)1−
2
	

g(y) dy (27)

For g¿0 in X ∩C1(0;∞) with x2g(x)→ 0 as x→∞ we easily get

‖T�g‖X =
∫ ∞

0

y
�+ y	 g(y) dy +

1
�

∫ ∞

0

y	+1

�+ y	 g(y) dy=
1
�
‖g‖X

as to be expected. Hence, (27) holds for every g∈X . For 	=0 we get in analogy with (26)

f(x)= g(x) +
2

�+ 1
x−

2
�+1

∫ ∞

x
y
1−�
1+� g(y) dy (28)

where g∈X ∩C1(0;∞) with x2g(x)→ 0 as x→∞. Thus

(T�g)(x)=
1

�+ 1

[
g(x) +

2
�+ 1

x−
2

�+1

∫ ∞

x
y
1−�
1+� g(y) dy

]
(29)

where g∈X after suitable extension from a dense domain.
For 	 ¡ 0 the above derivation is somewhat more complicated. Solving (I −BL�)f= g for

g∈X ∩C1(0;∞) with g(+∞)=0 (so that f∈C1(0;∞) with f(+∞)=0, but not necessarily
f∈X ), we �rst obtain

d
dx

{
x2

(1 + �x|	|)
f(x)

}
=
d
dx

{
x2

(1 + �x|	|)
g(x)

}
− 2x

(1 + �x|	|)
1+ 2

|	|
g(x)

and subsequently

f(x)= g(x) +
(1 + �x|	|)2=|	|

x2

∫ ∞

x

2y

(1 + �y|	|)
1+ 2

|	|
g(y) dy (30)
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where the integration constant vanishes. Multiplying (30) by x and integrating with respect
to x∈R+ it is easily seen that one cannot choose g in a dense linear subset of g and have
f∈X . Thus Im (I −BL�) is not dense in X , as proved above by di�erent means. Let us now
compute T� and ’� for 	¡0. By induction we obtain

((BL�)m+1f)(x)=2
∫ ∞

x

f(y)
y(1 + �y|	|)

F	(x; y)m

m!
dy

where

F	(x; y)=2
∫ ∞

x

dz
z(1 + �z|	|)

= log



(y
x

)2( 1 + �x|	|

1 + �y|	|

)2
|	|




Then

(T�f)(x) = (L�f)(x) +
∞∑
m=0
(L�(BL�)m+1f)(x)

=
x|	|

1 + �x|	|


f(x) + 2

∫ ∞

x

f(y)
y(1 + �y|	|)

(y
x

)2( 1 + �x|	|

1 + �y|	|

)2
|	|
dy




where for f¿0 in X

〈f;’�〉= ‖f‖X − �‖T�f‖X

=
∫ ∞

0

x f(x)
1 + �x|	|

dx − 2�
∫ ∞

0

yf(y)

(1 + �y|	|)
1+ 2

|	|

∫ y

0

x|	|−1 dx

(1 + �x|	|)
1− 2

|	|
dy

=
∫ ∞

0

x f(x)
1 + �x|	|

dx −
∫ ∞

0

yf(y)

(1 + �y|	|)
1+ 2

|	|

[
(1 + �x|	|)

2
|	|

]y

x=0
dy

=
∫ ∞

0

yf(y)

(1 + �y|	|)
1+ 2

|	|
dy

which implies that

’�(x)=
1

(1 + �x|	|)
1+ 2

|	|
(31)
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