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Abstract. We study a two-species reaction-diffusion problem described by a system
consisting of a semilinear parabolic equation and a first order ordinary differential
equation, endowed with suitable conditions. We prove the existing of a unique trav-
eling wave profile and give necessary conditions and sufficient conditions for the
occurrence of penetration and conversion fronts.

1. Introduction. Travelling wave solutions of parabolic initial-boundary value
problems are often applied to describe interesting phenomena involving chemical
reactions, combustion, and population dynamics [9, 2, 3, 5, 8]. In [6, 4, 7] the au-
thors consider gas-solid reactions of different types described by a system of two
equations, a semilinear parabolic equation for the gas concentration S and a first
order ordinary differential equation for the solid concentration C, endowed with
conditions specifying the initial and final concentrations. In all three papers a
unique traveling wave profile with constant group velocity was found. Either of the
equations of the system studied in [6, 7] contains a nonlinear reaction term which
is the product of a power of C and a power of S. Moreover, their parabolic equa-
tion contains a second order spatial derivative term (the Laplacian in the case of
[6]). In [4] the nonlinear reaction terms are more general products of functions of
either concentration only, but the parabolic equation contains a linear first spatial
derivative term describing the gas flux.

In this article we study travelling wave solutions of a model describing the con-
version of a porous solid as it reacts irreversibly with a gas moving through its
pores. The parabolic equation in the system under consideration contains both a
first order and a second order spatial derivative term. The reaction is assumed to
be proportional to F (S)G(C), where F and G are positive, increasing C1-functions
such that F (0) = G(0) = 0. Typically one has F (S)G(C) = SmCp, where m, p > 0.

In one space dimension, the mass balance for the solid-gas system yields the
coupled equations

St = −λ1F (S)G(C), (1)

(εC)t + (H(C))x − (Φ(C))xx = −λ2F (S)G(C), (2)

where x ∈ R and t > 0. Here ε denotes the (variable) porosity of the solid, H
describes the gas flux and Φ the gas diffusion as functions of the gas concentration,
and λ1, λ2 > 0 are the reaction rate parameters. We assume that H and Φ are
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monotonically increasing positive functions such that H(0) = Φ(0) = 0, and that
the porosity ε depends linearly on the solid concentration S as follows:

ε = ε0 + ε1(S∗ − S), (3)

where ε0 > 0 and ε1 ≥ 0 are constants and S∗ is an upper bound for the solid
concentration.

Let us consider the travelling wave solutions S = S(x − ct) and C = C(x − ct)
of the system (1)-(2) under the conditions

S(−∞, t) = 0, C(−∞, t) = C∗, t > 0, (4)

S(+∞, t) = S∗, C(+∞, t) = 0, t > 0, (5)

where S∗ > 0 is the solid concentration at the outlet and C∗ > 0 is the gas con-
centration at the inlet. The positive wavespeed c will turn out to be completely
determined by the parameters of the reaction-diffusion system.

Let us implement the following rescaling of (1)-(2):




u =
S∗ − S

S∗
, v =

C

C∗
,

f(y) = λ1F (yS∗), g(y) = G(yC∗),

h(y) =
H(yC∗)

C∗
, φ(y) =

Φ(yC∗)
C∗

.

(6)

Then the system (1)-(2) reduces to the dimensionless equations

ut =
1
S∗

f(1− u)g(v), (7)

(εv)t + (h(v))x − (φ(v))xx = − λ

C∗
f(1− u)g(v), (8)

where λ = λ2/λ1 is the Thiele modulus. The conditions (4)-(5) become

u(−∞, t) = 1, v(−∞, t)= 1, t > 0, (9)

u(+∞, t) = 0, v(+∞, t)= 0, t > 0. (10)

Let us now make the travelling wave Ansatz

u = u(η), v = v(η), η = x− ct. (11)

Then the system (7)-(8) with conditions (9)-(10) is converted into the problem

−cu′ =
1
S∗

f(1− u)g(v), (12)

−c(εv)′ + (h(v))′ − (φ(v))′′ = − λ

C∗
f(1− u)g(v), (13)

u(−∞) = v(−∞) = 1, u(+∞) = v(+∞) = 0. (14)
Eliminating the nonlinear terms in the right-hand sides of (12) and (13) and inte-
grating with respect to η, we see that the expression

−cεv + h(v)− (φ(v))′ − λS∗c
C∗

u (15)

is constant, while all four terms have finite limits as η → ±∞. Because φ(v) also
has finite limits as η → ±∞, we see that (φ(v))′ → 0 as η → ±∞. Using (3), (9)
and (10) as well as the equality f(0) = g(0) = h(0) = 0 and the relation (φ(y))′ → 0
as y → 0+ to take the limits as η → ±∞, we find for the constant given by (15)

−c(ε0 + ε∗1) + h(1)− λS∗c
C∗

= 0,
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where ε∗1 = ε1S
∗, and hence the travelling wave speed is given by

c =
h(1)C∗

(ε0 + ε∗1)C∗ + λS∗
. (16)

Finally, we employ (15) and (16) to write (12)-(13) in the form

u′ = −C1f(1− u)g(v), (17)

(φ(v))′ = C2(v − u) + C3(1− u)v + h(v)− h(1)v, (18)

where C1 = 1/cS∗, C2 = (λS∗c)/C∗, and C3 = cε∗1 are positive constants. In the
sequel we will restrict ourselves to the special case where

h(v) = H(v) = qv, φ(v) = D∗vk, (19)

where q is the constant gas flux and D = D∗(C∗)1−k is the constant effective
diffusivity. In this special case (18) is replaced by

(vk)′ = C4(v − u) + C5(1− u)v, (20)

where C4 = C2/D∗ and C5 = C3/D∗ are positive constants.

2. Travelling Wave Profiles. In this section we prove the existence and, under
certain hypotheses, the uniqueness of a travelling wave profile. First we confine our-
selves to the system (17) and (20). At the end of this section we list the assumptions
of φ and g required to extend the result to the more general system (17)-(18).

Theorem 1. There exists at least one solution (u, v) of (17)-(20) such that u and
v are both decreasing in η. This solution is unique if 0 < k ≤ 1 and w 7→ g(w1/k)
is Lipschitz continuous in [0, δ] for some δ > 0.

Proof. By the change of variable η 7→ −η one converts the system (17) and (20)
with boundary conditions (14) into the following system:

u′ = C1f(1− u)g(v), (21)

(vk)′ = C4(u− v)− C5(1− u)v, (22)

u(−∞) = v(−∞) = 0, u(+∞) = v(+∞) = 1. (23)

Let us consider (u, v) as points of the closed square {(u, v) : 0 ≤ u ≤ 1, 0 ≤
v ≤ 1}. Then the points (u, v) in the square for which the right-hand side of (22)
vanishes, form a hyperbolic arc connecting (0, 0) to (1, 1). Now consider the open
subregion D bounded by the union of the sets

∂S1 = {(u, 0) : 0 < u < 1},
∂S2 = {(1, v) : 0 < v < 1},
∂S3 = {(u, v) : 0 < u < 1 and C4(u− v)− C5(1− u)v = 0},

together with the points (0, 0), (1, 0) and (1, 1). Then the right-hand sides of (21)
and (22) are positive for all (u, v) ∈ D.
Further, on ∂S1 ∪ ∂S2, the right-hand side of (21) vanishes, while the right-hand
side of (22) is positive. Finally, on ∂S3 the right-hand side of (21) is positive, while
the right-hand side of (22) vanishes. Further, the right-hand sides of (u, v) are
Lipschitz continuous in (u, v) on D ∪ ∂S3. As a result, solution curves of (21)-(23)
which enter D through ∂S1 ∪ ∂S3 remain inside D and proceed in the right-upper
direction until they reach a point of ∂S2 for η = η < +∞ (after which they proceed
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Figure 1. The parts ∂S1, ∂S2 and ∂S3 of the boundary of the
open region D in the (u, v)-plane for C4 = C5 = 1.

towards (1, 1) along ∂S2) or (1, 1) for η ≤ +∞. Different solution curves cannot
meet within D ∪ ∂S3.

To prove the existence part of Theorem 1, it is sufficient to prove the existence
of a unique C1-curve in D ∪ {(0, 0), (1, 1)} which connects (0, 0) and (1, 1) and on
which (21) and (22) hold. An elementary translation η 7→ η − η0 then converts one
solution into another.

Let D∗ be the set of all points of D that belong to a solution curve entering D
from a point of ∂S3. Similarly, let D∗ be the set of all points of D that belong to
a solution curve entering D from a point of ∂S1. Then, obviously, D∗ and D∗ are
open subsets of D, while (u0, v

∗) ∈ D∗ and (u0, v∗) ∈ D∗ imply that 0 < v∗ < v∗ <
C4u/[C4 + C5(1− u)]. For every u ∈ (0, 1) we now define

α∗(u) = inf{v : (u, v) ∈ D∗}, α∗(u) = sup{v : (u, v) ∈ D∗}.
Then

0 < α∗(u) ≤ α∗(u) <
C4u

C4 + C5(1− u)
,

so that
lim
u↓0

α∗(u) = lim
u↓0

α∗(u) = 0.

Moreover, α∗(1−) and α∗(1−) exist and 0 < α∗(1−) ≤ α∗(1−) ≤ 1. We therefore
put α∗(0) = α∗(0) = 0 and extend α∗ and α∗ to functions that are continuous on
[0, 1] and C1 on (0, 1); this one easily obtains by proving that α∗ and α∗ are solution
curves.

To settle the uniqueness part of Theorem 1, it suffices to exploit the Lipschitzian-
ity of the map

(u,w) 7→
(
C1f(1− u)g(w1/k), C4(u− w1/k)− C5(1− u)w1/k

)

in a neighborhood of (0, 0). This is obviously the case if (1/k) ≥ 1 and g is Lipschitz
continuous in [0, δ] for some δ > 0.
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If k = 1, it is impossible to reach the point (1, 1) in finite time1 along solution
curves. Indeed, let us assume the existence of a solution curve η 7→ (u(η), v(η))
such that v(η) = 1. Then (22) with k = 1 can be written in the form

(
e(C4+C5)ηv(η)

)′
= e(C4+C5)η [C4 + C5v] u,

and hence

e(C4+C5)η − v(0) =
∫ η

0

e(C4+C5)η [C4 + C5v(η)] u(η) dη

<

∫ η

0

e(C4+C5)η[C4 + C5] dη = e(C4+C5)η − 1,

which implies that v(0) > 1 and hence leads to a contradiction. Unfortunately, we
do not know if the same statement holds for k 6= 1.

Theorem 1 is easily generalized to the more general system (17)-(18). Letting
φ be a monotonically strictly increasing function mapping (0,∞) onto itself whose
inverse function φ−1 is Lipschitz continuous on each compact subset of (0,∞), we
put w = φ(v). Changing the variable η 7→ −η, (17)-(18) then take the form

u′ = C1f(1− u)g(φ−1(w)), (24)

w′ = C2(φ−1(w)− u)− C3(1− u)φ−1(w)− h(φ−1(w)) + h(1)φ−1(w). (25)

If we also assume h to be a monotonically strictly increasing function mapping
(0,∞) onto itself such that 0 < h(v) ≤ h(1)v for every v ∈ (0, 1], we can repeat the
proof of Theorem 1 almost verbatim and derive the following result.

Theorem 2. There exists at least one solution (u, v) of (24)-(25), with v = φ−1(w),
such that u and v are both decreasing in η. This solution is unique if φ−1 and
w 7→ g(φ−1(w)) are both Lipschitz continuous in [0, δ] for some δ > 0.

3. Conversion and Penetration Fronts. In this final section we restriction our-
selves to the system consisting of (17) and (20).

A travelling wave u = u(x− ct) is said to have a conversion front if

a := inf{η : u(η) < 1} > −∞ (26)

and to have a penetration front if

b := sup{η : u(η) > 0} < +∞. (27)

Defining
b̃ := sup{η : v(η) > 0}, (28)

we easily show (as in [4]) that b and b̃ coincide.
The following result can be proved in the same way as in [4].

Theorem 3. There is a conversion front if and only if (1/f) ∈ L1(0, δ) for some
δ > 0.

Proof. Suppose a conversion front exists and hence (26) holds. From (17) we obtain

u′ = −C1f(1− u)g(v) ≥ −C1f(1− u)g(1),

1Here we adopt the change of variable η 7→ −η made in the proof of Theorem 1.
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and hence for any a < η1 < η2 we get
∫ 1−u(η2)

1−u(η1)

1
f(z)

dz =
∫ η2

η1

−u′

f(1− u)
dη ≤ C1g(1)(η2 − η1).

Letting η1 ↓ a yields
∫ 1−u(η2)

0

1
f(z)

dz ≤ C1g(1)(η2 − a) < +∞,

thus implying that (1/f) ∈ L1(0, δ) for some δ > 0.
On the other hand, if no conversion front exists and therefore u(η) < 1 for all

η ∈ R, we have
∫ 1−u(η2)

1−u(η1)

1
f(z)

dz =
∫ η2

η1

−u′

f(1− u)
dη ≥ C1g(v(η2))(η2 − η1),

where g(v(η2)) > 0. Thus (1/f) /∈ L1(0, δ) for all δ > 0.

Theorem 4. Let Gk(v) =
∫ v

0
v̂k−1g(v̂) dv̂. Then the following is true:

1. If there is a penetration front, then vk−1/
√

Gk(v) belongs to L1(0, δ) for some
δ > 0.

2. If k = 1 and g is a concave function on (0, δ) for some δ > 0 such that
(v/g(v)) → 0 as v ↓ 0, there exists a penetration front if and only if G1(v)−1/2

belongs to L1(0, δ).
3. If 0 < k < 1 and g is a concave function on (0, δ) for some δ > 0, there exists

a penetration front if and only if vk−1Gk(v)−1/2 belongs to L1(0, δ).

Proof. Using that v′ ≤ 0 we obtain from (17) and (20)

d

dη

[
(vk)′

]2 ≥ 2kvk−1v′ · C1[C4 + C5v]f(1− u)g(v)

≥ 2kvk−1v′ · C1C6f(1− u)g(v) ≥ 2kC1C6f(1)vk−1v′g(v), (29)

where C6 = C4 + C5, so that
[
(vk)′

]2 ≤ 2kC1C6f(1)
∫ v

0

v̂k−1g(v̂) dv̂.

Therefore,

v′ ≥ −
√

2C1C6f(1)
k

v1−k
√

Gk(v), (30)

where Gk(v) =
∫ v

0
v̂k−1g(v̂) dv̂.

Suppose there is a penetration front. Then (30) implies that
∫ v(η1)

v(η2)

vk−1

√
Gk(v)

dv =
∫ η2

η1

−vk−1v′√
Gk(v)

dη ≤
√

2C1C6f(1)
k

(η2 − η1).

Letting η2 ↑ b and using (28) with b̃ = b, we get
∫ v(η1)

0

vk−1

√
Gk(v)

dv ≤
√

2C1C6f(1)
k

(b− η1) < +∞,

which proves that ((·)k−1/
√

Gk(·)) ∈ L1(0, δ) for some δ > 0 if there is a penetration
front.
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To prove the second and third parts of Theorem 4, we substitute (30) in the first
line of (29) to get

d

dη

[
(vk)′

]2
= 2kvk−1v′ [C4v

′ + C1(C4 + C5v)f(1− u)g(v) + C5(1− u)v′]

≤ 2kC6v
k−1v′

[
−

√
2C1C6f(1)

k
v1−k

√
Gk(v)+C1f(1− u)g(v)

]
.

Now choose f ∈ (0, f(1)) and fix η1 such that f(1− u(η)) > f for η > η1. Then we
can improve the above inequality to obtain for η > η1

d

dη

[
(vk)′

]2 ≤ 2kC6v
k−1v′

[
−

√
2C1C6f(1)

k
v1−k

√
Gk(v) + C1f g(v)

]
.

Integrating from η1 to +∞ we find
[
(vk)′

]2
(η1) ≥ C6

[
2
√

2kC1C6f(1)
∫ ∞

η1

√
Gk(v)v′ dη

− 2kC1f

∫ ∞

η1

vk−1g(v)v′ dη

]

and hence
[
(vk)′

]2
(η1)≥C6

[
−2

√
2kC1C6f(1)

∫ v1

0

√
Gk(v)dv+2kC1f

∫ v1

0

vk−1g(v)dv

]
,

(31)
where v1 = v(η1).

Let us now assume g to be concave in (0, δ), where δ ∈ (0, 1), and let us choose
η2 such that v(η2) = δ. We then have

0 ≤ v(η) ≤ δ

g(δ)
g(v(η)), η ≥ η2,

and hence

Gk(v) =
∫ v

0

v̂k−1g(v̂) dv̂ ≤ vkg(v) ≤
(

δ

g(δ)

)k

g(v)k+1, η ≥ η2. (32)

Using (31) and (32), we now obtain for η ≥ η = max(η1, η2)

[
(vk)′

]2
(η1) ≥ C6

[
−2

√
2kC1C6f(1)

(
δ

g(δ)

)k/2 ∫ v1

0

g(v)
k+1
2 dv

+ 2kC1fGk(v1)
]
. (33)

For k = 1 we get from (33)

[v′]2 (η1) ≥ C6

[
−2

√
2C1C6f(1)

(
δ

g(δ)

)1/2

+ 2C1f

]
G1(v1).

Then, if (v/g(v)) → 0 as v ↓ 0, we get

v′ ≤ −const.
√

G1(v)

for small enough positive v. The divergence of the integral
∫ v

0
G1(v̂)−1/2 dv̂ then

implies the nonexistence of a penetration front, as claimed.
For 0 < k < 1 we see that g(v)

k+1
2 = o(vk−1g(v)) as v ↓ 0, if and only if

v2 = o(g(v)) as v ↓ 0. In this case the first term in the right-hand side of (33) can
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be neglected with respect to the second term, especially since (δ/g(δ)) ≥ 1 as a
result of the concavity of g. Thus there exists a positive constant C7 such that

(vk)′(η) ≤ −C7

√
Gk(v)

for v1 small enough. If we integrate with respect to η ∈ (η1, η2) and put vi = v(ηi)
(i = 1, 2), then ∫ v1

v2

vk−1

√
Gk(v)

dv ≥ C7

k
(η2 − η1).

Hence, if there is no penetration front and hence η2 → +∞ corresponds to v2 ↓ 0,
we obviously get ∫ v1

0

vk−1

√
Gk(v)

dv = +∞,

whence vk−1/
√

Gk(v) does not belong to L1(0, δ) for any δ > 0.
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