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Abstract

The paper deals with the optimal control of switched piece-
wise linear autonomous systems, where the objective is that of
minimizing a quadratic performance index over an infinite time
horizon. We assume that the switching sequence and the corre-
sponding jump matrices sequence is known, while the unknown
switching times are the optimization parameters. The optimal
control for this class of systems, assuming a switching sequence
of finite length, takes the form of a homogeneous state feed-
back, i.e., it is possible to identify a homogeneous region of the
state space such that an optimal switch should occur if and only
if the present state belongs to this region; we show how such
a region can be computed with a numerical procedure. As the
number of allowed switches goes to infinity, we study the sta-
bility of the system and discuss some preliminary results related
to the convergence of the state feedback law.

1 Introduction

Switched systems are a particular class of hybrid systems [1]
consisting of a certain number of subsystems (that may also be
infinite) and a switching law that indicates the active subsystem
at each time instant. Examples of switched systems may be
found in many application fields, such as chemical processes,
transportation systems, electrical circuit systems, and so on.

The problem of determining optimal control laws for this
class of hybrid systems has been widely investigated in the last
years and many results can be found in the control and com-
puter science literature [2, 5, 7, 10]. Many of these works pro-
pose control procedures that are based on the discretization of
state space into grids and use search methods to find optimal
open-loop solutions. We also mention the contribution given
by Riedingeret al. in [7, 8] where very generalsufficient con-
ditions for optimal control problems of switched systems are
given in terms of hamiltonian function.

In this paper we restrict our attention to the case of switched
systems whose subsystems are linear and autonomous. We as-
sume that we have a pre-assigned switching sequence between
autonomous linear dynamics of the type_x(t) = Ajx(t), where
the sequenceAj , j = 1; 2; � � � is known but the switching times
�j are unknown. We also generalize this framework by assum-
ing that whenever at time�j a switch fromAj toAj+1 occurs,
the state should jump fromx(��j ) tox(�+j ) =M jx(�

�
j ). We

make the following assumptions:
a) Each matrixAj is stable, thus an optimal choice of the

�j ’s will ensure the stability of the switched system under some
hypothesis on the structure of the allowed jumps (we prove
this).

b) Each system is autonomous, i.e., we do not need to com-
pute a continuous control. The only control input for this sys-
tem is the controlled switch/jump. Also switch and jump are
coupled, in the sense that thej-th jump and thej-th switch are
triggered by the same event and occur at the same time.

c) We assume that no cost is associated to a switch.

The control problem consists in determining the optimal
switching times�j , j = 1; 2; � � � , so as to minimize a quadratic
performance index of the form:

F (�1; �2; � � � ) =

Z 1

0

xT (t)Qx(t) dt

whereQ is apositive definite matrix.
When only afinite numbern of switches may take place, the

results we presented in [4] show that the optimal control law
turns out to be a “homogeneous feedback”, in the sense that for
all j � n: (a) it is possible to identify a regionCj;n of the state
space such that thej-th switch should occur if and only if we
are within this region; (b) this region is homogeneous, i.e., if
x 2 Cj;n then�x 2 Cj;n, for all real numbers�. In [4], we also
considered the case in which a cost is associated to each switch-
ing and studied how the regions are correspondingly modified.
The original features of our approach can be summarized as fol-
lows. Firstly, our derivation is based on the analytical derivation
of the cost functional rather than the hamiltonian. Secondly, we
are able to show that in this particular case the optimal control
is a state feedback (and not an open-loop control). Thirdly, we
are able to compute with a simple numerical procedure not only
necessary but also sufficient conditions for optimality.

In this paper, we consider the case in which the number of
allowed switchesn goes to infinity. In this case, stability is-
sues become important because the stability of each subsystem
is neither a sufficient nor a necessary condition for the stability
of the overall system; this topic has been studied in the liter-
ature [3, 6, 9]. We show that the switched system controlled
with the proposed procedure is stable in the sense of Lyapunov
because of the optimality of the control law if we assume that
the number of subsystemsA = fAj j j � 1g is finite and the
jump matricesM j satisfy a not very restrictive condition.

However, a different type of instability, zenoness, may ap-
pear if we allow consecutive switching times�j = �j+1 =
� � � = �j+r to take the same value. To rule out this case, we
propose in this paper a modified procedure that finds the opti-
mal control law under the constraint that�j � �j�1 � Æ > 0,
j = 1; 2; � � � (spacing condition). Even for the modified pro-
cedure we prove the stability of the controlled systems under
possibly infinite switchings.

Finally, we also study the convergence properties of the
switching regions for an infinite number of switches. The pre-
liminary results presented in the paper do not give a construc-
tive algorithm to determine the regions.

One limitation of the present approach is the fact that the
switching sequence is pre-assigned. In effect, preliminary re-
sults that are not discussed here, show that our approach can
easily be generalized to consider a (possibly infinite) set of le-
gal sequences provided that they can all be generated by a fi-
nite state automaton over the alphabetA. We observe, how-
ever, that there exist significant problems of practical relevance
where the present framework (pre-assigned sequence) may be
successfully applied. Consider, as an example, an active filter-
ing problem where by connecting or disconnecting a capacitor
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one aims to reduce the distortion of an output signal. Such a
problem can be framed as a pre-assigned sequence of switches
A! ~A! A! � � � , where _x(t) = Ax(t) is the dynamics of
the system with the capacitor connected and_x(t) = ~Ax(t) is
the dynamics of the system with the capacitor disconnected.

It may be possible to extend the results we present here to
the cases — considered in the literature already mentioned —
where the subsystem dynamics are not all stable but there exists
a stabilizing switching sequence; this is a topic for future work.

2 The System with Switching Conditions

2.1 System Dynamics
Given the switching times0 = �0 � �1 � � � � � �n �

�n+1 = 1, theN � N stable matricesA1; � � � ;An+1 2 A
and the switching matricesM 1; � � � ;Mn, consider the linear
system whose dynamics are given by

8><
>:

_x(t) = Ajx(t); �j�1 < t < �j ;

x(�+k ) =MkMk�1 � � �M jx(�
�
j );

for �j�1 < �j = � � � = �k < �k+1;
x(0) = x0:

(1)

Then we define the evolution matricesU (t; �) (t > � � 0)
by

x(t�) = U (t; �)x(�+):

Then, obviously, for�j�1 < �j = � � � = �k < �k+1:

U (�+k ; �) =MkMk�1 � � �M jU (�j ; �);

and
U (t; ��j ) = U (t; �k)MkMk�1 � � �M j :

Let us defineÆj = �j � �j�1 (j = 1; � � � ; n). One easily
verifies that

U (t; �) = eAk+1(t��k)Mke
AkÆk � � �

� � �M j+1e
Aj+1Æj+1M je

Aj(�j��)
(2)

whenever�j�1 � � < �j � �j+1 � � � � � �k < t � �k+1.

2.2 Optimization problem
Given a positive definiteN�N matrixQ, we define the cost

functional

F (�1; � � � ; �n) =

Z 1

0

xT (t)Qx(t) dt: (3)

Clearly, using the conventionU (+1; �) = 0 and sinceZ �j

�j�1

eA
T

j (t��j�1)QeAj(t��j�1)dt =
h
eA

T

j tZje
Ajt

i0
Æj

(4)

whereZj are the unique solutions of the Lyapunov equations

AT
j Zj +ZjAj = �Q;

we get

F (�1; � � � ; �n) = x
T
0Z1x0

+
Pn

j=1 x
T (��j )

h
MT

j Zj+1M j �Zj

i
x(��j ):

(5)

Using the relations

@x(��k )

@�j
=

8<
:
0; k < j

Ajx(�
�
j ); k = j

U(�k; �j) [�Aj+1M j +M jAj ]x(�
�

j ); k > j;

we obtain

@

@�j
F (�1; � � � ; �n) = x

T (��j )Gj;nx(�
�
j ); (6)

where

Gj;n = AT
j

h
MT

j Zj+1M j �Zj

i
+
h
MT

j Zj+1M j �Zj

i
Aj

+
h
�MT

j A
T
j+1 +A

T
j M

T
j

i
Hj;n

+Hj;n [�Aj+1M j +M jAj ]

(7)

and

Hj;n =
nX

i=j+1

U (�i; �j)
T
h
MT

i Zi+1M i �Zi

i
U (�i; �j)

=
nX

i=j+1

eA
T

j+1Æj+1MT
j+1 � � �M

T
i�1e

AT

i Æi�

�
h
MT

i Zi+1M i �Zi

i
eAiÆiM i�1 � � �M j+1e

Aj+1Æj+1

for j = 1; � � � ; n� 1 andHn;n = 0.

3 State-feedback control law

From eq. (6) it follows that an optimalj�th switch may only
occur in the region of the state space defined by

~Cj;n = fx 2 RN j xTGj;nx � 0g (8)

that includes the points where a delay in the switching time
leads to an increase in the cost functional. Thus we assume that
the following law is used to enforce thej-th switch:

� if the (j � 1)-th switch leads to a statexj�1 62 ~Cj;n the
state will evolve until a pointxj on the boundary of~Cj;n
is reached and thej-th switch will occur there;

� if the (j � 1)-th switch leads to a statexj�1 internal to
~Cj;n, thej-th switch will occur immediately, i.e.,xj =
xj�1.

Now, we first observe that while for then-th (i.e., the last)
switch,Gn;n is a matrix of constants, from eq. (7) it follows
that for all j < n the value ofGj;n(Æj+1; � � � ; Æn) depends
on the future intervals between switching times. Therefore, we
define forj = 1; � � � ; n the function:�j : RN ! [0;1] where

�j(x) = minfÆ 2 [0;1] j eAjÆx 2 ~Cj;ng; (9)

is the length of the shortest time interval necessary to reach —
starting fromx and with dynamics given byA j — a point on
~Cj;n. Two limit cases are possible:�j(x) = 0 if x 2 ~Cj;n,
while�j(x) =1 if ~Cj;n is not reached in finite time.
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The corresponding switching law can thus be described in
terms of the following switching regions (j < n):

~Cn;n = fx 2 R
N j xTGn;n x � 0g;

~Cj;n = fx 2 RN j 9 Æj+1 � � � ; Æn; such that:
Æj+1 = �j+1(x);

Æj+2 = �j+2(M j+1e
Aj+1Æj+1x);

� � �

Æn = �n(Mn�1e
An�1Æn�1 � � �M j+1e

Aj+1Æj+1x);
xTGj;n(Æj+1; � � � ; Æn) x � 0g:

(10)
An important result follows immediately.

Proposition 3.1 The regions ~Cj;n (j = 1; � � � ; n) are homoge-
neous spaces, i.e., x 2 ~Cj;n =) (8� 2 R) �x 2 ~Cj;n:

Proof: We prove this by induction onj. Clearly ~Cn;n is
homogeneous, becauseGn;n is a constant matrix (base step).
Assume now that all~Ci;n (i = j +1; � � � ; n) are homogeneous.
This clearly implies, given the characterization of (9), that the
function�i (i = j + 1; � � � ; n) are such that�i(x) = �i(�x)

for all 0 6= � 2 R. This in turn implies that~Cj;n is homoge-
neous (induction step). We conclude that~Cj;n is a homogeneous
space for allj = 1; � � � ; n.

Note that this characterization provides an algorithmic way
to construct the regions. We observe that it is sufficient to de-
termine which points on the unitary semi-sphere belong to a
region to completely determine the region (because it is a ho-
mogeneous space). Thus, we choose a suitable discretization
step and for each pointx on the unitary semi-sphere we deter-
mine if it belongs to~Cn;n, ~Cn�1;n, etc., also computing step by
step the corresponding values of�n(x), �n�1(x), etc. This
procedure may be burdensome but can be applied off-line. The
on-line controller, on the contrary, will simply need to test if the
actual state vector belongs to the next switching region.

At this point, we observe that this is anecessary condition
for optimality, but in general it is not sufficient. To overcome
this restriction, we show how a new set of linear regions can be
computed, such that if every switch occurs as soon as they are
reached, then optimality is guaranteed. In the rest of the paper
they are denoted asCj;n, j = 1; � � � ; n.

Once again, theseswitching regions have to be computed
starting from the last one. More precisely, let us first define the
residual cost from thek-th ton-th switch, given the initial state
x, as:

Fk(x; Æk; Æk+1; � � � ; Æn) = x
TZkx

+
Pn

j=k x
T
j [M

T
j Zj+1M j �Zj ]xj

(11)

with xj = eAjÆjxj�1 andxk�1 = x. We also define the
correspondingk-th optimal switching interval as:

Æ�k(x) = arg min
Æk2R

+
0

Fk(x; Æk; Æ
�
k+1(xk); � � � ; Æ

�
n(xn�1))

wherexj = eAjÆ
�

j (xj�1)xj�1. Finally we can write that

Cj;n = fx j Æ�j (x) = 0g (j = 1; � � � ; n) (12)

Note that, as in the previous case, the computation of these
regions is performed off-line, starting fromCn;n and going
backwards.

To conclude, we formally prove an important result.
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Figure 1: The switching regions Cj;3, j = 1; 2; 3 for the system in the
example and the system evolution for x0 = [�0:2; 0:6].

Proposition 3.2 The regions Cj;n (j = 1; � � � ; n) are homoge-
neous spaces, i.e., x 2 Cj;n =) (8� 2 R) �x 2 ~Cj;n:

Proof: It is enough to show that for� 2 R, all k 2 N and
all x 2 R

N : Æ�k(�x) = Æ�k(x). Following the same reasoning
of Proposition 3.1, this follows immediately from the definition
of Æ� and the expression ofFk given in (11) that is quadratic in
x.

3.1 Example
Let us consider a second order system whose dynamics may

only switch between two matricesA(1) andA(2). We also as-
sume that only three switchings are possible (n = 3) and the
initial system dynamics isA(1). Thus, the sequence of switch-
ing isA(1) ! A(2) ! A(1) ! A(2), where

A(1) =

�
�1 1
�18 �5

�
; A(2) =

�
1 �5
1 �3

�
:

Note thatA(1) andA(2) are stable non–commuting matrices,
i.e.,A(1)A(2) 6= A(2)A(1). We also assume that allM j are
equal to the identity matrix.

The switching regionsCj;n, j = 1; 2; 3, are shown in fig-
ure 1 where the following color notation has been used: the
red (lighter) region represents the set of states where the system
switches to the next dynamics, while the blue (darker) region
represents the set of states where the system still evolves with
the same dynamics.

In the bottom right of figure 1 we have shown the system
evolution in the case ofx0 = [�0:2; 0:6]. The switching times
are�1 = 0:61, �2 = 1:34 and�3 = 1:49, and the optimal cost
is F (�1; �2; �3) = 0:19.

4 A stability result

In this section we consider the case in whichn = 1, i.e.,
the number of allowed switches goes to infinity. As well known
from the literature, if a system switches an infinite number of
times among a finite number of stable dynamics, then the result-
ing system is not guaranteed to be stable. Stability in general
depends on the switching sequence and on the switching time
instants.
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We consider an infinite switching sequence of autonomous
linear and stable dynamics as given by equation (1) withn =1
and make two additional assumptions:

A1: eachAj may only take values in a finite setA =

fA(1);A(2); � � � ;A(p)g;

A2: the sequence of jump matricesM ’s is such that

inf
j�1

�(M 1)�(M2) � � ��(M j) > 0

where�(M) denotes the smallest singular value of ma-
trix M .

Note that the second assumption is always verified when the
jump matrices are all equal to the identity matrix.

To prove that the controlled system is stable if the switching
times are chosen so as to minimize the cost functionalF given
by equation (3), we introduce a Lyapunov-like function

V (x; j) = minfFj(x; Æj ; Æj+1; � � � ) j Æk 2 R
+
0 ; k � jg;

whereFj is defined in (11); the value of this function coincides
with the optimal residual cost associated with a given evolu-
tion that starts inx and evolves along the residual sequence
Aj ;Aj+1; � � � .

Before providing a lower and upper bound forV (x; j), we
present an elementary lemma that will be used in the following
derivation.
Lemma 4.1 Given a linear and stationary dynamical system
_x(t) = Ax(t), with initial condition x(0) = x0, for all t � 0
holds

kx(t)k = keAtx0k � e��tkx0k;

where k � k denotes the Euclidean norm and � = kAk is the
largest singular value of matrixA.
Proof: First observe that (hereh�; �i denotes the scalar prod-
uct)

2kx(t)k d
dt
kx(t)k = d

dt
hx(t);x(t)i � �2k _x(t)kkx(t)k

= �2kAx(t)kkx(t)k � �2kAkkx(t)k2 = �2�kx(t)k2;

so that d
dt
kx(t)k � ��kx(t)k: Hence e�tkx(t)k is non-

decreasing, i.e.,e�tkx(t)k � kx0k.

Proposition 4.2 Let �̂ = maxfkA(i)k j i = 1 � � � ; pg; be the
maximum amongst all largest singular values of all matrices in
A, let

v = arg min
kxk=1

xTQx

be the vector on the unitary sphere with minimal
quadratic cost, and, said M 0 = I , let M =
infh;k�0f�(Mh)�(Mh+1) � � ��(Mh+k)g: Note that as-
sumption A2 implies that M > 0.

Let Z(i) be the solution ofA(i)TZ(i) +Z(i)A(i) = �Q.
(1) We define

Vmin(x) = M2
�
vTQv

��Z 1

0

e�2�̂tdt

�
kxk

2
;

and claim that V (x; j) � Vmin(x) for all j � 1.
(2) We define

Vmax(x) = max
i=1;��� ;p

fxTZ(i)x j A(i) 2 Ag;

and claim that V (x; j) � Vmax(x) for all j � 1.

Proof: The first claim follows from the fact thatVmin is as-
sociated to the cost of an evolution along the direction ofv in
which the quadratic formxTQx is minimized and that is tra-
versed with the fastest decaying rate (associated to�̂) amongst
all those possible with the allowed dynamics and the greatest
norm reduction allowed by consecutive jumps. To show this
formally, let xop(�) be an optimal trajectory starting at time
�j�1 fromx and locationj; it holds

V (x; j) =

Z 1

�j�1

xTop(t)Qxop(t)dt �

Z 1

�j�1

kxop(t)k
2
vTQvdt

=
�
vTQv

� 1X
i=j

Z �i

�i�1

k eAi(t��i�1)M i�1

�eAi�1(�i�1��i�2)M i�2 � � �M je
Aj(�j��j�1)x k2 dt

�
�
vTQv

�0@ 1X
i=j

�2(M i�1) � � ��
2(M j)

�
R �i
c
e�2�̂(t��i�1) � � � e�2�̂(�j��j�1)dt

�
kxk

2

�M2
�
vTQv

�0@ 1X
i=j

Z �i

�i�1

e�2�̂(t��j�1)dt

1
A kxk

2

= M2
�
vTQv

� Z 1

�j�1

e�2�̂(t��j�1)dt

!
kxk

2

= M2
�
vTQv

��Z 1

0

e�2�̂tdt

�
kxk

2
= Vmin(x):

The second claim follows from the fact that starting from
x with the dynamics given byAj and without switching, one
may obtain a costxTZjx � Vmax(x). Clearly, the optimal
costV (x; j) can only be smaller.

Now, we state an obvious monotonicity result.
Property 4.3 Monotonicity Property. Let �; � 0 2 R

+ be two
generic time instants. If � < � 0 and the switched system evolves
along an optimal trajectory xop(�), jop(�), then

V (xop(�); jop(�)) � V (xop(�
0); jop(�

0));

i.e., the optimal remaining cost does not increase along any
optimal trajectory.
Proof: Trivially follows from the fact that the cost is the
integral of a positive definite function.

From the above monotonicity property, it immediately de-
rives the following stability result.
Proposition 4.4 The switched system considered in this section
and optimally controlled is stable because given an arbitrary
� > 0, there exists  > 0 such that kx(� 0)k � � for all � 0 > �j
if kx(�j)k � .
Proof: Let C be the maximal value for which the curve
Vmin(x) = C is all contained within the closed ball of radius
�. Then, choose as the minimal value ofkxk for x belong-
ing to the curveVmax(x) = C. We prove that any optimal
evolution that starts inxop(�j) = xj within the closed ball of
radius (this initial state is such thatVmax(xj) � C) remains
in the closed ball of radius�. Assume, by contradiction that for
� 0 � �j , andj(� 0) = j0 we havexop(� 0) = x0, with kx0k > �.
Then by the first claim of the lemma,V (x 0; j0) � Vmin(x

0) >
C, henceV (x0; j0) > Vmax(xj) � V (xj ; j) where the last
inequality follows from the second claim of the lemma, thus
contradicting the monotonicity property that states that the cost
must decrease along any trajectory.
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A final comment. Due to the discontinuity caused by the
jumps,x(�) may not be defined if� is a switching instant. The
results of Property 4.3 and Proposition 4.4 hold if we assume at
all points of discontinuityx(�) = 1

2 (x(�
�) + x(�+)).

5 Non-zeno optimal control

In the previous section, no limit was posed on the number
of switches that may occur simultaneously or within a given fi-
nite time interval. This may result in a new type of instability
(divergence) that is often calledzenoness in the hybrid systems
literature. One way to rule out the possibility of a zeno exe-
cution is that of assuming that at most one switch may occur
within a time interval of lengthÆ > 0, i.e., we pose the follow-
ing spacing condition

Æj = �j+1 � �j � Æ > 0; j = 1; 2; 3; � � � : (13)

Note that this condition is not an abstract assumption, deriv-
ing from the necessity of avoiding zeno models, but is in many
cases a realistic assumption on the behavior of physical sys-
tems, where the dynamics associated to the actuator that pro-
duces the switch may not be neglectable with respect to the
system dynamics.

When a finite number of switches are allowed we can still
compute the optimal switching regions with a slight modifica-
tion of the procedure described in Section 3. We need to define:

�Æ�k(x) = arg min
Æk�Æ

Fk(x; Æk; �Æ
�
k+1(xk); � � � ;

�Æ�n(xn�1))

wherexj = eAj
�Æ�j (xj�1)xj�1 andFk is still given by (11).

Finally we can write

�Cj;n = fx j �Æ�n(x) = 0g: (14)

The same procedure previously described may be used to com-
pute these regions.

We can also prove the stability of the corresponding control
law (that we callnon-zeno) for n =1 with a similar argument
to that used in the previous section. We consider an infinite
switching sequence of autonomous linear and stable dynamics
as given by equation (1) withn = 1 and make the additional
assumptions:

A1: eachAj may only take values in a finite setA =

fA(1);A(2); � � � ;A(p)g.

Note that in this case the assumption A2 previously defined is
not necessary to prove stability.

Finally, we define

�V (x; j) = minfFj(x; Æj ; Æj+1; � � � ) j Æk � Æ; k � jg;

that coincides with the optimal residual cost for the non-zeno
control law associated with a given evolution that starts inx
and evolves along the residual sequenceAj ;Aj+1; � � � . Note
that in the definition of�V (x; j) we assume that no switch is
possible fort 2 [0; Æ], because this would implyÆj < Æ.

It is still immediate to prove this cost has still as upper bound
Vmax(x) defined in Proposition 4.2, while a lower bound is

given by �Vmin =
�
vTQv

� �R Æ
0
e�2�̂tdt

�
kxk2. Repeating the

argument of Proposition 4.4 it is immediate to prove stability
for the system controlled with a non-zeno optimal law.

5.1 Some convergence results
We have proved the stability of the switched system in the

case of an infinite number of switchings when it is optimally
controlled. We study for this case the convergence properties
of the proposed control procedure. The preliminary results pre-
sented here are limited to the convergence of the regions~C (not
the regionsC or �C) and do not give a constructive algorithm to
determine them.

The stability of the optimally controlled systems implies that
for certainC > 0 and" > 0

kU (t; �)k � Ce�"(t��); t > � � 0: (15)

If we assume that the constant

Z = sup
j=1;2;3;���

max(kM jk; kZjk) < +1; (16)

we obtain the absolute convergence of the infinite series

Hj =

1X
i=j+1

U (�i; �j)
T
h
MT

i Zi+1M i �Zi

i
U (�i; �j)

=

1X
i=j+1

eA
T

j+1Æj+1MT
j+1 � � �M

T
i�1e

AT

i Æi�

�
h
MT

i Zi+1M i �Zi

i
eAiÆiM i�1 � � �M j+1e

Aj+1Æj+1

(17)

whenever the spacing condition (13) is satisfied for a fixedÆ.
Indeed, a straightforward estimate yields

1X
i=j+1

U (�i; �j)
T
h
MT

i Zi+1M i �Zi

i
U (�i; �j)


� (Z3 + Z)C2

1X
i=j+1

e�2"(�i��j); (18)

which is convergent as a result of the ratio test and condition
(13).

Note that the condition given by (16) is always verified when
the setsA = fAj j j � 1g andM = fMj j j � 1g are finite.

In this case (and under condition (13)) we can study the sit-
uation of infinitely many switching times. We then have

@

@�j
F (�1; �2; � � � ) = x

T (��j )Gjx(�
�
j );

where

Gj = AT
j

�
M

T
j Zj+1M j �Zj

�
+

�
M

T
j Zj+1M j �Zj

�
Aj

+
�
�MT

j A
T
j+1 +A

T
j M

T
j

�
Hj +Hj [�Aj+1M j +M jAj ] :

6 Additional stability properties

In the previous section we have discussed the stability of
the optimally controlled switched system. In this section we
present more general results related to the stability of arbitrary
switching policies.

The following result, that is also discussed in [9] but pre-
sented here for completeness, gives sufficient conditions under
which (15) and (16) are satisfied for hybrid systems with con-
tinuous switching (i.e., whereM j � I , beingI the identity
matrix.).
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Proposition 6.1 Suppose the set A = fAj j j � 1g is
finite and consists of p pairwise commuting stable matrices
A(1);A(2); � � � ;A(p), and let the switching matrices M j all
be equal to the identity matrix. Then conditions (15) and (16)
are satisfied. In particular, the series (17) are absolutely con-
vergent whenever the spacing condition (13) is satisfied.

Proof: Clearly, under the assumptions of this proposition
we have

U (t; �) =

pY
i=1

eA
(i)

[Æi(t)�Æi(�)];

whereÆi(t) is the time within[0; t] spent in the system with
state space matrixA(i). Here note that

Pp
i=1 Æi(t) = t. Since

A(1); � � � ;A(p) have only eigenvalues with real part< �" (for
some positive"), there exist constantsC1; � � � ; Cp such that

keA
(i)

tk � Cie
�"t (i = 1; � � � ; p). We then find condition

(15), whereC = C1 � � �Cp. Condition (16) is obvious.

Now, let us consider the hybrid system

�
_x(t) = Ajx(t); �j�1 < t < �j ;

x(�+j ) =M jx(�
�
j ); x(0+) = x0:

(19)

with state space matricesAj , switching matricesM j and
switching times�j . Then by a similarity we mean a sequence
of nonsingular matricesS j converting (19) into the new hybrid
system

�
_�x(t) = �Aj �x(t); �j�1 < t < �j ;

�x(�+j ) = �M j �x(�
�
j ); �x(0+) = �x0;

(20)

where�
�x(t) = Sjx(t) for �j�1 < t < �j ; �x0 = S1x0;
�Aj = SjAjS

�1
j ; �M j = Sj+1M jS

�1
j :

Let us now convert the hybrid system (19) with nonsingular
switching matricesM j into the hybrid system (20) such that
the new switching matrices�M j are all equal to the identity
matrix. This requires choosingS j such thatSj+1M jS

�1
j =

I . Given a nonsingular matrixS1, one must then choose

Sj+1 = S1 [M jM j�1 � � �M2M1]
�1

: (21)

One easily verifies that

U (t; �) = S�1
n+1e

�An+1(t��n) �Mn

� e
�An(�n��n�1) �Mn�1 � � � �M je

�Aj(�j�t)Sj

= S�1
n+1e

�An+1(t��n)e
�An(�n��n�1) � � � e

�Aj(�j�t)Sj

= S�1
n+1

�U (t; �)Sj ; (22)

whenever�j�1 � � < �j < �j+1 < � � � < �n < t � �n+1.
Here �U (t; �) is the evolution system pertaining to (20).
Theorem 6.2 Let the set of matrices M jM j�1 � � �M 2M1

(j = 1; 2; 3; � � � ) and the set of their inverses
[M jM j�1 � � �M2M1]

�1 (j = 1; 2; 3; � � � ) both be bounded.
Then the hybrid system (19) satisfies conditions (15) and (16)
if and only if the hybrid system (20)does.

Proof: In view of (21) and (22), the sequence of similarity
matricesSj and the sequence of their inversesS�1

j are both
bounded. The statement of this theorem is then an immediate
consequence of (22).

Remark 6.3 Theorem 6.2 allows us to reduce the problem of
stating conditions for the stability of an arbitrary hybrid system
with nonsingular switching matricesM j (j = 1; 2; � � � ) to that
for a hybrid system whereM j � I (j = 1; 2; � � � ). In partic-
ular, if the transformation from the system (19) to the system
(20) leads to a hybrid system (20) with finitely many different

pairwise commuting matrices~A
(1)
; � � � ; ~A

(p)
, system (19) sat-

isfies conditions (15) and (16). �

7 Conclusions and future work

In this paper we dealt with the optimal control of switched
piece–wise linear autonomous systems, where the objective is
that of minimizing a quadratic performance index over an in-
finite time horizon. We assumed that the switching sequence
is known and the unknowns to be determined are the optimal
switching times. The proposed control procedure is based on
the computation of homogeneous regions of the state space
such that an optimal switch should occur if and only if the
present state belongs to this region.

The results obtained so far are interesting, and we hope that
they could be extended to a more general setting. In particu-
lar we also plan to study in the future the case in which the
switching sequence is not pre–assigned and the case in which
the subsystems dynamics are neither autonomous nor stable.
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