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Abstract

We give a review of the theory of factorization of block Toeplitz
matrices of the type T = (Ti−j)i,j∈Zd , where Ti−j are complex k × k
matrices, in the form T = LDU, with L and L−1 lower block triangular,
U and U−1 upper block triangular Toeplitz matrices, and D a diagonal
matrix function. In particular, it is discussed how decay properties of
Ti a�ect decay properties of L, L−1, U , and U−1. We also discuss
factorizations of the type A = LDU , where D is no longer diagonal.

1 Introduction

Given a bi-in�nite block Toepliz matrix A = (Ai−j)i,j∈Z, indexed by the
integers i, j ∈ Z and having complex k × k matrices as its entries, it is well
known how to factorize it in the form

A = LDU, (1.1)

where L = (Li−j)i,j∈Z is a lower triangular (i.e., Li = 0 for i < 0) block
Toeplitz matrix with L0 = Ik (the k × k unit matrix) having a block lower
triangular inverse, U = (Ui−j)i,j∈Z is an upper triangular (i.e., Ui = 0 for
i > 0) block Toeplitz matrix matrix with U0 = Ik and having a block upper
triangular inverse, and D is a nonsingular k × k matrix. Such factorizations
are usually studied for A in the Wiener class of block Toeplitz matrices that
satisfy

‖A‖W =
∞∑

i=−∞

‖Ai‖ < +∞, (1.2)



the norms on the right-hand side being arbitrary k × k matrix norms, and
in that case the factors L and U and their inverses L−1 and U−1 have �nite
Wiener norm when the LDU -factorization (1.1) exists. A necessary (but not
su�cient) condition for the existence of the factorization (1.1) is that the
values of the symbol

Â(z) =
∞∑

i=−∞

ziAi, |z| = 1, (1.3)

are nonsingular k × k matrices.
Three special cases should be mentioned. If A is a banded (i.e., if Ai = 0

for |i| > m), then the factors L and U , when they exist, are banded as well
(i.e., Li = 0 for i > m and Ui = 0 for i < −m). If A is positive de�nite
(as a bounded linear operator on the Hilbert space `2(Z)) or, equivalently, if
Â(z) is positive de�nite for every z on the unit circle, the factorization (1.1)
exists, U = L† (the conjugate transpose of L) and D is positive de�nite. In
that case, putting � = LD1/2, we obtain the block Cholesky factorization

A = ��† (1.4)

of A. Finally, if the symbol of A is scalar (i.e., k = 1), a necessary and
su�cient condition for the existence of the factorization (1.1) is that z = 0
has zero winding number with respect to the curve z 7→ Â(z). In this case the
factorization can be obtained by separating the Fourier expansion of log Â(z)
in terms analytic inside and outside the unit disks and exponentiating the
terms obtained.

The theory of Wiener-Hopf factorization of matrix functions of the form
(1.3) with k×k matrix coe�cients Ai satisfying (1.2) is well known from the
theoretical point of view. We mention the seminal article by Gohberg and
Krein [13] and several textbooks [10, 6, 11]. The scalar case goes back to the
article by Krein [20]. In the special case of banded matrices, the symbol A is
a trigonometric matrix polynomial and the factorization can be implemented
by applying the theory of matrix polynomials [14, 15, 26].

Numerical methods for computing the Cholesky factors of a bi-in�nite
positive de�nite block Toeplitz matrix have been developed by various au-
thors. In [16] the relative merits of various methods for the scalar case have
been discussed in detail. For banded block Toeplitz matrices, a numerical
method based on matrix polynomial factorization theory was developed in
[22, 23], one based on band extension was given in [24], and one relying on
semide�nite programming was explained in [21].

In this article we are primarily interested in multi-index block Toeplitz
matrices, i.e., matrices A = (Ai−j)i,j∈Zd which are indexed by i, j ∈ Zd (the



lattice points in Rd) and have complex k×k matrices as their entries. At �rst
sight, multi-index Toeplitz matrix theory can be developed more or less as in
the one-index case. The symbols now are sums of d-variable Fourier series and
are continuous k×k matrix-valued functions on the d-dimensional torus. The
usual Banach algebra techniques (see [8, 11] for the scalar case and [3, 11]
for the matrix case) can be applied to study the invertibility of bi-in�nite
multi-index block Toeplitz matrices. The method of writing the logarithm of
the symbol as the sum of two series, either of which is then exponentiated,
can be applied, exclusively in the scalar case, to obtain LDU -factorizations
[17, 7].

Multi-index block Toeplitz factorization theory has several features that
make it more challenging than the corresponding one-index theory, both from
the functional analytic and the numerical point of view.

First of all, in order to de�ne LDU -factorizations in a meaningful way, one
must introduce a linear order � on Zd which turns Zd into an ordered group.
The net e�ect is that instead of two such orders as for Z (the natural and
the reversed natural order), there are now in�nitely many such orders. Us-
ing a suitable order, one can now formulate (i) scalar factorizations through
separation of logarithms of the symbol and exponentiation [17], (ii) band ex-
tension [1, 2], and (iii) the projection method of approximating the solutions
of the given bi-in�nite block Toeplitz systems by the solutions of �nite block
Toeplitz systems (extending methods given in [4, 12, 27]). However, the band
extension method leads to the approximation of the solution of the original
bi-in�nite system by the solutions of in�nite systems, which makes it as good
as useless from the numerical point of view.

Secondly, there is no meaningful multi-variable matrix polynomial theory
to assist in the factorization of banded multi-index block Toeplitz matri-
ces. Moreover [28, 29], multi-index Toeplitz matrices having a trigonometric
polynomial symbol and having an LDU -factorization, may not have factors
whose symbols are nontrivial trigonometric polynomials. Hence, there is no
obvious way to generalize the numerical methods developed in [22, 23].

Finally, in order to study the algebraic or exponential decay of the coe�-
cients of the factors and their inverses in the case of algebraic or exponential
decay of the coe�cients of the given matrix, one can either apply Banach
algebra techniques with weighted Wiener algebras [8, 11] or generalize the
so-called exponential equivalence of bi-in�nite matrices to the multi-index
case [16, 17]. In the scalar case (k = 1), one does not encounter many prob-
lems (see Theorem 2.2 below). However, in the block Toeplitz case ( k ≥ 2)
it appears impossible to extend the existing techniques for proving algebraic
or exponential decay of the coe�cients of the factors and their inverses to
the multi-index case.



Numerical methods for evaluating the LDU -factorization in the multi-
index case are rare and incompletely developed. A method based on Krein's
method of additive logarithmic decomposition is given in [17, 25], exclusively
for the scalar case (k = 1). A numerical method based on the projection
method was formulated in [25]. For d = 2 and the lexicographical order on
Z

2, a modi�ed band extension method was developed in [9]. Only the �rst
two methods were implemented numerically.

In this article we will discuss the principal results on LDU -factorization
in Section 2. In Section 3 we will discuss a more general type of factorization
A = LDU , where D is allowed to be of a more general form.

2 LDU-factorization

a. Bi-in�nite block Toeplitz matrices . By a bi-in�nite block Toeplitz
matrix, with blocks of order k, we mean a matrix A = (Ai−j)i,j∈Zd whose
entries Ai−j are complex k × k matrices. Such a matrix is said to be in the
Wiener class Wd

k if

‖A‖Wd
k

:=
∑
i∈Zd
‖Ai‖ < +∞, (2.1)

where ‖ · ‖ is an arbitrary k × k matrix norm. Using multi-index notation, 1

we de�ne its symbol by

Â(z) :=
∑
i∈Zd

ziAi, z ∈ Td, (2.2)

where T = {z ∈ C : |z| = 1}. Clearly, the symbol Â is a continuous complex-
valued function on the d-dimensional torus Td.

Consider a sequence β = (βi)i∈Zd of weights satisfying the condition 1 ≤
βi+j ≤ βiβj for i, j ∈ Zd. Then a bi-in�nite block Toeplitz matrix A is said
to be in Wd

k,β if

‖A‖Wd
k,β

:=
∑
i∈Zd

βi‖Ai‖ < +∞. (2.3)

The following result is well-known ([11] if d = 1; [7] if k = 1; also [25]).

1
For z = (z1, . . . , zd) ∈ Cd and i = (i1, . . . , id) ∈ Zd we write zi = zi11 . . . zidd and

|i| = |i1|+ . . .+ |id|.



Proposition 2.1 The β-weighted Wiener class Wd
k,β is a Banach algebra

with respect to the convolution product

(A ∗B)i =
∑
j∈Zd

AjBi−j, i ∈ Zd,

with involution A 7→ A† de�ned by (A†)i = (A−i)
†, i ∈ Zd. Its invertible

elements are exactly those A ∈ Wd
k,β for which Â(z) is a nonsingular k × k

matrix for all z ∈ Ωβ, where

Ωβ :=

{
z ∈ Cd : sup

i∈Zd

|zi|
βi

< +∞
}
.

b. LDU-factorization of bi-in�nite block Toeplitz matrices . Given
a block Toeplitz matrix A = (Ai−j)i,j∈Zd of Wiener class, by an LDU -
factorization of A (with respect to the order �) we mean a representation of
A in the form

A = LDM †, (2.4)

where L = (Li−j)i,j∈Zd , M = (Mi−j)i,j∈Zd and D = (Di−j)i,j∈Zd are block
Toeplitz matrices of Wiener class having the following properties:

a) L0 = M0 = Ik (the k × k unit matrix),

b) Di = 0 for i 6= 0 and Li = Mi = 0 for i ≺ 0, and

c) the inverses L−1 and M−1 of L and M are block Toeplitz matrices of
Wiener class satisfying [L−1]i = [M−1]i = 0 for i ≺ 0.

Passing to the respective symbols L̂, D̂(z) ≡ D0 and M̂ , one gets

Â(z) = L̂(z)D0M̂(z)†, z ∈ Td. (2.5)

When A is positive de�nite on the Hilbert space `2(Zd) of square inte-
grable sequences on Zd (or, equivalently, if Â(z) is positive de�nite for all
z ∈ Td), A always has an LDU -factorization of the form (2.5) with L = M

and D0 a positive de�nite k×k matrix. In that case we put � i = LiD
1/2
0 and

obtain the block Cholesky factorization

Â(z) = �̂(z)�̂(z)†, z ∈ Td. (2.6)

When the weight sequence β is to be taken into account, the classical
argument of exploiting the compactness of Hankel operators [11] fails if d ≥ 2
and k ≥ 2. For k = 1 one can apply factorization in suitable commutative
Banach algebras [7] to establish the following result and its corollary, thus
generalizing a well-known result by Krein [20].



Theorem 2.2 Let A ∈ Wd
1,β be a bi-in�nite Toeplitz matrix with scalar el-

ements (i.e., with k = 1) for some weight sequence β, and let � be a linear

order which turns Zd into an ordered group. Then the following statements

are equivalent:

1) A has an LDU factorization where the factors and their inverses belong

to Wd
1,β;

2) there exists B ∈ Wd
1,β such that A = exp(B);

3) for s = 1, . . . , d and �xed (z1, . . . , zs−1, zs+1, . . . , zd) ∈ Td−1 the curves

zs 7→ Â(z) have winding number zero with respect to the origin in the

complex plane.

When these conditions are full�lled, write log(A) = (Bi−j)i,j∈Zd. Put L =
(Li−j)i,j∈Zd, M = (Mi−j)i,j∈Zd and D = (Di−j)i,j∈Zd, where Li = Bi and

Mi = B−i for i � 0, L0 = M0 = 1, Li = Mi = 0 for i ≺ 0, and D0 = B0 and

Di = 0 for i 6= 0. Then

A = exp(L) exp(D) exp(M †) = exp(L) exp(D)[exp(M)]†

is an LDU -factorization of A in Wd
1,β.

Corollary 2.3 Let β = (βi)i∈Zd be a weight sequence. Suppose A ∈ Wd
k,β has

an LDU -factorization in Wd
k of the type (2.4) and that Â(z) is a nonsingular

k× k matrix for z ∈ Ωβ. Then, IN THE SCALAR CASE k = 1, the factors
L and M † and their inverses belong to Wd

k,β.

Corollary 2.3 is not true if both d ≥ 2 and k ≥ 2. In fact, there exist
counterexamples, even for positive de�nite A.

A bi-in�nite block Toeplitz matrix A is called (�nitely) banded if all but
�nitely many Ai are equal to the zero matrix. A well-known result (Féjer's
theorem if A is positive de�nite) states that, for d = 1, the factors L and M †

(resp., the factor �) in an LDU -factorization (resp. Cholesky factorization of
an arbitrary (resp. positive de�nite) (�nitely) banded block Toeplitz matrix
of Wiener class are (�nitely) banded themselves. This is no longer the case
if d ≥ 2 [29]. For instance [5, 28], if d = 2, δ ∈ (0, 1

4
) and

Â(z) = 1 + 2δ [cos(z1) + cos(z2)] ,

then Â(z) is positive for every z = (z1, z2) ∈ T2 but cannot be written as the
product of two nonconstant trigonometric polynomials in z1 and z2. In other
words, no matter the choice of the order � in Z2, the corresponding Toeplitz



matrix A has an LDU -factorization (resp., a Cholesky factorization) of the
form (2.4) (resp., (2.6)), but its factors L and M † (resp., the factor �) are
not (�nitely) banded Toeplitz matrices. For d = 2, necessary and su�cient
conditions to write Â(z) as the squared absolute value of a stable polynomial
in (z1, z2) have been given in [9].

3 LU-equivalence and Generalized Factorization

So far we have studied LDU -factorization of A ∈ Wd
k,β. As evident from

Proposition 2.1, a necessary condition for the existence of such a factorization
is that Â(z) is a nonsingular k × k matrix for every z ∈ Ωβ. Only in the
case k = 1 we have established necessary AND SUFFICIENT conditions for
its existence (see Theorem 2.2). For k ≥ 2 such necessary and su�cient
conditions are very di�cult to formulate, especially if d ≥ 2.

The bi-in�nite block Toeplitz matrices A(1) and A(2) in Wd
k,β such that

Â(1)(z) and Â(2)(z) are nonsingular for z ∈ Ωβ, are called LU -equivalent
(relative to Wd

k,β and the linear order � that makes Zd into an ordered

group) if there exist L = (Li−j)i,j∈Zd and M = (Mi−j)i,j∈Zd inWd
k,β such that

a) L0 = M0 = Ik (the k × k unit matrix),

b) Li = Mi = 0 for i ≺ 0,

c) the inverses L−1 and M−1 of L and M are block Toeplitz matrices in
Wd

k,β satisfying [L−1]i = [M−1]i = 0 for i ≺ 0, and

d) A(2) = LA(1)M †.

Passing to the respective symbols L̂ and M̂ , one gets

Â(2)(z) = L̂(z)Â(1)(z)M̂(z)†, z ∈ Td.

Clearly, LU -equivalence is an equivalence relation for the invertible el-
ements of the Banach algebra Wd

k,β. It is then natural to ask what are
convenient representatives of the various LU -equivalence classes. For k = 1
(scalar case), a complete answer to the question is almost immediate from
Theorem 2.2: Two invertible elements Â(1) and Â(2) are LU -equivalent if
and only if for s = 1, . . . , d and �xed (z1, . . . , zs−1, zs+1, . . . , zd) ∈ Td−1 the
curves zs 7→ Â(1)(z) and zs 7→ Â(2)(z) have the same winding number with
respect to the origin in the complex plane (see slao [7]). Further, given an
invertible element A of Wd

1,β and letting κs stand for the winding number of

the curve zs 7→ Â(z) (s = 1, . . . , d), there exists a factorization of A in the
form A = LDM † where



a) L0 = M0 = Dκ = Ik (the k × k unit matrix), Di = 0 for i 6= κ;

b) Li = Mi = 0 for i ≺ 0,

c) the inverses L−1 and M−1 of L and M are block Toeplitz matrices in
Wd

k,β satisfying [L−1]i = [M−1]i = 0 for i ≺ 0.

Passing to the respective symbols L̂ and M̂ , one gets

Â(z) = L̂(z)zκ1
1 . . . zκdd M̂(z)†, z ∈ Td.

For d = 1 (one-index case), a complete answer to the question has been given
by Gohberg and Krein [13, 10]: Given an invertible element A ∈ W1

k,β, there
exist unique integers `1, . . . , `k, with `1 ≥ . . . ≥ `k (the so-called partial
indices), such that there exists a factorization of A in the form A = LDM †

where

a) L0 = M0 = Ik (the k × k unit matrix), Di = 0 for i /∈ {`1, . . . , `d},
Di = diag(di1, . . . , d

i
k) with d

i
s = 1 if `s = i and dis = 0 if `s 6= i;

b) Li = Mi = 0 for i ≺ 0,

c) the inverses L−1 and M−1 of L and M are block Toeplitz matrices in
Wd

k,β satisfying [L−1]i = [M−1]i = 0 for i ≺ 0.

Passing to the respective symbols L̂ and M̂ , one gets

Â(z) = L̂(z) diag(z`1 , . . . , z`k)M̂(z)†, z ∈ Td.

There is no convenient description of the partial indices in terms of A, al-
though `1 + . . . + `k is the winding number of the curve z 7→ det Â(z) with
respect to the origin in the complex plane. It is known that all partial indices
vanish if A is positive de�nite.

In the two special cases studied so far ( k = 1, and d = 1), the characteri-
zation of the LU -equivalence classes does not depend on the weight sequence
β nor on the linear order �. Further, if one of d and k equals one, each equiv-
alence class contains at least one element having a diagonal matrix symbol.
When both d ≥ 2 and k ≥ 2, the description of the LU -equivalence classes is
ill understood: They may depend on the weight sequence β and there may
exist equivalence clases that do not contain one single block Toeplitz matrix
having a diagonal matrix symbol. These observations can be based on a class
of illustrative examples in the factorization theory of almost periodic 2 × 2
matrix functions [18, 19].



Karlovich and Spitkovsky [18, 19] have studied 2m×2m matrix functions
of the type

W (x) =

(
eiλx Im 0

c−1 e
−iνx − c0 + c1 e

iαx e−iλx Im

)
, x ∈ R, (3.1)

where ν, αλ ∈ R with β = (ν/α) /∈ Q, α + ν = λ, and c−1, c0 and c1 are
nonsingular m ×m matrices. Now let us consider the additive subgroup G
of R generated by ν and α. De�ning the linear order on Z2 de�ned by

i = (i1, i2) � j = (j1, j2)⇐⇒ νi1 + αi2 ≥ νj1 + αj2,

the map i = (i1, i2) 7→ νi1 + αi2 is an order preserving group isomorphism
from Z

2 onto G. Here we note that the line y = −βx does not contain any
points of Z2, apart from the origin. Making the transformation z1 = eiνx and
z2 = eiαx, we convert W (x) into the matrix function

Â(z1, z2) =

(
z1z2 Im 0

1
z1
c−1 − c0 + z2 c1

1
z1z2

Im

)
,

which is the symbol of the bi-in�nite Toeplitz matrix with nontrivial coe�-
cients

A(0,0) =

(
0 0

−c0 0

)
, A(−1,0) =

(
0 0

c−1 0

)
, A(0,1) =

(
0 0

c1 0

)
,

A(1,1) =

(
Im 0

0 0

)
, A(−1,−1) =

(
0 0

0 Im

)
.

(3.2)

In this way a factorization problem for the almost periodic matrix function
W given by (3.1) can be converted into an equivalent LDU -factorization
problem (with respect to � as above) for the bi-in�nite block Toeplitz matrix
A = (Ai−j)i,j∈Z2 whose nontrivial entries are given by (3.2).

Putting c1,0 = c−1
0 c1 and c−1,0 = c−1

0 c−1 and considering the weights
βi ≡ 1, it can be shown ([19], Theorem 5.3) that A has an LDU -factorization
(with respect to � as above) if either ‖c1,0‖β‖c−1,0‖ or ‖c−1

1,0‖β‖c−1
−1,0‖ is strictly

less than one. On the other hand, if m = 1 and
∣∣∣cβ1c−1−β

0 c−1

∣∣∣ = 1, then A

is NOT LU -equivalent (with respect to �) to any bi-in�nite block Toeplitz

matrix with diagonal matrix function. In other words, if
∣∣∣cβ1c−1−β

0 c−1

∣∣∣ = 1,

there do not exist integer pairs n(1) = (n
(1)
1 , n

(1)
2 ) and n(2) = (n

(2)
1 , n

(2)
2 ) such

that

Â(z1, z2) = L̂(z1, z2) diag

(
z
n

(1)
1

1 z
n

(1)
2

2 , z
n

(2)
1

1 z
n

(2)
2

2

)
M̂(z1, z2)†, |z1| = |z2| = 1,

where L̂, M̂ and their inverses are lower �-triangular.
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