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Direct and Inverse Scattering for 
Skewselfadjoint Hamiltonian Systems 

Camelis van cler Mee 

Abstract. In this article the direct and inverse scattering theory for skew­
selfadjoint Hamiltonian systems on the line is developed. The inverse scat­
tering problem of recovering the skewselfadjoint matrix potential from the 
reflection coefficient is solved explicitly using state space methods if bound 
states are assumed absent. 

1. Introduction 

Consider the skewselfadjoint Hamiltonian system of differential equations 

dX(x, >..) 
-ihn dx - V(x) X(x, >..) = >"X(x, >..), x E IR, 

where 

V(x) = [-k~X)t k(X)] 
o ' 

(1.1) 

(1.2) 

with In the identity matrix of order n, the n x n matrix function k has complex­
valued entries belonging to Ll(IR), >.. E IR is an eigenvalue parameter, and t denotes 
the matrix conjugate transpose. We call the function V the potential matrix, k the 
potential and the parameter>" the wavenumber. Note that V(x) is a J 2n-selfadjoint 
2n x 2n matrix and satisfies 

hn V(x) = -V(x) J2n . 

We can think of X(x, >..) in (1.1) as either a column vector of 2n entries or 
as a 2n x 2n matrix. For>.. E IR, we define the Jost solution from the left, Fz(x, >..), 
and the Jost solution from the right, Fr(x, >..), as the 2n x 2n matrix solutions of 
(1.1) satisfying the boundary conditions 

Fz(x, >..) = eiAhnx [I2n + 0(1)], x --+ +00, (1.3) 

x --+ -00. (1.4) 
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Using (1.1), (1.3), and (1.4), we obtain 

FI(X,)..) = ei)..hn x - iJ2n 100 dy e-i)..hn(Y-X) V(y) Fl (y, )..), (1.5) 

Fr(x,)..) = ei)..hn x + iJ2n 1Xoo dy ei)..hn(x-y) V(y) Fr(y, )..). (1.6) 

For a square matrix function E(x), let us use IIEI11 to denote J~oo dx IIE(x)ll, 
where 11·11 stands for the matrix norm defined by IIAII = sup{IIAvI12: IIvl12 = 1} 
and 11·112 is the Euclidean vector norm. Since the entries of k(x) belong to L1(JR), 
for each fixed)" E JR it follows by iteration that (1.5) and (1.6) are uniquely solvable 
and that IIFz(x,)..)11 and IlFr(x,)..)11 are bounded above by ellkill. From (1.3)-(1.6) 
we get 

where 

Fz(x,)..) = ei)..hnx [al()..) + 0(1)], x ----* -00, 

x ----* +00, 

al()..) = hn - ihn 1: dye-i)..hnY V(y) Fl(y, )..), 

ar()..) = hn + iJ2n 1: dy e-i)..hnY V(y) Fr(y, )..). 

(1.7) 

(1.8) 

In this article we solve the direct and inverse scattering problem for (1.1), 
where the inverse scattering problem consists of the determination of the potential 
k(x) from either of the reflection coefficients R()..) and L()..), which are defined in 
(3.7) in terms of the matrices al()..) and ar()..), plus suitable bound state data. In 
this paper we restrict ourselves to inverse scattering problems where there are no 
bound states. 

Shabat [32] and Beals and Coifman [10, 11] considered the n x n matrix 
differential operator 

dcp/dx = )"Jcp + q(x) cp, 

where J = diag { a1, ... , an} with distinct complex aj and q( x) an n x n off­
diagonal matrix with entries belonging to L1 (JR) or more restrictive classes, without 
requiring q(x) to be selfadjoint. They proved that the inverse problem has a unique 
solution within a certain class of potentials for an open and dense set of scattering 
data. The solution of the inverse scattering problem for such linear systems is 
useful in solving the Cauchy problem for various nonlinear evolution equations. 
For details and further references, we refer the interested reader to [1, 12] and the 
references therein. 

By putting Z(x,)..) = ~[I2n + iq2n] X(x, )..), where 

[ 0 In] 
q2n = In 0 ' 
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we can convert (1.1) into the massless Dirac equation of order 2n. The direct and 
inverse scattering problems for the Dirac system on the half line were studied in 
[16]. The interested reader is referred to [16, 22, 23] and the references therein for 
more information on the Dirac system. 

Melik-Adamyan [25, 26, 27], L.A. Sakhnovich [30, 31]' and A.L. Sakhnovich 
[29] have studied the direct and inverse scattering problems for (1.1) on the half 
line. Alpay and Gohberg [3, 4, 5, 6] have applied state space methods to derive 
explicit expressions for the solution of the inverse problem for (1.1) on the half line 
from the general theory in [27] when the scattering data are rational functions and 
consist of either the spectral function of the differential operator H = -iJ2n d~ -

V(x) or a reflection function. Gohberg et al. [18, 19, 20] have solved a similar 
inverse problem when the scattering data consist of the spectral function of Hand 
this function is rational. 

In this article we develop a direct and inverse scattering theory for (1.1) when 
k(x) has entries belonging to Ll(IR). Working within the framework established by 
Faddeev [15] and Deift and Trubowitz [14] for the Schrodinger equation on the line, 
we derive the analyticity and asymptotic properties of the Faddeev matrices and 
the scattering coefficients, employ them to derive a Riemann-Hilbert problem and 
various Marchenko integral equations, and recover the potential in terms of the 
solutions of the Marchenko equations. We prove the hn-unitarity of the scattering 
matrix and exploit this property to prove the unique solvability of the Marchenko 
equations. We also establish the unique canonical Wiener-Hopf factorization of 
the scattering matrix and show how the potential is obtained once the factors 
are known. After that, for rational reflection coefficients we present a procedure 
to compute explicitly the scattering matrix from a reflection coefficient, assuming 
there are no bound states. When the reflection coefficients are rational, we apply 
state space methods to solve the Marchenko equations and the inverse problem 
explicitly. 

This article follows its predecessor [2], where the potential matrix V(x) is 
selfadjoint, the scattering matrix is unitary, and there do not exist bound states. 
Here we are dealing with a more complicated but physically much more inter­
esting problem, where the potential matrix V(x) is J 2n-selfadjoint, the scattering 
matrix is J 2n-unitary, and bound states may exist. As a result, there are notable 
differences in the proof of many equations in this article from their counterparts in 
[2]. However, when deriving the Marchenko integral equations and applying state 
space methods to solve them we assume for simplicity that there are no bound 
states. 

Let us discuss the organization of this article. In Section 2 we introduce 
the Faddeev matrices, obtain their analyticity properties, and analyze some other 
properties of the Faddeev matrices and the Jost solutions of (1.1). In Section 3 
we define the scattering matrix S(>..) in terms of the spatial asymptotics of the 
Jost solutions, prove the J 2n-unitarity of S(>..), and obtain various properties of 
the scattering coefficients. In Section 4 we analyze the Fourier transforms of the 
Faddeev matrices and the scattering coefficients. We then go on, in Section 5, 
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to derive a Riemann-Hilbert problem for the Faddeev matrices. In Section 6, we 
convert the Riemann-Hilbert problem into both coupled and uncoupled Marchenko 
integral equations and prove their unique solvability, assuming there are no bound 
states. In Section 7 we show how to construct S(A) explicitly when one of the 
reflection coefficients is a rational function and bound states are absent. Finally, 
in Section 8 we give an explicit solution of the inverse scattering problem with 
rational reflection coefficients. 

Let us give some definitions. By C+ and C- we denote the open upper half 
and lower half complex planes, respectively. We will use the notation Lj (I; CPX q ) 

to denote the Banach space of all complex p x q matrix functions z( 0:) whose entries 
belong to Lj(I), endowed with the norm [II do: Ilz(o:)llj]; if q = 1, we simply write 
£1(1; CP). 

2. Scattering solutions 

In this section we introduce the Faddeev matrices and study some of their proper­
ties. The results obtained here will be used later to establish various properties of 
the scattering matrix and to solve the inverse scattering problem by the Marchenko 
method. 

Proposition 2.1. Let X(x, A) and Y(x, A) be any two solutions of (1.1). Then, for 
real A, X(x, A)ty(X, A) is independent of x. 

Proof. The result follows by differentiating X(x, A)ty(X, A) and using (1.1) to­
gether with the selfadjointness of hn V(x) and hn. 0 

Proposition 2.2. For A E IR, either Jost solution Fz(x, A) or Fr(x, A) forms a 
fundamental matrix of (1.1) and has determinant equal to one. Moreover, the 
matrices al(A) and ar(A) appearing in (1.7) and (1.8), respectively, satisfy 

Moreover, for A E IR, the Jost solutions satisfy 

and hence 

Fl(X, A) = Fr(x, A) al(A), 

Fr(x, A)t Fz(x, A) = ar(A)t = al(A), 

F1(x, A)t Fl(X, A) = al(A)t al(A) = hn' 

Fr(x, A)t Fr(x, A) = ar(A)t ar(A) = I 2n , 

In particular, al(A) and ar(A) are unitary matrices. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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Proof. From (1.1) it follows from [28] that 

d [detFl(x, oX)] ) 
dx = (tr{ihnV(x) + ioXhn})(detF1(x, oX) , 

where tr denotes the matrix trace. By (1.2), ihn V(x) + ioXJ2n has zero trace, and 
hence det Fl(X, oX) is independent of x and its value can be evaluated as x -7 +00. 
Thus, we get det Fl(X, oX) = 1, from which we also conclude that Fl(X, oX) is a 
fundamental matrix of (1.1). Similarly, we find that det Fr(x, oX) = 1 and Fr(x, oX) 
is a fundamental matrix of (1.1). Then, from.~ .)), (1.7), and (1.8) we obtain (2.1). 
Since either of Fl(X, oX) and Fr(x, oX) is a funiiame~tal matrix of (1.1), with the help 
of (1.3) and (1.7), we get (2.2). Using PrOposition 2.1, we obtain (2.3)-(2.5) by 
evaluating Fr(x, oX)t Fl(X, oX), Fl(X, oX)t Fl(X, oX), and Fr(x, oX)t Fr(x, oX) as x -7 ±oo. 
Then (2.6) and (2.7) readily follow. D 

In terms of the Jost solutions, we define the Faddeev matrices Ml(X, oX) and 
Mr(x, oX) as 

From (1.3) and (1.4) we get 

M1(x, oX) = f2n + 0(1), 

Mr(x, oX) = hn + 0(1), 

(2.8) 

X -7 +00, 

X -7 -00. 

Let us partition the Jost solutions and Faddeev matrices into n x n blocks as 
follows: 

We also define 

l ±OO 
O"±(x) = ± x dy Ilk(y)ll· (2.11) 

Proposition 2.3. Assume that the entries of k(x) belong to Ll(lR.). Then: 

(i) For each fixed x E lR., [~:~~~: ~n can be extended to a matrix function that 

is continuous in oX E C+ and analytic in oX E C+ and tends to [fa] as oX -7 00 

in C+. 
(ii) For all oX E C+, Mll (x, oX) and Mdx, oX) are bounded by eO"+(x) in the norm. 
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(iii) For each fixed x E IR, [~::~~: ~~] can be extended to a matrix function that 

is continuous in A E <C- and analytic in A E <C- and tends to [Z] as A -+ 00 

in <C-. 
(iv) For all A E <C-, M I2 (X, A) and MI4(X, A) are bounded by e"+(x) in the norm. 

Proof. Using (2.8) in (1.5), we obtain 

Ml(X, A) = hn - iJ2n 100 dy e-i:Ahn(Y-X) V(y) M1(y, A) ei:Ahn(Y-x). (2.12) 

Iterating (2.12) once, we get the uncoupled systems 

Mll (x, A) = In -100 dy 100 dz e2i:A(z-y) k(y) k(z)t Mll (z, A), (2.13) 

M I2 (X,A) = -i 100 dye- 2i:A(y-x) k(y) 

-100 dy 100 dz e-2i:A(y-x) k(y) k(z)t M I2 (Z, A), (2.14) 

MI3(X, A) = -i 100 dy e2i:A(y-x) k(y)t 

-100 dy 100 dz e2i:A(y-x) k(y)t k(z) M I3 (Z, A), (2.15) 

M I4 (X,A) = In -100 dy 100 dze- 2i:A(z-y) k(y)t k(z) MI4(Z, A). (2.16) 

Iterating the Volterra integral equations (2.13) and (2.15), we prove that the series 
of iterates converge absolutely and uniformly in A E <C+, and we also get the 
estimate in (ii). Similarly, we prove that the series of iterates of (2.14) and (2.16) 
converge absolutely and uniformly in A E <C- and that the estimate in (iv) holds. 
To prove the assertions concerning the large-A limit we first consider MI3(X, A). To 
deal with the first term on the right-hand side of (2.15) we define 

W(A) = !~~ 11100 
dye2i:A(y-x) k(y)tll. 

By approximating k(y) by infinitely differentiable matrix functions of compact 
support (as in the proof of the Riemann-Lebesgue lemma) it follows that W(A) -+ 

o as A -+ 00 in <C+. Iterating (2.15) we get IIMI3(X,A)11 ::; w(A)e"+(x), which 
implies that IIMI3(X, A)II -+ 0 as A -+ 00 in <C+. Next we consider Mll(x, A). Let 
Gll (x, A) = Mll (x, A) - In and consider the following integral equation for Gll (x, A) 
which follows from (2.13): 

Gll(x, A) = Hll(X, A) -100 dy 100 dz e2i:A(z-y) k(y) k(z)t Gll(z, A), 



Skewselfadjoint Hamiltonian Systems 413 

where 

Hl1(x,>") = -100 dy 100 dze2i>'(Z-Y)k(y)k(z)t. 

Since II Hl1(x, >")11 S V(>..)lT+(X), we conclude that IIGl1(x, >")11 --t 0 as >.. --t 00 in 
C+. This proves the assertion of (i) regarding the limit>.. --t 00. The proof of the 
corresponding statement in (iii) is similar. 0 

We have a similar result for the Faddeev matrix Mr(x, >..). 

Proposition 2.4. Assume that the entries of k(x) belong to £l(JR). Then: 

(i) For each fixed x E JR, [Z:~~:: ~~] can be extended to a matrix function that 

is continuous in >.. E C- and analytic in>.. E C- and tends to [10'] as>.. --t 00 

in C-. 
(ii) For all >.. E C-, Mrl(x, >..) and Mr3 (x, >..) are bounded by elT-(x) in the norm. 

(iii) For each fixed x E JR, [Z:~~:: ~~] can be extended to a matrix function that 

is continuous in >.. E C+ and analytic in>.. E C+ and tends to [~] as>.. --t 00 

in C+. 
(iv) For all >.. E C+, Mr2 (x, >..) and Mr4 (x, >..) are bounded by elT-(x) in the norm. 

Proof. Using (2.8) in (1.6), we obtain 

Mr(x, >..) = I2n + ihn [Xoo dy ei>'hn(x-y) V(y) Mr(y, >..) e-i>'hn(x-y). (2.17) 

Iterating (2.17) once, we obtain the four systems given by 

Mrl(x, >..) = In - [~ dy [Yoo dz e-2i>.(y-z) k(y) k(z)t Mrl(z, >..), (2.18) 

Mr2(X, >..) = i [Xoo dye2i>.(x-y) k(y) 

- [Xoo dy [Yoo dz e2i>.(x-y) k(y) k(z)t Mr2(Z, >..), (2.19) 

Mr3 (x, >..) = i [Xoo dy e-2i>.(x-y) k(y)t 

- [Xoo dy [~ dz e-2i>.(x-y) k(y)t k(z) Mr3 (z, >..), (2.20) 

Mr4(X, >..) = In - [Xoo dy [Yoo dz e2i>.(y-z) k(y)t k(z) Mr4(z, >..). (2.21) 

Iterating (2.18)-(2.21) as in the proof of Proposition 2.3, we complete the proof. 
o 
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Let us write 

aZ(A) = [all (A) aZ2 (A)] 
aZ3(A) aZ4(A) , 

From (1.7), (1.8), and (2.8) we see that 

[all (A) aZ2(A)] = lim [2~11(X'A) e-2iAX MZ2(X,A)] 
aZ3(A) aZ4(A) x--+-oo e' x MZ3 (x, A) M Z4 (x, A) , 

[ar1 (A) ar2 (A)] _ r [Mrl (x, A) e-2iAX Mr2 (x, A)] 
ar3(A) ar4(A) - x-2rroo e2iAX Mr3 (x, A) Mr4 (x, A) . 

Using (2.12), (2.17), (2.23), and (2.24) we find the integral representations 

all (A) = In - i 1: dy k(y) Mdy, A) 

aZ2(A) = -i 1: dy e-2iAY k(y) Mz4(y, A), 

aZ3(A) = -i 1: dye2iAY k(y)t Ml1(y,A), 

aZ4(A) = In - i 1: dy k(y)t MZ2 (y, A), 

arl(A) = In + i 1: dy k(y) Mr3 (y, A), 

ar2(A) = i 1: dy e-2iAY k(y) Mr4 (y, A), 

ar3(A) = i 1: dye2iAY k(y)t Mr1 (y,A), 

ar4(A) = In + i 1: dy k(y)t Mr2 (y, A). 

Proposition 2.5. Assume that the entries of k(x) belong to Ll(IR). Then: 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

(2.31 ) 

(2.32) 

(i) The matrices al1(A) and ar4(A) are continuous in A E C+ and analytic in 
A E C+ and tend to In as A ---+ 00 in C+. 

(ii) The matrices aZ4(A) and arl (A) are continuous in A E C- and analytic in 
A E C- and tend to In as A ---+ 00 in C-. 

(iii) The matrices aI2(A), aZ3(A), ar2(A), and ar3(A) are continuous in A E IR and 
vanish as A ---+ ±oo. 

(iv) The matrices adA), aZ3(A), ar2(A), and ar3(A) satisfy 

ar2(A) = aZ3(A)t, ar3(A) = adA)t, A E R (2.33) 

Proof. Using Propositions 2.3 and 2.4 in (2.25)-(2.32), we get (i), (ii), and (iii). 
We obtain (iv) from (2.3). 0 
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Using the notations of (2.9), let us form the following matrices: 

f ( >.) - [Fll (x, >.) Fr2 (x, >.)] f ( >.) _ [Frl (x, >.) Fz2(x, >.)] (2.34) 
+ x, - FZ3 (x,>') Fr4 (x,>.) , - x, - Fr3 (x,>') Fz4(x,>') . 

Let an asterisk denote complex conjugation. From Propositions 2.3 and 2.4, 
it follows that f+(x, >.) is a solution of (1.1) that is continuous in >. E C+ and 
analytic in >. E C+; similarly, f-(x, >.) is a solution of (1.1) that is continuous in 
>. E C- and analytic in >. E C-. 

Proposition 2.6. The 2n x 2n matrix f_(x,>.*)t f+(x,>') is independent ofx for 
all >. E C+. Similarly, f+(x,>.*)t f-(x,>.) is independent ofx for all >. E C-. We 
have 

f_(x,>.*)t f+(x,>.) = [alld>') ar40(>.)] , >. E C+. (2.35) 

Furthermore, all(>.)t and ar4(>.)t have analytic extensions to C-, arl(>.)t and 
aZ4(>.)t have analytic extensions to C+, and 

all(>')=arl(>.*)t, ar4(>.)=az4(>.*)t, >'EC+, (2.36) 

>. E C-. (2.37) 

Proof. Using (1.1), one can show that h:(x, >.*)t J±(x, >.) is independent of x for 
>. E C±. Evaluating it as x -t ±oo and using (1.7) and (1.8) we get (2.35)­
(2.37). 0 

As in the proof of Proposition 2.2 we find that det f+(x, >.) is independent of 
x, and evaluating that determinant as x -t ±oo we obtain 

det f+(x, >.) = det all(>') = det ar4(>')' (2.38) 

In analogy with (2.38), we get 

detf-(x,>.) = detarl(>') = detaz4(>'), (2.39) 

Using (2.10) and (2.34), let us define 

m (x >.) - [Mll (x, >.) Mr2 (x, >.)] - f (x >.) e-i>-'hn x (2.40) 
+ , - Mz3(x, >.) Mr4 (x, >.) - + , , 

m_(x, >.) = [Mr1(X, >.) Mdx, >.)] = f-(x, >.) e-i>-'hn x . (2.41) 
Mr3 (x, >.) MZ4 (x, >.) 
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3. The scattering matrix 

In this section we define and analyze the properties of the scattering coefficients 
of (1.1) when the entries of the potential k(x) belong to Ll(lR). 

We can write (2.6) as 

all (>.) arl (>.) + al2 (>.) ar3 (>.) = In = arl (>.) all (>.) + ar2(>') al3 (>'), (3.1) 

all (>.) ar2(>') + aI2(>') ar4(>') = 0 = arl (>.) aI2(>') + ar2(>') a14(>'), (3.2) 

aI3(>') arl (>.) + aI4(>') ar3(>') = 0 = ar3(>') all (>.) + ar4(>') aI3(>'), (3.3) 

aI3(>') ar2(>') + aI4(>') ar4(>') = In = ar3(>') ad>') + ar4(>') aI4(>'). (3.4) 

For those real>. for which all (>.) and ar4(>') are nonsingular, let us define 
the transmission coefficients Tl(>') from the left and Tr(>') from the right, and the 
reflection coefficients R(>.) from the right and L(>.) from the left, as follows: 

Tz(>.) = all(>.)-I, Tr(>') = ar4(>.)-I, (3.5) 

R(>') = ar2(>') ar4(>.)-I, L(>.) = aI3(>') all (>.)-1. (3.6) 
From (3.2), (3.3), and (3.6) we get 

R(>.) = -all(>.)-1 aI2(>'), L(>.) = -ar4(>.)-1 ar3(>'). (3.7) 

Note that using (2.3) and (3.1)-(3.7), we can express the matrices in (2.22) 
in terms of the scattering coefficients as follows 

(3.8) 

(3.9) 

where the off-diagonal entries can be expressed in terms of L(>') or R(>') by using 

L(>.) TI(>.)-1 = [R(>.) Tr(>.)-I]t, (3.10) 

which is immediate from (2.33). 
The scattering matrix S(>') associated with (1.1) is defined as follows: 

S(>.) = [T1(>') R(>')] (3.11) 
L(>') Tr(>') . 

Theorem 3.1. The scattering matrix S(>.) is continuous and hn -unitary, except 
at those>. E lR where all(>') and ar4(>') are singular. Further, it converges to I2n 
as >. ---* ±oo. Hence the scattering coefficients satisfy 

Tz(>.) Tl(>.)t - R(>') R(>.)t = In = Tr(>.)t Tr(>') - R(>.)t R(>') , (3.12) 

Tl(>.)t Tl(>') - L(>.)t L(>.) = In = Tr(>') Tr(>.)t - L(>.) L(>.)t, (3.13) 

Tr(>') R(>.)t - L(>.) Tz(>.)t = 0 = Tr(>.)t L(>') - R(>.)t Tz(>.). (3.14) 

Moreover, for those>. E lR where all (>.) and ar4(>') are nonsingular, we have 

det Tl(>') = det Tr(>') , (3.15) 
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det [Rl(7)t -R(A)] = det [In L(A)t] = I det '11(AW, (3.16) 
1\ In - L(A) In 

det TZ(A) 
detS(A) = [det'11(A)]*. (3.17) 

Proof. The continuity and the large-A asymptotics follow from Proposition 2.5. 
Using (3.5)-(3.7) in (2.7), we get S(A) hn S(A)t = hn, from which (3.12)-(3.14) 
follow. Furthermore, from (2.38), (3.8), and (3.9) we obtain (3.15). Using (3.10), 
we can write (3.8) and (3.9) as 

(3.18) 

(3.19) 

and hence, using (2.1), (3.15), (3.18), and (3.19), we get (3.16). Using (2.2), (2.34), 
(3.5), and (3.6) it follows that 

A E JR. (3.20) 

Thus, from (3.5), (2.38), (2.39), (3.20), and det hn = (_1)n, we obtain (3.17). 0 

Corollary 3.2. Suppose all (A) and ar4 (A) are nonsingular for all A E C+. Then the 
transmission coefficients '11(A) and Tr(A) and their inverses TZ(A)-l and Tr(A)-l 
are continuous in A E C+ and analytic in A E C+; these four matrices converge 
to In as A ~ 00 in C+. Similarly, the matrices TZ(A*)t and Tr(A*)t and their 
inverses [TZ(A*)t]-l and [Tr(A*)tJ-l are continuous in A E C- and analytic in 
A E C-; these four matrices converge to In as A ~ 00 in C- . 

In general, R(A) and L(A) do not have analytic continuations off the real axis. 
In the special case when k(x) vanishes on a half line, we have the following. 

Proposition 3.3. If k(x) is supported in the right half line JR+, then aZ3(A) extends 
to a function that is continuous on C+, is analytic on C+, and vanishes as A ~ 00 

in C+. Similarly, if k(x) is supported in the left half line JR-, then ar2(A) extends 
to a function that is continuous on C+, is analytic on C+, and vanishes as A ~ 00 

in C+. 

Proof. If k has support in JR+, then from (2.27) and Proposition 2.3 we see that 
aZ3(A) has an extension that is continuous in A E C+, is analytic in A E C+, and 
converges to 0 as A ~ 00 in C+. In a similar manner, if k is supported in JR-, 
using (2.30) and Proposition 2.3, we obtain that ar 2(A) extends to a function that 
is continuous on C+, is analytic on C+, and vanishes as A ~ 00 in C+. 0 
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4. Fourier transforms 

Let W q denote the Wiener algebra of all q x q matrix functions of the form 

(4.1) 

where z(a) is a q x q matrix function whose entries belong to Ll(JR.) and Zoo = 
Z(±oo). Then W q is a Banach algebra with a unit element and endowed with the 
norm 

IIZlIwq = IIZool1 + I: da Ilz(a)ll, 

and its invertible elements are those Z('\) as in (4.1) for which Zoo and Z('\) are 
nonsingular matrices for all .\ E JR. (see, e.g., [17]). We will use Wl to denote the 
subalgebra of those functions Z('\) for which z(a) has support in JR.± and Wl o 
to denote the subalgebra of those functions Z('\) for which Zoo = 0 and z(a) h~s 
support in JR.±. Then, wq = W! EEl W~,o = W!,o EEl W~. 

In this section we prove that the matrix functions Mz(x, .), Mr(x, .), and SO 
belong to W 2n, and that m±(x,·) belongs to win. Let us construct the L1-matrix 
functions b±(x, .), Bz(x, .), and Br(x,·) such that 

{
MZ(X'.\) = 12n + 1o:daBz(X,a)ei)"hna, 

Mr(x,.\) = Izn + 10 da Br(x, a) e-i)..hn a. 

(4.2) 

(4.3) 

Indeed, partitioning the matrix functions Bz(x, a) and Br(x, a) in (4.3) into n x n 
blocks as 

Bz(x, a) = [Bl1 (X, a) 
B Z3 (x, a) 

Bz2 (x,a)] 
B Z4 (x, a) , 

B ( ) _ [Brl(X, a) r x,a - B ( ) r3 x,a 
Br2 (x, a)] 
Br4 (x, a) , 

so that 

b( )_[Bl1 (x,a) + x,a - B ( ) Z3 x,a 
Br2 (x, a)] 
Br4 (x, a) , 

L(x, a) = [Brl(X, a) 
Br3 (x, a) 

Bdx, a)] 
BZ4 (x, a) , ( 4.4) 
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we apply (4.3) to (2.12) and (2.17), and derive the coupled integral equations for 
a>O 

B l1 (x,a) = -i 100 
dyk(y) Bdy, a), (4.5) 

i l x +a / 2 
B Z2 (x, a) = --k(x + a/2) - i dy k(y) B Z4 (y, a + 2x - 2y), 

2 x 
(4.6) 

i lx+a/2 
B Z3 (x, a) = --k(x + a/2)t - i dy k(y)t B l1 (y, a + 2x - 2y), 

2 x 
(4.7) 

B Z4 (x, a) = -i 100 
dy k(y)t Bz2(y, a), (4.8) 

B r1 (x,a) = i lXoo dyk(y) B r3 (y, a), (4.9) 

B r2 (x, a) = ik(x - a/2) + i l
X 

dy k(y) B r4 (y, a + 2y - 2x), 
2 x-a/2 

(4.10) 

B r3 (x, a) = ~k(X - a/2)t + i l x 
dy k(y)t B l1 (y, a + 2y - 2x), 

x-a/2 
(4.11) 

B r4 (x,a) = i lXoo dyk(y)t B r2 (y, a). (4.12) 

We first prove that, for each x E JR, the four systems of integral equations (4.5) 
and (4.7), (4.6) and (4.8), (4.9) and (4.11), (4.10) and (4.12) have unique solutions 
with entries in L1(JR+). Then for the matrix functions m±(x, ,\), Mz(x, ,\), and 
Mr(x,'\) defined in (4.2) and (4.3), we derive the integral relations (2.13)-(2.16) 
and (2.18)-(2.21). In this way we will have proved that Mz(x, .) and Mr(x, .) belong 
to W 2n and m± (x, .) belongs to w~n. 

Let us introduce the following mixed norm on the 2n x 2n matrix functions 
B(x, a) depending on (x, a) E JR x JR+: 

IIB(., ·)1100,1 = sup IIB(x, ·)111. (4.13) 
xEIR 

The proof of the next result is identical to that of the analogous result in [2]. 

Theorem 4.1. Assume that the entries of k(x) belong to L1(JR). Then, for each 
x E JR, the four pairs of integral equations (4.5) and (4.7), (4.6) and (4.8), (4.9) 
and (4.11), (4.10) and (4.12) have unique solutions with finite mixed norm as 
defined in (4.13). Consequently, m+(x,·) belongs to w~n, m_(x,·) belongs to W:n , 

and Mz(x,·) and Mr(x,·) belong to W 2n . 

The integral equations (4.5)-(4.12) allow us to derive the following relations 
for the potential k( x) : 

k(x) = 2i B Z2 (x, 0+) = -2i B r2 (x, 0+) = -2i B Z3 (x, O+)t = 2i B r3 (x, O+)t. (4.14) 
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Theorem 4.2. The scattering coefficients aI2(>'), aI3(>'), ar2(>'), and ar3(>') belong 
to Wn, and vanish as >. ---t ±oo. The scattering coefficients all (>'), al4 (>'), ad (>'), 
and ar4(>') belong to W.+' and they converge to In as >. ---t 00 in C+. 

Proof. Using (2.3) and (2.6)-(2.8) we get 

al(>') = e-i>-'hnx hnMr(x, >.)t hn Ml(x, >.) ei>-.hn x, (4.15) 

ar(>.) = e-i>-'hnx J2n Ml(x, >.)t hn Mr(x, >.) ei>-'hn x. (4.16) 

From Theorem 4.1 we see that Ml(x, >.) and Mr(x, >.) belong to W 2n . Using (4.15) 
and (4.16) at x = 0, we can show that al(>') and ar(>.) are products of elements 
of w2n and hence belong to W 2n. 0 

If all(>') and ar4(>') are both nonsingular for any>. E JR, then Theorem 
4.2 and (3.6) show that the reflection coefficients L(>') and R(>') belong to Wn. 
Theorem 4.2 and (3.5) show that in this case the transmission coefficients 11(>') 
and Tr (>.) belong to wn as well. To prove that Tl (>.) and Tr (>.) belong to W.+' one 
needs that all(>') and ar4(>') are nonsingular for all >. E C+. 

5. Wiener-Hopf factorization 

Using (2.40), (2.41), and (3.20), we obtain the Riemann-Hilbert problem 

m_ (x, >.) = m+ (x, >.) G(x, >'), (5.1) 

where G(x, >.) is the unitarily dilated scattering matrix given by 

G( ') - i>-'hn x J S(') J -i>-'hn x _ [Tl(>') -R(>') e2i>-'X] (5.2) 
X,I\ - e 2n 1\ 2n e - _ L(>') e-2i>-.x Tr(>') . 

Here G(x, >.) is a hn-unitary matrix which is defined for those>. E JR where all (>.) 
and ar4(>') are nonsingular. 

Equation (5.1) can in principle be used to compute the potential from a 
reflection matrix. To do so, we first construct the scattering matrix S(>') in terms of 
L(>.) or R(>.) alone. Indeed, given R(>') for>. E JR and assuming it to be continuous 
for>. E JR, we first obtain the matrix function 110(>') which is continuous on C+, is 
analytic on C+ and tends to In as>. ---t 00 in C+, by performing the Wiener-Hopf 
factorization 

TIO(>') TIO(>.)t = In + R(>') R(>.)t, >. E JR, (5.3) 

in agreement with (3.12). In a similar way, the matrix function Tro(>') which is con­
tinuous on C+, is analytic on C+ and tends to In as >. ---t 00 in C+, is constructed 
by performing the Wiener-Hopf factorization 

>. E JR, (5.4) 

in agreement with (3.12). We then define the matrix function 

>. E JR. (5.5) 
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Let TlO(>') and Tro(>') be the n x n matrix functions that are continuous 
in C+, are analytic in C+, are nonsingular in C+, and tend to In as >. ----7 00 in 
C+, such that (5.3) and (5.4) are satisfied, and let Lo(>') be the corresponding 
right-hand side of (5.5). Then TlO(>'), Tro(>'), R(>'), and Lo(>') are the scattering 
coefficients if all(>') and ar 4(>') are nonsingular for>. E C+ (i.e., in the absence of 
bound states). When both all (>.) and ar 4(>') are nonsingular for>. E lR and at least 
one of all (>.) and ar 4(>') is singular for some>. E C+ (i.e., in the presence of bound 
states), there are rational matrix functions Bz (>.) and Br(>') that are unitary for 
>. E lR, tend to In as >. ----7 00, and are analytic in C-, such that 

Tz(>,) = TlO(>.)Bz(>,), 

Then we easily see that 

L(>.) = Br(>.)Lo (>')Bz (>.). 

Moreover, (3.15) implies that 

N (>. + ill:)pj 
det Bz(>,) = det Br(>') = D >. _ ill:~ , 

(5.6) 

(5.7) 

(5.8) 

where ill: 1 , ... , ill:N are the distinct poles of the transmission coefficients Tz(>,) and 
Tr(>') in C+ and Pl, ... ,PN are the respective poles orders of detBz(>,). Thus 
Tz(>,) and Tr(>') necessarily have the same poles in C+ and their determinants 
have the same pole orders. However, except in the case n = 1 where Bz(>,) and 
B r (>.) are scalar functions that both coincide with the right-hand side of (5.8), the 
transmission coefficients may be different and have different sets of partial pole 
orders at the same pole in C+. 

6. The Marchenko method 

In order to establish the connection between the Riemann-Hilbert problem (5.1) 
and the Marchenko integral equations, we assume throughout this section that 
all(>') and ar4(>') are nonsingular for all >. E lR. This allows one to express the 
scattering coefficients in terms of their Fourier transforms as 

R(>.) = I: do:R(o:) e- iAOC , 

Tz(>,) = In + £: do: vz(o:) eiAOC , 

L(>.) = I: do:L(o:)e- iAOC , 

Tr(>') =In+ £: do:vr(o:)e iAOC • 

(6.1) 

(6.2) 

Note that by Theorem 4.2, vz(o:) and vr(o:) vanish for 0: < 0 and their entries 
belong to Ll(lR+), while the entries of RO and LO belong to Ll(lR). Let us 
define 

-R(2x + 0:)] 
o ' 0: > O. (6.3) 
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Theorem 6.1. Suppose al1(A) and ar4(A) are nonsingular for all A E C+. Then for 
each x E lR the matrices b-(x,·) and b+(x,·) defined in (4.4) satisfy the 2n x 2n 
systems of coupled Marchenko equations 

b-(x, a) = g(x, a) + 100 
d{3 b+(x, (3) g(x, a + (3), (6.4) 

b+(x, a) = hng(x,a)t hn + 100 
d{3 b-(x, (3) hng(x,a + (3)t J2n> (6.5) 

where a > O. 

Proof Using (4.2), (5.1), and the fact that b+(x, a) = b-(x, a) = 0 for a < 0, we 
get 

m+(x, A) [G(x, A) - hnl = I: da [b-(x, a) - b+(x, -a)l e-i,Xa, A E R (6.6) 

Furthermore, from (5.2) we conclude that under the above assumptions 

G(x,A)-I2n =l:daH(a)ei,Xa, AElR, (6.7) 

where 

H(a) = [ . lll(a) -R(2x - a)] 
-L( -2x - a) llr(a) , 

(6.8) 

The hypotheses of Theorem 6.1 imply that lll(a) and llr(a) are supported on 
a E lR+. Upon writing 

m+(x, A) [G(x, A) - 12nl = [G(x, A) - 12nl + [m+(x, A) - hnl [G(x, A) - 12n ], 

by using (6.6) on the left-hand side, (4.2), (6.1)-(6.3), (6.7), and (6.8) on the 
right-hand side, together with the convolution theorem, we obtain (6.4). Similarly, 
using 

m_ (x, A) hn [G(x, A) t - 12nl hn = hn [G(x, A) t - hnl hn 

+ [m_(x, A) - hnl hn [G(x, A)t - hnl hn, 

we obtain (6.5). o 
Using (6.4) in (6.5) and vice versa, we can uncouple these 2n x 2n systems. 

Using the notations in (4.4), this leads to the uncoupled n x n Marchenko equations 
for a > 0 given by 

BI2(X, a) = -R(a + 2x) 

-1
00 

d(31°O d'YBI2(X,'Y)R({3+'Y+2x)t R(a+{3+2x), (6.9) 

B I3 (X, a) = R(a + 2x)t 

-1
00 

d{31°O d'Y B I3 (X, 'Y) R({3 + 'Y + 2x) R(a + {3 + 2x)t, (6.10) 
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Br2 (x,0:) = £(0: - 2x)t 

-100 d(31 OO d,,(Br2 (x,"()£((3+,,(-2x)£(0:+(3-2x)t, (6.11) 

Br3 (x,0:) = -£(0: - 2x) 

-1
00 

d(31 OO d,,(Br3 (x,"()£((3+,,(-2x)t£(0:+(3-2x), (6.12) 

Bl1 (x, 0:) =-100 d(3R((3+ 2x)R(0: +(3 + 2x)t 

-1
00 

d(31 OO d"(Bl1(x,,,()R((3+,,(+2x)R(0:+(3+2x)t, (6.13) 

B I4 (X, 0:) = -100 
d(3 R((3 + 2x)t R(o: + (3 + 2x) 

-100 d(31 OO d"(BI4 (X,,,()R((3+,,(+2x)tR(0:+(3+2x), (6.14) 

Brl(x, 0:) =-100 
d(3£((3-2x)t £(0:+(3-2x) 

-100 d(31 OO d,,(Br1 (x,"()£((3+,,(-2x)t £(0:+(3-2x), (6.15) 

Br4 (x, 0:) = -100 d(3 £((3 - 2x) £(0: + (3 - 2x)t 

-100 d(31 OO d,,(Br4 (x,"()£((3+,,(-2x)£(0:+(3-2x)t. (6.16) 

Theorem 6.2. The coupled system of Marchenko integral equations (6.4) and (6.5) 
is uniquely solvable in Ll(JR+;<e2nX2n). The integral operator in each of the eight 
uncoupled Marchenko equations (6.9)-(6.16) is selfadjoint, and each of these eight 
equations is uniquely solvable in L 1 (JR +; <en X n). 

Proof. The selfadjointness of the integral operators in (6.9)-(6.16) is clear. From 
(3.12), (3.13), and Corollary 3.2 it follows that 

sup IIL('\)II < +00, sup IIR('\)II < +00. (6.17) 
AE~ AE~ 

Now observe that, for fixed x E JR, the action of the integral operators with kernels 
R(0:+(3+2x), R(0:+(3+2x)t, £(0:+(3-2x), and £(0:+(3-2x)t on L2(JR+; <en) can be 
interpreted as follows: one imbeds L2 (JR+; <en) into L2(JR; <en) isometrically, applies 
the sign flip h((3) f---+ h( -(3), implements a convolution with an L1-matrix function, 
and then projects orthogonally onto L2(JR+; <en). Since the Fourier transforms of 
these matrix functions are bounded in ,\ E JR, also these integral operators are 
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bounded in L2(lR; <en). Since the adjoints of all of these systems can be written in 
the form 

(1 +Kt K)B = C 

for some bounded operator K on a Hilbert function space, the system of equations 
(6.4) and (6.5) as well as each of the eight equations (6.9)-(6.16) are uniquely 
solvable on the direct sum of a suitable number of copies of L2(lR+). Since, as a 
result of the integrability of to and R(.), the integral operators are compact on 
both L2 and L1 (cf. Lemma XII 2.4 of [17], the proof for the L2-case there can 
easily be adapted to cover the L1-case), the system of equations (6.4) and (6.5) as 
well as each of the eight equations (6.9)-(6.16) are uniquely solvable on the direct 
sum of a suitable number of copies of L1(lR+). 0 

From (4.14), we see that we can recover the potential k(x) by solving any 
one of the four Marchenko equations (6.9)-(6.12). 

The unique solvability of the Marchenko equations (6.9)-(6.16) has a num­
ber of other consequences. For example, if R( >..) is analytic on <e+, then R( 0:) is 
supported on lR- and hence the right-hand sides in (6.9), (6.10), (6.13), and (6.14) 
vanish for x > O. Since these equations are uniquely solvable, their solutions vanish 
as well and therefore k(x) = 0 for x > O. On the other hand, if L(>") is analytic 
on <e+, then t(o:) is supported on lR-, and hence the right-hand sides in (6.11), 
(6.12), (6.15), and (6.16) vanish for x < O. Since these equations are uniquely 
solvable, their solutions vanish as well, and therefore k(x) = 0 for x < O. We have 
thus proved the converse of Proposition 3.3. 

It remains to prove that the potential k(x) obtained by the Marchenko 
method has entries in L1(lR). To do so, we modify the inversion procedure as 
follows. We solve one of the Marchenko equations (6.9) and (6.10) for x > 0 and 
then employ (4.14) to compute k(x) for x > O. By the same token, we solve one 
of (6.11) and (6.12) for x < 0 and then use (4.14) to find k(x) for x < O. In fact, 
this procedure will be implemented in the case of rational reflection coefficients in 
Section 8. 

We first derive the following partial characterization result. 

Theorem 6.3. Let R( >..) be a matrix function in wn such that 

sup IIR(>")II < +00, (6.18) 
'\EiR 

where R(o:) is defined in (6.1). Then, for x > 0, the unique solutions BI2(X,0:) 
and BI3(X, 0:) of (6.9) and (6.10), respectively, satisfy 

j = 2,3. 
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In particular, the entries of k(x) = 2i BI2(X, 0+) and k(x) = -2i BI3(X, O+)t belong 
to Ll(lR.+). Similarly, let L()..) be a matrix function in wn such that 

sup IIL()..)II < +00, (6.19) 
>'EIR 

where L(a) is defined in (6.1). Then for x < 0 the unique solutions Br2 (x, a) and 
Br3 (x, a) of (6.11) and (6.12), respectively, satisfy 

i~ dx IIBrj(x,O+)11 < +00, j = 2,3. 

In particular, the entries of k(x) = -2i B r2 (x, 0+) and k(x) =2i Br3 (x, O+)t belong 
to £1 (lR.-). 

Proof. We only prove the theorem for x > 0, as the proof for x < 0 is similar. Put 

, [ 0 
Rc.(a) = R(a)t 

-R(a)] 
o ' 

and consider the integral equation 

BI(x,a)-1OO d{3BI(x,{3)Rc.(2x+a+{3) = Rc.(2x+a), (6.20) 

where a > O. This integral equation, which follows directly from (4.4) and (6.3)­
(6.5), has a unique solution in Ll(lR.+; c2nX2n) which coincides with the matrix 
function BI(X, a) in (4.3). Moreover, the once iterated integral equation (6.20) has 
the form 

(I +Kt K)B = C 

on L2(lR.+; C2nX2n), which makes (6.20) uniquely solvable in L2(lR.+; c 2nX2n). Us­
ing the unique solvability of the equation obtained by taking the adjoint of the 
matrices on either side of (6.20) we obtain 

1 1 

IIBI(x,a)II:SIIRc.(2x+a)11 + [1:0 d'YIIRc.(-r) 112r [100 

d{3II BI(X,{3) 112r 
1 1 

:SIIRc.(2x+a)II+C [1:0 d'YIIRc.(-r) 112r [1~ d{3IIRc.({3) 112r 
:S IIRc.(2x + a)11 + C roo d'Y IIRc.(-r)112, 12x 

where C is some constant, and therefore 

1
00 

dx IIBI(x,a)11 :S 100 
d{3IIRc.({3)11 + 100 

dYYIIRc.(y)112, (6.21) 

which is finite. 0 
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The natural conditions under which one would expect to be able to recon­
struct a potential with L1-entries for x > 0 are R E wn and 

sup IIR(A)II < +00, lim IIR(A)II = O. (6.22) 
AEIR A--->±oo 

However, evaluating the first iterate of (6.20) as a ---+ 0+, we get 

B?)(x, 0+) = r d(3k:~,"((3)2 = J2x 00 • • ' 

00 [ roo d(3 R((3) R((3) t 0 1 
} 2x 0 r d(3 R((3) t R((3) 

J2x 
which strongly suggests that condition (6.18) is probably indispensable if the in­

tegral Jooo dx IIBjI)(x,O+)11 is to be finite. 

7. Construction of the scattering matrix 

Throughout this section we assume that R(A) is a rational matrix function satis­
fying (6.22). We recall that then R E wn by the comments following the proof 
of Theorem 6.3. From the theory of transfer functions [7], since R(A) ---+ 0 as 
A ---+ ±oo, it follows that R(A) can be represented in the form 

R(A) = iC(A - iA)-18, A E C, (7.1) 

where A, 8, and C are independent of A and belong to CpxP, cpxn, and C nxp , 

respectively, for some positive integer p. Here it is assumed that the order p of A 
is minimal, i.e., the realization (7.1) is minimal and hence unique up to similarity 
(cf. Theorems 6.1.4 and 6.1.5 in [24]). 

Our goal is to construct S(A) in terms of the matrices A, 8, and C given in 
(7.1). Since R(A) is continuous for A E JR., from the minimality of the realization 
given in (7.1) it follows that A does not have any eigenvalues on the imaginary 
axis (cf. Theorem 6.2.2 of [24]). Using (7.1) in (5.3) and (5.4), we obtain 

TZ(A) TZ(A*)t = In + i [C 0] (A - iKz)-l [~t] , (7.2) 

Tr(A*)t Tr(A) = In + i [0 8 t ] (A - iKr)-l [~] , (7.3) 

where 

[A -88t] 
Kz = 0 -At ' (7.4) 

Then Kz and Kr both have the set a(A) U {-A* : A E a(A)} as their spectrum 
(a (A) standing for the spectrum of A), even though they need not have the same 
Jordan normal form. Note that the inverses of the right-hand sides in (7.2) and 
(7.3) can be written as 

[TZ(A*)tr 1 TZ(A)-l = In - i [C 0] (A - i£)-l [~t] , (7.5) 
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Tr(.X)-l [Tr(>.*)tr1 = In - i [0 Bt] (>. - i£)-l [~] , (7.6) 

where £ is the "state characteristic matrix" given by 

[ A -BBt] 
£ = -ctc -At ' (7.7) 

which, apart from some factors i = A, has been used in [21]. We note that 
ICz, ICr , and £ do not have eigenvalues on the imaginary axis. This follows from 
the invertibility of In + R(>.) R(>.)t and Corollary 2.7 in [7]; for ICz and ICr this 
also follows immediately from the special form of the matrices ICz and ICr in (7.4) 
and the fact that A has no eigenvalues on the imaginary axis. Hence the matrices 
(>. - iICz)-l, (>. - iICr)-l, and (>. - i£)-l in (7.2), (7.3), (7.5), and (7.6) all exist 
for>. E JR. 

The following result is essential for obtaining explicit expressions for the 
factors 11(>') and Tr(>') and their inverses. 

Proposition 7.1. Let A, B, and C be the matrices in the minimal realization given 
by (7.1) and consider the quadratic matrix equations 

AX + XAt = BBt - XCtCX, (7.8) 

Aty + YA = -ctc + YBBty. (7.9) 
Then the spectrum of the matrix £ given in (7.7) is symmetric about the imaginary 
axis. Moreover, the spectral subspace M of £ corresponding to its eigenvalues in 
the right half-plane is of the form 

M = { [Z] u: u E CP} , (7.10) 

where X is a hermitian solution of (7.8), and the spectral subspace C of £ corre­
sponding to its eigenvalues in the left half-plane is of the form 

(7.11) 

where Y is a hermitian solution of (7.9). The hermitian matrices X and Y are 
unique. 

Proof. The symmetry of the spectrum of £ about the imaginary axis follows from 
the similarity h pQ2p£q2ph p = _£t, where Q2p is defined by 

_ [0 Ip] Q2p - Ip 0 . 

The remaining assertions follow from Theorem 7.6.1 in [24] applied to the matrix 
J2p£hp (to comply with the condition D ~ 0 there) and the 3-neutrality, where 
3 = ihpQ2p, of the spectral subspaces M and C. Note that the spectral subspaces 
M and C both have dimension p, which is the order of A, because £ has no 
eigenvalues on the imaginary axis. Also note that the controllibility condition of 
Theorem 7.6.1 of [24] is satisfied as a result of the minimality of the realization 
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in (7.1). Indeed, CtCAjw = 0 for j ;:::: 0 implies IICAjwl12 = 0 for j ;:::: 0, then 
CAjw = 0 for j ;:::: 0, and then w = 0; similarly, one proves the other controllability 
statement. D 

The nonlinear equations (7.8) and (7.9) are called state characteristic equa­
tions in [21] and (continuous algebraic) Riccati equations elsewhere in the literature 
(e.g., [24]). Since in the literature the term "hermitian" (instead of "selfadjoint") 
seems to have some tradition when referring to solutions of Riccati equations, we 
will use this terminology here. 

The matrices X and y used in Proposition 7.1 allow us to block diagonalize 
the matrix E. Since the subspaces .c and M have dimension p and M n .c = {O}, 
the matrix ~ defined by 

~ = [Ip X] 
Y Ip 

(7.12) 

is nonsingular. Hence, both Ip - xy and Ip - yx are nonsingular, and 

~-l _ [ (Ip - Xy)-l -(Ip - Xy)-lX] 
- -(Ip - YX)-ly (Ip - YX)-l . (7.13) 

Theorem 7.2. Let A, 13, and C be the matrices in the minimal realization given by 
(7.1) and let X and y be as in Proposition 7.1. Then 

where 

~-lE~ = [Er 0] o -Et, 
I 

(7.14) 

(7.15) 

Moreover, the matrices Er and El have all their eigenvalues in the left half-plane 
and are related via the similarity transformation 

(7.16) 

Proof. The relations (7.14)-(7.16) follow by direct computation using (7.7)-(7.9), 
(7.12), and (7.13). The assertions about the spectra of Er and El follow from 
(7.14) and Proposition 7.1 which imply that EI.c is similar to Er and ElM is 
similar to -E/. D 

In the following we also need representations of the form (7.10) and (7.11) 
for certain invariant subspaces of Kl and Kr. 

Proposition 7.3. Let A, 13, and C be the matrices in the minimal realization given 
by (7.1). Then the spectrum of Kl (Kr) is symmetric about the imaginary axis. 
Moreover, the invariant spectral subspaces of Kl and Kr corresponding to the left 
and right half-planes all have dimension p. In the case of Kr both of the invariant 
subspaces are of the form 

{ [~] u : u E CP } , (7.17) 
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where X is a solution of the Riccati equation 

AX+XAt = -XCtCX. 
In the case of Kz both of the invariant subspaces are of the form 

where Y is a hermitian solution of the Riccati equation 

Aty + YA = Yl3l3ty. 
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(7.18) 

(7.19) 

(7.20) 

Proof. Apply Theorem 7.2.4 of [24] to hpKzhp and Q2pKrQ2p' The symmetry of 
the spectrum about the imaginary axis follows as in the proof of Proposition 7.1 
fur£. D 

Before we can apply the main factorization result from [7] to (7.2) and (7.3), 
we need the following proposition based on the positive selfadjoint ness of the 
matrix functions in (7.2) and (7.3) for all oX E R 

Proposition 7.4. Let M (resp. £) be the in variant subspace of the matrix £ given in 
(7.7) corresponding to the eigenvalues in the right and left half-plane, respectively, 
and let N (resp. V) be the invariant subspace of Kr (resp. Kz) corresponding to its 
eigenvalues in the right and left half-plane, respectively. Then 

£ El7N = C2p , M EI7 V = C2P. 

Proof. The above decompositions then follow from Theorem 1 1.5 of [7], due to the 
existence of left and right canonical factorizations of a positive selfadjoint matrix 
function with respect to the imaginary line. D 

Now let II be the projection such that 

1m II = £, Ker II = N, 
and let Q be the projection such that 

1m Q = V, Ker Q=M. 

(7.21) 

(7.22) 

Applying Theorem 1.5 of [7] we can express the transmission coefficients in terms 
of the matrices appearing in (7.1) and the projections II and Q as follows: 

Tr(oX*)t = In + i [0 l3t ] (oX - iKr)-l (I2p - II) [~] , (7.23) 

Tr(oX) = In + i [0 l3t ] II (oX - iKr)-l [~] , (7.24) 

Tr(oX)-l = In - i [0 l3t ] (oX - i£)-l II [~] , (7.25) 

[Tr(oX*)trl = In - i [0 l3t ] (hp - II) (oX - i£)-l [~] , (7.26) 
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Tz()"') = In + i [C OJ ()... - iKz)-l Q [~t] , (7.27) 

Tz()...*)t = In + i [C OJ (I2p - Q) ()... - iKz)-l [~t] , (7.28) 

[Tz()...*)trl = In - i [C 0] ()... - iE)-l (hp - Q) [~t] , (7.29) 

Tz()...)-l = In - i [C OJ Q ()... - iE)-l [~t] . (7.30) 

With the expressions (7.23)-(7.30) we have accomplished the desired canonical 
factorizations of the matrix functions on the right-hand sides of (7.2), (7.3), (7.5), 
and (7.6). Our next goal is to find more explicit representations for the projections 
II and Q and for the invariant subspaces Nand V. 

---- """"' ""'-'--
Proposition 7.5. Let X and y be as in Proposition 7.1 and let ,1'= ,1'+ and Y = Y_ 
be as in Proposition 7.3, where the subscript + (resp. -) indicates that the spectral 
subspaces given in (7.17) and (7.19) are those associated with the right (left) half­
plane. Then the invariant subspaces N and V and the projections II and Q can be 
written as 

-(Ip - X+y)-lX+ 1 
-y(Ip - X+y)-lX+ ' 

-(Ip - ,1'y_)-l,1' 1 
-Y-(Ip - ,1'y_)-l,1' . 

Furthermore, if A has all its eigenvalues in the set r#, then X+ = 0 and 

N = {O} EEl ((7, V = CP EEl {O}, 

II = [~ ~], Q = [~ -:]. 

(7.31 ) 

(7.32) 

(7.33) 

(7.34) 

(7.35) 

Proof. First, (7.31) is immediate from (7.17), (7.19), (7.21), and (7.22). Then (7.32) 
and (7.33) follow from (7.21), (7.22), and Proposition 7.1. If A has all its eigenval­
ues in the right half-plane, then X+ = y_ = 0, by the particular form of Kz and 
Kr in (7.4), and so (7.34) and (7.35) follow from (7.31)-(7.33). D 

In order to find more explicit expressions for II and Q when A has at least 
one eigenvalue in r, we employ suitable similarity transformations which bring the 
images of Kz and Kr in a form amenable to the same treatment as if A had only 
eigenvalues in the left half-plane. To set up these similarity transformations it is 
convenient to choose a basis such that A, B, and C are partitioned as 

A = [~- JJ, B = [~~] , C = [c C+]. (7.36) 
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Here A+ (A_) has all its eigenvalues in right (left) half-plane and we denote its 
order by p+ (p_), so that p+ + p_ = p. Moreover, B+, B_, C+, and C_ are p+ x n, 
p_ x n, n x p+, and n x p_ matrices, respectively. Now put 

[I,_ 0 0 

I~+ 1 
[I,_ 0 0 

I~+ 1 ~,~ ~ 0 0 ~c ~ ~ P2 0 
(7.37) 

0 Ip_ o ' 0 Ip_ o ' 
-IN 0 P1 -IN 0 0 

where P1 and P2 are the unique solutions of the equations (cf. Theorem 14.1 of 
[17], Theorem VII 2.4 of [13]) 

In fact, we have 

A+P1 + P1A~ = B+B~, 

P2A+ + A~P2 = ctC+. 

P1 = LX) dt e- tA+ B+Bte-tA, 

so that P1 and P2 are positive selfadjoint. Then, we easily compute 

where 

(7.38) 

(7.39) 

(7.40) 

(7.41) 

Note that all the eigenvalues of 0 1 and O2 lie in the open left half-plane. Therefore, 
in analogy to (7.34), (7.35), and Proposition 7.1, the projection operators Q and 
II are such that 

1m Q = <Pi 1 [ep EB {O}l, Ker Q = 1m [Z] , (7.42) 

KerII = <p;1 [{O} EB cPl, 1m II = 1m [~] . (7.43) 

Let us partition the inverses of <PI and <Pr defined in (7.37) into p x p blocks as 

(7.44) 

Note that 

<Pi l = Q2p <PZq2p, <p;1 = Q2p <Pr Q2p, (7.45) 

so that the entries of <Pi 1 and <p;1 are readily available from (7.3). 
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Proposition 7.6. Suppose a basis is chosen such that the matrices A, B, and C in 
the realization (7.1) have the form indicated in (7.36). Then the matrices X+, y_, 
II, and Q in Proposition 7.5 can be expressed as 

y- = Al3Ail l = [~ p~l]' ,1\ = Ar2A-;l = [~ -~21]' (7.46) 

Q = [All (All - XA I3 )-1 -All (All - XA I3 )-IX] (7.47) 
AI3(All - XA I3 )-1 -AI3(All - XA I3 )-IX ' 

I _ II - [-Ar2(Ar4 - YAr2 )-ly Ar2(Ar4 - YAr 2)-I] (7.48) 
2p - -Ar4(Ar4 - YAr2 )-ly Ar4(Ar4 - YAr2 )-1 . 

Proof It follows from (7.37), (7.42), (7.44), and (7.45) that 

V = 1m Q = { [ ~:~] u: u E CP } . 

Now (7.31), (7.37), (7.44), and (7.45) imply (7.46) for y_. Similarly, by (7.31), 
(7.37), and (7.43)-(7.45), we have 

N = Ker II = { [~~~] u : u E CP } , 

and so, by comparison with (7.31), we obtain (7.46) for X+. Then (7.47) and (7.48) 
follow on using (7.46) in (7.32) and (7.33). In the derivation of (7.48) we have also 
used the identity (Ip - X+y)-IX+ = X+(Ip - yX+)-I. 0 

Note that in (7.48) we have stated the result for h p - II rather than II because 
we will only need the former. By using (7.36) and (7.37) one easily verifies that 
X+ and y_ given in (7.46) satisfy (7.18) and (7.20), respectively. 

In order to use the results of Proposition 7.6 in (7.23)-(7.30) we need some 
additional notation. We decompose the solution X of (7.8) as 

X = [Z~ Z~], 
so that Xl and X4 are selfadjoint and have orders p_ and p+, respectively, and 
XJ = X3 · We denote by P3 the unique solution of the equation 

D4 P3 + P3 £l = -Ar4 B Bt, (7.49) 

which is given by 

P3 = 100 
dt etS14 Ar4 B Bt eu:l , (7.50) 

and we define P4 to be the unique (and generally nonsquare matrix) solution of 
the equation 

given by 

(7.51 ) 
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Note that in contrast to the solutions P1 and P2 of (7.38) and (7.39), respectively, 
the matrices P3 and P4 are in general not selfadjoint. Furthermore, we let 

J" = (All - Az3 X)-1 All, Jr = Y (Ar4 - Ar2Y)-l, (7.52) 

and introduce the matrices 

where 

-~d ' A_ = [-A~:iBt ~J, 
B = [(P1 - X4)-1(X3C~ + X4Ct)] , 

- -P3J" ct 

BtJr P4 + B~] , C_ = [Bt -BtJr]. 

(7.53) 

(7.54) 

(7.55) 

(7.56) 

We mention that A, B, and C are 3p x 3p, 3p x n, and n x 3p matrices, respectively. 
Moreover, A+, A_, B+, B_, C+ and C_ are (p_ +p) x (p_ +p), (p+ +p) x (p+ +p), 
(p_ + p) x n, (p+ + p) x n, n x (p_ + p), and n x (p+ + p) matrices, respectively. 

Next we present the main result of this section, expressing the scattering 
matrix in terms of the quantities defined above in connection with the similarity 
transformations induced by <Pz and <Pr . 

Theorem 7.7. Let R()") be a rational reflection coefficient satisfying (6.22). Then 
the remaining entries of the scattering matrix (3.11) are given by 

11()..) = In - iCAll ().. - i!13)-1(All - XAZ3 )-lXCt, (7.57) 

Tr()..) = In + i Bt Jr().. - i!14)-1 Ar4B, 

L()..) = iC()" - iA)-lB. 

(7.58) 

(7.59) 

In the special case when A has all its eigenvalues in the left half-plane, these 
expressions simplify to 

Tz()") = In - iC()" - iA)-lXCt, (7.60) 

Tr()..) = In + iBty().. - iA)-lB, (7.61) 

L()") = -iBty().. - iA)-lXCt - iBt(Ip - YX)()" + i£l)-lCt. (7.62) 

Proof. Using (7.27), (7.37), (7.41), (7.44), (7.45), (7.47), and the equality 

<PzQ [~t] = - [~] (All -XAz3)-lXCt, 

we obtain (7.57). From (7.23), (7.37), (7.41), (7.44), (7.45), (7.48), as well as the 
identity 
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it follows that 

Tr(.~*)t = In - i Bt Ar4('\ + iOl)-1(Ar4 - YAr2 )-lYB. 

Now (7.58) follows by taking the adjoint and using (7.52). Note that Ar2 , Ar4 , and 
Yare hermitian. 

With the help of (7.14), (7.26), (7.47), and (7.52), we derive 

[11(,\ *) tr 1 = In - i CX(,\ + ie!)-l Ji ct. (7.63) 

From (7.1), (7.63), and using 

we get 

Ip - Ji = -AZ3(All - XAZ3 )-lX, 

-iCtCX = (,\ + iAt) - (,\ + ie!), 

R(,\*)t[Tz(,\*)tt1 = iBt(,\ + iAt)-l AI3(All - XA I3 )-1 XCt 

- iBt (,\ + ie!)-l Ji ct. (7.64) 

Using (5.5), (7.57), (7.64), and some standard results on realizations (Chapter 1 
of [7]), we obtain 

(7.65) 

where 
Ar4BBt - Ar4BBt] 
-At 0 , 

o -e! 

118 ~ 8 t [.7. Iv -Iv}, n. ~ [AI3(A" -;'Al')-'X] Ct , 

To bring L('\) into the form (7.59) we use a similarity transformation. Let 

W = [~ I~_ ~ ~l w-1 = [~3 ~~ ~ -~pl 
o 0 Ip+ 0 ' 0 0 Ip+ 0 ' 

-Ip P4 0 P3 Ip 0 0 0 

where P3 and P4 have been defined in (7.50) and (7.51). Then it is straightforward 
to verify that 

.4 = W07W-1, C = 08W-1, B = wOg, (7.66) 

where .4, B, and C are the matrices defined in (7.53). Using (7.66) in (7.65), 
together with the fact that for one of the blocks of Og we can write 

-1 [0 0] [Ip _ -X2 ] -1 [Xl X2] 
AZ3(All - XA I3 ) X = 0 Ip+ 0 P1 - X4 X3 X4 

= [(P1 - 24)-lX3 (P1 - 24)-lX4] , 
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we obtain (7.59) with the matrices (7.54)-(7.56). The expressions (7.60)-(7.62) 
can be obtained from (5.5) and (7.23)-(7.30) by using the special forms (7.35) for 
II and Q, or by obvious reductions from (7.57)-(7.59). The details are omitted. D 

8. Inverse problem with rational scattering matrices 

Let R()") have the form (7.1) for certain matrices A, B, and C, where A has minimal 
order and hence does not have zero or purely imaginary eigenvalues. Then 

R()..) = i C()" - iA)-1 B = - i: dt e-i>.t C E(t; -A) B, (8.1) 

where 

{ 
e-tAp~+) = ~ ( dze-tZ(z-A)-I, 

E(t; -A) = _ 2~z lr+ 
_e-tAp( )=--1 dze-tZ(z-A)-1 A 2 . , 

7rZ r_ 

t > 0, 
(8.2) 

t < 0, 

is the bisemigroup generated by A (cf. [8, 9]). Here r + and r _ are the positively 
oriented simple Jordan contours in the right and left half-planes enclosing all of 
the eigenvalues of A in the open right and left half-planes, respectively, and P~+) 
and p~-) are the spectral projections of A corresponding to its eigenvalues in the 
right and left half-planes, respectively. 

Our strategy for reconstructing k(x) from R()") is as follows. When x > 0 we 
will solve the Marchenko equation (6.10) by using R()..) as the input, and when 
x < 0 we will solve the Marchenko equation (6.11) by using L()..) as given in (7.59). 
Then we use (4.14) to determine k(x). Throughout we assume the absence of poles 
of Tl()..)' Tr ()..), TI()..)-I, and Tr ()..)-1 in the upper half-plane. 

First consider (6.10) with 

R(t) = -C E(t; -A) B, 

which are obtained from (6.1) and (8.1). Introducing the positive selfadjoint p x p 
matrices 

VI = 100 
dt E(t; -A) B Bt E(t; -At), V 2 = 100 dt E(t; -At) ct C E(t; -A), 

and assuming x > 0, we obtain for the hermitian integral kernel in (6.10) 

100 
d(3R("( + (3 + 2x) R(a + (3 + 2x)t =c E("( + 2x; -A) VI E(a + 2x; -At)Ct. 

The unique solution of the separable integral equation (6.10) is then given by 

BI3 (X, a) = -Bt [Ip + E(2x; -At) V 2 E(2x; -A) VI] -1 E(a + 2x; -At) ct, (8.3) 
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where the inverse exists because of the unique solvability of (6.10). For later use 
we note that, by (7.36) and (7.40), we have 

VI = [~ ~J, V 2 = [~ ~J. (8.4) 

When x < 0 we start from L()..) as given in (7.59), so that 

L(t) = -C E(t; -A) B, 

Proceeding as in the derivation of (8.3), we obtain 

Br2 (x, 0) = -Bt [Isp+E( -2x; -At) V 4 E( -2x; -A) V 3] -1 E(o:-2x; -At) ct, (8.5) 

where the inverse exists because of the unique solvability of (6.11). Here V3 and 
V 4 are the positive selfadjoint matrices given by 

V3= 100 
dtE(t;-A)BBt E(t;-At), v 4 = 100 

dtE(t;-At)ctCE(t;-A), 

which, by means of (7.53)-(7.56), can be written as 

[
P5 000] o 0 0 0 

V3 = 0 0 0 0 ' 
o 0 0 0 

P7 0 0] Pg 0 0 
o 0 0 ' 
o 0 0 

where 

P5 = 100 
dt et£t .:liCt c:r/ et£l, P6 = 100 dt et£l (Ip + pl :rJ)BBt (Ip + :rrP3)et£t , 

(8.6) 
and P7 , Ps , and Pg are irrelevant because they will not contribute to k(x), as we 
will see. 

Now we are ready to prove the main result of this section. Again we first 
state the general result and then specialize it to the particular case when A has all 
its eigenvalues in the left half-plane or, equivalently, when R()") is analytic in C+. 

Theorem 8.1. Suppose that R()..) satisfies (6.22) and is given by the minimal rep­
resentation (7.1) in a basis where (7.36) holds. Then the matrix potential k(x) in 
(1.2) is given by 

x> 0, k( ) _ + p+ 1 2 +, {
2iC e-2xA+[1 +P e-2xA~p. e-2xA+]-IB 

x - 2i C:r/ [Ip + e-2X£l P6 e-2x£lt P5] -1 e-2X£l (Ip + pl :rJ)B, 
(8.7) 

x < O. 

If R()") is analytic in C+, then 

k(x) = {O, 
2iC[Ip - e-2x£lX e-2x£;: yr1e-2x£l (Ip - XY) B, x < 0, 

x> 0, 
(8.8) 
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where X and Yare the unique solutions of (7.8) and (7.9), respectively. Moreover, 
if R()..) is analytic in C+, then the jump in the potential at x = 0 is given by 

k(O+) - k(O-) = -k(O-) = -2i C B. (8.9) 

Proof. The representation (8.7) for k(x) is a direct consequence of (4.14) and 
(8.3)-(8.6). Thus we need only establish the simplifications that occur when R()..) 
is analytic in C+. In this case A has all its eigenvalues in the left half-plane so 
that from (8.2) we get E(t; -A) = 0 for t > O. Thus k(x) = 0 for x > O. For 
x < 0, starting with (7.36), we can simplify the expression in (8.7) by deleting the 
blocks associated with the spectrum of A in the right half-plane. This reduction 
is implemented by the following substitutions: All f--+ I p , Al3 f--+ 0, and hence 

J"t f--+ Ip, (8.10) 

by (7.52). Similarly, Ar2 f--+ 0, Ar4 f--+ Ip, and hence .JJ f--+ y. Since 0 4 f--+ A, the 
solution to (7.49) becomes P3 = -X and thus 

(8.11) 

Furthermore we can compute P5 and P6 in (8.6). We observe that P5 and P6 are 
solutions to the following Riccati equations: 

P5Cl + CIt P5 = -ctc, (8.12) 

P6Clt + ClP6 = -(Ip - XY)BBt(Ip - YX). (8.13) 

First note the identity 

(8.14) 

which follows from (7.9) and (7.15). On multiplying (8.14) from the right by (Ip -
Xy)-l, using (7.16), and comparing the result with (8.12), we find that 

P5 = Y(Ip - Xy)-l = (Ip - YX)-ly. (8.15) 

Similarly, on multiplying the identity 

crX + Xclt = BBt(Ip - YX), 

which follows from (7.8) and (7.15), from the left by Ip - Xy, using (7.16), and 
comparing the result with (8.13), we obtain 

P6 = -X(Ip - YX). (8.16) 

Since, by (7.16) and its adjoint, 

(Ip - YX)e- 2x£i = e-2x£;' (Ip - YX), 

the result (8.8) for x < 0 follows from inserting (8.10), (8.11), (8.15), (8.16) in 
(8.7). Finally, letting x -t 0 from below gives k(O-) = -2iCB, and hence (8.9) 
~~. D 
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