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Abstract. We study a two-species reaction-diffusion problem described by a system
consisting of a semilinear parabolic equation and a first order ordinary differential
equation, endowed with suitable conditions. We prove the existing of a unique trav-
eling wave profile and give necessary conditions and sufficient conditions for the
occurrence of penetration and conversion fronts.

1. Introduction. Travelling wave solutions of parabolic initial-boundary value
problems are often applied to describe interesting phenomena involving chemical
reactions, combustion, and population dynamics [9, 2, 3, 5, 8]. In [6, 4, 7] the au-
thors consider gas-solid reactions of different types described by a system of two
equations, a semilinear parabolic equation for the gas concentration S and a first
order ordinary differential equation for the solid concentration C, endowed with
conditions specifying the initial and final concentrations. In all three papers a
unique traveling wave profile with constant group velocity was found. Either of the
equations of the system studied in [6, 7] contains a nonlinear reaction term which
is the product of a power of C and a power of S. Moreover, their parabolic equa-
tion contains a second order spatial derivative term (the Laplacian in the case of
[6]). In [4] the nonlinear reaction terms are more general products of functions of
either concentration only, but the parabolic equation contains a linear first spatial
derivative term describing the gas flux.

In this article we study travelling wave solutions of a model describing the con-
version of a porous solid as it reacts irreversibly with a gas moving through its
pores. The parabolic equation in the system under consideration contains both a
first order and a second order spatial derivative term. The reaction is assumed to
be proportional to F(S)G(C), where F and G are positive, increasing C*-functions
such that F'(0) = G(0) = 0. Typically one has F(S)G(C) = S™C?, where m,p > 0.

In one space dimension, the mass balance for the solid-gas system yields the
coupled equations

Sy = —MF(S)G(C), (1)
(0 + (H(C))z = (B(C))za = = A2 F(S)G(C), (2)
where x € R and ¢t > 0. Here ¢ denotes the (variable) porosity of the solid, H

describes the gas flux and ® the gas diffusion as functions of the gas concentration,
and Ay, Ao > 0 are the reaction rate parameters. We assume that H and & are
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monotonically increasing positive functions such that H(0) = ®(0) = 0, and that
the porosity € depends linearly on the solid concentration S as follows:

e=¢eo+e(S"—9), (3)

where €9 > 0 and £; > 0 are constants and S$* is an upper bound for the solid
concentration.

Let us consider the travelling wave solutions S = S(z — ¢t) and C = C(x — ct)
of the system (1)-(2) under the conditions

S(—o0,t) =0, C(—o0,t) = C*, t >0, (4)
S(4o00,t) = S™, C(+00,t) =0, t>0, (5)
where S* > 0 is the solid concentration at the outlet and C* > 0 is the gas con-
centration at the inlet. The positive wavespeed ¢ will turn out to be completely

determined by the parameters of the reaction-diffusion system.
Let us implement the following rescaling of (1)-(2):

" S* -5 Y %
s - cr
fly) = Al{‘(yS)*), 9(y) = G((yC*)), (6)
 H(yC By
hy) = =g oW =—5—
Then the system (1)-(2) reduces to the dimensionless equations
1
we = g2 F(1—ug(v), @
A
(0)e + (h(v))a = (@(V))ar = — 7 F(1 —u)g(v), (8)
where A = A2/)\; is the Thiele modulus. The conditions (4)-(5) become
u(—o0,t) =1, v(—00,t)=1, t>0, (9)
u(+00,t) =0,  v(+o0,t)=0, > 0. (10)
Let us now make the travelling wave Ansatz
u=u(n), v=v(n), n=z-—ct (11)
Then the system (7)-(8) with conditions (9)-(10) is converted into the problem
e = 5 (1 - w)glv), (12)
, A
—c(ev)' + (h(v))" = ($(v)" = = 7 F(1 = u)g(v), (13)
u(—00) = v(—00) =1, u(+00) = v(+00) = 0. (14)

Eliminating the nonlinear terms in the right-hand sides of (12) and (13) and inte-
grating with respect to 1, we see that the expression
AS*
—cev+h(v) = ($(v)) = 2w
is constant, while all four terms have finite limits as 7 — F00. Because ¢(v) also
has finite limits as n — +oo, we see that (¢(v))" — 0 as n — +oo. Using (3), (9
and (10) as well as the equality f(0) = g(0) = h(0) = 0 and the relation (¢(y))’
as y — 0T to take the limits as n — 400, we find for the constant given by (15
AS*c
cx

(15)

— 0

—c(eo +€7) +h(1) =

0,
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where €7 = £15%, and hence the travelling wave speed is given by
“T (ot QS)CC: TS (16)
Finally, we employ (15) and (16) to write (12)-(13) in the form
u' = —C1f(1—-u)g(v), (17)
(p(v)) = Ca(v —u) + C3(1 — uw)v + h(v) — h(1)v, (18)
where Cy = 1/¢S*, Co = (AS*¢)/C*, and C3 = ce} are positive constants. In the
sequel we will restrict ourselves to the special case where

h(v)=H@) =qu,  ¢(v) = D", (19)
where ¢ is the constant gas flux and D = D*(C*)'~* is the constant effective
diffusivity. In this special case (18) is replaced by

(W*)' = Ca(v —u) + C5(1 —u)o, (20)

where Cy = C3/D* and Cs = C5/D* are positive constants.

2. Travelling Wave Profiles. In this section we prove the existence and, under
certain hypotheses, the uniqueness of a travelling wave profile. First we confine our-
selves to the system (17) and (20). At the end of this section we list the assumptions
of ¢ and g required to extend the result to the more general system (17)-(18).

Theorem 1. There ezists at least one solution (u,v) of (17)-(20) such that v and
v are both decreasing in n. This solution is unique if 0 < k < 1 and w — g(w*/*)
is Lipschitz continuous in [0, 8] for some & > 0.

Proof. By the change of variable nn +— —n one converts the system (17) and (20)
with boundary conditions (14) into the following system:

u' = Crf(1 = u)g(v), (21)
(W®) = Cy(u —v) — C5(1 — u)v, (22)
u(—00) = v(—0) =0, u(+00) = v(+o00) = 1. (23)

Let us consider (u,v) as points of the closed square {(u,v) : 0 < u <1, 0 <
v < 1}. Then the points (u,v) in the square for which the right-hand side of (22)
vanishes, form a hyperbolic arc connecting (0,0) to (1,1). Now consider the open
subregion D bounded by the union of the sets

051 = {(v,0) : 0 < uw < 1},

05y = {(1,v) : 0 <w < 1},

053 = {(u,v) : 0 < u < 1and Cy(u—v) — C5(1 —u)v = 0},
together with the points (0,0), (1,0) and (1,1). Then the right-hand sides of (21)
and (22) are positive for all (u,v) € D.
Further, on 957 U 855, the right-hand side of (21) vanishes, while the right-hand
side of (22) is positive. Finally, on 0S5 the right-hand side of (21) is positive, while
the right-hand side of (22) vanishes. Further, the right-hand sides of (u,v) are
Lipschitz continuous in (u,v) on DU dSs. As a result, solution curves of (21)-(23)

which enter D through 957 U 053 remain inside D and proceed in the right-upper
direction until they reach a point of 9Ss for n =7 < 400 (after which they proceed
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FiGURE 1. The parts 051, 052 and 953 of the boundary of the
open region D in the (u,v)-plane for Cy = C5 = 1.

towards (1,1) along 9S2) or (1,1) for n < +oo. Different solution curves cannot
meet within D U 0S53.

To prove the existence part of Theorem 1, it is sufficient to prove the existence
of a unique C*-curve in D U {(0,0), (1,1)} which connects (0,0) and (1,1) and on
which (21) and (22) hold. An elementary translation n — n — 79 then converts one
solution into another.

Let D* be the set of all points of D that belong to a solution curve entering D
from a point of 0S3. Similarly, let D, be the set of all points of D that belong to
a solution curve entering D from a point of 9S;. Then, obviously, D* and D, are
open subsets of D, while (ug,v*) € D* and (ug, v«) € D, imply that 0 < v, < v* <
Cyu/[Cy + C5(1 — u)]. For every u € (0,1) we now define

o (u) = inf{v : (u,v) € D}, ax(u) = supf{v : (u,v) € D,}.
Then
C4u
0<as(u)<a*(u) < =———,
() () Cy+C5(1 —u)
so that
li *(u) =1 «(u) =0.
ul?g o™ (u) ulﬁ)l v (u)
Moreover, a*(17) and a,(17) exist and 0 < a,(17) < a*(17) < 1. We therefore
put a*(0) = a,(0) = 0 and extend a* and «. to functions that are continuous on
[0,1] and C* on (0, 1); this one easily obtains by proving that o* and . are solution
curves.

To settle the uniqueness part of Theorem 1, it suffices to exploit the Lipschitzian-

ity of the map

(u, w) (le(l - u)g(wl/k), Cy(u — wl/k) —C5(1— u)wl/k)

in a neighborhood of (0,0). This is obviously the case if (1/k) > 1 and g is Lipschitz
continuous in [0, ] for some ¢ > 0. O
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If k = 1, it is impossible to reach the point (1,1) in finite time! along solution
curves. Indeed, let us assume the existence of a solution curve n — (u(n),v(n))
such that v(77) = 1. Then (22) with & = 1 can be written in the form

i
(e<c4+c5)"v(n)) = (CatCom [0y 4 Cr) u,
and hence

_ 7
(CHCT _ 4y (0) = / e(Ca+CaIn [0y 1 Csu(n)] u(n) dn
0

< /77 e(C4+C5)n[C4 + C5]dn = e(CatCs)T _ 1,
0

which implies that v(0) > 1 and hence leads to a contradiction. Unfortunately, we
do not know if the same statement holds for k # 1.

Theorem 1 is easily generalized to the more general system (17)-(18). Letting
¢ be a monotonically strictly increasing function mapping (0, 00) onto itself whose
inverse function ¢! is Lipschitz continuous on each compact subset of (0, 00), we
put w = ¢(v). Changing the variable n — —n, (17)-(18) then take the form

u' = CLf(1—u)g(¢™" (w)), (24)
w' = Co(¢7H (w) —u) = Cs(1 =)™ (w) — h(¢™ (w)) + h(1)¢™ (w).  (25)
If we also assume h to be a monotonically strictly increasing function mapping

(0, 00) onto itself such that 0 < h(v) < h(1)v for every v € (0, 1], we can repeat the
proof of Theorem 1 almost verbatim and derive the following result.

Theorem 2. There exists at least one solution (u,v) of (24)-(25), withv = ¢~ (w),
such that u and v are both decreasing in n. This solution is unique if ¢~ and
w i g(¢~(w)) are both Lipschitz continuous in [0,d] for some § > 0.

3. Conversion and Penetration Fronts. In this final section we restriction our-
selves to the system consisting of (17) and (20).
A travelling wave u = u(x — ct) is said to have a conversion front if

a:=1inf{n:uln) <1} > —c0 (26)
and to have a penetration front if
b :=sup{n : u(n) > 0} < +oo. (27)
Defining
b := sup{n : v(n) > 0}, (28)

we easily show (as in [4]) that b and b coincide.
The following result can be proved in the same way as in [4].

Theorem 3. There is a conversion front if and only if (1/f) € L*(0,68) for some
5 >0.

Proof. Suppose a conversion front exists and hence (26) holds. From (17) we obtain

u' = —C1f(1 —u)g(v) > =Crf(1—u)g(1),

Here we adopt the change of variable n — —n made in the proof of Theorem 1.
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and hence for any a < 11 < 12 we get

/1—"(712) 1 2 ! ( ( )
T dz= 7 dn < Cig(1)(n2 — m).
1—u(n1) (Z) n1 f(l - U)

Letting n; | a yields

1-u(mz) p Crall
_— < _
| 5 < Cuim =) <+,

thus implying that (1/f) € L'(0,6) for some § > 0.
On the other hand, if no conversion front exists and therefore u(n) < 1 for all
1 € R, we have

I-u(n2) q mo
/1—u(m) 1) 42 = /m f—u) dn > Crg(v(n2))(n2 — m),

where g(v(n2)) > 0. Thus (1/f) ¢ L'(0,6) for all § > 0. a

Theorem 4. Let G (v) = fov o*=1g(0) dd. Then the following is true:

1. If there is a penetration front, then v*~1/\/G(v) belongs to L*(0,6) for some
6> 0.

2. If k = 1 and g is a concave function on (0,6) for some 6 > 0 such that
(v/g(v)) — 0 aswv | 0, there exists a penetration front if and only if Gy (v)~'/?
belongs to L1(0,9).

3. If0< k<1 and g is a concave function on (0,9) for some § > 0, there exists
a penetration front if and only if v*~'Gy(v)~Y? belongs to L'(0,9).

Proof. Using that v' < 0 we obtain from (17) and (20)

% [(Uk)/f > 250" - C1[Cy + C5v] (1 — u)g(v)
> 2kv" 1 - CLCe (1 — u)g(v) > 2kC, Co f(1)v 10/ g(v), (29)
where Cg = C4 + C5, so that

v

(4] < 2001Cof(1) [ 0% 9(0) do

0
Therefore,

2 1
o> Clc];?’f( )U1fk\/m’ (30)
where G, (v) = [ 9 1g(d) do.
Suppose there is a penetration front. Then (30) implies that
vm) k-1 2 —ykly 2C1Ce f(1)
————dv = ———=dn <\ ———= (2 —m).
/vmz) VGi(v) m VGr(v) k
Letting 75 1 b and using (28) with b = b, we get
ekt [2CiGef (1)
T dv 21V 6J )
0 Vv Gr(v) B k

which proves that ((-)*~1/1/G1(+)) € L*(0,6) for some § > 0 if there is a penetration
front.

(b — 771) < 400,
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To prove the second and third parts of Theorem 4, we substitute (30) in the first
line of (29) to get

diiy [(vk)’]2 = 2kvF 1 [Cyv” + C1(Cy + Csv) F(1 — w)g(v) + Cs(1 — u)v']

2
R RN I E VIR

Now choose f € (0, f(1)) and fix n; such that f(1 —u(n)) > f for n > n;. Then we
can improve the above inequality to obtain for n > 1

2
% [(vk)’]2 < 2kCvF 1 | = 701(/;;”0 F/Gr(v) + Cif g(v

Integrating from 7; to +o0o we find

(")) (m) = Cq E 2kC1Cs f(1) /OO Gr(o)v' dn

m

— 2kCy f " Lg(v)’ dn]
m
and hence

[(Uk)/]Q(nl) >Cs [—2\/ 2kC1Cs f(1) /Ovl 2V Gk(v)dU—FQkOlf/ovl Uklg(v)dv},

(31)
where v1 = v(m).
Let us now assume ¢ to be concave in (0,d), where § € (0, 1), and let us choose
72 such that v(n2) = §. We then have

0 < v(n) < gg)g(v(n)), 0.
and hence
k
:/ “Lg(0) dv < vFg(v) < (g(éé)) g(v)k*t, n = n2- (32)

Using (31) and (32), we now obtain for n > 7 = max(n;, 2)

k/2
—24/2kC1Cs f(1) ( ) g

0

()] (m) > Cé

+ 2kC1 fGi(v)] . (33)
For k = 1 we get from (33)

1/2
[U/]2 (771) Z C’6 -2 20106f(1) <5> + 201? Gl(’Ul).

9(9)

Then, if (v/g(v)) — 0 as v | 0, we get

v’ < —const.\/G1(v)
for small enough positive v. The divergence of the integral [ G1(9)~*/?dd then
implies the nonexistence of a penetration front, as claimed.

For 0 < k < 1 we see that g(v)% = o(v*"lg(v)) as v | 0, if and only if
v2 = 0(g(v)) as v | 0. In this case the first term in the right-hand side of (33) can
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be neglected with respect to the second term, especially since (§/¢g(d)) > 1 as a
result of the concavity of g. Thus there exists a positive constant C7 such that

(") (1) £ =Crv/Gi(v)
for v; small enough. If we integrate with respect to 7 € (n1,72) and put v; = v(n;)
(1 =1,2), then

/'Ul kal C7
—=——=dv = —=(n2 —m).
v Gk (v) k
Hence, if there is no penetration front and hence 75 — 400 corresponds to vy | 0,
we obviously get

/'Ul vkl
————dv = 400,
0o /Gr(v)
whence v¥~1/, /G (v) does not belong to L*(0,d) for any § > 0. O
REFERENCES

[1] H. Amann, Quasilinear evolution equations and parabolic systems, Trans. Amer. Math. Soc.
(1) 293 (1986), 191-227.

[2] J.I. Diaz and I. Stakgold, Mathematical aspects of the combustion of a solid by a distributed,
isothermal reaction, STAM J. Math. Anal. (2) 26 (1995), 305-328.

[3] C.J. van Duijn and P. Knabner, Solute transport in porous media with equilibrium and non-
equalibrium multiple-site absorption: Travelling waves, J. reine angewandte Math. 415 (1991),
1-49.

[4] C.J. van Duijn and A. Straathof, Travelling waves for solid-gas reactions, Revista Matematica
Univ. Compl. Madrid (1) 7 (1994), 147-178.

[5] G.F. Froment and K.B. Bischoff, “Chemical Reactor Design and Analysis,” John Wiley, New
York, 1979.

[6] A. Di Liddo and L. Maddalena and I. Stakgold, Traveling waves for distributed gas-solid
reactions, J. Diff. Egs. (2) 113 (1994), 452-472.

[7] 1. Stakgold and S. Vernier-Piro and C. van der Mee, Traveling waves for gas-solid reactions
in a porous medium, Dynamic Systems and Applications (4) 10 (2001), 589-598.

[8] J. Szekely and J.W. Evans and H.Y. Sohn, “Gas-solid Reactions,” Academic Press, New York,
1976.

[9] A.I. Volpert and V.A. Volpert and V.A. Volpert, “Traveling Wave Solutions of Parabolic
System,” Transl. Math. Monographs 140, Amer. Math. Soc., Providence, 1994.

Received July 2002; in revised March 2003.

E-mail address: cornelis@bugs.unica.it, svernier@unica.it



