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Abstract The control problem consists in determining the optimal
switching timesr;, j = 1,2, -- -, so as to minimize a quadratic

The paper deals with the optimal control of switched piecePerformance index of the form:
wise linear autonomous systems, where the objective is that of o0
minimizing a quadratic performance index over an infinite time F(m1,72,-) = / 2’ (1)Qu(t) dt
horizon. We assume that the switching sequence and the corre- 0
sponding jump matrices sequence is known, while the unknowshereq is apositive definite matrix.
switching times are the optimization parameters. The optimal When only &inite numbem of switches may take place, the
control for this class of systems, assuming a switching sequenissults we presented in [4] show that the optimal control law
of finite length, takes the form of a homogeneous state feeddrns out to be a *homogeneous feedback”, in the sense that for
back, i.e., it is possible to identify a homogeneous region of thall j < n: (a) it is possible to identify a regiaf; ,, of the state
state space such that an optimal switch should occur if and orgéypace such that thgth switch should occur if and only if we
if the present state belongs to this region; we show how sucte within this region; (b) this region is homogeneous, i.e., if
a region can be computed with a numerical procedure. As the € C;, thenz € C; ,,, for all real numbers.. In [4], we also
number of allowed switches goes to infinity, we study the stasonsidered the case in which a cost is associated to each switch-
bility of the system and discuss some preliminary results relatédg and studied how the regions are correspondingly modified.

to the convergence of the state feedback law. The original features of our approach can be summarized as fol-
lows. Firstly, our derivation is based on the analytical derivation
1 Introduction of the cost functional rather than the hamiltonian. Secondly, we

) . . are able to show that in this particular case the optimal control

Switched systems are a particular class of hybrid systems [l 5 state feedback (and not an open-loop control). Thirdly, we
consisting of a certain number of subsystems (that may also Bge aple to compute with a simple numerical procedure not only
infinite) and a switching law that indicates the active SUbSySteﬂbcessary but also sufficient conditions for optimality.
at each time instant. Examples of switched systems may be |, this paper, we consider the case in which the number of
found in many application fields, such as chemical processegjowed switches: goes to infinity. In this case, stability is-
transportation systems, electrical circuit systems, and so on. gyes become important because the stability of each subsystem

The problem of determining optimal control laws for thisjs neither a sufficient nor a necessary condition for the stability
class of hybrid systems has been widely investigated in the Iasf the overall system; this topic has been studied in the liter-
years and many results can be found in the control and corgyyre [3, 6, 9]. 'We show that the switched system controlled
puter science literature [2, 5, 7, 10]. Many of these works progith the proposed procedure is stable in the sense of Lyapunov
pose control procedures that are based on the discretizationgdcause of the optimality of the control law if we assume that
state space into grids and use search methods to find optinggé number of subsysteru = {A; | j > 1} is finite and the
open-loop solutions. We also mention the contribution givefymp matricesM ; satisfy a not very restrictive condition.
by Riedingeret al. in [7, 8] where very generalifficient con- However, a different type of instability, zenoness, may ap-
ditions for optimal control problems of switched systems ar®ear if we allow consecutive switching times = 7,1 =
given in terms of hamiltonian function. ... = 7j,, to take the same value. To rule out this case, we

In this paper we restrict our attention to the case of switchegropose in this paper a modified procedure that finds the opti-
systems whose subsystems are linear and autonomous. We @&t control law under the constraint thgt— ;1 > 6 > 0,

sume that we have a pre-assigned switching sequence between 1,2,--- (spacing condition). Even for the modified pro-
autonomous linear dynamics of the typef) = A;x(t), where  cedure we prove the stability of the controlled systems under
the sequencd ;, j = 1,2, - - - is known but the switching times possibly infinite switchings.

7; are unknown. We also generalize this framework by assum- Finajly, we also study the convergence properties of the
ing that whenever at time; a switch fromA; to A, occurs,  switching regions for an infinite number of switches. The pre-
the state should jump from(7;") to :c(rf) = M;z(r; ). We liminary results presented in the paper do not give a construc-
make the following assumptions: tive algorithm to determine the regions.

a) Each matrix4; is stable, thus an optimal choice of the One limitation of the present approach is the fact that the
7;'s will ensure the stability of the switched system under somswitching sequence is pre-assigned. In effect, preliminary re-
hypothesis on the structure of the allowed jumps (we provsults that are not discussed here, show that our approach can
this). easily be generalized to consider a (possibly infinite) set of le-

b) Each system is autonomous, i.e., we do not need to comgal sequences provided that they can all be generated by a fi-
pute a continuous control. The only control input for this syshite state automaton over the alphabet We observe, how-
tem is the controlled switch/jump. Also switch and jump areever, that there exist significant problems of practical relevance
coupled, in the sense that tlie¢h jump and theg-th switch are  where the present framework (pre-assigned sequence) may be
triggered by the same event and occur at the same time. successfully applied. Consider, as an example, an active filter-

¢) We assume that no cost is associated to a switch. ing problem where by connecting or disconnecting a capacitor

0-7803-7061-9/01/$10.00 © 2001 IEEE 2472



one aims to reduce the distortion of an output signal. Suchldsing the relations

problem can be framed as a pre-assigned sequence of switches

A— A— A— -, wherei(t) = Az(t) is the dynamics of o(r) 0, k<j

the system with the capacitor connected arn(d) = Ax(t) is bo = QAjx(r)), k=j

the dynamics of the system with the capacitor disconnected. 0; U(r, 1) [-Aj1 M + M Ajle(r7), k> j,
It may be possible to extend the results we present here to !

the cases — considered in the literature already mentioned we obtain

where the subsystem dynamics are not all stable but there exists

a stabilizing switching sequence; this is a topic for future work. 0 r — 2T (G _ ©6)
8_7'j (7_17"' ;7_11) =T (Tj ) ]nw(Tj )a
2 The System with Switching Conditions
. where
2.1 System Dynamics
Given the switching time§ = 70 < 74 < -+ < 7, < 4T T s
Tny1 = 00, the N x N stable matricesA;, -+, A,11 € A Gin =4; [Mj Zj1 M ZJ]
and the switching matriced?,, - -- , M ,,, consider the linear + [MjTZjHMj — Zj] A;j
system whose dynamics are given by —— . )
+|-MT AT, + ATM] | H,
w(t) = Aj.’B(t), 71 <t <7y, +Hj,n [—Aj_HMj + MjAj]
x(r) = MyMj_, --- M;x(1;), 1)
fOTTj71<Tj:"':Tk<Tk+1, and
.’B(O) = Xo. n
. . . H;, = U(ri,7))" |\ MY Z . M, — Z;| U (7, 7;
Then we define the evolution matricE&t, 7) (t > 7 > 0) » ,;1 (7i> ) [ @ ’] (73, 75)
by =
z(t™) =U(t,7)z(rT). _ Z eA].TJrlajJrl]u;r+1 ---M;{leAiT‘si %
Then, obviously, forr; 1 < 75 = -+ =7 < Tp41! i=j+1
MTZ M, — Z;| A M,_, - M., eAit1din
U(T:jﬂ') =M Mj_,---M;U(7},7), X [ i Lit1 ] e 1 j+1€
and forj=1,---,n—1landH,, = 0.
Ult,7; )=U(t, 7)) MMy _1---M;,.
t.7;) (& 7e) MM ’ 3 State-feedback control law
Let us defing); = 7; — 7,1 (j = 1,---,n). One easily From eq. (6) it follows that an optimalkth switch may only
verifies that occur in the region of the state space defined by

Ut,r) = eArnt TkAMkeAk’sk T ) Cin={zeR |27G; x>0} (8)
o M eftitidin M e i(mi—)
that includes the points where a delay in the switching time
wheneverr;j_; <7< 7 <Tjp1 <o <1 <8< T leads to an increase in the cost functional. Thus we assume that
the following law is used to enforce theth switch:

2.2 Optimization problem

Given a positive definitd’ x N matrix@Q, we define the cost o ifthe (j — 1)-th switch leads to a state;_ ¢ C;» the

functional state will evolve until a poink; on the boundary of; ,,
is reached and thgth switch will occur there;
o0
F(r, o0 ) = / a’ (t)Qu (1) dt. 3 o if the (j — 1)-th switch leads to a state;_, internal to
0 Cj.n,» thej-th switch will occur immediately, i.ex; =
Clearly, using the conventidii (+o0,7) = 0 and since Lj-1-

T - . 0 Now, we first observe that while for theth (i.e., the last)
/ oA (t—Tj—l)QeAj(t—Tj—l)dt = [eAJ— tzjeAjt:| (4) switch,G,, , is a matrix of constants, from eq. (7) it follows
Tio1 9; that for all j < n the value ofG;,, (011, ,d,) depends
on the future intervals between switching times. Therefore, we
whereZ ; are the unique solutions of the Lyapunov equations define forj = 1,--- ,n the function:A ; RN o [0, oc] where

G—

A]Zj+ Z;A; = -Q, Aj(z) = min{d € [0,00] | APz € Cin), (9)

we get is the length of the shortest time interval necessary to reach —
starting froma: and with dynamics given byl ; — a point on

F(ry, o) = 2§ Z120 Cjn. Two limit cases are possible) j(z) = 0if z € Cj .,

n _ 5 . e 5 o
+3i 2 (1) [MjTZjHMj - Zj] z(7; ). ®) while A (x) = o if C},, is not reached in finite time.
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The corresponding switching law can thus be described in
terms of the following switching regiong K n):

Com={z RN |2TG,, x>0},

Cjn ={x € RN | 36j41 -+, d,, such that
i1 = Aja (@);
dj42 = Ajio (Mj+1eAj+15j+1m);

Op = An(Mn,leA"*“S"*l .. .Mj+1eAj+15j+1 m);
:l!Tijn((SJ:H, s ,(Sn) X Z 0}.
(10)

An important result follows immediately.

Proposition 3.1 Theregions C~j,n (j =1,---,n) are homoge-
neous spaces, i.e., x € Cj, = (VA€ R) \x € Cj,,.

Proof: ~We prove this by induction og. Clearly Cﬂm is
homogeneous, beciiuéé,},n I,S a constant matrixbase step). Figure1: Theswitching regionsC;. 3, j = 1,2, 3 for the systemin the
Assume now thatall; ,, (i = j + 1,--- ,n) are homogeneous. example and the system evolution for 2o = [—0.2, 0.6].
This clearly implies, given the characterization of (9), that the
functionA; (i = j+ 1,--- ,n) are such thal\;(z) = A;(Ax)
forall 0 # A € R This in turn implies that’; ,, is homoge- Proposition 3.2 TheregionsC;,, (j = 1,--- ,n) are homoge-

neous induction step). We conclude thaf ;. ,, is ahomogeneous neousspaces, i.e., « € Cj, = (VA € R) Az € Cj ;..
spaceforalj =1,--- ,n. n Proof: Itis enough to show that fox € R, all £ € N and

. o . N allz € RY: 6;(\x) = 0;(x). Following the same reasoning
Note that this characterization provides an algorithmic way oy osjtion 3.1, this follows immediately from the definition
to construct the regions. We observe that it is sufficient to det s« a4 the expression df, given in (11) that is quadratic in
termine which points on the unitary semi-sphere belong to

region to completely determine the region (because it is a ho~ "
mogeneous space). Thus, we choose a suitable discretization

step and for each point on the unitary semi-sphere we deter-3.1 Example

mine if it belongs taC,, ,, Cn—1,,, €tC., also computing step by  Let us consider a second order system whose dynamics may
step the corresponding values &f, (z), A,_1(z), etc. This _only switch between two matrice4") and A®). We also as-
procedure may be burdensome but can be applied off-line. Tkgime that only three switchings are possible<t 3) and the

on-line controller, on the contrary, will simply need to test if thejisiq system dynamics i Thus. the sequence of switch-
actual state vector belongs to the next switching region. 015 A0 s A42) Ly 40 .A(2> , !
At this point, we observe that this isr@cessary condition 'M9'S - - — A, where
for optimality, but in general it is not sufficient. To overcome 11 ‘ 1k
A“):[ ] A<2>=[ }

this restriction, we show how a new set of linear regions can be _18 —5 _3
computed, such that if every switch occurs as soon as they are
reach hen optimality i ran .Inther f th r ; . .
tﬁ:; a?g’dter?otggtzf%a t}/_s ?u_? 2 Ttleed the rest ot the Papgiie that4® and A® are stable non-commuting matrices,
mrJ — 4y IRAN . <
Once again, thesswitching regions have to be computed i-€., A" AP # AP AWM We also assume that al; are
starting from the last one. More precisely, let us first define thequal to the identity matrix.

residual cost from thé-th ton-th switch, given the initial state ~ The switching regiong’; ,, j = 1,2, 3, are shown in fig-
x,as: ure 1 where the following color notation has been used: the

red (lighter) region represents the set of states where the system
switches to the next dynamics, while the blue (darker) region
represents the set of states where the system still evolves with
the same dynamics.

In the bottom right of figure 1 we have shown the system

Fk($;6k76k+1; s ,571) = :BTZ]CIE

n 11
+ Zj:k m;r[M?ZJ#le —Zjlz; D

with z; = ¢4z, andw,_; = . We also define the

corresponding-th optimal switching interval as: evolution in the case aéo = [-0.2, 0.6]. The switching times
arer; = 0.61, » = 1.34 andr3 = 1.49, and the optimal cost
0p(x) = arg min Fi(x, 0k, 051 (1), 00 (Tn_1)) is F'(1y,m,13) = 0.19.

Ok ERO

4 A stability result

In this section we consider the case in which= oo, i.e.,
Cin={z | 8i(x)=0} (=1, ,n) (12) the number of allowed switches goes to infinity. As well known
’ from the literature, if a system switches an infinite number of
Note that, as in the previous case, the computation of thetiemes among a finite number of stable dynamics, then the result-
regions is performed off-line, starting fro, , and going ing system is not guaranteed to be stable. Stability in general
backwards. depends on the switching sequence and on the switching time
To conclude, we formally prove an important result. instants.

wherex; = ¢A3% (Ti-1)z;_, . Finally we can write that
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We consider an infinite switching sequence of autonomou®roof: The first claim follows from the fact thdt,;, is as-
linear and stable dynamics as given by equation (1) withoo  sociated to the cost of an evolution along the directiom @f
and make two additional assumptions: which the quadratic forr:7Q is minimized and that is tra-
versed with the fastest decaying rate (associatéd tomongst

Al: each A; may only take values in a finite sel = all those possible with the allowed dynamics and the greatest

{A(l), Am, o ;A(p)}; norm reduction allowed by consecutive jumps. To show this
A2: the sequence of jump matricad’s is such that formally, let z,,(-) be an optimal trajectory starting at time
7j—1 from z and locatiory; it holds
inf o(M1)o(M>)---a(M;) >0 o0 o0
. V)= [ altQuutdt> [ len(®]v Quit
whereg (M) denotes the smallest singular value of ma- i1 i1

trix M. _ TQ,U Z/ ||e i(t=ric) pp,
Note that the second assumption is always verified when the
jump matrices are all equal to the identity matrix.
To prove that the controlled system is stable if the switching
times are chosen so as to minimize the cost functidhgiven
by equation (3), we introduce a Lyapunov-like function

V(mvj) :min{Fj(w,dj,5j+1,---) | 5k € R(T;k Z]};

wheref’; is defined in (11); the value of this function coincides
with the optimal residual cost associated with a given evolu-
tion that starts ine and evolves along the residual sequence

-A-z (i1 —Tiz z)M M eA (Ti=7j-1) ||2 dt

(v" Qo) Zo<M7 Do (M)

e 72¢7t Tict) e 20T ) |||

> M2 (07 Qo) Z/ e270=ri0 gt | |

Aj7 Aj+1a e
Before providing a lower and upper bound éfz, j), we

present an elementary lemma that will be used in the following

derivation.
Lemma4.1 Given a linear and stationary dynamical system
a(t) = Ax(t), with initial condition z(0) = x, for all t > 0

holds
|l(®)l| = lleAtzo]| > e |laoll,

where || - || denotes the Euclidean norm and o = || A|| is the
largest singular value of matrix A.
Proof: First observe that (herg, -) denotes the scalar prod-
uct)

20z % llz@)] = g (zt),2t) > =2zt

= 2| Az@)llllz(®)l| > -2/l Alllz®)I|* = —20(l= ()],

SO that.dit||m.(t)|| > —ollz(t)]]. Hencee’t||z(t)|| is non-
decreasing, i.e¢?!||z(t)|| > ||zo]l. [

Proposition 4.2 Let 6 = max{||[A7|| | i = 1---,p}, bethe
maximum amongst all largest singular values of all matricesin
A, let
v = argHm”@ 2T Qux

be the wvector on the unitary sphere with minimal
guadratic cost, and, sad M, = I, le¢ M =
lnfhk>0{U(Mh) (Mh+1) (Mh+k:)}- Note that as
sumption A2 impliesthat M > 0.

Let Z bethe solutionof A"z + z(H) A0 = _q.

(1) We define
M2 T ( * 72[7td ) 27
(v Q'v) /0 e t) |||

and claimthat V (z, j) > Vinin(2) for all j > 1.
(2) We define

Vmin (m) -

Vinax(x) = Inax {mTZ(i)w | AW ¢ A},
=1, ,p

and claimthat V(z, j) < Vinax(z) for al j > 1.

o0

= M? (v Qu) /

e 2T 0at | |z
Tj—1

= M? (vTQu) / efz&tdt> llZ])* = Vinin ().
0

The second claim follows from the fact that starting from
x with the dynamics given by ; and without switching, one
may obtain a costTij < Vmax(x). Clearly, the optimal
costV (z, j) can only be smaller. n

Now, we state an obvious monotonicity result.
Property 4.3 Monotonicity Property. Let 7,7’ € Rt betwo
generictimeinstants. If 7 < 7' and the switched system evolves
along an optimal trajectory &, (-), jop(-), then

V{(®op(T); Jop(T)) = V(Top(T'), jop(")),

i.e., the optimal remaining cost does not increase along any
optimal trajectory.

Proof:  Trivially follows from the fact that the cost is the
integral of a positive definite function. ™

From the above monotonicity property, it immediately de-
rives the following stability result.
Proposition 4.4 Theswitched system consideredin this section
and optimally controlled is stable because given an arbitrary
p > 0,thereexistsy > 0 suchthat ||z(7')|| < pfor all 7/ > 7;
ifJz(m)I < 7.
Proof: Let C' be the maximal value for which the curve
Vmin(2z) = C is all contained within the closed ball of radius
p. Then, choose as the minimal value ofz|| for = belong-
ing to the curveVhax(x) = C. We prove that any optimal
evolution that starts ie,,(7;) = z; within the closed ball of
radiusy (this initial state is such thdty,.x(xz;) < C) remains
in the closed ball of radius. Assume, by contradiction that for
7' > 15, andj(r') = j' we havex,,(r') = &', with ||'|| > p.
Then by the first claim of the lemm&;(x’, j') > Viin(2') >
C, henceV (', j') > Vmax(z;) > V(xj;,j) where the last
inequality follows from the second claim of the lemma, thus
contradicting the monotonicity property that states that the cost
must decrease along any trajectory. m
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A final comment. Due to the discontinuity caused by theés.1 Some convergenceresults
jumps,z(7) may not be defined if is a switching instant. The ~ We have proved the stability of the switched system in the
results of Property 4.3 and Proposition 4.4 hold if we assume atse of an infinite number of switchings when it is optimally

all points of discontinuityz(r) = 1 (z(r7) + z(rT)). controlled. We study for this case the convergence properties
of the proposed control procedure. The preliminary results pre-
5 Non-zeno optimal control sented here are limited to the convergence of the regioimet

. . - the regiong’ or C) and do not give a constructive algorithm to
In the previous section, no limit was posed on the numbe&etermine them.

of switches that may occur simultaneously or within a given fi="", o i of the optimally controlled systems implies that
nite time interval. This may result in a new type of mstabllltyfor certainC > 0 ande > 0

(divergence) that is often callenoness in the hybrid systems

literature. One way to rule out the possibility of a zeno exe- U, 7)|| < Ce=tt-7), t>71>0. (15)
cution is that of assuming that at most one switch may occur - -

within a time interval of lengtld > 0, i.e., we pose the follow- If we assume that the constant

ing spacing condition
Z = sup max(||M;||,[|Z;]l) < +oo,  (16)
§j =T -7 28>0,  j=1,23---. (13 R
. o . _we obtain the absolute convergence of the infinite series
Note that this condition is not an abstract assumption, deriv-
ing from the necessity of avoiding zeno models, but is in many i
cases a realistic assumption on the behavior of physical sysH; = Z U(ri, )" [M,-TZ¢+1M¢ - Zz'] U(ri, 75)

tems, where the dynamics associated to the actuator that pro- i=j+1
duces the switch may not be neglectable with respect to the o0
; AT 55 T T _ATs;
system dynamics. = et M M et Y
When a finite number of switches are allowed we can still ;574

compute the optimal switching regions with a slight modifica- - As A s
tion of the procedure described in Section 3. We need to define: X [Mz ZiyaM; — Zi] e M- M et
- - - 17
0p(x) = arg min Fy (z, 6, 05 1 (2), -+ , 05 (Tn—1)) a7
Ok 20 whenever the spacing condition (13) is satisfied for a fixed
A5 o Indeed, a straightforward estimate yields
wherez; = e 39 (wj—l)mj_l and Fj, is still given by (11).

Finally we can write — T T
Z HU(Ti,Tj) [M, Zi 2 M; — Zi] U(Ti:Tj)H

Cin = {z | 9, (x) = 0}. (14) =i+
The same procedure previously described may be used to com- <(Z®+ 2)C*? Z e 2e(mimTi), (18)
pute these regions. i=j+1

We can also prove the stability of the corresponding control ) .
|aW (that we ca'hon_zeno) for n =00 W|th a S|m||ar argument Wh|Ch IS Convergent as a I’esult Of the ratio test and Cond|t|0n
to that used in the previous section. We consider an infinitel3)- o ] ) N
switching sequence of autonomous linear and stable dynamicsNote that the condition given by (16) is always verified when
as given by equation (1) with = oc and make the additional the setsd = {A4;|j > 1} andM = {M; | j > 1} are finite.
assumptions: In this case (and under condition (13)) we can study the sit-

uation of infinitely many switching times. We then have
Al: each A; may only take values in a finite sef = P
{A(l), 14(2)7 - 714(17)}_ 6_7—].F(T1’7—2’ .. ) — ﬂL’T(Tj_)Gj:B(Tj_),
Note that in this case the assumption A2 previously defined ish
not necessary to prove stability. where
Finally, we define G, [: A]-TT[J\/ITJTZj+IJ;/_Ij ;]Zj] + [MJ?ZHIMj —Z;| Aj ]
~ +[-MTAl, + ATMT|H; + H;[-A; 1M, + M;Aj].
V(x,j) = min{Fj(z, 85,0501, ) | 0 > 0.k > j}, P T e

that coincides with the optimal residual cost for the non-zeno 6 Additional stability properties

control law associated with a given evolution that startsin . ) . .

and evolves along the residual sequedcg A1, ---. Note In the previous section we have discussed the stability of

that in the definition ofV’(z, j) we assume that no switch is the optimally controlled switched system. In this section we

possible fort € [0, 6], because this would imply; < é. present more general results related to the stability of arbitrary
Itis stillimmediate to prove this cost has still as upper boungWitching policies.

Vinax () defined in Proposition 4.2, while a lower bound is The following result, that is also discussed in [9] but pre-
sented here for completeness, gives sufficient conditions under

. = ) _925 2 .
given by Vain = (v Qu) (fo e? tdt) llz|”. Repeating the \hich (15) and (16) are satisfied for hybrid systems with con-
argument of Proposition 4.4 it is immediate to prove stabilittinuous switching (i.e., wherdZ ; = I, beingI the identity
for the system controlled with a non-zeno optimal law. matrix.).
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Proposition 6.1 Suppose the set A = {A4; | j > 1} is
finite and consists of p pairwise commuting stable matrices
AW AP .. AP and let the switching matrices M ; all
be equal to the identity matrix. Then conditions (15) and (16)
are satisfied. In particular, the series (17) are absolutely con-
vergent whenever the spacing condition (13)is satisfied.

Proof:
we have

Ut,7) = ﬁ e AV i (D=0
i=1
whered;(¢) is the time within[0, ¢t] spent in the system with
state space matrid?). Here note thap_?_, &;(t) = t. Since
AW ... AP have only eigenvalues with real part—e (for
some positives), there exist constantS'y, - - - ,C}, such that

1A < Cie=t (i = 1,---,p). We then find condition

(15), whereC' = C; - - - C},. Condition (16) is obvious. n
Now, let us consider the hybrid system
$(t) = Ajw(t), Tj—1 < t < Tj, (19)
w(T;“) = M;z(r;), z(0")=x.

with state space matriced;, switching matricesM ; and

Clearly, under the assumptions of this propositio

Proof: Inview of (21) and (22), the sequence of similarity
matricesS; and the sequence of their inversﬁ;1 are both
bounded. The statement of this theorem is then an immediate
consequence of (22). m

Remark 6.3 Theorem 6.2 allows us to reduce the problem of
stating conditions for the stability of an arbitrary hybrid system
With nonsingular switching matrice®f ; (j = 1,2, --) to that
for a hybrid system wherd4; = I (j = 1,2,---). In partic-
ular, if the transformation from the system (19) to the system
(20) leads to a hybrid system (20) with finitely many different

pairwise commuting matriceil(l), e ,Jl(p), system (19) sat-
isfies conditions (15) and (16). |

7 Conclusions and futurework

In this paper we dealt with the optimal control of switched
piece—wise linear autonomous systems, where the objective is
that of minimizing a quadratic performance index over an in-
finite time horizon. We assumed that the switching sequence
is known and the unknowns to be determined are the optimal
switching times. The proposed control procedure is based on
the computation of homogeneous regions of the state space
such that an optimal switch should occur if and only if the
present state belongs to this region.

The results obtained so far are interesting, and we hope that

switching timesr;. Then by a similarity we mean a sequencehey could be extended to a more general setting. In particu-
of nonsingular matrice§'; converting (19) into the new hybrid |ar we also plan to study in the future the case in which the

system

; Tj—1 <t< Tj,
B(r) = Mja(r), #(07) =2, 0

where

To = S1To,

{:ii(t) = SjiB(t) for Tj—1 <t <7y,
M;=S;.1M;S;*"

Aj=S;A;S;",

switching sequence is not pre—assigned and the case in which
the subsystems dynamics are neither autonomous nor stable.
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