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Some Properties of the Eigenvalues
of a Schrodinger Equation
with Energy-dependent Potential

Cornelis van der Mee and Vjacheslav Pivovarchik

ABSTRACT. In this article, we relate the imaginary parts of normal eigenvalues
in the upper and lower half-planes for a quadratic operator pencil with (un-
bounded) selfadjoint coefficients and apply the result obtained to a generalized
1-D Schrédinger equation.

1. Introduction

The direct and inverse scattering problems for the generalized 1-D Schrodinger
equation

(1.1) V' (k,x) + (k% + m?*)y(k,2) = [(kP(z) + Q(@)]¢(k,z), z€R,

where m > 0 is a constant, P(z) and Q(z) are real potentials in L!(R; (1 + |z|)dx)
and P(z) < 0, have been studied extensively, both in the case m = 0 [4, 1, 2] and
in the case m > 0 [5, 10, 6]. Its bound states, which are most easily studied as
the normal eigenvalues of the Hamiltonian operator pencil

(1.2) L(k) = k*I + ikB — A

in the k-complex plane, where A is selfadjoint and bounded below and B is nonneg-
ative selfadjoint, have been studied at various occasions, both within an abstract
framework [9] and for a specific class of generalized Schrodinger equations (7, 8, 1].
One of the most striking results is that the eigenvalue spectrum in the upper half
k-plane is purely imaginary and (algebraically and geometrically) simple. In this
article we compare the eigenvalue spectra of such a pencil in the upper half k-plane
C™* and the lower half k-plane C~ and relate the imaginary parts of corresponding
pairs of one eigenvalue in C* and one eigenvalue in C~. As we will see in Section
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3, the results involving the generalized Schrédinger equation (1.1) then arise as an
application in which the operator pencil is given by the 1-D Schrédinger operators

2 d2
_ o 2 2y _ 1 2 _ap_ [_9 2
_dx2+(k +m*) — [ikP + Q] = k* — ikP ( dx2+Q m),

where m > 0 is a constant, P(x) and Q(z) are real potentials in L!(R; (1+|z|)dz) N
L?(R), P(z) does not vanish on a set of positive measure, and P(z) < 0. In terms
of (1.2) we here have B = —P and A = —(d?/dz?) + Q — m®.

To prove the main result and the auxiliary lemmas, we will draw on a general
theory of Hamiltonian operator pencils [9] whenever possible. This will be done
in Section 2 under the following assumptions on the coefficients of the abstract
operator pencil (1.2):

(1.3) L(k)

(i) B is nonnegative selfadjoint,
(ii) A is selfadjoint and bounded below with essential spectrum contained in
[~m?,00) for some m > 0,
(iii) the domains of A and B satisfy D(A) C D(B), and
(iv) B(A — A)~! is a compact operator for all A in the (connected) resolvent
set of A.

In the final Section 3 we will apply the main result, Theorem 2.8, to the generalized
Schrédinger equation (1.1).

2. Main result involving the Operator Pencil

By definition, for all k € C, as the domain of L(k) we take the domain D(A)
of the coeflicient A.

DEFINITION 2.1. The set of values k € C such that L(k)~! exists as a closed
bounded linear operator on L?(R) is called the resolvent set p(L) of the pencil
L(k). We denote by o(L) the spectrum of L(k), i.e., the set o(L) = C\p(L). A
number kg € C is said to be an eigenvalue of L(k) if there exists a nonzero vector
yo (called an eigenvector) such that L(kg)yo = 0. The vectors y1,y2,: - ,Yr—1 are
called corresponding associated eigenvectors if

.1 0°
(2.1) ;E%L(k)lkzko Yn-s=0, n=1,--,r—1
The number r is called the length of the chain composed of the eigenvector and
its associated eigenvectors. The geometric multiplicity of an eigenvalue is defined
to be the maximal number of corresponding linearly independent eigenvectors. Its
algebraic multiplicity is defined as the maximal value of the sum of the lengths of
chains corresponding to linearly independent eigenvectors. An eigenvalue is said
to be isolated if it has a deleted neighborhood contained in the resolvent set. An
isolated eigenvalue kg of finite algebraic multiplicity is said to be normalif the image
ImL(ko) is closed. We denote by o¢(L) the set of normal eigenvalues of L(k). The
set 0ess(L) = o(L)\oo(L) is called the essential spectrum of L(k).

LEMMA 2.2. The essential spectrum o.ss(L(k)) is a subset of RU [—im,im].

Proo¥. Put W(k) = L(k)(k*I — A)~!. Then W (k) is a meromorphic operator
function on the set Q = {k € C : k? ¢ 0.ss(A)}, where the principal parts of the
Laurent series of W (k) around each pole in Q is an operator of finite rank. The
lemma now follows from o..s(A) C [-m?, 00). O
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LEMMA 2.3. The part of the spectrum of L(k) in CT is a subset of the imaginary
azris.

ProoF. In view of Lemma 2.2, it suffices to prove this lemma for normal
eigenvalues only. For this case the proof of Lemma 2.3 of [9] can be repeated in
full. a

THEOREM 2.4. The algebraic and geometric multiplicities of each normal eigen-
value of L(k) in Ct coincide and, when taking multiplicities into account, the num-
ber of such eigenvalues coincides with the number of eigenvalues of A + mB in
(—o00, —m?).

PROOF. The first statement on the normal eigenvalues of L(k) in C* follows
from Lemma 2.4 of [9]. Next, substituting £ = A + ¢m into (1.2) we obtain

(2.2) Li(\) = LA+ im) = 2T +iX\(B + 2mlI) — (A + mB + m?I).

Since the coefficient B + 2ml is nonnegative selfadjoint, one can apply Theorem
2.1 of [9] to prove the second statement. O

Let us introduce the following auxiliary operator pencil:
(2.3) Lo(k,n) = k*I + iknB — A,
where 7 € C is a parameter. It is clear that L2(k,1) = L(k) and La(k,0) = k%I — A.

LEMMA 2.5. Let B be bounded with Ker B = {0}, and let ng € R. Suppose
k = it is a nonzero purely imaginary normal eigenvalue of the pencil La(k,no).
Consider Lo (ito,n) = —7¢I — 7onB — A as a linear pencil with spectral parameter
n. Then ng is a normal eigenvalue of Lo(iTg, 7).

PROOF. First of all, ity ¢ Q = {k € C: k? € 0.55(A)}, i.e., iTg does not belong
to the essential spectrum of the pencil Ls(k,n) for any fixed n € C. Now choose 71
such that —77 ¢ o(A) and |7 — 72| < 1; this is possible, because —7¢ is either in

the resolvent set of A or an isolated eigenvalue of A. Put

Z(n) = Ly(ito,n) (=12 — A)™! = [1 + 72— Tg] I —nroB(—72 — A)~L.
Then Z(n) is a Fredholm operator of index zero that depends analytically on the
parameter n € C. Moreover, the eigenvalues 7 of Z(n) coincide with the eigenvalues
n of La(i7o,n). Hence [3], these eigenvalues are normal. Finally, 1/n is also an
eigenvalue of the selfadjoint operator [1 + 7 — 78]~ 'roBY/2(—7£I — A)~'B/? and
therefore ny € R. a

We need two more auxiliary results.

LEMMA 2.6. Let B be bounded with KerB = {0}, and let no be a normal
eigenvalue of multiplicity d for the linear pencil ntoB—1EI— A, where 1o € R. Then
this eigenvalue may be considered as d eigenvalues of the k-parameter dependent
linear operator pencil Lo(k,n)) which are coinciding at k = itg and are analytic
functions of k:

(2.4) k) =m0+ Y b (k—ir)®,  r=1,...,4d,
s=1

where b” € R\{0} for all T € {1,...,d}.
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Proor. This follows from a general result of [3] if we take into account that
there are no associated eigenvectors corresponding to 7. O

LEMMA 2.7. Let B be bounded with Ker B = {0}. For 1o > m, let —ito be a
normal eigenvalue of geometric multiplicity z for the operator polynomial La(k,no)
(no € [0,1]). Then in some neighborhood of (—itg,m0) the eigenvalues are given by
the formula

(2:5) kflr)(n) = —iT9 + Zﬂﬁ’) ((77 - 770)?) ) r=1,---,z2,

s=1

1
where each ﬁir) # 0 is real or purely imaginary and (n—no)7 (J = 1,---,t,)
stands for the branches of the r-th root.

PRroOF. We obtain (2.5) by inversion of (2.4). d

THEOREM 2.8. Let B be bounded with Ker B = {0} and let ky,...,ke be the
normal eigenvalues of L(k) in (im,ic0). Then one can find corresponding eigen-
values k_y,...,k_g in (—ioco, —im) such that

(2.6) Im (k; + k_j;) < 0.

ProoF. The eigenvalues of L2 (k,n) are piecewise analytic functions of . They
may lose analyticity only when they coincide. This follows from the result of [9]
mentioned above. The eigenvalues located on (im,ic0) are analytic functions of
n > 0 (see [9]) and move downwards along the imaginary axis as 7 increases.
For n > 0 sufficiently small, we identify k_; () as the eigenvalue satisfying the
conditions k_; (0) = —k;(0), where Imk;(0) > m and Rek;(0) = 0. Here it is
possible that k;(0) = k;/(0). For sufficiently small > 0 we have Imk_;(n) < —m
and Rek_;(n) = 0, due to the symmetry of the problem, Lemma 2.7 and the fact
that the normal eigenvalues of the pencil in C~ do not have associated eigenvectors
when 1 = 0. Recalling ik_;(n) to be real for sufficiently small positive 7, it is easy
to derive (see [9]) the following formula for the derivative:

(2.7) k. () = ik*j(n) (_By—j(n)ay—j(n)) ]

2k () Mly-5 I +in (By—; (m), y—5 (m))

This formula implies Imk” ; (7) < 0 and Rek’ ;(n) = 0 for n > 0 small enough.
Hence, our theorem is true for n > 0 small enough.

As n > 0 increases, k_; (7) can change its sign only if the denominator in the
right-hand side of (2.7) vanishes, i.e., if eigenvalues coalesce. If such a coalescence
takes place on the interval (—ico, —im), then the eigenvalues involved behave ac-
cording to the formula (2.5). Such a coalescence (which involves a purely imaginary
eigenvalue moving downwards) on the interval (—ioco, —im) is of one of the follow-
ing three types. For the first type, ¢, in (2.5) is odd. In this case we identify the
eigenvalue moving downwards along the imaginary axis after the coalescence as the
one which moved downwards along the imaginary axis before the coalescence took
place. By a coalescence of the second type we mean one which has ¢, even and
(1 purely imaginary (8; # 0) in (2.5). After such a coalescence two new purely
imaginary eigenvalues appear which are moving in opposite directions along the
imaginary axis; such a coalescence cannot violate Theorem 2.8. The third type
of coalescence has ¢, even and (; # 0 real in (2.5). Let k_;(n) be part of such
a coalescence at 7 = 79 € (0,1]. Then a coalescence of the second type indeed
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occurred at some 7 € (0,7)) in some point kyx € (—i00,k_;(ny)) on the imaginary
axis. In this case the eigenvalue that has arisen after this coalescence and is moving
downwards, is identified as k_; (7). d

3. Application to a Generalized Schrédinger Equation

In this section we apply the results of Section 2 to the generalized Schrodinger
operator given in (1.3), where B = —P and A = —(d?/dz?) + Q — m?.
Let (k) = (Fy)(k) = [Z5 dz e™*y(z) stand for the Fourier transform of 1,
and let Ag = —(d?/dz?) have as its domain
D(Ao) = {p € LA(R) : (1 + k%9 € L*(R)}.
The following result is likely to be known. For convenience, we include a proof.

PROPOSITION 3.1. Let T € L?(R). Then the operator T(£21 + Ag)~! extends
to a compact operator on L(R) for every ¢ > 0.

PrRoOF. We easily compute

- I Rl I (k)

2 1 - i(k—k)x

(FT(E I+ Ao) ") (k) = 277/—oodk [/_oodwe T(z)} e

Thus, FT(¢2I + Ag)"'F~! is an integral operator on L?(R) of Hilbert-Schmidt
type for every £ > 0, which implies the compactness of T'(£2] 4 Ag)~*. O

Choosing & > 0 such that (—oo, —£2] is contained in the resolvent set of A; =
Ag + m?I, we easily find the compactness of the difference

I+ A1) = (ET+ 47", €26,
if @ € L?(R). Indeed, this is clear from Proposition 3.1 and the resolvent identity
(€T + A) ™ — (1 + Ag) ™ = —(€T + A1) 7' Q(E*T + Ap) ™"

It is now clear that the theory of Section 2 can be applied to (1.3) if P(x) and Q(z)
satisfy the following hypotheses:

1. P(z) is bounded and nonpositive, does not vanish on a set of positive

measure, and belongs to L!(R; (1 + |z|)dz) N L(R).

2. Q(z) is real and belongs to L}(R; (1 + |z|)dz) N L3(R).
The assumption on the set of zeros of P(z) is necessary to ensure that B = —P
has the property Ker B = {0} required by Lemma 2.5 and subsequent results. The
compactness of B(AI — A)~! then follows from Proposition 3.1 and the paragraph
following its proof.

Theorem 2.8 allows one to relate the eigenvalues of the generalized Schrodinger

operator pencil L(k) in C* given by (1.3) to the eigenvalues of the generalized
Schrédinger operator pencil

 da?

obtained from L(k) by replacing P(z) with —P(x). Then k is an eigenvalue of
L(k) whenever —k is an eigenvalue of L(k). Further, if P(z) < 0 and the (al-
gebraically and geometrically simple) eigenvalues in Ct are numbered according
to increasing imaginary part (ie., 0 < —ik; < —tky < ... < —iky with fi-
nite ¢) and the eigenvalues I~cj of L(k) in C* are numbered in the same way

(3.1) E(k)=dd—;+(k2+m2)_[_ikP+Q]:k2+ikP—( i +Q—m2),
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(ie, 0 < Imk; < Imk, < ... < Iml~clr, where ¢ > £), then there exist integers
ny < ng < ... < ng such that

Rekn, =0, Imk,, >Imk;, j=1,...,¢
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